
Theoretical Computer Science 110 (1993) 145- 168

Elsevier

145

A comparison of compatible, finite,
and inductive graph properties

Annegret Habel and Hans-J&-g Kreowski
Departnwr~c of Conlputrr Scietzcc Unirersit~. of Bremen. W-2800 Bremm, German.)

Clemens Lautemann

Communicated by A. Salomaa

Received September 1990

Revised July 1991

Abstract

Habel, A., H.-J. Kreowski and C. Lautemann, A comparison of compatible, finite, and inductive

graph properties. Theoretical Computer Science 110 (1993) 1455168.

In the theory of hyperedge-replacement grammars and languages, one encounters three types of

graph properties that play an important role in proving decidability and structural results, The three

types are called compatible, finite, and inductive graph properties. All three of them cover graph

properties that are well-behaved with respect to certain operations on hypergraphs. In this paper, we

show that the three notions are essentially equivalent. Consequently, three lines of investigation in

the theory of hyperedge replacement - so far separated merge into one.

1. Introduction

Hyperedge-replacement grammars and their generated languages, originally intro-

duced by Feder [6] as context-free plex grammars and languages, have been studied

intensively in the last years in several variants and under different names. See, e.g., the

algebraic study of context-free grammars by Bauderon and Courcelle [2], cellular

graph grammars introduced and investigated by Lengauer and Wanke [12], and [S].

An interesting portion of the theory of hyperedge replacement is based on graph

properties that behave “nicely” under certain operations on graphs and hypergraphs.

In [121, Lengauer and Wanke introduce the notion of ajinite property I7. It means

roughly that there is only a finite number of classes of graphs that behave differently

with respect to I7 when put into all possible environments. Courcelle investigates in

Correspondence to: A. Habel, Department of Computer Science, University of Bremen, W-2800 Bremen 33,
Germany. Email: habel(n informatik.uni-bremen.de.

0304-3975/93/$06.00 P 1993-Elsevier Science Publishers B.V. All rights reserved

146 A. Hahel, H.-J. Kreowski, C. Lautemann

[3,4] the so-called inductive properties. Roughly speaking, a family of predicates is

inductive relative to a set of graph operations if each predicate can be tested in the

following way. If a graph is given as a result of applying one of the operations, then

whether the predicate holds for it can be determined by checking the corresponding

predicates for the arguments of the operation. Finally, in [lo], graph properties are

studied that are compatible with the derivation process of a class of hyperedge-

replacement grammars in a certain way. In all three cases, more or less the same

results have been shown. For example, given a compatible, or finite, or inductive

property II, the following questions are decidable for hyperedge-replacement

grammars:

(1) Does the language generated by the input grammar have a member which

satisfies II?

(2) Do infinitely many members of the generated language satisfy 17?

(3) Do all members of the generated language satisfy X7?

Other examples are the linear-time theorem and the filter theorem: The linear-time

theorem says that, given a compatible, or finite, or inductive property II, for

hyperedge-replacement grammars and generated hypergraphs represented by a

derivation (or something equivalent), the question

(4) Does the hypergraph satisfy II?

can be decided in linear time. The filter theorem states that the intersection of

a generated language with the set of graphs satisfying the given property can be

generated by a hyperedge-replacement grammar. Moreover, the known examples of

compatible, finite, and inductive properties are the same: k-colorability, connected-

ness, planarity, Hamiltonicity, etc. No wonder, because in this paper all three notions

are shown to be essentially equivalent for the class of all hyperedge-replacement

grammars.

In more detail, the paper is organized in the following way. A common framework

of hyperedge replacement is presented in Section 2. As objects of interest we have

chosen unlabeled, undirected graphs, because they are well-known from graph theory

and many areas in computer science. Our results can, however, be extended to richer

structures, such as, e.g., directed node- and hyperedge-labeled hypergraphs. Graphs

are decorated with hyperedges, so that they can be used to generate sets of graphs. In

Section 3, the notion of a compatible graph property is recalled. Compatible proper-

ties are compared with finite graph properties in Section 4, and with inductive graph

properties in Section 5. In both cases, we can show, essentially, equivalence. The

equivalence proofs are based on the observation that the operations related to

finiteness as well as the operations related to inductivity can be simulated by certain

hyperedge-replacement grammars. The paper ends with a discussion.

The model of hyperedge replacement we have chosen in this paper is the one

studied by Lengauer and Wanke. The models used in [2, 8, lo] are more general. In

other words, we consider the intersection of the three models to get a basis for the

comparisons. This also allows us to recall results from all three models as facts

(sometimes just specialized to the chosen model).

Compatihlr, finite, and inductioe graph properries

2. Hyperedge replacement

147

In this section, we recall the basic notions and results on hyperedge replacement in

order to establish a basis for the comparison of compatibility, finiteness, and inductiv-

ity. We choose ordinary unlabeled undirected graphs without loops and multiple

edges as terminal structures of interest. To generate sets of graphs, they are decorated

by hyperedges in intermediate steps. Each hyperedge has a label and an ordered finite

set of tentacles each of which is attached to a node and is a placeholder for a graph or
_ recursively - for another decorated graph. Each decorated graph has a sequence of

external nodes. If a hyperedge is replaced by a decorated graph, the external nodes of

the latter are fused with the nodes adjacent to the hyperedge.

Definition 2.1 (Graph). A graph is a pair G=(V, E), where V is a set of nodes (or

vertices) and E is a set of 2-element subsets of V, called edges. The class of all graphs is

denoted by gO.

Definition 2.2 (Decorated graph). Let N be a set of nonterminal labels. A (hyperedge-)

decorated graph (over N) is a system H = (V, E, Y, lab, att, ext), where (V, E)EY~, Y is

a set of hyperedges, lab: Y--f N is a mapping, called the labeling, att : Y + V* is

a mapping, called the attachment, and extE I/*, called the (sequence of) external nodes.

The class of all decorated graphs over N is denoted by 9(N).

Remarks. (1) The components V, E, Y, lab, att, and ext of H are also denoted by

V,, E,, YH, labH, attH, and extH, respectively.

(2) The length of ext, is called the type of H and denoted by type(H). If type(H)= n,

H is called an n-graph. The class of all n-graphs over N is denoted by qn(N).

(3) Accordingly, the length of attH(y) for ye Y, is called the type of y, denoted by

type(y). If type(y) = n, y is called an n-edge. We use the word “type”, because n-edges

will play the role of placeholders for n-graphs.

(4) For an n-graph H, the O-graph U(H)=(V,, EH, Y,, lab,, att,, 3.) is said to be

the O-graph underlying H.

(5) A graph may be seen as a O-graph without hyperedges. In this sense,

go c y,,(N)& 9(N). Moreover, the subclass of 9?,,(N), for n30, consisting of all

n-graphs without hyperedges is denoted by 9,,, while 9 denotes the union of all 9,,, for

n 2 0. In the description of n-graphs without hyperedges we will drop the components

Y, lab, and att.

(6) Another particular case is a decorated graph with a single hyperedge where

external nodes and attachment coincide, i.e., H = (V, 8, (y}, lab, att, ext) with

ext =att(y). Such an H is called a handle.’ If V= [H],~ lab(y)=A, and

att(y)=ext = 1 . ..n. H is denoted by (A, ny.

’ Note that our handles are different from classical handles in parsing.

2Forn>1, [n] denotes the set (1,2 ,..., n).

148 A. Habel, H.-J. Kreowski, C. Lautemann

Definition 2.3 (Isomorphic decorated graphs). Let H, H’E~(N). Then H and H’ are

isomorphic, denoted by H 2 H’, if there are bijections f: VH -+ V,, and g : Y, -+ YHC

such that E,,={{f(x),f(y)}I{x,y}~E~}, labh)=lab(dy)) and f*(aMy))=
attHS(g(y))3 for all YEY,, and f*(extH)=extH,.

