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Abstract

A seller is selling multiple objects to a set of agents, who can buy at most one object. Each agent’s pref-
erence over (object, payment) pairs need not be quasilinear. The seller considers the following desiderata 
for her mechanism, which she terms desirable: (1) strategy-proofness, (2) ex-post individual rationality, 
(3) equal treatment of equals, (4) no wastage (every object is allocated to some agent). The minimum Wal-
rasian equilibrium price (MWEP) mechanism is desirable. We show that at each preference profile, the 
MWEP mechanism generates more revenue for the seller than any desirable mechanism satisfying no sub-
sidy. Our result works for the quasilinear domain, where the MWEP mechanism is the VCG mechanism, 
and for various non-quasilinear domains, some of which incorporate positive income effect of agents. We 
can relax no subsidy to no bankruptcy in our result for certain domains with positive income effect.
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1. Introduction

One of the most challenging problems in microeconomic theory is the design of a revenue 
maximizing mechanism in the multi-object allocation problems. A precise description of a rev-
enue maximizing mechanism in such problems remains elusive even today. In this paper, we 
provide a partial solution to this problem by imposing some additional constraints besides the 
conventional incentive compatibility and individual rationality conditions. Our additional con-
straints are consistent with the objectives of many governments allocating public assets, such 
as fairness and efficiency, besides revenue maximization.1 Since our main focus is on revenue 
maximization, we impose only moderate desiderata for other goals on mechanisms.

We study the problem of allocating m indivisible heterogeneous objects to n > m agents, 
each of whom can be assigned at most one object (unit demand agents) – such unit demand 
settings are common in allocating houses in public housing schemes (Andersson and Svensson, 
2014), selling team franchises in professional sports leagues, and even in selling a small number 
of spectrum licenses (Binmore and Klemperer, 2002).2,3 Agents in our model can have non-
quasilinear preferences over consumption bundles – (object, payment) pairs.

We briefly describe the additional axioms that we impose for our revenue maximization exer-
cise. Equal treatment of equals is a desideratum for fairness, and requires that two agents having 
identical preferences be assigned consumption bundles to which they are indifferent. No wastage
is a desideratum for a mild form of efficiency, and requires that every object be allocated to 
some agent. We term a mechanism desirable if it satisfies strategy-proofness, ex-post individual 
rationality, equal treatment of equals, and no wastage.

The class of desirable mechanisms is large, but one mechanism, which is based on a market 
clearing idea, stands out. To explain this mechanism, we need to understand the notion of a 
Walrasian equilibrium price (WEP) vector. It is a price vector such that there is an allocation 
of objects to agents where each agent gets an object from his demand set. Demange and Gale 
(1985) showed that the set of WEP vectors is always a non-empty compact lattice in our model. 
This means that there is a unique minimum WEP vector.4 The minimum Walrasian equilibrium 
price (MWEP) mechanism selects the minimum WEP vector at every profile of preferences and 
uses a corresponding equilibrium allocation. The MWEP mechanism is desirable (Demange and 

1 For example, Klemperer (2002) discusses the list of goals pursued in UK 3G auction conducted in 2000.
2 When a professional cricket league, called the Indian Premier League (IPL) was started in India in 2007, professional 

teams were sold to interested owners (bidders) by an auction. Since it does not make sense for an owner to have two teams, 
the unit demand assumption is satisfied in this problem. See the Wiki entry of IPL for details:

https://en .wikipedia .org /wiki /Indian _Premier _League and a news article here: http://content -usa .cricinfo .com /ipl /
content /current /story /333193 .html.

3 Although modern spectrum auctions involve sale of bundles of spectrum licenses, Binmore and Klemperer (2002)
report that one of the biggest spectrum auctions in the UK involved selling a fixed number of licenses to bidders, each 
of whom can be assigned at most one license. The unit demand setting is also one of the few computationally tractable 
models of combinatorial auction studied in the literature (Blumrosen and Nisan, 2007).

4 Results of this kind were earlier known for quasilinear preferences (Shapley and Shubik, 1971; Leonard, 1983).

https://en.wikipedia.org/wiki/Indian_Premier_League
http://content-usa.cricinfo.com/ipl/content/current/story/333193.html
http://content-usa.cricinfo.com/ipl/content/current/story/333193.html
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Gale, 1985) and satisfies no subsidy. No subsidy requires that payment of each agent be non-
negative. In the quasilinear domain of preferences, the MWEP mechanism coincides with the 
VCG mechanism (Leonard, 1983). However, we emphasize that outside the quasilinear domain, 
a naive generalization of the VCG mechanism to non-quasilinear preferences is not strategy-
proof (Morimoto and Serizawa, 2015).5 This also means that for an arbitrary domain of non-
quasilinear preferences, the MWEP mechanism is very different from a generalization of the 
VCG mechanism.

We show that on a variety of domains (the set of admissible preferences), the MWEP mecha-
nism is the unique ex-post revenue optimal mechanism among all desirable mechanisms satisfy-
ing no subsidy, i.e., for each preference profile, the MWEP mechanism generates more revenue 
for the seller than any desirable mechanism satisfying no subsidy (Theorem 1). Further, we show 
that if the domain includes all positive income effect preferences, then the MWEP mechanism is 
ex-post revenue optimal in the class of all desirable and no bankruptcy mechanisms (Theorem 2). 
No bankruptcy is a weaker condition than no subsidy and requires the sum of payments of all 
agents across all profiles be bounded below.

Our results are more general than the results in the literature in two ways. First, the MWEP 
mechanism maximizes ex-post revenue. Hence, we can recommend the MWEP mechanism with-
out resorting to any prior-based maximization. Notice that ex-post revenue optimality is much 
stronger than expected (ex-ante) revenue optimality, and mechanisms satisfying ex-post revenue 
optimality rarely exist. Second, our results hold on a variety of domains such as the quasilinear 
domain, the classical domain, the domain of positive income effect preferences, and any superset 
of these domains.

Ours is the first paper to study revenue maximization in a multi-object allocation problem 
when preferences of agents are not quasilinear. While quasilinearity is standard and popular in 
the literature, its practical relevance is debatable in many settings. For instance, bidders need 
to invest in various supporting products and processes to realize the full value of the object. 
For instance, cellular companies invest in communication infrastructure development, a sports 
team owner invests in marketing, and so on. Such ex-post investments cannot be assumed to 
be independent of the payments in auctions. Further, bidders in large auctions borrow to pay 
for objects. High interest rates imposed on the larger amount of borrowings make preferences 
non-quasilinear.6

Our contribution is not methodological. It is well known that the main difficulty in extending 
the Myersonian approach (Myerson, 1981) to multidimensional type spaces is that the binding 
incentive constraints are difficult to characterize in such problems (Armstrong, 2000). The liter-
ature is developing new toolkits to solve these problems (Carroll, 2017; Daskalakis et al., 2017). 
While we certainly do not introduce any new method to solve this problem, our results show that 
one can circumvent some of these difficulties by imposing additional axioms.

We briefly discuss the practical relevance of two of our axioms: equal treatment of equals and 
no wastage. Later, we elaborate the kind of mechanisms we rule out by imposing these axioms. 
Equal treatment of equals is arguably the weakest fairness axiom in the literature – as Aristotle 
(1995) writes, justice is considered to mean “equality for those who are equal, and not for all”.7

5 See Section 6.2 in Morimoto and Serizawa (2015).
6 We will discuss the effect of borrowing cost on preferences in Subsection 4.1.
7 The quote is from Aristotle’s Book III titled “The Theory of Citizenship and Constitutions”. It can be found in Part C 

of the book, titled “The Principle of Oligarchy and Democracy and the Nature of Distributive Justice”, in Chapter 9 and 
paragraph 1280a7.
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Sometimes, there are practical implications of violating fairness – for instance, Deb and Pai 
(2016) cite many legal implications of violating symmetry in mechanisms, which is a stronger 
property than equal treatment of equals.

Efficiency is an important goal for governments. Although Pareto efficiency is a standard ef-
ficiency desideratum in the literature, since we focus on revenue maximization, we impose no 
wastage, a much weaker desideratum. Unlike Pareto efficiency, no wastage is an easily detectable 
axiom (detecting violation of Pareto efficiency requires the knowledge of preferences). Violation 
of no wastage in government auctions creates a lot of controversies in the public, and often, the 
unsold objects are resold.8 In such environments, governments cannot commit to reserve prices 
even though expected revenue maximization may require them. Indeed, McAfee and McMillan 
(1987); Ashenfelter and Graddy (2003); Jehiel and Lamy (2015); Hu et al. (2019) report that 
many real-life auctions have zero reserve price. While our results do not provide a theory for 
why the seller should not keep a reserve price, we show that if the seller uses a mechanism satis-
fying no wastage and other desirable properties, then the MWEP mechanism is ex-post revenue 
optimal.

Finally, the MWEP mechanism is Pareto efficient and can be implemented as a simultane-
ous ascending auction (SAA) (Demange et al., 1986; Morimoto and Serizawa, 2015) – see also 
Zhou and Serizawa (2019), who provide an alternate algorithm that computes the MWEP by 
finite number of steps in general non-quasilinear environments. SAAs have distinct advantages 
of practical implementation and are often used in practice to allocate multiple objects. The ef-
ficiency foundations for SAAs have been well-established (Ausubel and Milgrom, 2002). Our 
results provide a revenue maximization foundation for SAAs.

2. Preliminaries

A seller has m objects to sell, denoted by M := {1, . . . , m}. There are n > m agents (buyers), 
denoted by N := {1, . . . , n}. Each agent can receive at most one object (unit demand preference). 
Let L := M ∪{0}, where 0 is the null object, which is assigned to any agent who does not receive 
any object in M – thus, the null object can be assigned to more than one agent. Note that the 
unit demand restriction can either be a restriction on preferences or an institutional constraint. 
For instance, objects may be substitutable when houses are being allocated in a public housing 
scheme (Andersson and Svensson, 2014). The unit demand restriction can also be institutional as 
was the case in the spectrum license auction in UK in 2000 (Binmore and Klemperer, 2002) or in 
the Indian Premier League auction. As long as the mechanism designer restricts messages in the 
mechanisms to only use information on preferences over individual objects, our results apply.

The consumption set of every agent is the set L ×R, where a typical (consumption) bundle 
z ≡ (a, t) corresponds to object a ∈ L and payment t ∈ R. Notice that t denotes the amount paid
by an agent to the designer. Now, we formally introduce preferences of agents and the notion of 
a desirable mechanism.

