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Individuals in a finite population repeatedly choose among actions yielding
uncertain payoffs. Between choices, each individual observes the action and realized
outcome of one other individual. We restrict our search to learning rules with limited
memory that increase expected payoffs regardless of the distribution underlying
their realizations. It is shown that the rule that outperforms all others is that which
imitates the action of an observed individual (whose realized outcome is better than
self) with a probability proportional to the difference in these realizations. When
each individual uses this best rule, the aggregate population behavior is approximated
by the replicator dynamic. Journal of Economic Literature Classification Numbers:
C72, C79, D83. © 1998 Academic Press

1. INTRODUCTION

Imitation, as opposed to innovation, is the act of copying or mimicking
the action of others. Imitation is a commonly observed behavior of human
decision making.> We ask why individuals should imitate, and what sort
of imitation rule they should adopt. First we identify a uniquely optimal
individual rule and then derive implications for societies where each individual
uses this rule. Optimality is determined according to two different perspec-
tives: that of a boundedly rational individual and that of a social planer.
Both approaches lead to the same unique prescription of how to choose
future actions:

! This paper developed out of earlier unpublished work (Schlag, 1994). The author wishes
to thank Dirk Bergemann, Jonas Bjornerstedt, Georg Noéldeke, Larry Samuelson, Avner
Shaked, a referee and an associate editor for helpful comments. Financial support from the
Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 303 at the University of Bonn is
gratefully acknowledged.

2 Many recent models of social learning consider individuals who select future actions by
imitating others (e.g., Banerjee [ 1]; Bjornerstedt and Weibull [4]; Cabrales [ 7]; Ellison and
Fudenberg [9]; Gale et al. [11]; Helbing [ 12]; Hofbauer [ 13]; Rogers [17]).
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o follow an imitative behavior, i.e., change actions only through
imitating others

e never imitate an individual that performed worse than you

e imitate an individual that performed better with a probability that
is proportional to how much better this individual performed.

Rules meeting these three criteria are called Proportional Imitation Rules
herein. When each individual in a large society adopts this optimal rule
then the stochastic process governing learned choices throughout society is
approximated in the short run by the replicator dynamic (Taylor [25]).

The basic decision problem is modelled as a multi-armed bandit. An indi-
vidual must repeatedly choose an action from a finite set of actions A.
Actions yield uncertain payoffs. Payoffs are realized independently, their
distribution has finite support, and belongs to a bounded interval [a, w].
Multi-armed bandits have wide application in economics and behavioral
sciences; the arm chosen can be, e.g., choice of technology or managerial
structure within industries, setting prices under uncertain demand, or visit
of a restaurant of uncertain quality.?

In our model, identical individuals belong to a finite population in which,
periodically, new individuals replace (some) existing ones. Each individual
is equally likely to be replaced regardless of prior durations. Individuals in
the population face, independently and repeatedly, the same multi-armed
bandit. Individuals do not know the probability distributions governing
payoffs realized by the arms. Instead, they gather information from each
other in the following way. On entry an individual observes the previous
choice and realized payoff of the individual replaced. Before each payoff
realization each individual observes (or samples) the previous choice and
realized payoff of one other individual. Sampling is independent of actions
or realized payoffs.

In the classical multi-armed bandit setting, an individual has infinite
memory and constantly updates a subjective prior over possible payoff
distributions (Rothschild [ 18]). We restrict attention to simpler individual
behavior by assuming that an individual forgets all information she
acquired before the last payoff realization. Hence, the behavioral rule, the
rule determining an individual’s next choice, is a function of the payoffs
achieved and actions taken both that individual (or by the replaced
individual) and by the individual sampled in the previous round.* Each
individual must commit to a behavioral rule before entering the population.

3 (Ellison and Fudenberg [9]; Schmalensee [24])
*We ignore the issue of which action individuals choose at the beginning of time when
there is no one to replace.
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We will determine which of these rules is ‘optimal’ from two distinct
perspectives.

The first approach (formalized in Section 5.1) assumes boundedly
rational individuals. Here individuals are myopic, only interested in how
rules perform upon first encounter of the bandit. Thus, the entering individual
acts as if she were to exit the population after one round. The description
of the action which each individual in the population chooses in a given
round is called a population state; entry state is the population state at an
individual’s entry. The performance of a behavioral rule depends on the
entry state and the payoff distribution of the commonly experienced multi-
armed bandit. It also depends on the realization of ‘objective’® uncertainty,
i.e., point of entry, sample and payoff. Individuals are assumed to be risk
neutral towards objective uncertainty, i.e., lotteries induced by the realiza-
tion of objective uncertainty are compared based on expected payoff.®

One feasible behavioral rule, Never Switch, is to forever pull the arm last
chosen by the individual you replaced. The expected payoff of this rule will
reflect the information accumulated in the population about the bandit.
Some population states and bandits may exist in which other rules perform
better (worse) than Never Switch. Classic decision theory (Savage [21])
demands that an individual determines an estimate (a subjective prior) of
the likelihood of each bandit and population state and then selects a rule
that maximizes subjective expected payoffs. Our boundedly rational approach
does not utilize subjective priors. We assume that an individual wants to
perform well in each situation, in particular, never worse than the ‘baseline’
rule Never Switch. Hence, individuals restrict attention to improving rules
that sometimes yield higher, and never lower, (objective) expected payoff
than Never Switch upon first encounter of the bandit in any entry state and
any bandit (with action set 4 that yields payoffs in [a, w]).

In our second approach to selecting behavioral rules (formalized in
Section 5.2) a social planner determines a rule for common use that yields
the best performance for the entire population. For a specific multi-armed
bandit, a rule is called payoff increasing if it generates a population dynamic
where average expected payoffs will weakly increase (i.e., not decrease)
over time for each initial state. This concept is compatible with the evolution-
ary game theory literature (e.g. Weibull [ 26]) where similar conditions on
population dynamics are postulated.

Our social planner limits attention to rules that are payoff increasing in
each multi-armed bandit with action set 4 that yields payoffs in [a, w].

5> Savage [21] distinguishes between objective and subjective (or personal) uncertainty.

6 Risk neutrality is assumed for simplicity. More general risk preferences can be incorporated
as follows: individuals observe payoffs, translate them into utilities and then apply their rule
to the utilities.
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Uncertainty regarding the payoff distribution of the bandit, or rare,
unobservable changes in the payoff distributions during an individual’s life
time motivate this criterion. An explicit analytic justification for the social
planner’s objective can be found in an evolutionary model of Bjornerstedt
and Schlag [ 3] where rare mutations affect rules and payoff distributions.

A first result establishes that a behavioral rule is improving if and only
if it is payoff increasing in each bandit. Hence, both the boundedly rational
individual and the social planner will select among improving rules. In fact,
when an individual receives a rule from the social planner her expected
payoff calculated a priori to her entry will weakly increase over time.