Hyperedge replacement is composed of three simple constructions on decorated

graphs: Hyperedge removal, disjoint union, and node fusion.

Definition 2.4 (Operations on decorated graphs). (1) Let HE%(N) and B c Y,. Then

the removal of B from H yields the decorated graph

H-B=(V,, EH, Y,-B, lab, att, extH),

with lab(y)=lab,(y) and att(y)=att,(y) for all ~EY,--B.~

(2) Let H, H’E~(N). Then the disjoint union of H and H’ is the decorated graph

H+H’=(V,+V,.,E,+E,,, Y,+Y,,,lab,att,ext,),

with lab(y)=lab,(y) and att(y)=attH(y) for all JJEY, and lab(y)=labr,,(y) and

att(y)=att,,(y) for all YE Y,..4

(3) Let Hey(N), 6 an equivalence relation on V,, and V the corresponding

quotient set (of VH through 6), where the equivalence class of each VE V, is denoted by

[v]. Then the node fusion in H according to 6 yields the decorated graph

with

H/6 = (V, E, Y,, labH, att, ext),

. E={{Cvl, Cu’l} I {u, U’}EEIf, C~l#C~‘l},
l att(y)=[v,]...[v,] if att,(y)=vi...v, (ygY,), and

0 ext=[v,]...[v,] if extH=ul . ..v..

If u=xl . ..X., u=y, . ..~.EVE and if 6 is the equivalence relation on V, generated by

Xi=yi,fOri=l,..., n, we also write H/(u = v) instead of H/6, in order to emphasize the

generating relation.

Remarks. (1) Removal removes some hyperedges without changing anything else. In

particular, we have type(H -B) = type(H).

(2) The disjoint union is asymmetric with respect to the choice of the external nodes

which are taken from the first component only. Hence, type(H+ H’)=type(H).

(3) Node fusion may identify different nodes of a graph, according to an equival-

ence relation. The external nodes as well as the incidences of edges and hyperedges are

adapted accordingly. Labels and types remain unchanged. In particular, type(H/b)=

type(H).

3 For a mapping f: A + B, the free symbolwise extension f* : A* + B* is defined by f*(a, . ..ak)=

.f(a,) f(ak) for all kEN and a, ,..., a,EA.
“For sets A and B, A-E denotes the set-theoretic difference of A and B, i.e., A--B={~EA~~&B}; A+B

denotes the disjoint union of A and B.

Compatible, ,finite. and inductiue graph properties 149

Definition 2.5 (Hyperedge replacement). Let HE%(N) and B = { y,, . . , y,,) c Y,. Let

rep1 : B -+ 9(N) be a well-typed mapping i.e., a mapping with type(yJ = type(repl(y,))

for i = I, . . , n. Then the replacement of B in H through rep1 yields the decorated graph

REPLACE(H, repl) = (H-B) + i repl(yi) (att = ext)
i=l

with att=att,(yl) . . . atMy,) and ext =ext,,,,(,,,...ext,,,,(,“~.

Remarks. (1) Hyperedge replacement is a simple construction where some hyper-

edges are removed, the associated decorated graphs are added disjointly and their

external nodes are fused with the corresponding nodes formerly attached to the

replaced hyperedges.

(2) Note that the component graphs replacing hyperedges are fully embedded into

the resulting graph where their external nodes lose this status and may additionally be

fused with other nodes.

(3) If HEY(N), B={y,,...,y,} 5 YH, and rcpl(yi)=Ri for i=l,n. then we

sometimes write H [yI/R1, . . , y,/R,,] instead of REPLACE(H, repl).

A hyperedge replacement defines (up to isomorphism) a direct derivation step in

a grammar if the label of each replaced hyperedge and the replacing decorated graph

form a production of the grammar. The graphs generated by such a grammar are

obtained by starting from the handle (S, O)‘, where S is the start symbol of the

grammar, and iterating derivation steps until all hyperedges are replaced.

Definition 2.6 (Hyperedge-replacement grammar and language). (1) A production

(over N) is a pair p=(A, R) with AEN and RE%(N). A is called the left-hand side of

p and denoted by lhs(p). R is called the right-hand side and denoted by rhs(p).

(2) Let HE%(N) and B E Y,. Let P be a set of productions. A mapping b:B+P is

called a base in H if lab,(y)=lhs(b(y)) and type(y)=type(rhs(b(y))) for all DEB.

(3) Let H, H’E~(N) and b: B-P be a base in H. Then H directly derives H’ through

b if H’z REPLACE(H, repl) with repl(y)= rhs(b(y)) for all DEB. A direct derivation is

denoted by H T H’ or H T H’ if the underlying set P of productions is emphasized.

(4) A sequence of direct derivations of the form Ho T HI F ... T Hk is called

a derivation (of length k) from Ho to Hk and is denoted by Ho $ Hk. If H 2 H’, we write

H s H’ and call this a derivation (of length 0) from H to H’. If, in a derivation H 3 H’

for some k>O, the length k does not matter, we write H $ H’. We omit P if it is clear
from the context.

(5) A hyperedge-replacement grammar is a system HRG = (N, P, S), where N is a set

of nonterminals, P is a finite set of productions (over N), and SEN. The class of all

hyperedge-replacement grammars is denoted by Z@?.

150 A. Habel, H.-J. Kreorvski, C. Lautemann

(6) Given such a grammar HRG = (N, P, S), the generated graph language consists

of all graphs which can be derived from (S, 0)’ by applying productions of P:

L(HRG) = {G&9,, 1 (S, 0)’ $- G}.

3. Compatible graph properties

In this section, we recall the notion of a compatible graph property which is based

on the graph decomposition provided by the Context-freeness Lemma for hyperedge-

replacement grammars.

Replacements of different hyperedges cannot interfere with each other, except for

some node fusions. Consequently, each derivation starting in a decorated graph Ho

can be restricted to any handle induced by a hyperedge of H, and, thus, leads to

a so-called fibre of the original derivation. The most interesting fact about these fibres

is that the original derivation can be reconstructed from all of them. This result on

hyperedge replacement is called “Context-freeness Lemma”. A recursive version of it

yields decompositions of graphs derived from handles into smaller graphs derived

from handles. More precisely, each graph derived from a handle coincides with the

right-hand side of a production where all hyperedges are replaced by derived graphs.

Fact 3.1 (Context-freeness Lemma). Let HRG=(N, P, S)E%‘&%, AEN, GELS, fir

some k > 0, and n > 0. Then there is a derivation der = ((A, k)’ ‘F G) if and only if there is

some (A, R)EP and, for each YE Y,, there exists a derivation of the form der(y)=

((lab,(y), type(y))’ $ G(y)), such that GE REPLACE(R, repl) with repl(y) = G(y), for

all yE Y,.

Remarks. (1) Because the derivation der starts in a handle, the derivation decom-

poses always into a production (A, R)EP and a derivation R a G. The latter deriv-

ation can be restricted to the handles of R, leading to the derivations der(y). Vice

versa, such fibres can jointly be embedded into R, yielding the graph RE-

PLACE(R, repl) with repl(y) = G(y), for ye Y,.

(2) In the situation of the Context-freeness Lemma the graphs G(y) for ye Y, are

called y-components of G.

(3) The proof of the Context-freeness Lemma can be found in [7].

The decomposition (induced by the derivation of a graph) is the key to various

decidability results on hyperedge-replacement languages. If a graph property ll can

be checked for a derived graph by checking related properties for the involved

right-hand side and the smaller derived component graphs, U is called compatible. (In

[lo, 71 it is shown that k-colorability, connectedness, the existence of Eulerian and

Hamiltonian paths and cycles, and other graph properties are compatible.) For

Compatible, ,jinite, and inductioe graph properties 151

a graph property ll which is compatible with the derivation process of all grammars

out of a given class %? of hyperedge-replacement grammars, many interesting ques-

tions are known to be decidable for %? (cf. Section 1, see [lo, Theorems 4.3 and 4.41).