8 As an example, the Indian spectrum auctions reported a large number of unsold spectrum blocks in 2016, 
and all of them are supposed to be re-auctioned. See the following news article: http://www.livemint .com /Industry /
xt5r4Zs5RmzjdwuLUdwJMI /Spectrum -auction -ends -after-lukewarm -response -from -telcos .html.

http://www.livemint.com/Industry/xt5r4Zs5RmzjdwuLUdwJMI/Spectrum-auction-ends-after-lukewarm-response-from-telcos.html
http://www.livemint.com/Industry/xt5r4Zs5RmzjdwuLUdwJMI/Spectrum-auction-ends-after-lukewarm-response-from-telcos.html
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Fig. 1. Valuation at a preference.

2.1. The preferences

A preference ordering Ri (of agent i) over L ×R, with strict part Pi and indifference part Ii , 
is classical if it satisfies the following assumptions:

1. Money monotonicity. for every t, t ′ ∈ R with t > t ′ and for every a ∈ L, we have 
(a, t ′) Pi (a, t).

2. Desirability of objects. for every t ∈R and for every a ∈ M , (a, t) Pi (0, t).
3. Continuity. for every z ∈ L × R, the sets {z′ ∈ L × R : z′ Ri z} and {z′ ∈ L × R : z Ri z′}

are closed.
4. Possibility of compensation. for every z ∈ L × R and for every a ∈ L, there exists a pair 

t, t ′ ∈ R such that z Ri (a, t) and (a, t ′) Ri z.

A classical preference Ri is quasilinear if there exists v ∈ R|L| such that for every a, b ∈ L

and t, t ′ ∈ R, (a, t) Ri (b, t ′) if and only if va − t ≥ vb − t ′. We refer to v as the valuation of 
the agent, and we normalize v0 to 0. The idea of valuation may be generalized as follows for 
non-quasilinear preferences.

Definition 1. The valuation at a classical preference Ri for object a ∈ L with respect to bundle 
z ∈ L ×R is defined as V Ri (a, z), which uniquely solves (a, V Ri (a, z)) Ii z.

Hence, V Ri (a, z) is the amount t agent i is willing to pay so that he is indifferent between 
(a, t) and z. A straightforward consequence of our assumptions is that for every a ∈ L, for every 
z ∈ L × R, and for every classical preference Ri , the valuation V Ri (a, z) exists. For any R and 
for any z ∈ L ×R, the valuations at R with respect to z is a vector in R|L|.

An illustration of the valuation is shown in Fig. 1. In the figure, the horizontal lines correspond 
to objects: L = {0, a, b, c}. The horizontal lines indicate payment levels. Hence, the consumption 
set consists of the four lines. For example, z denotes the bundle consisting of object b and the 
payment equal to the distance of z from the vertical dotted line. A preference Ri can be described 
by drawing (non-intersecting) indifference vectors through these consumption bundles (lines). 
One such indifference vector passing through z is shown in Fig. 1. This indifference vector 
actually consists of four points: (0, V Ri (0, z)), (a, V Ri (a, z)), z ≡ (b, t), and (c, V Ri (c, z)) as 
shown. Parts of the indifference line in Fig. 1 which lie between the consumption bundle lines is 
useless and has no meaning, and it is only displayed for convenience. As we go to the right along 
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the horizontal lines starting from any bundle, we get worse bundles (due to money monotonicity). 
Similarly, bundles to the left of a particular bundle are better than that bundle. This is shown in 
Fig. 1 with respect to the indifference vector.

Our modeling of preferences captures income effects even though we do not model income 
explicitly. We explain this point when we introduce positive income effect in Section 4.1.

2.2. Desirable mechanisms

Let RC denote the set of all classical preferences and RQ denote the set of all quasilinear 
preferences. We will consider an arbitrary subset of classical preferences R ⊆ RC - we will 
put specific restrictions on R later. A preference of agent i is denoted by Ri ∈ R. A preference 
profile is a list of preferences R ≡ (R1, . . . , Rn). Given i ∈ N and N ′ ⊆ N , let R−i ≡ (Rj )j 	=i

and R−N ′ ≡ (Rj )j∈N ′ , respectively.
An object allocation is an n-tuple (a1, . . . , an) ∈ Ln such that no real (non-null) object is as-

signed to two agents, i.e., ai 	= aj for all i, j ∈ N with ai, aj 	= 0. The set of all object allocations 
is denoted by A. A (feasible) allocation is an n-tuple ((a1, t1), . . . , (an, tn)) ∈ (L × R)n such 
that (a1, . . . , an) ∈ A, where (ai, ti ) is the bundle of agent i. Let Z denote the set of all feasible 
allocations. For every allocation (z1, . . . , zn) ∈ Z, we will denote by zi the bundle of agent i.

An mechanism is a map f : Rn → Z. By definition, we restrict ourselves to deterministic
mechanisms. Allowing for randomization will entail considering preferences over lotteries of 
allocations. This brings substantial difficulty in modeling and analysis. We do not know how our 
results will extend if we allow for randomization.

At a preference profile R ∈ Rn, we denote the bundle of agent i in mechanism f as fi(R) ≡
(ai(R), ti (R)), where ai(R) and ti (R) are respectively the object allocated to agent i and i’s 
payment at preference profile R. We call a(·) ≡ (a1(·), . . . , an(·)) and t (·) ≡ (t1(·), . . . , tn(·)) the 
object allocation mechanism and the payment mechanism, respectively of f .

Definition 2. A mechanism f :Rn → Z is desirable if it satisfies the following properties:

1. Strategy-proofness. for every i ∈ N , for every R−i ∈ Rn−1, and for every Ri, R′
i ∈ R, we 

have fi(Ri, R−i ) Ri fi(R
′
i , R−i ).

2. (Ex-post) individual rationality (IR). for every i ∈ N , for every R ∈ Rn, we have 
fi(R) Ri (0, 0).

3. Equal treatment of equals (ETE). for every i, j ∈ N , for every R ∈ Rn with Ri = Rj , we 
have fi(R) Ii fj (R).

4. No wastage (NW). for every R ∈ Rn and for every a ∈ M , there exists some i ∈ N such that 
ai(R) = a.

Besides desirability, for some of our results, we will require some form of restrictions on 
payments.

Definition 3. A mechanism f : Rn → Z satisfies no subsidy if for every R ∈ Rn and for every 
i ∈ N , we have ti(R) ≥ 0.

No subsidy can be considered desirable to exclude “fake” agents, who participate in mecha-
nisms just to take away available subsidy. It is an axiom satisfied by most standard mechanisms 
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in practice. It is practical in settings where the seller may not have any means to finance any 
agent.

3. The minimum Walrasian equilibrium price mechanism

In this section, we define the notion of a Walrasian equilibrium, and use it to define a desirable 
mechanism. A price vector p ∈ R|L|

+ defines a price for every object with p0 = 0. At any price 
vector p ∈ R|L|

+ , let D(Ri, p) := {a ∈ L : (a, pa) Ri (b, pb) ∀ b ∈ L} denote the demand set of 
agent i with preference Ri at price vector p.

Definition 4. An object allocation (a1, . . . , an) ∈ A and a price vector p ∈ R|L|
+ is a Walrasian 

equilibrium at a preference profile R ∈Rn if

1. ai ∈ D(Ri, p) for all i ∈ N and
2. pa = 0 for all a ∈ M \ {a1, . . . , an}.

We refer to p and ((a1, pa1), . . . , (an, pan)) defined above as a Walrasian equilibrium price 
vector and a Walrasian equilibrium allocation at R respectively.

Since we assume n > m and preferences satisfy desirability of objects, the conditions of Wal-
rasian equilibrium imply that for all a ∈ M , we have ai = a for some i ∈ N .9

A Walrasian equilibrium price vector p is a minimum Walrasian equilibrium price vector
at preference profile R if for every Walrasian equilibrium price vector p′ at R, we have pa ≤ p′

a

for all a ∈ L. At every R ∈ (RC)n, a Walrasian equilibrium exists (Alkan and Gale, 1990), the 
set of Walrasian equilibrium price vectors forms a lattice with a unique minimum and a unique 
maximum Walrasian equilibrium price vector (Demange and Gale, 1985). We denote the mini-
mum Walrasian equilibrium price vector at R ∈ (RC)n as pmin(R). Notice that by desirability of 
objects, if n > m, then for every a ∈ M , we have pmin

a (R) > 0.10

We give an example to illustrate the notion of minimum Walrasian equilibrium price vector. 
Suppose N = {1, 2, 3} and M = {a, b}. Fig. 2 shows some indifference vectors of a preference 
profile R ≡ (R1, R2, R3) and the corresponding minimum Walrasian equilibrium price vector 
pmin(R) ≡ pmin ≡ (pmin

0 = 0, pmin
a , pmin

b ).
First, note that

D(R1,p
min) = {a},D(R2,p

min) = {a, b},D(R3,p
min) = {0, b}.

Hence, a Walrasian equilibrium is the allocation where agent 1 gets object a, agent 2 gets ob-
ject b, and agent 3 gets the null object at the price vector pmin. Also, pmin is the minimum 
Walrasian equilibrium price vector. To see this, let p be any other Walrasian equilibrium price 
vector. If pa < pmin

a and pb < pmin
b , then no agent demands the null object, contradicting Wal-

rasian equilibrium. Thus, pa ≥ pmin
a or pb ≥ pmin

b . If pb < pmin
b , then by pa ≥ pmin

a , both agents 

9 To see this, suppose that there is a ∈ M such that ai 	= a for each i ∈ N . Then, by the second condition of Walrasian 
equilibrium, pa = 0. By n > m, ai = 0 for some i ∈ N . By desirability of objects, (a, 0) Pi (ai , 0), contradicting the first 
condition of Walrasian equilibrium.
10 To see this, suppose pmin

a (R) = 0 for some a ∈ M . Then any agent i ∈ N who is not assigned in the Walrasian 
equilibrium will prefer (a, 0) to (0, 0) contradicting the fact that he is assigned a bundle from his demand set. Indeed, 
this argument holds for any Walrasian equilibrium price vector.
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Fig. 2. The minimum Walrasian equilibrium price vector.