Simple improving rules are easily found, e.g., the rule Never Switch and
the self-explanatory rule Always Switch. Our first goal is to characterize the
entire set of improving rules. A first lemma shows that improving rules are
imitating, i.e., an individual using an improving rule changes actions only
through imitating others. The main theorem (Theorem 1) completes the
characterization. Thereby, an imitating rule is improving if and only if,
when two individuals using different actions happen to sample each other,
the difference in the probabilities of switching is proportional to the dif-
ference in their realized payoffs—the individual realizing the lower payoff
being more likely to switch. This relationship between switching probabilities
and realized payoffs results from the linear structure of taking expectations.
There are many rules with this property, e.g., Proportional Imitation Rules
as defined above. On the other hand, the rule, Imitate if Better’, which
only (and always) allows imitation of individuals with higher payoff than
self is not improving. We also show that improving rules would perform
just like Never Switch were the set of obtainable payoffs not bounded.

The severe restrictions on the switching behavior of improving rules
simplifies selection among them dramatically. Under various criteria and
for either bounded rationality or social planning we find the same (unique)
rule to be optimal. This rule is a Proportional Imitation Rule with a specific
proportionality constant that depends on the payoff interval [a, w] (see
Theorem 2).

Next we make some predictions about a large population in which
individuals use our optimal rule and sample randomly and independently.
Here, the stochastic process governing the choices made in the population
over time can be approximated in the short run by a discrete version of
the replicator dynamic (Taylor [25]). In particular, for any initial state
in which each action is present, with probability arbitrarily close to one,
provided the population is sufficiently large, most individuals will be
choosing an expected payoff maximizing action after a finite number of
rounds.

7 (Ellison and Fudenberg [9]; Malawski [14])
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In a further section we consider a more general two population random
matching scenario. In each round two types of individuals are matched to
play a normal form game. Selection of a behavioral rule using generaliza-
tions of the previous concepts yields the same optimal rule. In a large
population under random and independent sampling with each individual
using the optimal rule, short run adjustment is again approximated by the
discrete replicator dynamic.

The paper is organized as follows. In Sections 2 and 3 the basic payoff
realization and sampling scenario are introduced. Feasible behavioral rules
are presented in Section 4. Section 5 contains two alternative approaches
to selecting a behavioral rule, each leading to the condition of improving.
In Section 6 we present a first lemma on improving rules. In Section 7 this
lemma is used to illustrate why Imitate if Better is not improving. Section
8 contains the main theorem completely characterizing improving rules. In
Section 9 we select an optimal rule. Section 10 deals with the implications
of optimal behavior for aggregate population adjustment. In Section 11
previous findings are generalized to a game playing scenario. Section 12
contains a discussion. The Appendix contains a corollary on improving rules.

2. THE PAYOFF REALIZATION SCENARIO

In the following three sections we describe a dynamic process of choos-
ing actions, sampling and updating. First we establish how payoffs are
realized. Let W be a finite population (or set) of N individuals, N >2. In
a sequence of rounds, each individual in the population must choose an
action (or arm) from a finite set of actions 4, |A4| >2. Choosing action i
yields an uncertain payoff drawn from a given probability distribution P;
with finite support in [«, @], where « and w, a« <®, are exogenous para-
meters. 7; denotes the expected payoff generated by choosing action i, i.c.,
n;=>..xP;(x), ie A. Payoffs are realized independently of all other events.
The tuple < A4, (P,);c ., wWhich specifies the set of actions together with a
payoff distribution for each action, will be called a multi-armed bandit (or
game against nature). ¥(A4, [a, w]) denotes the set of all such multi-armed
bandits.®

Let 4, [o, @] and N be fixed throughout the rest of the paper. A popula-
tion state s€ A" in a given round ¢ is the description of the action which
each individual chooses in round ¢ Let m;=m;(s) denote the number of

8 Alternatively, one might say that each arm can be one of an infinite number of types, the
true type of an arm i being associated with a specific underlying payoff distribution P;. The
set of feasible types of arm i is then the set of probability distributions with finite support on
[, w]. In our notation, a multi-armed bandit is the realization of a type for each arm, denoted
by (A4, (P;)ic4y, not the collection of feasible types of each arm, denoted by %(4, [«, w]).
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individuals choosing the action i in state s, ie., m,=|{ce W:s(c)=i}]
(ie A). Let 4(A) be the set of probability distributions on 4. For a given
state s let pe A(A) denote the probability distribution that is associated
with randomly selecting an individual and observing the action she is
choosing, i.c., p,=m;/N for i€ A. The set of all such probability distribu-
tions will be denoted by A4™(A4), ie., pe 4V(A) and ie A implies N-p,e
N U {0}. Given this notation, the average expected payoff in the population
in state s, 7(s), is given by 7(s)=>, p;7;.

Individuals do not remain in the population W forever. Periodically a
new individual appears who randomly replaces one of the individuals in the
population; replacement occurs after a payoff realization, 1/N is the
probability of replacing a given individual, the replaced individual exits the
population. It will not be necessary for the analysis that follows to
explicitly specify the process governing when new individuals appear. An
individual’s entry state is the population state of the round in which this
individual enters the population.

3. INFORMATION ABOUT OTHERS

An entering individual learns the last choice and payoff realized by the
individual she replaces.

Once in the population an individual receives information about the play
of other individuals according to the following sampling scenario. After a
round of payoff realization, each individual meets (or samples) one other
individual from the population and receives the following information.
When individual ¢ samples individual d (¢, de W), then individual ¢
observes the action d used and the payoff d achieved in the last round
without observing the identity of d. Sampling does not depend on realized
payoffs nor on the population state and occurs independent of previous
events. Who gets to sample whom with which probability is determined by
the sampling procedure. Given Z={fe W":f(c)#cVce W}, let feZ
denote the event in which individual ¢ samples individual f(c), ce W.
A sampling procedure is an exogenously given distribution z over the events
feZ, ie, zeA(Z).

For ¢, de W, c¢+#d, let ¢ ~d denote the event of ¢ sampling d and let
Pr(c ~ d) denote the probability of this event, i.e., Pr(c ~d) =3, s, —4 2(f).
In the following we will restrict attention to symmetric sampling procedures,
ie., for any ¢, de W, ¢ #d, the probability of ¢ sampling d is the same as
vice versa, i.e., Pr(c ~ d)=Pr(d ~ c).

Symmetric sampling procedures can have a variety of different charac-
teristics, e.g., regarding the way information is obtained. One may want to
assume that individuals exchange information. In our setting this means
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that individuals sample each other. Here, ¢ ~ d is the same event as d ~ ¢
for each ¢,de W, ¢#d. We also allow for settings in which individuals
obtain information without necessarily revealing their own. Such a situation
arises when individuals sample independently, i.e., when Pr(c ~dnd~c)=
Pr(c ~d)-Pr(d~c)forall c,de W, c #d.

Symmetric sampling procedures may differ according to the number of
different samples an individual may obtain. E.g., a symmetric sampling
procedure obtains from the following story. Individuals are located on a
circle. Each individual randomly samples with equal probability among her
2m closest neighbors (m to the left, m to the right, m < N/2). In the extreme
case, random sampling, each individual randomly samples (with equal proba-
bility) from the entire population, i.e., Pr(c ~d)=1/(N—1) for ¢,de W,
c#d.

4. BEHAVIORAL RULES

A behavioral rule is the formal description of how an individual chooses
her next action as a function of past experience. We focus on behavior of
individuals entering after the very first round of the model. How the first
N individuals choose their actions is not modelled. Choice will depend on
(1) individual knowledge, (ii) information and memory, and (iii) tools
available.