Definition 3.2 (Compatibility). (1) Let V be a class of hyperedge-replacement gram-

mars, I=(~I&~ be an infinite family of finite sets Ik, called index sets, PROP

a decidable predicate,’ defined on pairs (G, i) with GELS and ill,, and PROP’

a decidable predicate on triples (R, assign, i) with RE%~(N), a mapping assign on Y,

such that assign(y)El,ype(,., for ye YR,6 and ill,. Then PROP is called (97, PROP’)-

compatible if, for all HRG=(N, P, S)E%?, all derivations (A, k)‘*R &-G in HRG with

(A, R)EP, type(R)=k, and GELS, and all ill,, the following holds:

PROP(G, i) is true if and only if there is a well-typed mapping assign on Y, such

that PROP’(R, assign, i) is true and PROP(G(y), assign(y)) is true for all YE Y,.

(2) A predicate I7 defined on GELS is called VT-compatible if there exist predicates

PROP and PROP’ and an index ikEI, such that PROP is (‘Z, PROP’)-compatible and

I7 = PROP((, ik).7

Example 3.3 (3-Colorability). Let n(G) be true if and only if G is 3-colorable.

A mapping c: Vc+{ 1, 2,3} such that {u, w}EE, implies c(u)#c(w) is said to be

a 3-coloring of G. Moreover, we say that a 3-coloring c of GELS agrees with

i=(i1,. . . , &)E{ 1, 2, 3}k, if, for allje[k], thejth external vertex is colored with ij, i.e.,

c((extc)j) = ij.

In order to show that n is XJW-compatible, let Ik = { 1, 2, 3}k, and define PROP by

PROP(G, i)oG has a 3-coloring which agrees with i. Similarly, define PROP’

by PROP’(R, assign, i)oR- YR has a 3-coloring c which agrees with i and

assign(y)=c*(att,(y)) for all YE Y, (c* is the natural extension of c to sequences, cf.

Footnote 3).

Let HRG=(N, P, S)E%.@~, let (A, k)‘*R % G be a derivation in HRG where

(A, R)EP, RE%,(N), and GELS, and let, for every YE Y, G(y) be the y-component of

G (cf. the remark following the Context-freeness Lemma 3.1). Let c: VG-+{ 1,2,3} be

a 3-coloring of G which agrees with iElk. Then c’, the restriction of c to V,, is

a 3-coloring of (V,, ER, extJ which agrees with i, and for every YE Y,, cy, the

restriction of c to G(y), is a 3-coloring of G(y) which agrees with c*(att,(y)). Choosing

assign such that assign(y)=c*(att,(y)) for ye Y,,

(*) PROP’(R, assign, i) and PROP(G(y), assign(y)), for all YE Y,

5 We assume that all considered predicates are closed under isomorphisms, i.e., if a predicate @ holds for
HEY (HEY(N)) and HzH’, then @ holds for H’, too.

6 Such mappings will be called well-typed, cf. Definition 2.5.

’ For ikslk, PROP(-, ik) denotes the wary predicate defined by PROP(-, ik)(G)= PROP(G, ik), for all
GEYx.

152 A. Ha&l, H.-J. Kreowski, C. Lautemann

becomes satisfied. On the other hand, for every mapping assign which satisfies (*), we

obtain a 3-coloring of G which agrees with i: color all attachment nodes of hyperedges

of R as prescribed by assign; by (*), all remaining nodes of G can then be colored

consistently, since they belong either to R or to one of the G(y). Altogether, we

conclude that PROP(G, i) holds if and only if there exists a mapping assign such that

PROP’(R, assign, i) holds and PROP(G(y), assign(y)) holds for all ye Y,, i.e., PROP

is (X’9%9, PROP’)-compatible. Moreover, for GE$~, n(G) holds if and only if

PROP(G, ()) holds, where () denotes the only member of I,. Hence, the predicate

Il defined on GEB~ is X9?%?-compatible.

%T-compatible predicates are closed under Boolean operations (cf. [7]).

Fact 3.4 (Closure under Boolean operations). %‘-compatible predicates are closed
under Boolean operations, i.e. if I7, and IT2 are %-compatible, then the predicates
(HI A n,), (L’, V n,), and (1 Z7,), with

. VI A fl,)(G)=-n,(G) A fl7,(G)

. (n, V n,)(G)* n, (G) V n,(G)

. (ln,)(G)olfl,(G)
are %?-compatible.

In the following, so-called proper compatible predicates will be of interest. Roughly

speaking, a predicate PROP is proper if for each graph GELS, there is only one index

iElk for which PROP(G, i) holds. In this case, the set {iElk 1 PROP(G, i) for some

GELS} determines a decomposition of the set 9k into a finite number of nonempty

classes PROP(i)= (GEM’, 1 PROP(G, i)}.

Definition 3.5 (Proper compatible predicates). A (%?, PROP’)-compatible predicate

PROP is said to be proper, if for each GELS, there exists uniquely one iEZ, such that

PROP(G, i) is true, and for each REC!?~(N) and each well-typed mapping assign, there

exists uniquely one iElk such that PROP’(R, assign, i) is true.

In [7], it is shown that for each compatible predicate I7, a proper (%?, PROP’)-

compatible predicate PROP can be found such that for GELS, n(G) may be expressed

by the disjunction of some PROP(G, i) (ie1,).

Fact 3.6 (Existence of proper compatible predicates). For each %‘-compatible predi-
cate ll on 9,,, there is a family I = (Ik)itN ofjnite, nonempty sets Ik, decidable predicates
PROP and PROP’ and a subset ZL G I, such that PROP is a proper (%‘, PROP’)-

compatible predicate and Tl = V,,,,, PROP(-, i).

4. Finite graph properties

In this section, we compare finite graph properties in the sense of Lengauer and

Wanke [12, 131 with graph properties compatible with the derivation process of

hyperedge-replacement grammars.

Compatible, .jnite, and inductire graph properties 153

The main notion in [12] is the notion of replaceability of a graph by a graph.

Informally, graphs G and G’ are replaceable with respect to a given graph property if

G and G’ behave equally with respect to this property whenever they are inserted into

the same context.

Notation 4.1. Let G, G’E%~. Then G 0 G’ denotes the O-graph

GoG’=G^[y/G’],

where 6=(VG, EG, (y}, lab, att, jW) with lab(y)=A, for some AEN, and att(y)=ex&.

The definition of REPLACE ensures the commutativity of 0.

Fact 4.2 (Commutativity). The operation 0 is commutatiue: For G, G’E~?~, G 0 G’ E G’ 0 G.

Definition 4.3 (Replaceability). Let fl be a property defined on O-graphs. Then

G, G’EY~ are replaceable with respect to II, denoted by G -” G’, if, for all CE%~,

n(CcG)=fl(CoG’).

Remark. -,I is an equivalence relation. For GE%~, the equivalence class of G induced

by -/I, { G’E~?~ 1 G’ -,I G}, is denoted by [Girl. Then the set of all such equivalence

classes is denoted by M,,(k); its cardinality is denoted by lM,,(k)l.

Lemma 4.4 (Replaceable graphs possess the same property). Let G, G’E~~. Then

G- ,, G’ implies TI(U(G))=I7(U(G’)).

Proof. Let G, G’E??~ and G -,, G’. Then for all CE%‘~, n(Co G)=Z7(CoG’). In par-

ticular, U(EMPTY,oG)=n(EMPTY,oG’) for EMPTYk=({l,...,k},@, l...k)~

qk. On the other hand, EMPTY,DG~U(G) and EMPTY,oG’r U(G’). Since 17 is

closed under isomorphisms, we get n(U(G))= II(EMPTYk 3 G)= 17(EMPTYko G’)=

n(U(G’)). 0

Lemma 4.5 (Closure under replacement). Let REP, and repl, repl’: Y,-+Ce

be well-typed mappings with repl(y) -,, repl’(y) fov KEYS. Then we have

REPLACE(R, repl)-,, REPLACE(R, repl’).