2 and 3 will demand only object b, contradicting Walrasian equilibrium. Thus, pb ≥ pmin
b . But, 

if pa < pmin
a , both agents 1 and 2 will demand only object a, a contradiction to Walrasian equi-

librium. Hence, p ≥ pmin.
We now describe a desirable mechanism satisfying no subsidy. The mechanism picks a min-

imum Walrasian equilibrium allocation at every profile of preferences. Although the minimum 
Walrasian equilibrium price vector is unique at every preference profile, there may be multiple 
supporting object allocations – all these object allocations must be indifferent to all the agents. 
To handle this multiplicity problem, we introduce some notation. Let Zmin(R) denote the set 
of all allocations at a minimum Walrasian equilibrium at preference profile R. Note that since 
n > m, if ((a1, pa1), . . . , (an, pan)) ∈ Zmin(R), then p ≡ (pa)a∈L = pmin(R).

Definition 5. A mechanism f min : Rn → Z is a minimum Walrasian equilibrium price 
(MWEP) mechanism if f min(R) ∈ Zmin(R) ∀ R ∈ Rn.

As discussed earlier, at any preference profile R, Zmin(R) may contain multiple allocations 
but each agent is indifferent between its allocations in this set. Hence, we refer to fmin as the
MWEP mechanism, even though there can be more than one MWEP mechanism (depending on 
which allocation in Zmin(R) is picked at every R).

Demange and Gale (1985) showed that the MWEP mechanism is strategy-proof. Clearly, it 
also satisfies IR, ETE, NW, and no subsidy. We document this fact below.

Fact 1 (Demange and Gale (1985)). The MWEP mechanism is desirable and satisfies no subsidy.

Demange and Gale (1985) show that the MWEP mechanism satisfies a stronger incentive 
property called (weak) group-strategy-proofness, which means that coalitional incentive con-
straints hold. Further, the MWEP mechanism satisfies stronger fairness properties – it is anony-
mous (permuting preferences of agents does not change the outcome) and envy-free.

It is worth comparing the MWEP mechanism with the VCG mechanism for quasilinear 
preferences. Indeed, there is a naive way to generalize the VCG mechanism to any classical 
preference domain. Consider a preference profile R. For every agent i ∈ N with preference Ri , 
let va

i := V Ri (a, (0, 0)) for all a ∈ M . Let v0
i = 0 for all i ∈ N . Now, we compute the allo-

cation and payments according to the VCG mechanism with respect to this profile of vectors 
(v1, . . . , vn). Such a generalized VCG mechanism coincides with the MWEP mechanism if the 
domain is the quasilinear domain (Leonard, 1983). Else, the generalized VCG mechanism is very 
different from the MWEP mechanism. Further, it is not strategy-proof if the domain is not the 
quasilinear domain (Morimoto and Serizawa, 2015).
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Fig. 3. Illustration of richness.

4. The results

In this section, we formally state our two results. The proofs of both the results are in Ap-
pendix A. Before we state the results, we explain the domain richness they use.

4.1. Rich domains

For each pair of price vectors p, p̂ ∈ R|L|
+ , we write p > p̂ if pa > p̂a for all a ∈ M . The 

domain of preferences that we consider for our first result requires the following richness.

Definition 6. A domain of preferences R is rich if for all a ∈ M and for every p̂ with p̂a > 0, 
p̂b = 0 for all b 	= a and for every p > p̂, there exists Ri ∈ R such that

D(Ri, p̂) = {a} and D(Ri,p) = {0}.

Fig. 3 illustrates this notion of richness with two objects a and b. Two possible price vectors p
and p̂ are shown and two indifference vectors of a preference Ri are shown such that D(Ri, p) =
{0} and D(Ri, p̂) = {a}.

The requirement of the richness condition is weak enough to be satisfied by many domains of 
interest. Obviously, if a domain of preferences is rich, then any superset of that domain is also 
rich. We give below some interesting examples of rich domains. Any superset of these domains 
is also rich.

Quasilinear domain Any domain of preferences containing RQ satisfies richness. To see this, 
fix an object a ∈ M and a price vector p̂ with p̂b = 0 for all b 	= a and p̂a > 0. Consider any 
other price vector p > p̂. Now, consider the quasilinear preference Ri given by the valuation 
vector v such that

vb =
{

p̂b + 2ε if b = a,

ε if b 	= a,

where ε > 0 is small enough such that va = p̂a + 2ε < pa and ε < pb for all b ∈ M \ {b}. This 
means that D(Ri, p̂) = {a} but D(Ri, p) = {0}.

Positive income effect domain The set of all positive income effects preferences and the set of 
all non-negative income effect preferences satisfy richness.
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Definition 7. A preference Ri satisfies positive income effect if for every a, b ∈ L and for every 
t, t ′ with t < t ′ and (b, t ′) Ii (a, t), we have

(b, t ′ − δ) Pi (a, t − δ) ∀ δ > 0.

A preference Ri satisfies non-negative income effect if for every a, b ∈ L and for every t, t ′
with t < t ′ and (b, t ′) Ii (a, t), we have

(b, t ′ − δ) Ri (a, t − δ) ∀ δ > 0.

Let R++ be the set of all positive income effect preferences and R+ be the set of all non-negative 
income effect preferences.

A standard definition of positive income effect will say that a preferred object is more pre-
ferred as income increases. We do not model income explicitly, but the zero payment corresponds 
to the endowed income. Thus, in our model, when income increases by δ > 0, the origin of con-
sumption space moves to right by δ. This movement is equivalent to sliding indifference vectors 
to left. In other words, if the origin is fixed, the increase of income by δ is expressed as the de-
crease of payments of all bundles by δ. In the above definition, (b, t ′) Ii (a, t) and t ′ > t imply 
that object b is strictly preferred to object a at any common payment levels t ′′ ∈ [t, t ′]. Then, 
positive income effect requires that when payments are decreased by δ, b will be preferred to a, 
i.e., (b, t ′ − δ) Pi (a, t − δ). Hence, our modeling of preferences captures income effects even 
though we do not model income explicitly.

Both R+ and R++ are rich domains. The fact that R+ is rich follows from the observation 
that RQ ⊆ R+ and RQ is rich. Even though R++ ∩RQ = ∅, R++ is still a rich domain.

Quasilinearity with borrowing cost The set of all quasi-linear preferences with non-linear bor-
rowing cost satisfies richness. Imagine a situation in which an agent has a quasilinear preference 
with valuation v, but has to borrow money from banks at interest rate r > 0 if his payment for an 
object exceeds his income I > 0. Then, given t ∈ R, his cost of payment, which we denote by 
c(t, I, r), is as follows.

c(t, I, r) =
{

t if t ≤ I,

I + (t − I )(1 + r) if t > I.

Thus, for each pair (a, t), (b, t ′) ∈ L ×R, the agent weakly prefers (a, t) to (b, t ′) if and only if 
v(a) − c(t, I, r) ≥ v(b) − c(t ′, I, r). Such preferences are obviously not quasilinear. Let RB be 
the set of all such preferences. Then, RB is rich.

Single-peaked domain The set of all single-peaked preferences satisfies richness. Imagine a 
condominium in which each floor has one room. Some agents prefer the highest floor because 
of good views, some prefer the lowest to avoid walking up stairs, and some prefer middle floors. 
Then, it is natural that each agent has a single-peaked preference – an ideal floor, and as we go 
away from the ideal floor, we go down our preference.

Formally, there is a strict order � over L such that for each a ∈ M , a � 0. A preference Ri is
single-peaked if there is a unique object τ(Ri) such that for all t ∈R

• (τ (Ri), t) Pi (a, t) for all a ∈ M \ {τ(Ri)} and
• if τ(Ri) � a � b or b � a � τ(Ri), then (a, t) Pi (b, t).
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Fig. 4. Illustration of relationship between rich domains: RC,RQ,R+,R++.

In other words, an agent with preference Ri has a “peak” floor, say τ(Ri), such that when the 
prices of all floors are the same, he prefers τ(Ri) to other floors, and for any two floors a and 
b, if b � a � τ(Ri) or τ(Ri) � a � b, he prefers a to b. Let RS be the set of all single-peaked 
preferences. Then, RS is rich.

We can summarize the above discussions in this claim.

Claim 1. The following domains are rich: RQ, R+, R++, RB, RS, RC .

We omit a formal proof for the above claim. However, the intuition for its proof is similar 
to the quasilinear domain proof outlined above. Given a ∈ M and two price vectors p, p̂ ∈ R|L|

+
with p̂ < p, in those domains, we can find a preference Ri that has two indifference vectors 
satisfying the following: V Ri (a, (0, 0)) < pa and for each b ∈ M \ {a}, V Ri (b, (0, 0)) is close to 
zero and V Ri (b, (a, p̂a)) < 0. Then, for preferences satisfying these conditions, the demand sets 
at p and p̂ contain only 0 and a, respectively. The relationship between some of the rich domains 
is shown in Fig. 4.

Richness is a condition which ensures a variety of preferences in the domain. For instance, if 
we just take a domain containing two (or any finite) quasilinear preferences, it will not satisfy 
richness. A concrete domain which violates richness is studied in Zhou and Serizawa (2018). 
They consider a domain where objects are commonly ranked. For instance, suppose there are two 
objects, M = {a, b}, and there is a common ranking of objects given by the ordering �: b � a. 
Further, assume that agents have quasilinear preferences over consumption bundles. A quasi-
linear preference, represented by a valuation vector vi ∈ R2++, must satisfy vb

i > va
i > v0

i = 0. 
This means that the set of quasilinear preferences satisfying common object ranking is a smaller 
subset of RQ. Such a domain cannot satisfy richness. To see this, consider a price vector where 
p̂a > 0 and p̂b = 0 (as in Definition 6). By common object ranking, for any valuation vector vi

of any agent i, we must have vb
i > va

i and this means that vb
i − p̂b > va

i − p̂a . This implies that 
agent i with this preference cannot demand object a at price vector p̂.11

11 Google conducts auctions of advertisement slots on search pages – these auctions are known as the sponsored search 
auction (Edelman et al., 2007). Usually, each advertiser is assigned at most one advertisement slot in a sponsored search 
auction. It is plausible that advertisement slots higher up on the page have more value than those lower down. Thus, this 
is an example of a domain which satisfies the common ranking assumption of Zhou and Serizawa (2018), and hence, it 
violates richness. Our results cannot be applied to this model.