(1) An individual knows the action set A4, the set of feasible payoffs
[, @] but not the underlying payoff distributions in the bandit. She knows
the symmetric sampling procedure and the entry and exit mechanism.

(i1)) An individual forgets all information she obtained prior to the
previous round. She does not condition play on the current round number.
In particular, in her first encounter of the bandit, she treats the previous
choice and realized payoff of the individual she replaced as if it were her

own.’

(ii1) An individual has access to a randomizing device that generates
independent events.

The extreme limitation posed by (ii) is a means to focus on simple behavior.
Given the above assumptions, a behavioral rule F is characterized by a
function

FAx[o, o] xAx[o,0] > A(A), (1)

° Relaxing this assumption will have no effect on optimal behavior.
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where F(i, x,J, y), is the probability of choosing action k in the next
round after previously choosing action i, receiving payoff x and sampling
an individual who chose action j and received payoff y.

Given a behavioral rule F and a multi-armed bandit in %(A4, [a, w]), let
F; be the probability of playing action k after playing action i and
sampling an individual using action j calculated a priori to realization of
payoffs (i, j, ke 4), ie.,

Fi=2 F(i,x, j, )i Pi(x) Py(p). (2)

X,y

(F f/) i ke are called induced switching probabilities.

One of the simplest behavioral rules, Never Switch, is the rule F that
satisfies F(i, x, j, y),=1for i, je A and x, y e [a, @]. An opposite behavior
is exhibited by the rule, Always Switch, where F(i, x, j, y);=1 for i, je A
and x, ye[a, w]. A more plausible rule seems to be to act according to
Imitate if Better (Ellison and Fudenberg [9]; Malawski [14]), i.e., use the
rule F given by F(i, x, j, y),=11if y>x and F(i, x, j, y);=1 if y<x. The
three rules described above belong to the class of behavioral rules that are
based on imitation, i.e., either the individual does not change actions or she
switches to the action used by the individual she sampled. More generally,
we call a behavioral rule F imitating if F(i, x, j, y), =0 when k¢ {i, j}
(x, ye[a, @]). The Proportional Imitation Rule, is the imitating rule F
where there exists g€ (0, 1/(w —a)] such that F(i, x, j, y);=0 if y <x and
F(i,x, j,y);=0(y—x) if y>x, i#j and x, ye[a, w]. The associated
constant ¢ is called the switching rate.'®

5. SELECTION OF RULES

Each individual must commit to a behavioral rule before she enters the
population. The major part of our analysis is concerned with finding an
optimal rule. We present two alternative scenarios (or approaches) for
determining the notion of optimality.

5.1. A Boundedly Rational Approach

In the first scenario we consider boundedly rational individuals. Here,
individuals are myopic and evaluate rules according to performance in
their first encounter of the bandit. This performance depends on entry state
and payoff distributions (P,),. , of the commonly experienced bandit. It

10 Switching behavior as displayed by Proportional Imitation Rule appears in papers by
Cabrales [7] and Helbing [12], the former intuitively justifying such behavior through
uniformly distibuted costs for switching actions.
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also depends on realization of, ‘objective’ (sensu Savage [21]) uncertainty
implicit in the model, i.e., point of entry, sample and payoff. Individuals are
assumed to be risk neutral towards objective uncertainty. Thus, if an
individual were to know entry state and payoff distributions of the bandit,
comparing two given rules she would prefer the one yielding higher expected
payoff in her first encounter. In the following, the term ‘performance’ refers
to objective expected payoff in the first encounter.

Given the entry state and the multi-armed bandit encountered the selected
behavioral rule might perform poorly and it might perform excellently.
We assume that an individual prefers a rule that performs well whatever
circumstances she enters into. This criterion does not make sense until
we calibrate the measurement of performance. Following the rule Never
Switch means to perform as well as the average individual performed in the
previous round. Thus, the expected payoff of this rule will reflect the
information accumulated in the population about the bandit. Never Switch
will be our a baseline for analyzing the performance of a rule. Hence, “to
perform well” will mean to perform at least as good as Never Switch. Rules
that perform at least as good as Never Switch under any circumstances will
be called improving, a condition to be formalized in the following,.

Consider an individual that is about to enter in round ¢ a population in
state s’. Remember that an entering individual adapts all attributes of the
individual she replaces. Hence, the individual’s expected payoff in round
t+1, denoted by Ey 7', is given by

1
Epun'=5 Y Y Premd) ¥ Flig

ce W de W\{c} red

The expected payoff of Never Switch in round ¢+ 1 is equal to the average
expected payoff in the population in round ¢, 7(s’). Let EIP(s") denote the
difference between the performance of F and Never Switch, i.e.,

EIP(s') = E. 7' — 7(s"). (3)

EIP(s) is called the expected improvement under F in state s. The
behavioral rule F is called improving (given A and [a,w]) if EIP(s)=0
for any state se€ A" and any multi-armed bandit in %(A4, [«, w])."" The
improving rule F is degenerate if EIP.(s)=0 for any state se 4" and any
multi-armed bandit in 9(4, [a, w]).

' The concept of improving is very closely related to the concept of absolute expediency
defined by Sarin [19] in a slightly different context. Applied to our model, an absolutely
expedient rule is an improving rule with the property that the expected improvement is strictly
positive whenever not each action currently used in the population achieves the same expected
payoff. As such this concept leads to a refinement of improving rules.
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5.2. A Social Planer’s Approach

In this alternative scenario, a social planner determines the behavioral
rule each individual follows. Equal treatment of the identical individuals
calls for the social planner to prescribe the same rule to each individual.
The aim of the planner is to select the rule that is best (to be specified) for
society.

When each individual follows the same behavioral rule we obtain a
monomorphic population. The initial state is the population state in the very
first round of the model. Given initial state s'e 4", multi-armed bandit
be¥%(A,[a,w]) and behavioral rule F, the monomorphic population
induces a Markov process on 4" that describes the change of the popula-
tion state over time. If s’ is the population state in round ¢ then the
expected proportion of individuals in round ¢+ 1 using action i, Eppi(s’),
calculated a priori to the payoff realizations in round ¢, is given by

L

Empi(s) =

Z Z Pr(c'»d) F.iy’(c)s’(d)' (4)

ceW de W\{c}

E 7' (s")=>,Erpi(s’) -m, is the average expected payoff in the population
in round ¢+ 1. Notice that

E 7(s")=Ep 7. (5)

The behavioral rule F is called payoff increasing in the bandit b if average
expected payoff weakly increases over time for any initial state, i.e., E.7'(s)
>7i(s) for any se A",

The social planner finds the population already “in action” when he first
prescribes a rule. Lack of information about bandit and current state or
rare, unobservable, changes in payoff distributions make the planner prefer
a rule that performs well in each situation. Here, the social planer selects
among the rules that are payoff increasing in each bandit in 9(4, [a, ®]).