Proof. Let REAM, Y,= {yl,... , y,}, and repl, repl’: YR-+9 be two well-typed map-

pings with repl(yJ - ,I repl’(yi) for i = 1, . , n. Then we define auxiliary mappings

replj: YR+9 with

rePlj(yJ =
i

repl’(yi) if i<j

repl(yi) if i>j

forj=l,..., n + 1. In particular, repl, = rep1 and repl, + 1 = repl’. Let replj I denote the

restriction of replj to Y,- (yjS and let Rj=REPLACE(R, rcpljl). Then Rj is the

k-graph R in which all hyperedges with index i <j are replaced according to repl’ and

154 A. Habel, H.-J. Kreowski, C. Lautemann

all hyperedges with index i>j are replaced according to repl. Moreover, let

Gj = repl(yj) and G; = repl’(yj). Since simultaneous replacement of hyperedges may be

sequentialized and sequential replacements of different hyperedges may be done

simultaneously, we get REPLACE(R, replj)= REPLACE(R, repljl) [yj/‘Gj] =

Rj[yj/Gj] and REPLACE(R, replj+ ,)=REPLACE(R, repljI)[Yj/GI]=Rj[yj/G(i].

Then for all CE$?~ and all jg[n],

I7(C 0 REPLACE(R, replj))

=fl(C”(RjCYj/‘Gjl))

=n((C”Rj)C~j/‘Gjl) (by the associativity of REPLACE)

=n((c3Rj)Cyj/‘GjI) (since Gj wII GJ)

=n(c”(RjCyjIGSI)) (by the associativity of REPLACE)

= n(C 0 REPLACE(R, rcplj+ 1)).

Hence, we have n(CoREPLACE(R, repl))=n(CoREPLACE(R, repl,))=... =

n(C 0 REPLACE(R, repl,, 1)) = n(C 0 REPLACE(R, repl’)) for all CEY~, i.e.,

REPLACE(R, repl) - ,, REPLACE(R, repl’). 0

For all HEN, Mm(k) may be finite or infinite, as the following examples show.

Example 4.6 (3-Colorability). Let U(G) o G is 3-colorable. Then for every kEN,

M,,(k) is finite. This may be seen as follows: Define for every k-graph G the set

C(G)= {iE{ 1,2, 3jk 1 G has a 3-coloring which agrees with i)

(cf. Example 3.3). Clearly, C(G) = C(G’) implies G -,, G’, and as there are at most 23k

possibilities for C(G), M,,(k) must be finite.

Example 4.7 (Regularity). Let n(G) o G be regular, i.e., all vertices of G have the

same degree. Then for every kE N, M,,(k) is infinite: For every 1~ N, let GI be the union

of k isolated external nodes and the complete bipartite graph K,,l. Then C 0 G1 is

regular if and only if C is I-regular and, therefore, G1 +” Cl,, if I# 1’.

In the following, we focus on those properties Il for which the set of induced classes

is finite. In [12, 131, such properties are called Jinite graph properties.

Definition 4.8 (Finite graph property). Let I7 be a decidable graph property. Then I7 is

said to be k-finite if the set M,,(k) is finite. I7 is calledjnite if M,,(k) is finite for every

kgN.

Then the following fact holds (see [12]).

Compatible, ,finite. and inductice graph properties 155

Fact 4.9 (Lengauer and Wanke [12, Theorems 3,4, and 61). (1) For each HEN,

(k+ l)-jiniteness of a graph property Zl implies k-finiteness of II.

(2) For each kEN, there exist graph properties that are k-$nite but not (k+ 1)-finite.

(3) If 1 M,,(k)1 is computable (as a function in k) then, for each k, one can compute a set

of k-graphs that contains exactly one representative for each class in M,,(k). Given such

a set REP,,(k) of representatives, the replaceability w.r.t. Zl can be decided, i.e., for each

two graphs G, G’E??~, G h,, G’ can be tested.

Now we are able to formulate the main results of this section.

Theorem 4.10 (Finiteness implies compatibility). If Z7 is ajinite graph property and the

mapping k H 1 M,,(k) 1 is computable, then ZZ is #SW-compatible.

Proof. Let I7 be a finite graph property and let n: k ++ I M,,(k)1 be computable. Then,

Il is k-finite for all kEN and, for each kEN, there exist k-graphs Gk, 1, . .., Gk,n(kj~9k

such that Ma(k)= { [GL, 1],,, . . . , [G k,n(kJ]n}. For proving the Z&9-compatibility of

Xl, we proceed as follows. First, we define predicates PROP and PROP’ and show the

(Z’W%, PROP’)-compatibility of PROP. In a second step, we show how Zl and PROP

are related and derive the X.&7-compatibility of Il from the (&?89, PROP’)-

compatibility of PROP.

(1) Define

0 a family I=(lJIEb of finite index sets Zk by Zk = (1, . . . , n(k)},

l a predicate PROP on pairs (G, i) with GELS and icl, by

PROP(G, i) 0 G -11 G,,i,

l an auxiliary predicate PROP’ on triples (R, assign, i) with REAM, a well-typed

mapping assign: Y,-+Z, and igZk by

PROP’(R, assign, i) o REPLACE(R, repl) -,, Gk, i,

where repW= Gype(,.~. assign(y) for YE J’,.
Note that, for each kg N, Zk is finite and nonempty. Moreover, PROP and PROP’

are decidable because, for each kEN, a realization of M,,(k) can be computed and the

replaceability w.r.t l7 can be decided.

Then PROP is (_@.%!Y, PROP’)-compatible. This may be seen as follows. Let

HRG = (N, P, S) be a hyperedge-replacement grammar, (A, k)‘=R &= G be a deriv-

ation in HRG with AEN, kEN, and GE$!?~, (lab,(y), type(y))‘sG(y) be the fibre

induced by ye Y,, and ieZ,.

First, let PROP(G, i) be satisfied. Then, by definition, G -n Gk,i. For each

GELS,,,, there is exactly one index i(y)EZ,ype(yJ such that G(y) -nG,ype(yj,i(yJ.

Choosing assign such the assign(y) = i(y) for yc Y,. PROP(G(y), assign(y)) becomes

satisfied for all ye Y,. By Lemma 4.5, REPLACE(R, repl) _I, REPLACE(R, repl’),

where repl(y)=G(y) and repl’(y)= Gtype(y),assign(y) for ye Y,. Since -n is symmetric

156 A. Habel, H.-J. Krrowski, C. Lautemann

and REPLACE(R, repl)= G, we obtain REPLACE(R, repl’) -n REPLACE(R, repl)=

G -II Gk, i. Hence, PROP’(R, assign, i) is satisfied, too.

Conversely, assume that there is a well-typed mapping assign on Y, such

that PROP’(R, assign, i) as well as PROP(G(y), assign(y)) hold for all ye Y,.

Then we have G(y) -,, Gtypecpj, assign(y) for ye Y,, and, consequently, RE-

PLACE(R, repl) -,, REPLACE(R, repl’), where repl(y) = G(y) and repl’(y) =

G ,ype(y,, assign(y) for ye Y,. Moreover, we have REPLACE(R, repl’) -,] Gk, i. Since

G=REPLACE(R, repl) and -,1 is transitive, we get G -m Gk,i, i.e., PROP(G, i) is

satisfied.

(2) Based on the (.%a%, PROP’)-compatibility of PROP, we will show the X99?-

compatibility of II. Let GggO and ills such that G -,, Go, i. (Note that there exists

exactly one index with this property.) Then, by Lemma 4.4, n(G) = n(Go, i). Now, let

SATo= {ills 1 I7(G,J is satisfied}. Then, for each GE??~,

n(G) 0 v PROP(G, i).
isSAT

By definition of compatibility, for each iel,, PROP(-, i) is X%9-compatible. From

Fact 3.4 it follows that the predicate

fl= v PROP((, i)
ieSATu

is %9!9-compatible. 0

We cannot show a direct converse of Theorem 4.10, but a slightly weaker assertion

holds.