12 T. Kazumura et al. / Journal of Economic Theory 188 (2020) 105036
Another domain which violates richness is the identical objects domain. As the name suggests, 
in this domain, all the objects are identical. This means that if the prices are the same for all the 
objects, then the agent is indifferent between all the objects. Just as we argued about the common 
object ranking domain, it is not difficult to see that the identical objects domain violates richness – 
with identical objects va

i = vb
i and the arguments do not change in the previous paragraph. Adachi 

(2014) studies the domain of quasilinear preferences when objects are identical and provides an 
example of a desirable mechanism satisfying no subsidy, which is not the Vickrey auction (the 
MWEP mechanism in this case).

4.2. Ex-post revenue maximization of desirable mechanisms

We now formally state our first main result. For any mechanism f : Rn → Z, we define the
revenue at preference profile R ∈ Rn as

REVf (R) :=
∑
i∈N

ti(R).

Definition 8. A mechanism f : Rn → Z revenue dominates another mechanism g : Rn → Z if

REVf (R) ≥ REVg(R) ∀ R ∈ Rn.

A mechanism is ex-post revenue optimal among a class of mechanisms if it belongs to this class 
of mechanisms and revenue dominates every mechanism in this class.

Since revenue domination need not be a complete binary relation in a class of mechanisms, 
an ex-post revenue optimal mechanism may not exist. Our main result shows that there is a 
unique ex-post revenue optimal mechanism among the class of desirable mechanisms satisfying 
no subsidy, and it is the MWEP mechanism.

Theorem 1. Suppose R is a rich domain of preferences. The MWEP mechanism is the unique ex-
post revenue optimal mechanism among the class of desirable mechanisms satisfying no subsidy 
defined on Rn.

Theorem 1 clearly implies that the MWEP mechanism is ex-ante revenue optimal among the 
class of desirable mechanisms satisfying no subsidy. This is independent of the prior on the 
preferences of the agents.

We use Claim 1 to spell out our result in specific domains.

Corollary 1. Suppose R ∈ {RQ, R+, R++, RB, RS, RC}. The MWEP mechanism is the unique 
ex-post revenue optimal mechanism among the class of desirable mechanisms satisfying no sub-
sidy defined on Rn.

In the quasilinear domain, the outcome of the MWEP mechanism coincides with the VCG 
mechanism. Hence, the VCG mechanism is ex-post revenue optimal in the quasilinear domain 
among the class of desirable mechanisms satisfying no subsidy. Note that Holmstrom’s cele-
brated theorem (Holmstrom, 1979) does not imply this result since it uses Pareto efficiency but 
we do not. Similarly, Krishna and Perry (1998) show that among the class of Pareto efficient, BIC 
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and IIR mechanisms, the VCG mechanism maximizes expected revenue in the quasilinear do-
main. This result works for multiple object auction problems even when agents can be allocated 
more than one object. Again, this result uses Pareto efficiency but we do not.

A closer inspection of the richness reveals that if p is too small, then richness requires the 
existence of a preference where the valuations (with respect to (0, 0)) for real objects are very 
small. We can weaken this richness to a weaker condition which requires that valuations lie in an 
interval of the form (vmin, vmax), where vmin and vmax are any lower and upper bounds on the 
valuation of the objects such that vmax > vmin ≥ 0 and vmax ∈ R+ ∪{+∞}. Theorem 1 continues 
to hold in such domains.

We now show how Theorem 1 can be strengthened in some specific rich domains. In par-
ticular, if the domain contains all the positive income effect preferences, then our result can be 
strengthened – we can replace no subsidy in Theorem 1 by the following no bankruptcy condi-
tion.

Definition 9. A mechanism f : Rn → Z satisfies no bankruptcy if there exists � ≤ 0 such that 
for every R ∈ Rn, we have 

∑
i∈N ti(R) ≥ �.

Obviously, no bankruptcy is a weaker property than no subsidy.12 No bankruptcy is motivated 
by settings where the seller has limited means to finance the auction participants. Theorem 1 can 
now be strengthened in the positive income effect domain (which is a rich domain).

Theorem 2. Suppose R ⊇ R++. The MWEP mechanism is the unique ex-post revenue optimal 
mechanism among the class of desirable mechanisms satisfying no bankruptcy defined on Rn.

Analogous to Corollary 1, the following is a corollary of Theorem 2.

Corollary 2. Suppose R ∈ {R+, R++, RC}. The MWEP mechanism is the unique ex-post rev-
enue optimal mechanism among the class of desirable mechanisms satisfying no bankruptcy 
defined on Rn.

We remark about a possible extension of our results to other models of combinatorial auctions. 
If we just consider the quasilinear preference domain, the VCG mechanism generalizes to other 
combinatorial auction models. However, a crucial feature of the VCG mechanism in our model 
(heterogeneous objects and unit demand buyers) is that it coincides with the MWEP mechanism 
in the quasilinear domain. This plays a crucial role in all our proofs. This equivalence is lost 
in other models of combinatorial auctions in the quasilinear domain (Gul and Stacchetti, 1999; 
Bikhchandani and Ostroy, 2006), and further, the Walrasian equilibrium price vector may fail 
to exist in other models (Bikhchandani and Ostroy, 2006). Hence, it is not clear how our result 
extends to other models of combinatorial auctions even in the quasilinear domain. We keep this 
as an agenda for future research.

On the other hand, when the set of preferences includes all or a very rich class of non-
quasilinear preferences, strategy-proofness and Pareto efficiency (along with other axioms) have 
been shown to be incompatible if the unit demand assumption is violated – Kazumura and Ser-
izawa (2016) show this for multi-object allocation problems where agents can be allocated more 

12 In the literature, the no-deficit condition is sometimes imposed instead of no subsidy. A mechanism f : Rn → Z

satisfies no deficit if for each R ∈ Rn, 
∑

i∈N ti (R) ≥ 0. It is clear that no bankruptcy is weaker than no deficit.
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than one object; Baisa (2020) shows this for homogeneous object allocation problems where 
agents can be assigned any number of units. In other words, no canonical mechanism is known 
to exist once we relax the unit demand assumption, and it is not clear how our results will extend.

Finally, we discuss the connections of our results to Pareto efficient mechanism design.

Definition 10. A mechanism f : Rn → Z is Pareto efficient if at every preference profile R ∈
Rn, there exists no allocation ((â1, ̂t1), . . . , (ân, ̂tn)) ∈ Z such that

(âi , t̂i ) Ri fi(R) ∀ i ∈ N∑
i∈N

t̂i ≥ REVf (R),

with either the second inequality holding strictly or some agent i strictly preferring (âi , ̂ti ) to 
fi(R).

Notice that by distributing some money among all the agents, we can always make each agent 
better off than the allocation in any mechanism. Hence, the above definition requires that there 
should not exist another allocation where the auctioneer’s revenue is not less and every agent is 
weakly better off.

The MWEP mechanism is Pareto efficient (Morimoto and Serizawa, 2015). Our results es-
tablish that even if a seller maximizes her revenue among desirable mechanisms satisfying no 
subsidy, the resulting mechanism will be Pareto efficient. We state this as corollaries below.

Corollary 3. Let R be rich and f :Rn → Z be ex-post revenue optimal among desirable mech-
anisms satisfying no subsidy. Then, f is efficient.

Corollary 4. Let R ⊇R++ and f : Rn → Z be ex-post revenue optimal among desirable mech-
anisms satisfying no bankruptcy. Then, f is efficient.

5. Desirable mechanisms satisfying no subsidy

How large is the class of desirable mechanisms satisfying no subsidy in a rich domain? The 
answer to this question will depend on the domain of the mechanism. In this section, we provide 
an example of a desirable mechanism satisfying no subsidy for the non-negative income effect 
domain. In Kazumura et al. (2020b), this example is extended to a family of such mechanisms. 
Kazumura et al. (2020b) also includes an example (which can be extended to a family of mecha-
nisms), due to Tierney (2019), of a desirable mechanism satisfying no subsidy for the quasilinear 
domain. These mechanisms are different from the MWEP mechanism. Hence, at least in these 
two rich domains, we can conclude that the MWEP mechanism is not the unique desirable mech-
anism satisfying no subsidy and our ex-post revenue maximization requirement is necessary for 
Theorem 1.

Now, we describe a desirable mechanism satisfying no subsidy for the non-negative income 
effect domain R+. Our mechanism and the mechanism due to Tierney (2019) for the quasilinear 
domain is a variant of the MWEP mechanism. The variation resembles a slot machine in the 
sense that if for an agent i ∈ N , the preference profile of the other agents are aligned in a special 
way and constitutes a “discounting combination”, then agent i can get discounts from her pay-
ment in the MWEP mechanism. Thus, it differs from the MWEP mechanism at zero measure of 
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preference profiles. To retain the properties of the MWEP mechanism, we need to give such dis-
counts carefully. The discounting combination and discounts are constructed such that the new 
mechanism remains desirable and satisfies no subsidy.

Though the mechanism can be defined very generally, we define it for the simple case when 
M = {a, b} and N = {1, 2, 3, 4}. First, we formalize the idea of a discounting combination in this 
case.

Definition 11. A discounting combination is a collection of three distinct preferences T ≡
{Rα, Rβ, Rγ } ⊂ R+ such that for each Ri ∈ T ,

(a,2) Ii (b,2) Ii (0,0) and (a,1) Ii (b,1).

We say a preference profile R is a discounting combination for agent i if

{Rj : j 	= i} = T .

The discounting combination satisfies some properties at two price vectors: p = (0, 1, 1)

and p̄ = (0, 2, 2). If Ri is in discounting combination, then D(Ri, p) = {a, b} and D(Ri, p̄) =
{0, a, b}. If the domain is the quasilinear domain, this is impossible to achieve since there can 
only be one quasilinear preference which can satisfy these properties (where values for both the 
objects is 2). On the other hand, a discounting combination requires three distinct preferences. 
Hence, a discounting combination (as defined in Definition 11) cannot be defined in the quasi-
linear domain. However, a discounting combination can be defined in the non-negative income 
effect domain. This makes our mechanism different from the mechanism in Tierney (2019) for 
the quasilinear domain. Consequently, the arguments to show desirability of both the mechanisms 
are different.

Our mechanism will be defined using a discounting combination. From now on, we fix a 
discounting combination T := {Rα, Rβ, Rγ } ⊂ R+ as in Definition 11. Before we define the 
mechanism, we prove two useful claims. The claims below relate the minimum Walrasian equi-
librium allocation to the price vectors (0, 1, 1) and (0, 2, 2).

Claim 2. If R ≡ (R1, R2, R3, R4) ∈ (R+)4 is a discounting combination for agent i, then 
pmin(R) = (0, 2, 2).