As in the bounded rational setting, as of yet a formal justification why
a rule should be payoff increasing in each bandit is missing. The story of
a social planner makes it easy to describe the payoff increasing condition.
However, this condition also plays an important role without social
planner when rules are under selection pressure. Consider a large popula-
tion in which successful rules propagate. If success of a rule is determined
by average payoff in a given state then a successful rule must be able to
find the expected payoff maximizing action. Otherwise an alternative rule
with a bias towards the action maximizing expected payoff will have a
selective advantage. At the same time, two rules that are both able to learn
which action is best among those present will eventually eliminate selec-
tion pressure between them and hence both survive. Consequently, in an
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evolutionary setting in which bandits are subject to rare, arbitrary, and
unobservable changes, it seems that only a rule that is payoff increasing in
each bandit can be successful. Bjornerstedt and Schlag [3] confirm this
intuition in an evolutionary analysis of an infinite population facing our
matching and sampling scenario.'?

5.3. Comparing Approaches
Combining (3) and (5), we obtain that

Remark 1. A behavioral rule is improving if and only if it is payoff
increasing in any multi-armed bandit belonging to 4(4, [a, ®]).

Boundedly rational individuals modelled in Section 5.1 restrict attention
to performance in their first encounter. Thus, for each individual, perfor-
mance can be calculated independently of rules used by others. How does
an individual perceive her performance in later rounds if she receives her
rule from a social planner? The social planner prescribes the same improv-
ing rule to each individual. Hence, realization of future states does not
depend on which individuals are replaced by whom. In any round (and not
only the round in which the individual enters) and for any state in this
round the individual expects to be equally likely in the position of each of
the individuals ¢ € W. Hence,

Remark 2. For any (improving) rule prescribed by the social planner,
an individual’s expected payoff calculated a priori to her entry weakly
increases over time for any entry state and any bandit.

Given above, both approaches select among improving rules. Once we
have characterized improving rules it will become clear which improving
rule a boundedly rational individual or a social planer will regard as optimal.

6. A FIRST LEMMA

Clearly, the rule Never Switch is improving. Matching being symmetric
causes Always Switch to be improving too. Either rule is not a very good
candidate for optimal behavior since they both leave average expected
payoff constant over time, i.e., each of them is a degenerate improving rule.

The following preliminary result characterizes improving rules in a way
that does not depend on the population state. Hereby, a behavioral rule F

12 Typically an individual that selects a behavioral rule according to a subjective prior will
perform worse. In this sense, this is an instance (similar to Robson [ 16]) in which successful
behavior in an evolutionary setting does not comply with the fundaments of rational decision
making.
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is improving if and only if it is an imitating rule that satisfies the following
condition. Consider two individuals choosing different actions, using the
same rule F, that sample each other. Then, before observing each other’s
payoff, the individual with the lower expected payoff is more likely to
switch actions.

LemMmA 1. Let F be a behavioral rule. Then F is improving if and only if
F is imitating and for any multi-armed bandit in 9(A, [a, ]), for any
i,jeA, i#],

(F—Fj)(n;—m;) >0. (6)

The proof of the imitation property is quite intuitive. An individual does
not switch to an action she did not observe since she fears this action
achieves the lowest and all other actions the highest expected payoftf.
Notice that imitation remains necessary to ensure the improving condition
even after the event of receiving the lowest possible payoff « and sampling
an individual who used the same action and also obtained a. This is
because it may be that obtaining « is an unlucky event for the own action
whereas it is the only outcome for any other action.

Proof. We will first show the “if” statement. Calculating expected improve-
ment for imitating rules yields

EIP AT Z Z PI'(C - d) A(c s(d [ns(d 3‘((')]'

LEWu'e W\{c}

Using the fact that the sampling procedure is symmetric we obtain

EIP( *z Y Pric~d)| (Fj—Fi)m-=), (1)
<tz

which completes the proof of the “if” statement.

Next we will show that improving rules are imitating. Assume that the
behavioral rule F is improving. Let x, ye[a, ], i, je A and re A\{i, j}
be such that F(i, x, j, y),>0. Consider a multi-armed bandit belonging
to 9(A, [, w]) with P,(x)=P,(y)=P,(w)=3, P,=P, and P;(x)=1 for
all ke A\{i, j}. Tt follows that n,=n;>m,. Choose c,de W such that
Pr(¢ ~d)>0 and consider a population state s such that s(¢) =1, s(d)=j
and m;+m;=N. Then F(i, x, j, y),>0 implies EIP(s)<0 which contra-
dicts the fact that F is improving.

Finally, we will show that an imitating rule F that violates (6) for some
i#j and some multi-armed bandit in %(A4, [«, w]) is not improving.
Choose again ¢, de W such that Pr(c ~d)>0 and consider a population
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state s such that s(c) =, s(d) = jand m; + m;= N. Since (F},— F},)(n,—n;) <0,
following (7), EIP(s) <0 which implies that F is not improving. ||

In the social planer’s approach we restricted attention to rules that are
payoff increasing in any bandit. One might wish to impose the following
weaker condition. Assume that only those actions are expected to increase
that perform at least as well as some other action present, i.e.,

Vse AW, ie A: Expi(s)=p,(s)=3ce W:n,=>mny.,. (8)

Our condition (8) is weaker than most necessary conditions postulated in
evolutionary game theory for reasonable dynamics in infinite populations.'?
Never-the-less it is sufficient to drive our results.

Remark 3. A behavioral rule induces a monomorphic population dynamic
that satisfies (8) in all multi-armed bandits contained in %(A4, [a, w]) if
and only if it is improving.

The statement in Remark 3 is easily verified using the proof of the imita-
tion property in Lemma 1 and the fact that (8) is equivalent to payoff
increasing when |A4| =2

7. THE DRAWBACK OF IMITATE IF BETTER

Imitate if Better is a plausible rule. In fact, it performs well in multi-
armed bandits in which uncertainty is driven solely through idiosyncratic
(sensu Ellison and Fudenberg [9]) shocks. Consider a multi-armed bandit
in 9(A,[a, w]) with the following properties. There is a probability
distribution Q with finite support and mean 0 such that P,(x) = Q(x —=;)
for each ie 4 and x € [a, w]. Throughout this section, let F' denote the rule
Imitate if Better. Then

Fi 72 O(x Fli,m;+x, jym,+y),—F(j,m,+ y, I, ;;+ x);
+F(i,m; 4y, jym+x),—F(j,m+x,i,m,+ ),

and hence, F —F; >0 when 7;>n,. With (7) it follows that the expected
improvement of Imltdte if Better is non negative in such multi-armed
bandits.

However, we will see that Imitate if Better generates negative expected
improvement in some extremely simple multi-armed bandits; it can not
distinguish between lucky and certain (or highly probable) payoffs. Let

3(E.g., compatibility, also known as payoff monotonicity, and weak compatibility,
Friedman [ 10]; payoff positivity, Weibull [26])
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xe(a, (a+w)/2). Consider a multi-armed bandit in which P,(x)=1,
P,(a) =27 and P,(w)=1— A for some 0 <A< 1. It follows that

w—X

T, >T if and only if A< .
w—o

On the other hand, F7,=1—/1 and F}, =4, and hence,
F} >F3, ifand only if A>1.

Consequently, when 1 <1< (w—x)/(w—a) then (6) is violated and hence
Imitate if Better is not improving.

8. A COMPLETE CHARACTERIZATION

The fact that being improving is equivalent to being imitating and more
likely to imitate an action with a higher expected payoff than vice versa
(Lemma 1) is quite intuitive. The difficulty in finding improving rules is
that an individual is not able to condition her behavior on expected payoffs
but must base her decision on realized payoffs. The following theorem
contains the central result of this paper, a somewhat surprising charac-
terization of the set of behavioral rules that are improving. According to
this result only switching in a way that “net” switching behavior is linear
in payoff differences ensures that an imitating rule is in fact improving. The
consequent proof reveals that this strong characterization is due to the
linear structure of taking expectations.