Theorem 4.11 (Compatibility implies finiteness). Let I7 be XBY-compatible. Then

Il is a jinite graph property and there is a computable function f such that

IM,,(k)l <f(k)for all kGN.

Proof. Let I7 be a p&‘%-compatible predicate I7 on %‘,,. Then, by Fact 3.6, there is

a family I = (Ik)isN of finite index sets Ik, decidable predicates PROP and PROP’, and

a subset 1b c I0 such that PROP is a proper (%?, PROP’)-compatible predicate and

17 = VI& PROP((, i). In the following, we will characterize replaceability by sets of

indices. It can be shown that for all kEW and all G, G’E%~,

(*) G -I/ G’ if and only if r,(G)=Z,(G’),

where for GE??~, I,(G) denotes the set of indices

I,(G) = jj~l,, ex 1 3 assign : { y } -+Ik : V PROP’(G, assign, i) and assign(y) =j}
ItI,;

and lk, ex = (iElk13GE9L:P ROP(G, 9). BY (), * every equivalence class on %k is of the

form {G’E%~ I I,(G’)=IND} for some index set IND s lk. Moreover, for each kcN,

the index set Zk is finite. Therefore, the number of different equivalence classes is equal

Compatible, finite, and inductive graph properties 157

to the number of index sets IND with { G’EY~ I Z,(G’) = IND} #8, which is bounded by

19(Zk)l, the cardinality of the powerset of I,.

It remains to prove (*).

o VHE~~ : f7(H 0 G) = Z7(H 0 G’) (by Definition 4.3)

oVH&Yk:17(G~H)=17(G’~ H) (by Fact 4.2)

ot’H~%~: v PROP(GoH, i)= v PROP(G’0 H, i’)
ItI,; ItI,

(by the relationship of ZZ and PROP)

(
VH&k:

o(A)

i

v v CPROP’(G^, assign, i) A PROP(H, assign(y))]
Eel; asa,gn: ;y;+II

o // // [PROP’@. assign’, i’) A PROP(H, assign’(y))]
i’E1,; awgn’: I?) -I, 1

(by the X.%9-compatibility of PROP)

o(B) Z,(G)=Z,(G’).

The last equivalence can be shown as follows:

“e” Let (B) be satisfied.

If Zk(G)=Zk(G’)=O, then PROP’(G, assign, i) and PROP’(G’, assign, i) are false

for all i~Zb and all assign with assign(y)EZ,,,,. Moreover, for a mapping assign with

assign(y)EZ, -Z,, ex, PROP(H, assign(y)) is false for all HE??~.
Otherwise, let HEB~ be an arbitrary k-graph. Then, by the properness of PROP,

there exists exactly one index j such that PROP(H,j) is satisfied.

Case 1. j~l,(G) (=Z,(G’)). Choose assign and assign’ such that assign(y)=j and

assign’(y) =j. Then,

v v [PROP’@, assign, i) A PROP(H, assign(y))]
ieli assign (?)-I,

as well as

v v [PROP’(G’, assign’, i’) A PROP(H, assign’(y))]
I’Eld amgn” ;?.j -I,

become true.

Case 2. j$Z,(G) (=Z,(G’)). Then PROP(H, assign(y)) is false for all assign with

assign(y)cZ,(G), (since we have assign(y)#j) and, for assign with assign(y)#Z,(G),

- assign(y)$Z,,,, and PROP(H, assign(y)) is false or

~ assign(y)EZ,,,, and VIE,,; PROP’(G, assign, i) is false.

Analogously, for all assign’, V,,El; PROP’(G’, assign’, i’) A PROP(H, assign’(y)) is

false.

158 A. H&l, H.-J. Kreowski, C. Lautemann

“a” Assume that (B) does not hold, i.e., Z,(G)#I,(G’). Without loss of generality,

there is an index assign(y)El,(G)-l,(G’). By definition of I,(G), there exists HEY,+ for

which PROP(H, assign(y)) is satisfied. Then, VIE,; PROP’(G, assign, i) as well as

PROP(H, assign(y)) are true. On the other hand, PROP(H, assign’(y)) is false for all

those assign’ for which assign’(y)EI,(G’), (b ecause then assign’(y) #assign(y)); and for

all assign’ with assign’(y)#I,(G’), assign’(y)$1,, ex and PROP(H, assign’(y)) is false or

V,.E,i PROP’(G’, assign’, i) is false. Therefore, (A) is not satisfied. 0

Remark. In the proof of the second theorem, compatibility is needed for a certain type

of grammar only. Thus, a stronger formulation is possible, assuming only V?-compati-

bility, where for each k and for each pair (R, G) of k-graphs, %? contains a grammar

with the two rules (S, R^), and (A, G) (cf. Notation 4.1).

The decidability results in [12, 131 only require the computability of an upper

bound on the index of -m on every 9Jk. Thus, Theorem 4.11, although not a proper

converse of Theorem 4.10, is strong enough to transfer these results to &Y&Y-

compatible properties (corresponding results for (hyper)edge-replacement grammars

are proved directly in [l 11.

5. Inductive graph properties

In this section, we compare compatibility with Courcelle’s notion of an effectively

locally finite and inductive family of predicates, which is based on his algebra of

graphs. First, we will briefly recall the operations of this algebra, as given in [4], and

will then show how they can be simulated by hyeredge replacement, and vice versa.

Definition 5.1 (Operations on graphs). The operation set d on (%‘k)kSN consists of the

following operations:

l 0: +YO, where 0 is the empty graph.

l 2: +gz, where 2 is the 2-graph with a single edge joining two external nodes.

l id,: Yn+Y,,, for every ncN, where id,(G)= G.8

0 @,,.:~‘,x’9,+~~n+m, forevery(n,m)E~‘,whereO,,.(G,H)=(VG+VH,EG+EH,

ext, * ext,).’

l on,* : gn+9?,,, for every HEN and every equivalence relation 6 on [n], where

0,,,(G) = G/6’ and 6’ is the extension of the equivalence relation {(vi, Uj)l(& j)Eb} on

EXTG to V, for extc=v, . . . L’,,.

l ~n,p,a:9n+9~, for every (n,p)~N’, and every a:[p]+[n], where o,,,,~(G)=

(VG, E,, ext) and ext = u,(r). . II,(,) for extc = a1 . . . L’,.

Notation 5.2. Let 9’ be a set of operations. Then closure (9’) denotes the closure of

*The identity functions are not explicitly given in [4], they are added here for convenience only.

’ ext,. ext, denotes the concatenation of extG and ext,.

Comparihlr,,finite, and inductiw graph propertirs 159

9’ under composition, i.e., the set of those operations that can be expressed by linear

terms over g’.l” closure($) will henceforth be denoted by 9.

(3, 3) is a many-sorted algebra. In the following lemma, we will show how the

operations in 3 can be simulated by hyperedge replacement, and vice versa.

Lemma 5.3. (1) For every operation f: gk, x ... x FJk,+gk in 9, there is a decorated

graph H, in gk(N) with YH={yl,...,y,} such that for all tuples (G1,...,G,)~

CT&, x ‘.. x %k,,

~(G,,...,G,)~HIC~‘~IG,,...,~,/G,I.

(2) For every decorated yraph H in 99k(N) with Y,= { y,, y,}, there is some

operation fH:~,ype~p,,~ ... x~~,~~~~~,.,-+??~ in 9 such that ,for all (G1,...,G,)c

C!? typecpi 1 x .‘. x ~type(r.-),

HCY~IG,,...,~~/G,I~~~(G~,...,G,).