Proof. Let R ≡ (R1, R2, R3, R4) ∈ (R+)4 be a discounting combination for agent i and {Rj :
j 	= i} = T . Then by the definition of discounting combination, D(Rj , (0, 2, 2)) = {0, a, b} for 
each j 	= i. Hence, (0, 2, 2) is a Walrasian equilibrium price vector.

Let p′ ≤ (0, 2, 2) be such that p′
a < 2 or p′

b < 2. Then by the definition of discounting com-
bination, 0 /∈ D(Rj , p′) for every j 	= i. Hence, only agent i may demand 0. Thus, by n = 4 and 
m = 2, p′ cannot be a Walrasian equilibrium. �

Note that at any preference profile R, there can be a maximum of two agents for whom R is a 
discounting combination. The next claim establishes an important property involving discounting 
combinations – we will use this property crucially to define our mechanism. The proof of this 
claim is given in Appendix B.

Claim 3. For each R ∈ (R+)4, there exists an object allocation (a1, . . . , a4) such that 
{a1, a2, a3, a4} = {0, a, b} and for each i ∈ N ,



16 T. Kazumura et al. / Journal of Economic Theory 188 (2020) 105036
1. if R is a discounting combination for agent i, then ai ∈ D(Ri, (0, 1, 1)),
2. if R is not a discounting combination for agent i, then there exists a minimum Walrasian 

equilibrium price allocation ((b1, pmin
b1

(R)), . . . , (b4, pmin
b4

(R))) ∈ Zmin(R) such that bi =
ai .

Claim 3 says that at every preference profile there is an object allocation such that (1) if 
an agent has a discounting combination it assigns her an object in the demand set at a lower
price, i.e., (0, 1, 1); (2) if an agent does not have a discounting combination, it assigns her an 
object from some minimum Walrasian equilibrium, which has a higher price of (0, 2, 2). This 
property will be crucial in defining a desirable mechanism, which will be different from the 
MWEP mechanism. Notice that the object allocation in Claim 3 can be different from the object 
allocation in the MWEP mechanism. Consider a preference profile R which is a discounting 
combination for some agents. Clearly, the number of such agents will be no more than two. 
Hence, there are at least two agents such that R is not a discounting combination for them. 
According to Claim 3, the objects allocated to these agents may correspond to different minimum 
Walrasian equilibrium price allocations. Hence, the object allocation of the mechanism may not 
be the same as the object allocation in the MWEP mechanism.

Definition 12. The MWEP mechanism with discounting combination, denoted by f ∗, is de-
fined as follows: for every R ∈ (R+)4, (a∗

1(R), a∗
2 (R), a∗

3 (R), a∗
4(R)) is an object allocation 

satisfying Claim 3 and for every i ∈ N

t∗i (R) =
⎧⎨
⎩

p
a∗
i (R)

if R is a discounting combination for i,

pmin
a∗
i (R)

(R) otherwise,

where p ≡ (0, 1, 1).

It is clear that f ∗ satisfies individual rationality, equal treatment of equals, no wastage, and 
no subsidy. We show that it is also strategy-proof. As shown below in the proof, Claim 3 plays 
an important role in showing strategy-proofness.

Proposition 1. The MWEP mechanism with discounting combination is strategy-proof.

Proof. Fix R ∈ (R+)4, and i ∈ N . If R is not a discounting combination for i, then by changing 
his preference to R′

i , (R
′
i , R−i ) is not a discounting combination for i. By Claim 3, in both the 

preference profiles, we can pick the respective minimum Walrasian equilibrium allocation, and 
by Demange and Gale (1985), i cannot manipulate to R′

i .
If R is a discounting combination for i, then by changing his preference to R′

i , (R
′
i , R−i )

is also a discounting combination for i. As a result, we get that a∗
i (R) ∈ D(Ri, (0, 1, 1)) and 

a∗
i (R′

i , R−i ) ∈ D(R′
i , (0, 1, 1)). Clearly, agent i cannot manipulate to R′

i . �
Note that if R is a discounting combination for i, then she pays according to (0, 1, 1) which 

is lower than (0, 2, 2) = pmin(R) (Claim 2). Hence, f ∗ is different from the MWEP mechanism. 
This clarifies that we cannot afford to drop ex-post revenue maximization in Theorem 1. In that 
sense, our result is not entirely an axiomatic exercise, and revenue maximization is an essential 
part of our result.
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6. Our axioms

What happens if we drop the following axioms from Theorem 1: no wastage, equal treatment 
of equals, and no subsidy? While a general answer to this question is difficult, we provide some 
answer in the domain of quasilinear preferences RQ. In this domain, the MWEP mechanism is 
the VCG mechanism. We also assume a symmetric prior setting: each agent’s value for each of the 
objects is drawn using the same distribution and this distribution satisfies the monotone hazard 
rate property. If the number of agents is at least twice the number of objects, Roughgarden et al. 
(2012) show that the expected revenue of the VCG mechanism in this model is at least half the 
expected revenue from the ex-ante revenue optimal mechanism among the class of strategy-proof 
and ex-post individually rational mechanisms.13 As an immediate corollary of Theorem 1, we see 
that the ex-post revenue optimal mechanism among the class of desirable mechanisms satisfying 
no subsidy in the quasilinear domain can guarantee at least half of the expected revenue of the 
ex-ante revenue optimal mechanism among the class of strategy-proof and ex-post individually 
rational mechanisms.

We now show that each of the axioms used in Theorem 1 is necessary.

NOTION OF INCENTIVE COMPATIBILITY AND IR. Consider a mechanism that chooses the maxi-
mum Walrasian equilibrium allocation at every profile. Such a mechanism will satisfy no subsidy 
and all the properties of desirability except strategy-proofness. Similarly, the MWEP mechanism 
supplemented by a participation fee satisfies no subsidy and all the properties of desirability 
except ex-post IR. Both these mechanisms generate more revenue than the MWEP mechanism. 
Hence, strategy-proofness and ex-post IR are necessary for our results to hold.

What is less clear is if we can relax the notion of incentive compatibility to Bayesian incentive 
compatibility in our results. In general, the set of Bayesian incentive compatible mechanisms is 
larger in our model even in the quasilinear domain and they will have different ex-post revenue 
properties than the MWEP mechanism. To see this, consider the single object auction model in 
the quasilinear domain. We know that the Vickrey auction and the first-price auction generates 
the same ex-ante revenue if values of buyers are independently and identically drawn. So, there 
are profiles of preferences where the first-price auction must generate more revenue than the 
Vickrey auction. Our notion of incentive compatibility eliminates such mechanisms. We also do 
not allow randomized mechanisms.

NO WASTAGE. No wastage gets rid of all mechanisms with reserve price. Hence, it is easy to 
see that no wastage is required for our result – in the quasilinear domain of preferences with one 
object, Myerson (1981) shows that the Vickrey auction with an optimally chosen reserve price 
maximizes expected revenue for independent and identically distributed values of agents. Such 
a mechanism wastes the object and generates more revenue than the Vickrey auction at some 
profiles of preferences.

No wastage is also necessary in a more indirect manner. Consider the domain of quasilinear 
preferences with two objects M ≡ {a, b} and N = {1, 2, 3}. We show that the seller may increase 
her revenue by not selling all the objects. Consider a profile of valuations as follows:

13 This result is quite striking because the ratio of expected revenue of the VCG mechanism and the ex-ante revenue 
optimal mechanism is bounded by a constant, i.e., it does not depend on m or n. Roughgarden et al. (2012) have similar 
constant approximation bounds for n < 2m also.



18 T. Kazumura et al. / Journal of Economic Theory 188 (2020) 105036
va
1 = vb

1 = 5

va
2 = vb

2 = 4

va
3 = vb

3 = 1.

The MWEP price at this profile is pmin
a = pmin

b = 1, which generates a revenue of 2 to the seller. 
On the other hand, suppose the seller conducts a Vickrey auction of object a only. Then, he 
generates a revenue of 4. Hence, the seller can increase her ex-post revenue at some profiles of 
valuations by withholding objects.

EQUAL TREATMENT OF EQUALS. There are various fairness notions in the mechanism design 
literature. A typical notion of ex-post fairness is envy freeness (Varian, 1974; Sprumont, 2013). 
A typical notion of ex-ante fairness is anonymity (Sprumont, 1991; Moulin and Shenker, 1992; 
Barbera and Jackson, 1995).14 Equal treatment of equals is the weakest fairness notion in the 
sense that it is weaker than each of envy-freeness and anonymity.

There are many examples of mechanisms violating equal treatment of equals in the mech-
anism design literature. In the single object auction model in quasilinear domain, if values of 
agents are drawn from different distributions, then revenue is maximized by an asymmetric mech-
anism (Myerson, 1981). Hence, for some profiles of preferences, such mechanisms must generate 
more revenue than the Vickrey auction. Equal treatment of equals rules out such mechanisms.

Another example that shows the necessity of equal treatment equals in our result is the fol-
lowing. Suppose that there are two agents and one object, and the preferences of the agents are 
quasilinear. Hence, the preference of each agent i ∈ {1, 2} can be described by his valuation for 
the object vi .

We define the following mechanism: the object is first offered to agent 1 at price p > 0; if 
agent 1 accepts the offer, then he gets the object at price p and agent 2 does not get anything and 
does not pay anything; else, agent 2 is given the object for free.

This mechanism generates a revenue of p whenever v1 > p (but generates zero revenue oth-
erwise). However, note that the Vickrey auction generates a revenue of v2 when v1 > v2. Hence, 
if v1 > p > v2, then this mechanism generates more revenue than the Vickrey auction. Also, this 
mechanism satisfies no subsidy and all the properties of desirability except equal treatment of 
equals.

NO SUBSIDY. It is tempting to conjecture that no subsidy can be relaxed in quasilinear domain 
of preferences. The following example shows that this need not be true.

Consider an example with one object and two agents in the quasilinear domain - hence, prefer-
ences of agents can be represented by their valuations v1 and v2. Further, assume that valuations 
lie in R++. Choose k ∈ (0, 1) and define the mechanism f ≡ (a, t) as follows: for every (v1, v2)

a(v1, v2) =
{

(1,0) if kv1 > v2,

(0,1) otherwise,

t1(v1, v2) =
{ −(v2 − kv2) if a1(v1, v2) = 0,

v2
k

− (v2 − kv2) if a1(v1, v2) = 1,

t2(v1, v2) =
{

0 if a2(v1, v2) = 0,

kv1 if a2(v1, v2) = 1.