THEOREM 1. The behavioral rule F is improving if and only if
(1) F is imitating and
(ii) for all i, je A, i# j there exists o;=0;€[0, 1/(w—a)] such that
F(i,x, j,y);—F(j, y, i, x);=0,(y —Xx) forall x,yel[a,w]. (9)

From (9) we see immediately that Imitate if Better is not improving,
confirming our findings from Section 7.

Proof. We will first show that conditions (i) and (ii) are sufficient. Let
F be an imitating behavioral rule that satisfies condition (ii). (2) and (9)
imply

Fl.—Fi,=0,(n,—n,). (10)

Together with Lemma 1 it follows that F is improving.



144 KARL H. SCHLAG

We will now prove the necessity of conditions (i) and (ii). Let F
be improving and fix i, je A with i#j. Let g;(x, y):=F(i,x, j, y),—
F(j, y,i, x), for x, ye[a, ]. First we will show that

gij(x9 u)zgij(xa Z)
u—x Z—X

Yu<x<z. (11)

Given u <x <z, consider a multi-armed bandit where P,(x)=1, P;(u)
and P;(z) =1—/,0<A<1.Then zn,>r;ifand only if L < (z —x )/(z—u)z
where 0 < A* < 1. It follows from Lemma 1 that

/1

F—Fi=Jg;(x,u)+(1—=12) g;(x,2) >0 if A<A*and (12)
Agi(xe,u) +(1—4) g;(x,2)<0 if A>A%* (13)

Therefore, A*g;(x, u)+(1—4%*)g;(x,z)=0, which, after simplification,
shows that (11) is true.

Since the left hand side in (11) is independent of z, so is the right hand
side. Given x € («, w), let o,(x) =(g;(x, z))/(z — x) for some z > x. Follow-
ing (11), g;(x, u) =0;(x) - (u—x) for all u <x and g;(x, z) =g ,(x) - (z —X)
for all z> x. Hence, for all x, y e (o, w), x # y,

g[j(xa y) =F(19 X, j5 y)j_F(]’ Vs ia X),»=O',»j()€)(y—)€), (14)

or equivalently,
F(j,y, 1, x); = F(i, x, ], y);= 0,(x)(x — ). (15)

Exchanging the variables i and j and the variables x and y in (14) implies

F(.]! s l,X)I—F(l,X,j, Y)/=0',z(y)(x_y) (16)

From (15) and (16) it follows that o, =0 is a constant. Setting 2=0 in
(12) it follows that this constant is non-negative. Hence, we have shown (9)
for all x, ye(a, w), x #y.

Looking back at the above proof we see that the explicit values of « and
o did not enter the argument. Hence, (9) holds for all x, ye[a, @], x # y.

Assume that g;(x, x) >0 for some xe[a, w). Consider a multi-armed
bandit where P;(x)=1—4, P;,(w)=/Aand P;(x)=1,0<A<1. Then n;<m;
and FJ,—F,=(1—=2)g;(x,x)+ Ao, - (x — a)) >0 for /4 sufficiently small
contradicts the fact that F is improvmg. Similarly, g,(x, x) <0 leads
to a contradiction. Hence, g,(x,x)=0 for all xe[a, w). The proof of
g(w, w) =0 is analogue. This completes the proof of (9).

Finally, o;(w —o) = g;(, co)<F’ <1 implies 6, < 1/(w |
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From (7) and (10) we obtain that

COROLLARY 1. An improving rule is degenerate if and only if o,;=0 for
all i, je A, i# j.**

Thus, non degenerate improving rules induce stochastic behavior.
Moreover, since o; is bounded above by 1/(w—a) (Theorem 1), all
improving rules would be degenerate if payoffs were not contained in a
bounded interval.

In the appendix we include a corollary that gives a more precise charac-
terization of improving rules.

9. SELECTING AMONG IMPROVING RULES

We now proceed with our search for an optimal behavioral rule. First we
will show that there are improving rules that perform better than all others.
A behavioral rule F dominates the improving rules (or short, is a dominant
rule) if it always generates weakly higher expected improvement than any
other improving rule, i.e., for any improving rule F’, state s and multi-
armed bandit in 9(A4, [a, w]), EIP.(s) = EIP(s) holds. With (3) and (5)
it follows that dominant rules are also the rules that maximize the increase
in average expected payoffs of a monomorphic population in any given
state and bandit among the set of improving rules. Hence, both the
boundedly rational individual and the social planer will select a dominant
rule if such a rule exists.

Following (7) and (10),

EIP (s Z Y Pr(c~d)| o, (n,—7,)> (17)

I<j (‘ s(e)=1i
cs(d)=j

Given (17), the expected improvement of an improving rule depends only
on the factors (o, i)ijea. Hence
i#j
PropPoSITION 1. A behavioral rule is a dominant rule if and only if it is
improving and for any i#j, 6;=1/(w — ).

Next we demonstrate three unique properties of the Proportional
Imitation Rule with switching rate 1/(w — «) (defined in Section 4, denoted

“In this context, notice that a rule is absolutely expedient (Footnote 11) if and only if it
is improving with ;>0 for all i, je 4, i #].
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by F?). These properties will cause us to select it as the unique optimal rule
for our model.

THEOREM 2. F7” is the unique dominant rule that satisfies any one of the
following properties.

(1) It never prescribes to imitate an action that achieved a lower
payoff.

(1) In each multi-armed bandit in 9(A, [ o, w]) and state it minimizes
the probability of switching among dominant rules.

(i11)  For each multi-armed bandit in (A, [a, w]) and current state it
minimizes the variance of the average payoff in a monomorphic population in
the next round among dominant rules.

Proof of Theorem 2. Statements (i) and (ii) follow easily from Corollary 2
stated in the appendix since /7 is the unique dominant rule with g;(x, y) =
—min{x, y}. Part (iii) follows from part (ii) of Theorem 1 and some easy
calculations. |

Following (i) in Theorem 2, it can be argued that F? is the best
dominant rule under deterministic payoffs; realized payoffs never decrease
when actions yield certain payoffs. (ii) implies that F” is the dominant rule
that changes actions the least number of times. Given (iii), among
improving rules, F¥ maximizes increase in average expected payoffs using
minimal variance. This leads us to conjecture that F” maximizes the prob-
ability that average payoffs realized in a monomorphic population increase
over time.

The Proportional Imitation Rule with switching rate 1/(w—oa) 1is
improving. It is dominant (Proposition 1), and hence always performs at
least as well as any other improving rule regarding expected improvement.
Finally, its unique properties among the dominant rules (Theorem 2) lead
us to argue that it is the optimal rule in either selection approach. Notice
that the optimal rule does not depend on the size of the population N.

Remark 4. One should mention that there is a dominant rule that
utilizes less information than the dominant Proportional Imitation Rule.
The dominant Proportional Reviewing Rule is the imitating rule F where
F(i,x, j, y),=(w—x)/(w—a) for i#j, i,jeA and x, ye[a, w]."” It can
be easily shown (see Schlag [22] for more details) that the dominant
proportional reviewing rule is the umique dominant improving rule that
does not depend on the sampled individual’s payoff.