Proof. (1) The proof is by induction on the structure off:

For the operationsf=O andf= 2, the empty graph and the 2-graph with a single

edge are the corresponding graphs. For the operationf‘= id,,, H, = (A, n)‘, with A EN is

the corresponding decorated graph: For every GE??,,, H,, [y/G] z G =f(G).

Let nowf=O,,,(fi,,f2), where,f,:q,, x ..’ ~9~~-+9,,,and,f,:9~,+, x ... x9,,.+9,,.

By the induction hypothesis, there are decorated graphs HI, H2 satisfying the

assertion of the lemma fort; andf;, respectively. To construct H,,, take the decorated

graph H,,, = ([m+n],@ (yl,yz}, lab, att, ext), where lab(yi)=Ai, for i= 1,2, and

some A,,A,EN, att(y,)=l...m, att(y,)=m+l...m+n, and ext=l...m+n (i.e.,

H,., is the disjoint union of an m-handle and an n-handle with their external nodes

concatenated).

Define H, as H ,- = H,, n CY~IH~,Y~/H~I.I~Y~~=~~~~...,Y~} and YH2=i~s+1,...,~,.),

then YHI={yi,...,yr). Let (G1,...,Gr)~3kl x ... XC!?,+, and let replj(yi)=Gi, for

j= 1,2. Then we have

.f(G,>...>G,)

=o,..(f;(G,,...,G,),.f,(G,+,,...,G,)),

sincef’=Om.,(fi,f;)

? Om,n(REPLACE(H1, repl,), REPLACE(H2, repl,)),

(by induction hypothesis)

~HH,.,[y,/REPLACE(H1,repl,),y,/REPLACE(H,,repl,)],

(by definition of H,,,)

“A linear term is a term in which no variable occurs more than once.

160 A. Habel, H.-J. Kreowski, C. Lautemann

(by definition of H, and elementary properties of REPLACE).

Similarly, the induction step is shown for f=Q,,,(g) and f=on,p,a(g), using

H,,6=(A,n)*/6’, and Hn,p,a= ([n],&{y},lab,att,ext) with lab(y)=A,att(y)=l...n,

and ext = a(1). . . a(p), respectively.

(2) Here, the proof is by induction on the number r of hyperedges in H.
For r = 0, H is a k-graph without hyperedges, and by Proposition 2.8 in [4], H is the

value of a graph expression, i.e., there is an operationf: +gek in F such that fg H.
Let Y > 1, and let type(yi) = ki, for i = 1,. . . , Y. Define H’ to be the k + k,-graph obtained

from H by removing y, and extending the sequence of external nodes by those

attached to y,. By the induction hypothesis, there is an operationf’ in F satisfying the

assertion of the lemma for H’. Define f by

f=cJn,k,a (%s(Ok +k,,k,(f’, id,+))),

where n=k+2k,, 6 is defined on [k+2k,] by k+iE6k+k,+i, i=l,...,k,, and

a:[k]+[k+2k,] is given by a(i)=i, for i=l,...,k. Then, for any

(G i ,..., G,)E%,_ x ... x 9,+, we have

.f(G i,...,G,)

=~n,k,a(Bn,d(Ok+k,,k,(f’(Glr...,Gr_1),Gr)))

=~n,k.o(en,6(0k+k,,k,(HfC~~/G1,...,y*-1/Gr-11,G,)))

Remarks. (1) The constructions given in the proof of Lemma 5.3 are inverse to each

other in the sense that, for allf:%e,l x ... x %k,-+9k, and (Gi,..., GI@gkl x ... x gk,,

we have fHf(G1,..., G,) gf(G,, , G,), and, similarly, for every decorated k-graph H,
letting H’ = HfN, there is a bijection b : Y,. + Y, such that for every well-typed map-

ping rep1 : Y,, + 9 we have REPLACE(H’, repl) E REPLACE(H, rep1 0 b- ‘).
(2) If we extend the operations in 9 to 9(N), i.e., to decorated graphs with

hyperedges, then for any fe9, f: gk, (N) x ... x 4e,,(N)-+gk(N), the decorated graph

H, of Lemma 5.3(l) can be described as

Next, we briefly recall from [4] the notion of an effectively locally finite and

inductive family of predicates on 9, and then show that this notion is equivalent to

compatibility as defined in Section 3.

Definition 5.4 (F’-inductiuity). Let 9”’ ~9 and let, for every kEN, Pk be a set of

predicates on gk. The family 9’=(Pk)koN is called

l locally jnite, if every Pk is finite,

Compatible, jnitr, and inductive graph properties 161

l F-‘-inductitx, if for every operationf: 9Jkl x ... x 9k,+9k in 9’ and for every PEP,,

there is a Boolean expression B,,, with variables (xi)iE.$....’ such that for all

(G1,...,Gr)~gkl x ... x9&+,

where B[x 1 o] denotes the formula B with variable x substituted by v.

l effectively locally jinite and J’-inductive, if .Y is both, locally finite and F;‘-

inductive, and, additionally, the following mappings are all computable

- k++Pk,

~ (P> G) H P(G)>
- (1; p)~ B,,,, where B,,, is as above.

Remarks. (1) The definition of inductivity given above differs from the one in [4] in

one aspect: In [4], B,,, contains only some of the variables .~a, and is given together

with a corresponding choice of predicates. Since we are dealing exclusively with

locally finite families, this complication is unnecessary here.

(2) If 9 is 9’-inductive and .P”c.~‘, then 9 is 9”-inductive.

Example 5.5 (3-Colorability). We define a family of predicates related to 3-color-

ability. For every kEN and every iE{1,2, 3jk we define the predicate pi on Yk by

pi(G) o G has a 3-coloring which agrees with i

(cf. Example 3.3). Clearly, with Pk= (pili~{ 1,2, 3}k}, the family ~P=(P~)~~N is locally

finite. To see that d is also b-inductive, we first observe that PO= (pO} and

P2 = (p,,,, 11, mu{ 1,2,3}) where p,,(G)- G is 3-colorable and pL,(G) o G is 3-colorable

and lfm for 1,mE{1,2,3).

We now proceed with considering the operations of B.

f= 0. The empty graph is 3-colorable; thus, we take B,, po = true.

f= 2. The graph with one single edge is 3-colorable; thus, we take B,, plm = true iff

l#m.

f= id,. Obviously, p(f(G))op(G); thus, Bs,P=~b suffices.

f=@,,,. Let i~{1,2,3}“+“, and let i=iI.i2, where i,E(l,2,3}m and i2E(1,2,3}“.

A (m+n)-graph G1 O,,, Gz has a 3-coloring which agrees with i if and only if Gj

has a 3-coloring which agrees with ij, for j= 1,2. Thus, pi(G1 @,,,GZ) 0 pi,(G,) A

pi,(G,) and we can take Bf,, =x& A xi,,

f=&+3. Let H =f(G), and let iE { 1,2,3)“. We say that i respects 6, if ij = i, for every

pair (j, m)E6. If i does not respect 6, then no 3-coloring of H can agree with i. If i does

respect 6, then H has a 3-coloring which agrees with i if and only if G has a 3-coloring

which agrees with i, thus we can take Bf,,=xj.

f=~n,m,a. If c is a 3-coloring of G which agrees with ig{ 1,2,3}“, and if lc{ 1,2,3}”

then c agrees with 1 if and only if for all j= 1, m, we have that

ij=C((eXt~)j)=C((eXtff),(j,)=1,(j,. Thus, if we let M~={1~{1,2,3}“~I~~j~=ij for

j=I,...,m), we get Pi(G)~V~E~,PI(H)~ and we let B~,Pz=VltM,~~,.

162 A. Hahel, H.-J. Kreowski, C. Lautemann

Finally, 9 is even effectively locally finite and b-inductive. For, with every predicate

pi represented by i, the mappings k-P, and (pi> G)++pi(G) are clearly computable.