14 Anonymity is sometime called symmetry in the literature (Manelli and Vincent, 2010; Deb and Pai, 2016). Though it 
is stronger than equal treatment of equals in our model, it is often used when random mechanisms are allowed.
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It is straightforward to check that the mechanism is strategy-proof. It is also not difficult to 
see that utilities of the agents are always non-negative, and hence, individual rationality holds. 
Finally, if v1 = v2, we have

a1(v1, v2) = 0, a2(v1, v2) = 1, t1(v1, v2) = −(v2 − kv2), t2(v1, v2) = kv1.

Hence, net utility of agent 1 is v2 − kv2 and that of agent 2 is v1 − kv1, which are equal since 
v1 = v2. This shows that the mechanism satisfies equal treatment of equals.

However, the mechanism pays agent 1 when he does not get the object. Thus, it violates no 
subsidy. The revenue from this mechanism when kv1 > v2 is

v2

(1

k
+ k − 1

)
≥ v2.

The Vickrey auction generates a revenue of v2 when kv1 > v2. Hence, this mechanism gener-
ates more revenue than the Vickrey auction when kv1 > v2. This shows that we cannot drop no 
subsidy from Theorem 1.15

7. Relation to the literature

If there is only one object, Myerson (1981) shows that the Vickrey auction with an appropri-
ately chosen reserve price is ex-ante revenue optimal (maximize expected revenue) if preferences 
of agents are quasilinear and independently and identically drawn. As an immediate corollary to 
this result, one sees that the Vickrey auction is the ex-ante revenue optimal mechanism among all 
mechanisms satisfying no wastage in his model. Our Theorem 1 generalizes this corollary of My-
erson (1981): it works for multiple objects if agents demand at most one object; it works without 
quasilinearity; it works without any restriction on prior. Of course, our generalization requires 
extra axioms (no subsidy and equal treatment of equals) and requires stronger notions of incen-
tive (strategy-proofness) and participation (ex-post IR) constraints. We also focus exclusively on 
deterministic mechanisms.

Ever since the work of Myerson (1981), various extensions of his work to multi-object auc-
tions have been studied in quasilinear domain. Most of these extensions focus on the single agent 
(or, screening problem of a monopolist) with additive valuations (value for a bundle of objects is 
the sum of values of objects). Armstrong (1996, 2000) are early papers that show the difficulty 
in extending Myerson’s optimal mechanisms to multiple objects case. These difficulties are pre-
cisely formulated in Rochet and Choné (1998); Thanassoulis (2004); Manelli and Vincent (2006, 
2007); Hart and Nisan (2019); Hart and Reny (2015); Daskalakis et al. (2017). Thirumulanathan 
et al. (2019) is the closest paper to ours, where he considers a single unit-demand buyer buy-
ing from a seller selling two heterogeneous objects. He characterizes the menu of the optimal 
mechanism for a large class of priors.

In our model with multiple unit demand buyers, even with quasilinearity, the multiple dimen-
sions of private information will be valuations for each object. As illustrated in Armstrong (1996, 
2000), the multiple dimensions of private information implies that the incentive constraints be-
come complicated to handle. Whether agents can be allocated at most one object or multiple 
objects, the multidimensional nature of private information makes the optimization problem ex-
tremely difficult to handle. Because we work in a model without quasilinearity, we are essentially 
operating in an “infinite” dimensional mechanism design problem. Hence, we should expect the 

15 Further inspection reveals that the revenue from this mechanism when v1 = v2 = v is kv − v(1 − k) = v(2k − 1). So, 
if k < 1 , this revenue approaches −∞ as v → ∞. Hence, this mechanism even violates no bankruptcy.
2
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problems discussed in quasilinear environment to appear in an even more complex way in our 
model. In Kazumura et al. (2020a), we show how the Myersonian approach may not work in 
mechanism design problems without quasilinearity. Hence, solving for full optimality without 
imposing the additional axioms that we put seems to be even more challenging in our model. In 
that sense, our results provide a useful resolution to this complex problem.

To circumvent the difficulties from the multidimensional private information and multiple 
agents, a literature in computer science has developed approximately optimal mechanisms for our 
model - multiple objects and multiple unit demand agents (but with quasilinearity). Contributions 
in this direction include Chawla et al. (2010a,b); Briest et al. (2010); Cai et al. (2012). Many of 
these approximate mechanisms allow for randomization. Further, these approximately optimal 
mechanisms involve reserve prices and violate no wastage axiom. It is unlikely that these results 
extend to environments without quasilinearity.

Our work can be connected to a result by Bulow and Klemperer (1996) and its extension by 
Roughgarden et al. (2015). Bulow and Klemperer (1996) show that (under standard independent 
and identical agent assumption with regular distribution) a single object optimal mechanism 
(with quasilinear preferences) for n agents generates less expected revenue than a single object 
Vickrey auction for (n +1) agents. This result has been extended to our multi-object unit-demand 
agent setting with quasilinear preferences: the expected revenue maximizing mechanism for n
agents generates less expected revenue than the VCG mechanism for (m + n) agents, where m
is the number of objects (Roughgarden et al., 2015). Our results complement these results by 
establishing an axiomatic revenue maximizing foundation of the MWEP mechanism (even when 
preferences are not quasilinear).

We motivated our no wastage axiom by saying that the seller may not be able to commit to 
a no sale in future if the objects are not sold. If the seller can commit to a mechanism after a 
no-sale, then we can invoke a revelation principle and our results will follow. However, in many 
realistic settings, the seller is not able to commit to a future mechanism. Skreta (2015) analyzes a 
single object auction model in quasilinear domain and models the non-commitment of the seller 
explicitly. In a finite-period model, she finds that the expected revenue maximizing mechanism 
takes the same form as in the case of commitment. Her optimal mechanism does not satisfy no 
wastage, i.e., it is still optimal for the seller to not trade the object at the last period.

Ausubel and Cramton (1999) consider a model of a seller selling identical objects to a set of 
buyers who can consume at most one unit. They assume quasilinear preferences and explore the 
consequences of ex-post resale. They show that the Vickrey auction with reserve price stands out 
as the optimal (expected revenue maximizing) mechanism with resale (in a subclass of allocation 
rules called the monotonic aggregate allocation rules). They also offer other results to show that 
an inefficient allocation is suboptimal if there is perfect resale. While they do not consider non-
quasilinear preferences and the heterogeneous objects model, their results also hint that some 
form of revenue maximization and perfect resale leads to a restricted Pareto efficient mechanism 
(i.e., whenever there is sale, the object is allocated efficiently).

There is a short but important literature on object allocation problem with non-quasilinear 
preferences. Baisa (2016) considers the single object model and allows for randomization with 
non-quasilinear preferences. He introduces a novel mechanism in his setting and studies its opti-
mality properties (in terms of revenue maximization). We do not consider randomization and our 
solution concept is different from his. Further, ours is a model with multiple objects.

The literature with non-quasilinear preferences and multiple objects have traditionally looked 
at Pareto efficient mechanisms. As discussed earlier, the closest paper is Morimoto and Serizawa 
(2015) who consider the same model as ours. They characterize the MWEP mechanism using 
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Pareto efficiency, individual rationality, incentive compatibility, and no subsidy when the do-
main includes all classical preferences - see an extension of this characterization in a smaller 
domain in Zhou and Serizawa (2018). Similar characterizations are also available for other set-
tings: Sakai (2008, 2013b,a) provide such characterizations in the single object auction model; 
Saitoh and Serizawa (2008); Ashlagi and Serizawa (2012); Adachi (2014) in the homogeneous 
object auction model with unit demand preferences. Pareto efficiency and the complete class of 
classical preferences play a critical role in pinning down the MWEP mechanism in these papers. 
As we point out in Section 5, even in the quasilinear domain of preferences, there are desirable 
mechanisms satisfying no subsidy which are different from the MWEP mechanism. By imposing 
revenue maximization as an objective instead of Pareto efficiency, we get the MWEP mechanism 
in our model. Pareto efficiency is obtained as an implication (Corollaries 3 and 4). Finally, our 
results work for not only the complete class of classical preferences, but for a large variety of 
domains, such as the class of all quasilinear preferences, one including all non-quasilinear pref-
erences, one including all preferences exhibiting positive income effects, etc.

Tierney (2019) considers axioms like no discrimination, welfare continuity, and some stronger 
form of strategy-proofness to give various characterizations of the MWEP mechanism with 
reserve prices in the quasilinear domain. Using our result, he shows that in the quasilinear 
domain, the MWEP mechanism is the unique mechanism satisfying strategy-proofness, no-
discrimination, individual rationality, no wastage, and welfare continuity.

Appendix A. Proofs of Theorems 1 and 2

In this section, we present all the proofs. The proofs use the following fact very crucially: 
the MWEP mechanism chooses a Walrasian equilibrium outcome. Before diving into the proofs, 
we want to stress here that a greedy approach of proving our results would be to first prove 
that any desirable mechanism satisfying no subsidy and maximizing revenue must be Pareto 
efficient. In the quasilinear domain, using revenue equivalence will then pin down the MWEP 
(VCG) mechanism. This approach will fail in our setting because our results work even without 
quasilinearity and revenue equivalence does not hold in such domains (Kazumura et al., 2020a). 
Further, it is not obvious even in quasilinear domain that the desirability, no subsidy, and the 
revenue optimality implies Pareto efficiency. Our proofs work by showing various implications 
of desirability and no subsidy on consumption bundles of agents. It uses richness of the domain 
to derive these implications. In that sense, it departs from traditional Myersonian techniques, 
where revenue maximization is a programming problem with object allocation mechanisms as 
decision variables.

It is worth discussing how our proofs are different from Morimoto and Serizawa (2015), who 
characterize the MWEP mechanism. Their focus is on Pareto efficiency and their proofs depend 
on this. Since we use only no wastage as a efficiency desideratum, which is much weaker than 
Pareto-efficiency, we need to develop our own proof techniques to establish our results.

We start off by showing an elementary lemma which shows that at every preference profile, if 
a mechanism gives every agent weakly better consumption bundles than the MWEP mechanism, 
then its revenue is no more than any MWEP mechanism. This lemma will be used to prove both 
our results.

Lemma 1. For every mechanism f : Rn → Z and for every R ∈ Rn, the following holds:[
fi(R) Ri f min

i (R) ∀ i ∈ N
] ⇒ [

REVf min

(R) ≥ REVf (R)
]
,

where f min is the MWEP mechanism.
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Proof. Fix a profile of preferences R ∈Rn and denote f min
i (R) = (ai, pmin

ai
(R)) for each i ∈ N . 