15 Bjornerstedt and Weibull ([4]) and Gale et al. ([11]) both use a variant of this rule in
their model, the later interpret it on the basis of random aspiration levels.
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10. POPULATION DYNAMICS

In this section we investigate how much individuals learn about the
bandit when each of them uses the optimal rule. For this we analyze the
stochastic process governing the evolution of the population state over
time. Attention is restricted to random and independent sampling in large
populations.

First we derive a ‘law of large numbers’ type of result for a monomorphic
population based on an arbitrary behavioral rule. We identify a state
se A" with the associated distribution, p € AV(A4), of actions chosen. For
a monomorphic population of size N which is in state p™(1)e 4"(4) in
round 1, let p™(#)e AV(A) be the random state in round 7, t=2, 3, ... Let
|-l denote the supremums norm. For large populations, our result shows
that the stochastic adjustment can be approximated in the short run by the
deterministic adjustment that would take place if the size of the population
were infinite.

THEOREM 3. Assume that sampling is random and independent. Assume
that each individual is using the rule F. For each 6 >0, e >0 and T e N there
exists Nye N such that for any population size N> N, and any initial state
pedA™(A), the event { | p™(T)—p(T)|| >3} occurs with probability less than
e where pV(1)=p(1)=p and (p(1)),_ satisfies

(t+1) ij Fi, teN. (18)

Proof. We will first prove the statement for T=2. Fix ie4 and
peAVN(A). For ce W let w;(c) be the random variable such that w,(c¢) =1
if individual ¢ uses action 7 in round two, otherwise w;(c)=0. Then

—1
Pr(W[(C)ZI)Z% v(()v(c)+ Z r(t)/
/#s(c)
and pY(2)=(1/N)3X..ww;(c). Since w;(c) and w,(d) are independent
variables for ¢ #d and VAR(w,(c)) <1 it follows that VAR(pN(2))<1/N.
Applying Tschebysheff’s inequality we obtain that the event {|pN(2)—
E[pM(2)]1 >9/2} occurs with a probability of less than 4/Né>. Given

E[p}( Zp,p, - Zp, s (19)

there exists N, such that 4/No* <¢ and |E[ pY(2)] — 2 ,ﬁ,ﬁ,FM <0/2 for
N>N,. Then {|p}(2)—X,,p,p,Fi|>0} occurs with probability less
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than ¢ when N > N,. Since N, can be chosen independent of j the proof for
T =2 is complete.

We will now prove the statement for 7=3 by iterating the proof for
T=2. Let 6>0 and ¢>0 be given. Let f: 4(A4)—> A(A) be defined by
f(p),=%,.pp.Fi, icA. Let p¥(z, p) be the random state in round ¢
given state pe A"(A) in round one (7> 1). Since f'is a continuous function
on a compact space there exists f € (0, 6/2) such that || f(w)— f(w')]| <d/2
if |w—w'|| <B. Let u be such that (1 —u)?>=1—e¢. Following the proof for
T =2 there exists N, such that for N> N, and pe 4"(4), Pr(|p™(2, p) —
f(P)ll<p)>1—u. For N> N, it follows that

Pr(|p™(3, p) = f(f(P)] <0)

= ) Pr(llp™(2 w) = f(F(HNI<0) - Pr(p™(2, p)=w)

wedN(A4)

0
> % eI —fnl <3 ) P2 5 =)

weAN(A): |w—f(p)ll <B

>(1-p)P=1-¢

which completes the proof for T'=3. The proof for 7> 3 follows similarly
using induction. ||

Theorem 3 makes a statement about the short run adjustment of large
populations. First the time horizon and precision of the approximation is
set, then we choose the population size to be sufficiently large. Why is it
necessary to keep the time horizon fixed? For any given population size,
long run behavior can differ quite dramatically from the behavior of (18).!¢
The following is easily verified.

Remark 5. Consider a monomorphic population of size N, based on a
non degenerate improving rule, facing a two-armed bandit, ie., 4= {1, 2}.
Typically, F;,>0 and F}, >0."” Then for any initial interior state (ie., 0 <
pY(1)<1), eventually each individual will be playing the same action.
There is a positive probability that all individuals will be playing the worse
action after a finite number of rounds. This can not happen in an infinite
population as we will see below.

Given Theorem 3, understanding adjustment of the infinite population
helps understand short run adjustment of a large but finite population. An
infinite monomorphic population induces a deterministic process (p(?)),cx

16 For further reading, see (Boylan [6]) and Binmore et al. [2]).
17 ie., unless Supp(1) N Supp(2) = & where Supp(i) = [min{ y: P;(y) >0}, max{y: P,(y)>0}].
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that satisfies (18). If the underlying rule F is improving then, using (10),
(18) simplifies to

pi(t+1)=p;(t)+ p;(t) Z Uy'P/(l)'(ni_ﬂ/)~ (20)
jeA
Consequently, if F'is improving with underlying ;> 0 for all i #, then in
the long run all individuals in an infinite monomorphic population will
choose actions achieving maximal expected payoff among those that were
initially present, ie., lim, ., p,(r)=0 for i¢argmax,_,{n;, p,(1)>0}.
It is easy to show that the converse of this statement is also true (use
Lemma 1 and (18)). In particular, if all individuals in an infinite population
use Imitate if Better then eventually they will all be choosing the ineffi-
cient action in the bandit from Section 7 if 1< /i< (w—x)/(w—a) and
(1) e(0, 1).
If F is a dominant improving rule (e.g., the dominant Proportional
Imitation Rule), then

P+ ) =p,(1) +—— =7 pl)]-pi(1), o1)
where n(p) =3, 7, - p,; is the average payoff instate p € 4(A4). Hence, if each
individual uses the optimal rule then dynamic adjustment of a large but
finite population is approximated in the short run by (21)—a discrete
version of the replicator dynamic (Taylor [25]) applied to multi-armed
bandits.

This leads to the following result about what typically happens in a large
population of individuals using the optimal rule (compare to Remark 5).
Loosely speaking, it is highly probable that most individuals will choose
the best action after some finite time provided all actions are initially
present.

Remark 6. Consider a finite population of individuals, using the domi-
nant Proportional Imitation Rule, facing a given bandit in 9(4, [a, @]).
Let M =arg max;. ,{n;}. Then for any ye (0, 1/|4]), >0 and ¢>0 there
exits T, Noe N such that the event {|1—>,.,,pN(T)| >0} occurs with
probability less than ¢ given that N> N, and p¥(1)>y for all ie 4.

This statement follows directly from Theorem 3 and (21).

11. A GAME PLAYING SETTING

Above we derived optimal behavioral rules for stationary multi-armed
bandits. In the following we extend our approach to the classic evolution-
ary game theoretic model of interacting individuals. Here, individuals are
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repeatedly randomly matched to play a one shot game. This means that
individuals repeatedly face a non-stationary multi-armed bandit where
changes in payoff distributions result from changes in play of matched
opponents. In order to simplify presentation we restrict attention to two
person games. More general results for games with any given finite number
of players are easily derived.