Furthermore, the constructions given above to show b-inductivity are easily seen to

be constructive, making the mapping (f; pi) H B,, p1 computable.

The following lemma will be useful in interrelating 9’-inductivity and V-compati-

bility.

Lemma 5.6 Let F-’ c 9, and let 9 be an effectively locally finite and inductive family of
predicates. If 9 is 9*-inductive, then it is also closure(F’)-inductive.

Proof. Let gEclosure(F’), g:Yk, x ... x%~,+?J~. If geF_’ then B,,, can be found

effectively, for every PEP,, by the hypothesis. Now, assume that g=f(hI,..., h,), for

some operationsf: B,, x ... x glS-+3 k, and hi:Yk,, x ... x~~,,--+c+?~~, i=l,..., s. By the

induction hypothesis there are formulae B,, p, for every PEP, ,‘and Bhi ,4, for i = 1,. . , s,

and every REP,, . Then, using the decomposition of g and the induction hypothesis, we

get

p(g(G,>...>G,))

* p(f(h, (Gkll,..., Gk,,,), ...,h,(Gks,>..., GkJ)

* B,,,C(xiI4(hi(G,i, >...) Gk;,,)))tEi;, ..9”1

0 ~,,,C~~~l~~i,qC~~~l~~~~,,~~jW=E~~~;~~r~l~~~~;,~~~~S1.

Thus, B9,P=Bj,p[(~~IBh,,q)6E~;....S] is the required decomposition of p for g. 0

We proceed now by interrelating 9’-inductivity and g-compatibility.

Definition 5.7 (Associated class of grammars). Let ~‘sF. The set ‘%‘(9’) of

hyperedge-replacement grammars associated with 5”’ is defined by

~?(9’)={HRG~~~~lfr~~(~) ~9”) for every production p of HRG}.

Theorem 5.8 (Inductivity implies compatibility). Let 9’ E 8. Zf (PJksN is an efsec-
tively locally3nite and F--‘-inductive family of predicates on 3 then every predicate p in

u key Pk is %?(F’)-compatible.

Proof. For every kE N, let lk = {U / U G P,}, and let PROP be defined by

PROWG, U) - /j P(G) A /j lp(G).
PSU pEPk-u

From the definition of an effectively locally finite and inductive family of predicates,

it is clear that Zk is finite for every type k, and that 1, can be effectively computed from

k. Furthermore, PROP is decidable, and there is a computable function which assigns

Compatible, ,jnite, and inductioe graph properties 163

to every mapping ,f: Yk, x .,. x 2?k,+9k in 9’, and every PEP, a Boolean formula

B,,, with variables (.x~)6~~;...~’ such that for all (Gr,..., Gr)~gkI x ... x gk,.

p(f(G,,...,G,))oBs,,C(x~I4(Gi))6~~;,...”1.

Let HE%~ be the right-hand side of a production of some HRG=(N, P, S)eV(F’),

let Y,={y,,..., yr), and type(y,)=k<, for i= l,...,r. Let ass: Yn-+Z be such that for

i=l,..., r aSS(yi)GP,,, and let U G Pk. For such triples (H, ass, U), let the predicate

PROP’ be defined by

PROP’(H, ass, U) o A BfH,,[(.$ ub)fE~;;..~‘]
PSU

A A lB~~,p[(x~Iv~)~~~;,...~r],
pep*-U

wherefH is as in Lemma 5.3(2) and

"= i

1 if qEaSS(yi)

0 if q$aSS(yi).

Then PROP’ is decidable since the B,,, can be effectively constructed and

decided. Furthermore, for every graph G such that H $-G there is a well-typed

mapping repl: Y,-+<g such that G=REPLACE(H, repl)=f,(repl(y,), repl(y,)).

Thus,

PROP(G> u) - bup(G) A /\ lp(G)
pcPr-u

If we choose ass(J),)= (qcP,,) q(repl(yi))}, then

PROP(G, U) o PROP’(H, ass, U) A A PROP(rcpl(yi), ass(yi))
i=l

and, therefore,

PROP(G, U) * 3(ass : YH+I): PROP’(H, ass, U)

A A PROP(repl(Yi),ass(Yi)).
i=l

If, on the other hand, there is a mapping ass: Y,-I such that

PROP’(H, ass, U) A /j PROP(repl(y,),ass(y,)),
i=l

164 A. Habel, H.-J. Kreowski, C. Lautemann

then, from the definition of PROP we get for i = 1,. . , Y

PROP(repl(yi), ass(yJ) 0 ,/j,) drePl(Yi)) A A MrePl(Yi))
q$ass(Yr)

and, therefore,

drePl(Yi)) =
i

1 if qEaSS(yi)

0 if q#aSS(yi).

Then, for every PEP, we have

B~~,,C(x6Iq(rePl(Yi)))f,~;;~.~‘l 0 B,~,PC(XSIVI)SI~;,...,‘I,

where

“= i

1 if qEaSS(yi)

0 if q$aSS(yi).

Since PROP’(H,ass, U) is true, by the definition of PROP’, the formula

holds true. Sincef&s’, and .Y is F’-inductive this is equivalent to

/j P(G) A /j UP
PEU pcPr-U

and this to PROP(G, U). This shows that PROP is %‘(F’)-compatible and, therefore,

PROP(-, U) is compatible, for every UEP,, HEN. Let PEP,. Then for all GE%~,

P(G)o

PROP(G, U),

where Vu: paU means that the disjunction is taken over all those sets U that contain p.
Since compatibility is closed under Boolean operations (cf. Fact 3.4) it follows that p is
V(g’)-compatible. 0

Corollary 5.9. If (Pk)keN is efictively locallyfinite and d-inductive, then every predicate
PE Ukt~ Pk is IfBY-compatible.

Proof. By Lemma 5.6, (Pk)ksN is F-inductive, and Definition 5.7 implies that

V(9) = 293. Thus, the result follows from Theorem 5.8. q

Compatible, jinite, and inductiae graph properties 165

Similarly, compatibility implies inductivity. To show this, we need the following

notion.

Definition 5.10 (Associated set of operations). (1) Let f: gkl x ... x %k,+%k be an

operation in 9 and let YHf= {yr, y, }, where Hf is the decorated graph corres-

ponding to f according to Lemma 5.3. A hyperedge-replacement grammar HRG =

(N, P, S) is said to emulateffor (G,, . . . , G,)EY,, x ... x 3,+, if there is a rule (A, H,)EP,

for some AEN, and if (Ai,ki)‘=$ Gi, with Ai=lab,,(yi), for i= I,...,Y.

(2) A set $9 of hyperedge-replacement grammars is said to emulate the operationfif

forevery(G,,...,G,)E’ZJk, x ... x $Yk,. there is a grammar HRGE’% which emulatesffor

(G r,...,G,).
(3) Let %‘& X&Y be a class of hyperedge-replacement grammars. Then the opera-

tion set F(%?) associated with W is defined by

F(V)= {fey 1 V emulates f}.

Theorem 5.11 (Compatibility implies inductivity). Let PROP be (%Y, PROP’)-compat-

ible over the index set I =(lk)kc~. Moreover, let,for every kE N, Pk = { PROP((, i)) iElk}.

Then (Pk)ke~ is effectively locally finite and F(Z)-inductive.

Proof. By definition of compatibility, every Pk is finite, and the mapping

(i, G)HPROP(G,i) is computable. Let f&(F), f:gk, x ... x gk,-‘gk, let

(G1,...,G,)~Ykr x ... xgk,, and let REPS, p= PROP((, j). There is a grammar

HRG=(N, P, S) in %? which emulatesffor (G, ,..., G,) and, thus, H, +f(G, ,..., G,).