Now, for every i ∈ N , we have fi(R) ≡ (ai(R), ti (R)) Ri (ai, pmin
ai

(R)) and by the Walrasian 
equilibrium property, (ai, pmin

ai
(R)) Ri (ai(R), pmin

ai (R)(R)). This gives us ti (R) ≤ pmin
ai(R)(R) for 

each i ∈ N . Hence,

REVf (R) =
∑
i∈N

ti(R) ≤
∑
i∈N

pmin
ai (R)(R) ≤ REVf min

(R),

where the last inequality follows from pmin(R) ∈ R|L|
+ . �

A.1. Proof of Theorem 1

We start with a series of Lemmas before providing the main proof. Throughout, we assume 
that R is a rich domain of preferences and f is a desirable mechanism satisfying no subsidy on 
Rn. For the proofs, we need the following definition.

Definition 13. A preference Ri is (a, t)-favoring for t ≥ 0 and a ∈ M if for price vector p with 
pa = t, pb = 0 for all b 	= a, we have D(Ri, p) = {a}.

An equivalent way to state this is that Ri is (a, t)-favoring for t > 0 and a ∈ M if 
V Ri (b, (a, t)) < 0 for all b 	= a. A slightly stronger version of (a, t)-favoring preference is the 
following.

Definition 14. A preference Ri is (a, t)ε -favoring for t ≥ 0, a ∈ M , and ε > 0 if it is (a, t)-
favoring and

V Ri (a, (0,0)) < t + ε

V Ri (b, (0,0)) < ε ∀ b ∈ M \ {a}.

The following lemma shows that if R is rich, then (a, t)ε-favoring preferences exist for every 
(a, t) ∈ M ×R+ and ε > 0.

Lemma 2. Suppose R is rich. Then, for every bundle (a, t) ∈ M ×R+ and for every ε > 0, there 
exists a preference Ri ∈R such that it is (a, t)ε-favoring.

Proof. Define p̂ as follows: p̂a = t, p̂b = 0 ∀ b 	= a.
Define p as follows: pa = t + ε, p0 = 0, pb = ε ∀ b ∈ M \ {a}.
By richness, there exists Ri such that D(Ri, p̂) = {a} and D(Ri, p) = {0}. But this implies that 
Ri is (a, t)-favoring. Further, V Ri (a, (0, 0)) < t +ε and V Ri (b, (0, 0)) < ε ∀ b ∈ M \{a}. Hence, 
Ri is (a, t)ε -favoring. �

Using this, we prove the following lemma which will be used in the proof.

Lemma 3. For every preference profile R ∈Rn, for every i ∈ N , for every t ∈R+, if there exists 
j 	= i such that Rj is (ai(R), t)-favoring, then ti (R) > t .
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Proof. Suppose ti(R) ≤ t . Since Rj is (ai(R), t)-favoring, ti (R) ≤ t implies that Rj is also 
fi(R) ≡ (ai(R), ti (R))-favoring. Consider a preference profile R′ ≡ (R′

i = Rj , R′−i = R−i ). By 
equal treatment of equals (since R′

i = R′
j = Rj ),

fi(R
′) Ij fj (R

′). (A.1)

We argue that fi(R
′) = fi(R). If ai(R

′) = ai(R), then strategy-proofness implies that 
ti (R

′) = ti (R) and we are done. Assume for contradiction that ai(R) = a 	= b = ai(R
′). By 

strategy-proofness, (b, ti (R′)) R′
i (a, ti (R)), which implies that ti (R

′) ≤ V R′
i (b, (a, ti (R))). 

Since R′
i = Rj is (a, ti (R))-favoring, we have V R′

i (b, (a, ti (R))) < 0. This implies that ti(R′) <
0, which is a contradiction to no subsidy. Hence, we have

fi(R
′) = fi(R). (A.2)

Combining Inequality (A.1) and Equation (A.2), we get that fi(R) Ij fj (R
′). Hence, tj (R) =

V Rj (aj (R
′), fi(R)) < 0, where the strict inequality followed from the fact Rj is fi(R)-favoring 

and ai(R) = ai(R
′) 	= aj (R

′). This is a contradiction to no subsidy. �
We will now prove Theorem 1 using these lemmas.

PROOF OF THEOREM 1

Proof. The proof is completed by proving the following proposition.

Proposition 2. Let f : Rn → Z be a desirable mechanism satisfying no subsidy, where R is a 
rich domain of preferences. Then, for every R ∈Rn and every i ∈ N ,

fi(R) Ri f min
i (R).

Proof. Fix a preference profile R ∈Rn. Let (z1, . . . , zn) ≡ f min(R) be the allocation chosen by 
the MWEP mechanism f min at R. Let p ≡ mina∈M pmin

a (R). Clearly, p > 0. For simplicity of 
notation, we will denote zi ≡ (ai, pi), where pi ≡ pmin

ai
(R) for all i ∈ N .

Assume for contradiction that there is some agent i ∈ N such that zi Pi fi(R). We 
first construct a finite sequence of distinct agents and preferences, without loss of generality 
(1, R′

1), . . . , (n, R′
n), satisfying certain properties. Let N0 ≡ ∅, Nk ≡ {1, . . . , k} for each k ≥ 1, 

and (R′
N0

, R−N0) ≡ R. This sequence satisfies the properties that for every k ∈ {1, . . . , n},

1. zk Pk fk(R
′
Nk−1

, R−Nk−1) for each k ≥ 1,
2. ak 	= 0,
3. R′

k is (zk)
εk -favoring for some εk > 0 with εk < min{V Rk (ak, fk(R

′
Nk−1

, R−Nk−1)) − pk, p}.

Now, we construct this sequence inductively.

Step 1 - Constructing (1, R′
1). Let i = 1. By our assumption, z1 P1 f1(R). This implies p1 −

V R1(a1, f1(R)) < 0. Thus, there is ε1 > 0 such that ε1 < min{V R1(a1, f1(R)) − p1, p}. By 
Lemma 2, there is a (z1)

ε1 -favoring preference R′
1. Suppose a1 = 0. Then, (0, 0) = z1 P1 f1(R), 

which contradicts individual rationality. Hence, a1 	= 0.
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Step 2 - Constructing (k, R′
k) for k > 1. We proceed inductively - suppose, we have already 

constructed (1, R′
1), . . . , (k − 1, R′

k−1) satisfying Properties 1, 2, and 3. By no wastage and the 
fact that ak−1 	= 0, there is agent j ∈ N such that aj (R

′
Nk−1

, R−Nk−1) = ak−1.
If j = k − 1, then individual rationality of f and aj (R

′
Nk−1

, R−Nk−1) = ak−1 imply that

tk−1(R
′
Nk−1

,R−Nk−1) ≤ V R′
k−1(ak−1, (0,0)) < pk−1 + εk−1

< V Rk−1(ak−1, fk−1(R
′
Nk−2

,R−Nk−2)),

where the second inequality followed from the fact that R′
k−1 is (zk−1)

εk−1 -favoring, and the last 
inequality followed from the definition of εk−1. Thus, by aj (R

′
Nk−1

, R−Nk−1) = ak−1, we have

fk−1(R
′
Nk−1

,R−Nk−1) Pk−1 fk−1(R
′
Nk−2

,R−Nk−2),

which contradicts strategy-proofness. Hence, j 	= k − 1.
If j ∈ Nk−2, then by individual rationality of f , we get

tj (R
′
Nk−1

,R−Nk−1) ≤ V
R′

j (ak−1, (0,0)) < εj < pk−1, (A.3)

where the second inequality followed from the fact that R′
j is (zj )

εj -favoring and j 	= (k − 1), 
and the last inequality followed from the definition of εj . But, notice that agent (k − 1) 	= j

and R′
k−1 is zk−1-favoring (since it is (zk−1)

εk−1 -favoring). Further aj (R
′
Nk−1

, R−Nk−1) = ak−1. 
Then, Lemma 3 implies that tj (R′

Nk−1
, R−Nk−1) > pk−1, which contradicts Inequality (A.3).

Thus, we have established j /∈ Nk−1, i.e., j is a distinct agent not in Nk−1. Hence, we denote 
j ≡ k, and note that

zk Rk zk−1 Pk fk(R
′
Nk−1

,R−Nk−1),

where the first preference relation follows from the Walrasian equilibrium property and the 
second follows from the fact that ak(R

′
Nk−1

, R−Nk−1) = ak−1 and pk−1 < tk(R
′
Nk−1

, R−Nk−1)

(Lemma 3). Hence Property 1 is satisfied for agent k. Next, if ak = 0, then (0, 0) =
zk Pk fk(R

′
Nk−1

, R−Nk−1) contradicts individual rationality. Hence, Property 2 also holds. By 

zk Pk fk(R
′
Nk−1

, R−Nk−1), pk − V Rk (ak, fk(R
′
nk−1

, R−Nk−1)) > 0. Thus, there is εk > 0 such that 

εk < min{V Rk (ak, fk(R
′
Nk−1

, R−Nk−1)) −pk, p}. Hence, by Lemma 2, there is a zεk

k -favoring R′
k .

Thus, we have constructed a sequence (1, R′
1), . . . , (n, R′

n) such that ak 	= 0 for all k ∈ N . 
This is impossible since n > m, giving us the required contradiction. �

By Lemma 1 and Proposition 2, the MWEP mechanism is an ex-post revenue optimal mech-
anism among the class of desirable mechanisms satisfying no subsidy defined on a rich domain.

Finally, we show that the MWEP mechanism is the unique ex-post revenue optimal mecha-
nism among the class of desirable mechanisms satisfying no subsidy defined on a rich domain. 
Suppose f̂ ≡ (â, ̂t) is another (not the MWEP) desirable mechanism satisfying no subsidy that 
is ex-post revenue optimal among the class of desirable mechanisms satisfying no subsidy. Then, 
there is some preference profile R and an agent i such that the object âi(R) assigned to agent 
i by the mechanism f̂ is not in her demand set at pmin(R). Let (aj , pmin

aj
(R)) denote the con-

sumption bundle assigned to each agent j ∈ N at preference profile R by the MWEP mechanism 
f min. Hence,

(ai,p
min
ai

(R)) Pi (âi(R),pmin
âi (R)

(R)).

For all j 	= i, by the definition of Walrasian equilibrium, we have
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(aj ,p
min
aj

(R)) Rj (âj (R),pmin
âj (R)

(R)).