Consider two finite, disjoint populations W, and W,, each of size N,
referred to as population one and two. In a sequence of rounds each individual
must choose an action and is then matched with an individual from the
opposite population. Let A; be the finite set of actions available to an
individual in population i, i=1, 2. When an individual in population one
using action i€ A4, is matched with an individual in population two using
action je A4,, the individual in population k receives an uncertain payoff
drawn from the probability distribution Pﬁ.‘j, k=1,2. Payoffs are realized
independently. Associating player i to being an individual in population i,
the tuple <{A,, 45, (P})ica,, (P})ica,» defines an asymmetric two player

jeAd jeA

normal form game. We resztrict attenftion to the class of asymmetric two
player normal form games, %(A4,, 4>, [«;, ], [%,, ®,]), in which PZ. has
finite support in [a,, w,], i€eA,, jeA, and k=1,2; a; <w, and o, <,
are given. For a given asymmetric game, let (-, -) and 7,(-, -) be the
bilinear functions on A(A,)x 4(A,) where n,(i, j) is the expected payoff
to player k& when player one is using action i and player two is using
action J, i.e., mi(i, /) =X (v oy w1 Py0) > 0} xPi(x), k=1,2.

In each round, the population state (s,, s,) is an element of (4,)"1 x (A4,)
Individuals are randomly matched in pairs, each individual being equally
likely to be matched with each individual of the opposite population. Given
the population state s, let p(s)e 4™(A4,) be the vector of proportions of
each action chosen in population one. Similarly let ¢(s)e 4" (A4,) be the
corresponding expression for population two. Then 7,(i, ¢(s)) specifies the
expected payoff of an individual in population one using action i€ 4, and
7, (p(s), g(s)) specifies the average expected payoff in population one in this
state. For a given current state, each individual in population one is facing
a multi-armed bandit <A4,, (P});c4> in 9(A4,,[a,,®w,]) where Pj(x)=
Yjeaq;(s)-Pi(x) for xe[a, w,].

Sampling occurs within each population according to a sampling
procedure as described in Section 3.

A behavioral rule F for an individual in population k (k=1,2) is a
function

W,

F:rApx[oy, o] x A x [y, 0] — A(Ay).

Switching probabilities now depend on the population state. For a given
behavioral rule F of an individual in population one, the induced switching
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probabilities (F,(s)); .4, in state s=(s;,s,) € (4;)"1x(4,)"? are given
by

. —1
Fi(s)= Z’jvxv_l)) Fjo (o w). v my(r, ),

+ Z (]37[1(]; ) }",71'1(}’, U))is

u;év )
where n, = |{ce W, :s,(c)=k}| for ke A, (i, j, re 4,).

11.1. Optimal Behavior

Which behavioral rule should an individual entering into population one
use? Consider a boundedly rational individual. In any given state the game
appears as a multi-armed bandit. However, in contrast to the multi-armed
bandit setting, underlying payoff distributions are no longer stationary. The
best choice of an action in the next round depends on how opponents’
adjust. We assume that an individual does not anticipate how the play of
her opponents changes. Instead, she evaluates performance in her first
encounter according to the play of population two in her entry state. Thus,
the individual acts as if she were going to face a stationary bandit. Here,
as in the multi-armed bandit setting, the Proportional Imitation Rule with
switching rate 1/(w, —a,) is the optimal rule.

Consider now a social planer selecting individual behavior, prescribing
the same behavior to individuals belonging to the same population. If each
individual in population one is using the rule F and s is the population
state in round ¢ then the expected proportion of individuals choosing
action i€ A, in round ¢+ 1, denoted by Epi(s), is given by

1 ; .
=N ) Pr(c"’d)'F;I(c>sl(d) (s), i€A,. (22)

c,de Wi, c#d

Erpi(s)

We say that F is expected to induce a weak compatible dynamic in popula-
tion one if for each round and state, average expected play in the next
round is a better reply to the state of the previous round, i.e., if

_Z (i, g(8)) - Eppi(s) —mi(p(s), g(s)) =0 (23)

holds for all states se(A4;)"1 x (A4,)"2."® (23) replaces the ‘payoff increas-
ing’ condition in Section 5.2.

8 Definition adapted from the concept of weak compatibility for infinite populations
(Friedman [10]).
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The social planer chooses a rule for individuals in population one that
is expected to induce a weak compatible dynamic (in population one) in
each asymmetric game in (A, A,, [o;, @], [25, ®,]). These are precisely
the rules that are improving for bandits in %(4,, [, w,]). Further selection
as in the multi-armed bandit setting (maximize left hand side in (23) with
minimal variance) reveals the Proportional Imitation Rule with switching
rate 1/(w; —a,) as the unique optimal rule. Symmetric arguments apply to
population two.

11.2. Population Dynamics in Games

Assume that each individual uses the optimal Proportional Imitation
Rule for her population. How does the population state evolve under
random and independent sampling? Using the same law of large numbers
type of argument as in Theorem 3'° behavior of a large but finite population
is approximated in the short run by the deterministic dynamic (p’, ¢*),_ 5. 3. ..
that satisfies

1 , .
Pt =pi+———I[m(i,q")—mi(p' ") pl, i€d,,
Wy — oy

1 (24)
0 =g+ ———[m(p, ) —map q")]-q),  jeA,, teN.
Wy — 0y

2

Notice that (24), the two population analogue of (21), is a discrete version
of the replicator dynamic defined by Taylor [25].

12. DISCUSSION

In this section we discuss some of our assumptions and relate our work
to existing literature.

The central theme of our analysis is the selection of an individual’s
behavioral or learning rule, the description of what to do whenever a
decision must be made. We search for behavioral rules that perform well
in each situation. Our notion of performing well leads to the condition of
improving, a rule performing better than any other improving rule in any
situation is called dominant. A rule selected among the dominant rules is
called optimal. For this discussion, let optimal population adjustment refer to
an infinite population in which each individual uses the optimal rule.

9 Small adjustments in the proof need to be made (see Schlag [22]) since switching
probabilities are no longer (completely) independent due to the fact that individuals are
matched in pairs.
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An individual’s decision is based on the information available about the
specific situation. Naturally, different informational assumptions lead to
the selection of different behavioral rules.

In our model, individual information is extremely limited—an individual
only observes the performance of one other individual between rounds.
The Proportional Imitation Rule is argued to be the unique optimal rule,
optimal population adjustment follows the replicator dynamic. Our model
is the first to reveal a derivation of the replicator dynamic from a model in
which individual behavior is chosen optimally. Others have been able to
construct adaptive rules that lead to the replicator dynamic (Bjornerstedt
and Weibull [4]; Cabrales [7]; Gale er al. [11], Helbing [ 12]), however
they did not choose to analytically justify individual behavior. Axiomatiza-
tions of learning rules in slightly different contexts have also lead to the
replicator dynamic (Easley and Rustichini [ 8]; Sarin [ 19], in combination
with the paper by Borgers and Sarin [5]). However, their basic approach
differs fundamentally from ours—the former models contain axioms con-
cerning the functional form of a desirable learning rule whereas the selec-
tion of rules in our model is based entirely on individual information and
induced performance.