By definition of compatibility it follows that

o3(ass: Y,,+Z): PROP’(Hf,ass,j) A A PROP(Gi,ass(yi)).
i=l

Since aSS(yi)EZ,, , there are only finitely many candidates for ass, and we can write

~(f(Gl>...,Gr))- V /j PROP(Gi, ass,(yi))t
asscM i= 1

where M is the set of all those ass for which PROP’(Hf,ass,j) holds. Letting

P’cP,, x ... x Pk, be the finite set of tuples

P’={(p, ,..., p,)lthere is an assEM: Pi=PROP(-,ass(yi)),i=l,..., r},

the last equivalence can be rewritten as

166 A. Hahel, H.-J. Kreowski, C. Lautemann

We define the Boolean formula B,,, by

Note that the second part of B,,, is unsatisfiable, and is added only in order to make

all variables x5 appear m B,,,, as is formally required in Definition 5.4. This gives us

p(f(G,,...,G,))oB,,,C(xblq(Gi))5,~;,...”1.

Now B,,, does not depend on G1,. . , G,; in fact, given f and p it can be constructed

as follows.

(1) Determine H, and j such that p= PROP(-,j).

(2) Determine M, the set of those ass for which PROP’(H,,ass,j) holds true.

(3) For each assEM, find the tuple

(P1,...,P,)=(PROP(-,ass(y,)),...,PROP(-,ass(y,))).

(4) For each such tuple form the conjunct A:= 1 xfL.
(5) B,,, is the disjunction of all the conjuncts formed in (4), and the constant

Corollary 5.12. Zf PROP is (Z’~~, PROP’)-compatible, then the family 9 = (Pk)ko N,

with Pk = { PROP(-, i) 1 iEZk f, is effectively 1 ocally finite and F-inductive.

Proof. For f: gk, x ... x~,++Y~ and (G1,...,Gr)~gk, x ... x??~,., the hyperedge-re-

placement grammar HRG (f; G 1,. . . , G,)=(N, P, S) with starting rule (S, H,) and the

terminating rules (lab,,(j);), Gi), emulatesffor (G, , . . . , G,). Therefore, X9W emulates

1; for allfE9, i.e., S(X’&?%)=9. By Theorem 5.10, 9 is effectively locally finite and

F-inductive. 0

6. Discussion

From the results in this paper it is clear that compatibility, finiteness, and inductiv-

ity are nearly identical. However, since these notions have been developed in different

contexts, there are still some differences. In particular, it should be noted that

inductivity and compatibility are defined relative to a class of operations, or gram-

mars, respectively, whereas finiteness is a global notion. Therefore, it seems conceiv-

able that there are properties which are compatible with respect to restricted grammar

classes, but are not finite. Similarly, g”-inductivity, for a restricted operation set 9’

does not necessarily imply finiteness.

Compatible, ,finite, and inductioe graph properties 167

In comparing inductivity and compatibility, we note that 9’-inductivity seems to

be a coarser notion than V-compatibility, since the recursive condition

p(f(G,>...> G~))~B,,,(x~/q(Gi))

has to hold for all(G,,...,G,)~~k, x ... x%,~, whereas, in the case of V-compatibility,

the corresponding condition

PROP(R[y,/G,,...,4’1/GI]), i) o 3ass: PROP’(R,ass,i)

A A PROP(Gi, ass(yi))
i=l

is only required to hold if YR={yl,...,yr} and for all yi, (lab,(yi), type,(yi))‘Z- Gi.

So, again, there may be families of graph properties which are %-compatible for some

W, but not 9’-inductive for any F--’ #@.

The subtle difference in the formulations of Theorems 4.10 and 4.11, namely that

4.10 requires computability of k++ IMn (k)I, whereas 4.11 only guarantees that there

exists a computable function ,f with IM,,(k)ldf(k) for kEN, does not seem to be

avoidable with the given definitions. One possible solution would be to make PROP

depend, not only on G and i, but also on the grammar. This would, however, lead to

a fairly cumbersome definition.

The three notions that we have compared in this paper have been developed in

connection with the decidability of questions of the following form for hyperedge-

replacement grammars.

- Does some member of the generated language satisfy H?

~ Do infinitely many members of the generated language satisfy I7?

~ Do all members of the generated language satisfy I7?

It seems that all known decidability results have been (or could be) proved by

showing the finiteness (compatibility, inductivity) of ll. For example, in [4], Courcelle

proves that the questions above are decidable, if Il is definable in the language of

so-called counting monadic second-order logic (CMSO), by showing that from

a CMSO-formula which defines L7, we can construct an inductive family of predicates.

There are, however, limitations to this method. As seen in Example 4.7, regularity of

a graph is not finite, hence neither compatible nor inductive.” Nevertheless, whether

a hyperedge-replacement grammar generates some (infinitely many, only) regular

graphs can be decided, by deciding the corresponding problems for k-regularity,

where k ranges over a finite set of values which can be determined from the grammar.

Another apparent limitation of the method lies in the fact that finiteness (compati-

bility, inductivity) is a property of graph properties. Thus, it does not seem possible to

tackle the decidability of questions which are not directly involved with graph

properties, such as, e.g.,

- Does the grammar generate graphs with arbitrarily high degree?

I’ In fact, it can be shown that regularity cannot be defined by an emso-formula, as defined in [l]
(although nonregularity can).

168 A. Hahel, H.-J. Kreowski, C. Lautemann

In order to deal with problems of this type, both the notion of compatibility and the

approach via monadic-second-order logic, have been further developed: in [l 11, the

decidability of certain boundedness problems is investigated, and in [S], the concept

of a monadic second-order evaluation is developed.

References

[l] S. Amborg, J. Lagergren and D. Seese, Problems easy for tree-decomposable graphs, J. AIyorithms 12

(1991) 308-340.

[2] M. Bauderon and B. Courcelle, Graph expressions and graph rewriting, Math. Systems Theory 20
(1987) 83-127.

[3] B. Courcelle, On context-free sets of graphs and their monadic second-order theory, in: H. Ehrig et al.,

eds., Graph-Grammars and Their Application to Computer Science, Lecture Notes in Computer

Science, Vol. 291 (Springer, Berlin, 1987) 237-247.

[4] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform.

and Comput. 85 (1990) 12-75.

[S] B. Courcelle and M. Mosbah, Monadic second-order evaluations on tree-decomposable graphs,

Theoret. Compur. Sci. 109 (1993) 49-82.
163 J. Feder, Plex languages, Inform. Sci. 3 (1971) 225-241.

173 A. Habel, Hyperedge replacement: grammars and languages, Ph.D. Thesis, Bremen 1989; to appear in

Lecture Notes in Computer Science.

[8] A. Habel and H.-J. Kreowski, Some structural aspects of hypergraph languages generated by

hyperedge replacement, in: F.J. Brandenburg et al., eds., Proc. STACS 87, Lecture Notes in Computer

Science, Vol. 247 (Springer, Berlin, 1987) 207-219.

[9] A. Habel and H.-J. Kreowski, Filtering hyperedge-replacement languages through compatible prop-

erties, in: M. Nagl, ed., Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer

Science, Vol. 411 (Springer, Berlin, 1990) 107-120.

[lo] A. Habel, H.-J. Kreowski and W. Vogler, Metatheorems for decision problems on hyperedge

replacement graph languages, Acta Inform. 26 (1989) 657-677.
[ll] A. Habel, H.-J. Kreowski and W. Vogler, Decidable boundedness problems for sets of graphs

generated by hyperedge replacement, Theoret. Compur. Sci. 89 (1991) 33-62.
[12] T. Lengauer and E. Wanke, Efficient analysis of graph properties on context-free graph languages, in

T. Lepistij and A. Salomaa, eds., Automata, Languages and Programming, Lecture Notes in Computer

Science, Vol. 317 (Springer, Berlin, 1988) 379-393; revised version as Tech. Report 45, Paderborn,

1989.

1131 E. Wanke, Algorithmen und KomplexitPtsanalyse fiir die Verarbeitung hierarchisch definierter

Graphen und hierarchisch definierter Graphfamilien, Ph.D. Thesis, Paderborn, 1989.