Proposition 2 implies that for all j ∈ N ,

(âj (R), t̂j (R)) Rj (aj ,p
min
aj

(R)).

Combining the above relations, for all j ∈ N , we have (âj (R), ̂tj (R)) Rj (âj (R), pmin
âj (R)

(R))

with strict relation holding for agent i. This implies that t̂j (R) ≤ pmin
âj (R)

(R) for all j ∈ N with 
strict inequality holding for agent i. Adding it over all the agents, we get

REVf̂ (R) =
∑
j∈N

t̂j (R) <
∑
j∈N

pmin
âj (R)

(R) ≤ REVf min

(R),

which is a contradiction to the ex-post revenue optimality of f̂ . �
A.2. Proof of Theorem 2

We now fix a desirable mechanism f :Rn → Z, where R ⊇R++. Further, we assume that f
satisfies no bankruptcy, where the corresponding bound as � ≤ 0. We start by proving an analogue 
of Lemma 3.

Lemma 4. For every preference profile R ∈Rn, for every i ∈ N , and every (a, t) ∈ M ×R+ with 
a = ai(R), if there exists j 	= i such that for each b ∈ L \ {a},

V Rj (b, (a, t)) < −n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) + �,

then ti(R) > t .

Proof. Assume for contradiction ti (R) ≤ t . Consider R′
i = Rj . By strategy-proofness,

fi(R
′
i , R−i ) R′

i fi(R) = (a, ti (R)). By equal treatment of equals,

fj (R
′
i ,R−i ) Ij fi(R

′
i ,R−i ) Rj (a, ti(R)).

Note that either ai(R
′
i , R−i ) 	= a or aj (R

′
i , R−i ) 	= a. Without loss of generality, assume that 

aj (R
′
i , R−i ) = b 	= a. Then, using the fact that (b, tj (R′

i , R−i )) Rj (a, ti (R)) and ti (R) ≤ t , we 
get

tj (R
′
i ,R−i ) ≤ V Rj (b, (a, ti(R)))

≤ V Rj (b, (a, t))

< −n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) + �.

By individual rationality

ti (R
′
i ,R−i ) ≤ V R′

i (ai(R
′
i ,R−i ), (0,0)) ≤ max

c∈M
V R′

i (c, (0,0)).

Further, individual rationality also implies that for all k /∈ {i, j},
tk(R

′
i ,R−i ) ≤ V Rk (ak(R

′
i ,R−i ), (0,0)) ≤ max

c∈M
V Rk (c, (0,0)).

Adding these three sets of inequalities above, we get
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Fig. 5. Illustration of R̂i .

∑
k∈N

tk(R
′
i ,R−i )

< −n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) + � + max

c∈M
V R′

i (c, (0,0)) +
∑

k∈N\{i,j}
max
c∈M

V Rk (c, (0,0))

= −n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) + � + max

c∈M
V Rj (c, (0,0)) +

∑
k∈N\{i,j}

max
c∈M

V Rk (c, (0,0))

≤ −n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) + (n − 1)

(
max

k∈N\{i} max
c∈M

V Rk (c, (0,0))
) + �

≤ �.

This contradicts no bankruptcy. �
Using Lemma 4, we can mimic the proof of Theorem 1 to complete the proof of Theorem 2. 

We start by defining a class of positive income effect preferences by strengthening the notion 
of (a, t)ε -favoring preference. For every (a, t) ∈ M × R+, for each ε > 0, and for each δ > 0, 
let R((a, t), ε, δ) be the set of preferences such that for each R̂i ∈ R((a, t), ε, δ), the following 
holds:

1. R̂i is (a, t)ε -favoring and

2. V R̂i (b, (a, t)) < −δ for all b 	= a.

A graphical illustration of R̂i is provided in Fig. 5. Since δ > 0, it is clear that a R̂i can 
be constructed in R((a, t), ε, δ) such that it exhibits positive income effect. Hence, R++ ∩
R((a, t), ε, δ) 	= ∅.

PROOF OF THEOREM 2

Proof. Now, we can mimic the proof of Theorem 1. We only show parts of the proof that requires 
some change. As in the proof of Theorem 1, by Lemma 1, we only need to show that for every 
profile of preferences R ∈Rn and for every i ∈ N , fi(R) Ri f min(R), where f min is the MWEP 
i
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mechanism. Assume for contradiction that there is some profile of preferences R ∈Rn and some 
agent i ∈ N such that zi Pi fi(R), where (z1, . . . , zn) ≡ f min(R) be the allocation chosen by the 
MWEP mechanism at R. Let p ≡ mina∈M pmin

a (R). For simplicity of notation, we will denote 
zj ≡ (aj , pj ), where pj ≡ pmin

aj
(R), for all j ∈ N .

Define δ̄ > 0 as follows:

δ̄ := n
(

max
k∈N

max
c∈M

V Rk (c, (0,0))
) − �.

We first construct a finite sequence of agents and preferences, without loss of generality 
(1, R′

1), . . . , (n, R′
n), satisfying certain properties. Let N0 ≡ ∅, Nk ≡ {1, . . . , k} for each k ≥ 1, 

and (R′
N0

, R−N0) ≡ R. This sequence satisfies the properties that for every k ∈ {1, . . . , n},

1. zk Pk fk(R
′
Nk−1

, R−Nk−1) for each k ≥ 1,
2. ak 	= 0,
3. R′

k ∈ R+ ∩ R(zk, ε, δ̄) for some εk > 0 with εk < min{V Rk (ak, fk(R
′
Nk−1

, R−Nk−1)) −
pk, p}.

Now, we can complete the construction of this sequence inductively as in the proof of Theo-
rem 1 (using Lemma 4 instead of Lemma 3), giving us the desired contradiction.

The uniqueness proof is identical to the proof of uniqueness given in Theorem 1. �
Appendix B. Proof of Claim 3

Before we start the proof of Claim 3, we point out a technical property of non-negative income 
effect preferences. The claim below shows a form of monotonicity of demand sets with non-
negative income effect preferences.

Claim 4. Let p, p′ ∈ R3+ be price vectors such that p′
a = p′

b < pa = pb . For each Ri ∈ R+, if 
D(Ri, p) ∩ M 	= ∅, then D(Ri, p′) ⊆ D(Ri, p).

Proof. Let D(Ri, p) ∩ M 	= ∅. Since p′
a = p′

b < pa = pb , it must be that 0 /∈ D(Ri, p′). As-
sume for contradiction that D(Ri, p′) \ D(Ri, p) 	= ∅. Then, by 0 /∈ D(Ri, p′), without loss of 
generality, let a ∈ D(Ri, p′) and a /∈ D(Ri, p).

By D(Ri, p) ∩ M 	= ∅ and a /∈ D(Ri, p), we have b ∈ D(Ri, p) and (b, pb) Pi (a, pa). The 
latter implies V Ri (a, (b, pb)) < pa = pb .

Let δ := pa − p′
a = pb − p′

b > 0. By Ri ∈ R+, V Ri (a, (b, pb)) < pb , (b, pb) Ii (a, V Ri (a,

(b, pb))) and δ > 0, we have (b, pb − δ) Ri (a, V Ri (a, (b, pb)) − δ). By V Ri (a, (b, pb)) < pa , 
V Ri (a, (b, pb)) − δ < p′

a , and so, (a, V Ri (a, (b, pb)) − δ) Pi (a, p′
a). Thus, (b, p′

b) = (b, pb −
δ) Pi (a, p′

a). This contradicts a ∈ D(Ri, p′). �
PROOF OF CLAIM 3

Proof. Let R ∈ (R+)4 and S(R) := {i ∈ N : R is discounting combination for i}. If S(R) is 
empty, then the claim follows because Zmin(R) is non-empty. As we discussed just above 
Claim 3, if S(R) is non-empty, then |S(R)| ≤ 2. So, we consider two cases.

CASE 1. S(R) = {i, j}. By Claim 2, we have pmin(R) = (0, 2, 2). Since R is a discount-
ing combination for two agents, for every k ∈ N = {1, 2, 3, 4}, we must have Rk ∈ T with 
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=

Ri = Rj . Thus, by Definition 11, for every k ∈ N = {1, 2, 3, 4}, D(Rk, (0, 2, 2)) = {0, a, b}, 
and D(Ri, (0, 1, 1)) = D(Rj , (0, 1, 1)) = {a, b}.

Consider an object allocation (a1, a2, a3, a4) such that ai, aj ∈ {a, b} and for each k ∈ N \
{i, j}, ak = 0. Then, (a1, a2, a3, a4) satisfies Conditions (1) and (2) of the claim for this case.

CASE 2. S(R) = {i}. By Claim 2, we have pmin(R) = (0, 2, 2). Also, by (b) of Definition 11, we 
have

Dk(Rk, (0,2,2)) = {0, a, b} k ∈ N \ {i}. (B.1)

Consider an object allocation (a1, a2, a3, a4) such that ai ∈ D(Ri, (0, 1, 1)) and {a1, a2, a3, a4} 
{0, a, b}. Then, since S(R) = {i}, the object allocation (a1, a2, a3, a4) satisfies Condition (1) of 
the claim. To show Condition (2) of the claim, we consider two subcases.

CASE 2A. Suppose D(Ri, (0, 2, 2)) ∩ M 	= ∅. Then, by Claim 4 we get ai ∈ D(Ri, (0, 1, 1)) ⊆
D(Ri, (0, 2, 2)). Thus, by Equation (B.1), we have ((a1, pa1

), . . . , (a4, pa4
)) ∈ Zmin(R), where 

p ≡ (0, 2, 2). Thus, (a1, a2, a3, a4) also satisfies Condition 2.

CASE 2B. Suppose D(Ri, (0, 2, 2)) ∩ M = ∅, i.e., D(Ri, (0, 2, 2)) = {0}. Choose any k /∈ S(R). 
Then, k 	= i. Consider any object allocation (b1, b2, b3, b4) satisfying {b1, b2, b3, b4} = {0, a, b}
such that bk = ak and bi = 0. By D(Ri, (0, 2, 2)) = {0} Equation (B.1), and the fact that 
pmin(R) = (0, 2, 2), we get ((b1, pb1

), · · · , (b4, pb4
)) ∈ Zmin(R), where p ≡ (0, 2, 2). Thus, 

(a1, a2, a3, a4) also satisfies Condition 2.

This exhausts all the cases and completes the proof. �
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