The existence of dominant rules in our setting is quite surprising. In a
recent investigation we expand our model and assume that an individual
samples rwo individuals between rounds (Schlag [23]). Here dominant
rules no longer exist. However, we find a simple, optimal, rule (a modifica-
tion of the Proportional Imitation Rule) that is best at performing better
than any improving rule based on a single sample. Optimal population
adjustment is described by an aggregate monotone dynamic (Samuelson
and Zhang [20]).

When individuals in our setting have perfect information, playing a best
response would be the unique dominant rule. Optimal population adjust-
ment becomes trivial in the multi-armed bandit setting; all individuals
immediately adapt an action that achieves the highest expected payoff. In
the two person game setting (Section 11) optimal adjustment follows a
version of the best response dynamic (Matsui [ 15]). Comparing this result
to ours, we see that the replicator dynamic and the best response dynamic
compromise extreme points in the class of adjustment dynamics based on
individually optimal myopic behavior.

An intermediate case regarding informational assumptions is a scenario
where individuals observe expected payoffs of action used and action
sampled. Although this assumption is difficult to motivate it is quite popular
in the literature (e.g., see Bjornerstedt and Weibull [4]; Hofbauer [13]).%°

20 Repeated (i.e., finitely many) pulls of the same arm between samples does not generate
this situation since unlucky draws will distort information.
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Here, Imitate if Better is the unique dominant rule and hence optimal.
Optimal population adjustment in the multi-armed bandit setting leads to
the state in which each individual chooses the best action among those
initially present. We show that the dominant Proportional Imitation Rule
has the same property under much less severe informational requirements.

Two alternative justifications for why individuals may choose to imitate
under similar circumstances should be mentioned. Rogers [ 17] presents an
example of a changing environment in which individuals imitate in order
to evade search costs. The evolutionarily stable proportions of individual
learning (i.e., individuals incur a cost and learn the currently best action)
and social learning (i.e., individuals imitate without observing payoffs) are
computed. Banerjee [1] presents a model in which rational individuals
imitate for hope that the observed individual has more information.

Finally, we want to mention Malawski’s [ 14] experiments in the game
playing setting of Section 11. In this investigation an imitation hypothesis
is refuted due to the high proportion of individuals switching to actions
other than the one previously observed (over 30%). The data is partially
explained with aspiration level learning, a model that entirely ignores
information obtained through sampling. In the mean time, Malawski and
Schlag have informally reviewed the data from this experiment and discovered
that observations of the performance of others, in fact, differences between
others and own performance, does influence switching behavior. An extensive
reevaluation of the data from the experiment of Malawski and the conduction
of new experiments has therefore been planned.

APPENDIX A: A COROLLARY ON IMPROVING RULES
COROLLARY 2. Condition (ii) in Theorem 1 holds if and only if the
following conditions holds:

(ii") for all i,je A, i#j, either F(i,x,},y),=F(j,y,i,x); for all
x,ye[a, w] or there exists 6,= ;>0 and a function g;: [a, o] x [0, 0] = R
such that for x,ye[a, ],

. 1
—min{x, y} <g,(x,y) < —max{x, y} +;,
i
F(i, x:j’y)jzaij' (y +gij(xay)) and
F(j,y. 1, x)izo'zj' (x +g,:,-(x,y)).

Proof. The fact that (ii") implies (ii) follows directly. Conversely, let
i, jeA, i# jand let F satisfy (ii). If ,,=0 then (ii) implies F(i, x, j, ), =
F(j, y,i, x); for all x, ye[a, w]. Assume now that o,>0. Let g;(-,-) be
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defined by g,(x, y)=1/o,) F(i,x, j, y);—y (x,ye[a w]). It follows
that —y<g,(x, y)< —y+(l/o,) and F(i,x, j, y);=0;-(y+ g;(x, ).
Together with (ii) we obtain F(j, y,i, x),=F(i,x, j, y),—0,(y —x) =
o, (x+gu(x,y)). This implies —x<g;(x,y)<-—x+ (1/o;) which
completes the proof of condition (ii’). |

REFERENCES

1. A. V. Banerjee, A simple model of herd behavior, Quart. J. Econ. 107 (1992), 797-818.
. K. G. Binmore, L. Samuelson, and R. Vaughan, Musical chairs: Modeling noisy

evolution, Games Econ. Beh. 11 (1995), 1-35.

3. J. Bjornerstedt and K. H. Schlag, “On The Evolution of Imitative Behavior,” Discussion
Paper No. B-378, University of Bonn, 1996.

4. J. Bjornerstedt and J. Weibull, Nash equilibrium and evolution by imitation, “The
Rational Foundations of Economic Behaviour,” Proc. IEA Conference, (K. Arrow et al.,
Eds.), pp. 155-171, MacMillan, London, 1996.

5. T. Borgers and R. Sarin, “Learning Through Reinforcement and Replicator Dynamics,”
Discussion Paper No. 93-19, University College of London, 1993.

6. R. T. Boylan, Laws of large numbers for dynamical systems with randomly matched
individuals, J. Econ. Theory 57 (1992), 473-504.

7. A. Cabrales, “Stochastic Replicator Dynamics,” mimeo, University of California, San
Diego, 1993.

8. D. Easley and A. Rustichini, “Choice Without Beliefs,” mimeo, Cornell University and
C.O.R.E,, 1995.

9. G. Ellison and D. Fudenberg, Word-of-mouth communication and social learning, Quart.
J. Econ. 440 (1995), 93-125.

10. D. Friedman, Evolutionary games in economics, Econometrica 59 (1991), 637-666.

11. J. Gale, K. G. Binmore, and L. Samuelson, Learning to be imperfect: The ultimatum
game, Games Econ. Beh. 8 (1995), 56-90.

12. D. Helbing, Interrelations between stochastic equations for systems with pair interactions,
Physica A 181 (1992), 29-52.

13. J. Hofbauer, “Imitation Dynamics for Games,” University of Vienna, mimeo, 1995.

14. M. Malawski, “Some Learning Processes in Population Games,” Inaugural-Dissertation,
University of Bonn, 1989.

15. A. Matsui, Best response dynamics and socially stable strategies, J. Econ. Theory 57
(1992), 343-362.

16. A. Robson, A biological basis for expected and non-expected utility, J. Econ. Theory 9
(1996), 397-424.

17. A. Rogers, Does biology constrain culture? Amer. Anthropol. 90 (1989), 819-831.

18. M. Rothschild, A two-armed bandit theory of market pricing, J. Econ. Theory 9 (1974),
185-202.

19. R. Sarin, “An Axiomatization of the Cross Learning Dynamic,” mimeo, University of
California, San Diego, 1993.

20. L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games, J. Econ. Theory
57 (1992), 363-391.

21. L. J. Savage, “The Foundations of Statistics,” Wiley, New York, 1954.

22. K. H. Schlag, “Why Imitate, and if so, How? Exploring a Model of Social Evolution,”
Discussion Paper B-296, University of Bonn, 1994.

(3]



156 KARL H. SCHLAG

23. K. H. Schlag, “Which One Should I Imitate?,” Discussion Paper B-365, University of
Bonn, 1996.

24. R. Schmalensee, Alternative models of bandit selection, J. Econ. Theory 10 (1975),
333-342.

25. P. Taylor, Evolutionarily stable strategies with two types of players, J. Applied Prob. 16
(1979), 76-83.

26. J. Weibull, “Evolutionary Game Theory,” MIT Press, Cambridge, MA, 1995.



