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Abstract

Although the linear-in-means model is the workhorse model in empirical work on peer effects, its 
theoretical properties are understudied. In this study, we develop a social-norm model that provides a micro-
foundation of the linear-in-means model and investigate its properties. We show that individual outcomes 
may increase, decrease, or vary non-monotonically with the taste for conformity. Equilibria are usually 
inefficient and, to restore the first best, the planner needs to subsidize (tax) agents whose neighbors make 
efforts above (below) the social norms. Thus, giving more subsidies to more central agents is not necessarily 
efficient. We also discuss the policy implications of our model in terms of education and crime.
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1. Introduction

There is substantial empirical evidence showing that peer effects matter in education 
(Calvó-Armengol et al., 2009; Epple and Romano, 2011; Sacerdote, 2011), crime (Ludwig et 
al., 2001; Patacchini and Zenou, 2012; Damm and Dustmann, 2014), risky behavior (Clark and 
Loheac, 2007; Hsieh and Lin, 2017), performance in the workplace (Herbst and Mas, 2015), 
participation in extracurricular activities (Boucher, 2016), obesity (Christakis and Fowler, 2007), 
environmentally friendly behavior (Brekke et al., 2010; Czajkowski et al., 2017), and tax compli-
ance and tax evasion (Fortin et al., 2007; Alm et al., 2017), among other outcomes. The standard 
model used in these studies is the so-called linear-in-means model, which can be written as

xig = zigβ + ygγ + θ

(Ng − 1)

Ng∑
j=1,j �=i

xjg + εig (1)

where xig is the outcome of individual i belonging to group g,1 zig are the observable character-
istics of individual i (e.g., age, race, and gender), yg are the observed exogenous characteristics 
that are common to all individuals in the same group g,2 Ng is the number of individuals in 
group g, and εig is an error term. Parameter θ captures the “social interaction effect” of the av-
erage outcome of the reference group on an individual’s own outcome; this is the key parameter 
of interest that is estimated to measure peer effects.3

As noted by Blume et al. (2015), Boucher and Fortin (2016), and Kline and Tamer (2019), it 
is useful to interpret the linear-in-means model as corresponding to a perfect information game 
in which (1) is the best-reply function of individual i choosing action (outcome) xi . The corre-
sponding utility function is such that individuals have a preference to conform to the average
action of their neighbors in a social network. For this reason, this game is often referred to as 
the local-average model. Surprisingly, the theoretical properties of this model in terms of com-
parative statics, welfare, and policies have not been investigated. On the contrary, the literature 
on games on networks4 (Ballester et al., 2006; Bramoullé et al., 2014; Jackson and Zenou, 2015;
Bramoullé and Kranton, 2016)5 studies the properties of another model, the local-aggregate 
model, in which the sum (not the average) of actions (or outcomes) of neighbors affects own 
action.6

1 For example, in relation to crime, xig is the criminal effort of individual i in neighborhood g and, in relation to 
education, it is the test score of student i in classroom g.

2 For example, yg are the average education or income level in a neighborhood g or the average education or income 
level of students’ parents in a classroom g.

3 If all agents belong to the same group g, this model is not identified, because it is difficult to distinguish between 
the endogenous effect θ and the exogenous effect γ . Manski (1993) referred to this as the reflection problem, because 
it is difficult to distinguish between an individual’s behavior and the behavior being “reflected” back on the individual. 
The literature on peer effects has proposed different ways of causally interpreting θ , including field experiments that 
randomly allocate individuals to groups (see, e.g., Sacerdote, 2011, for an overview of peer effect studies in education).

4 The economics of networks is a growing field. For overviews, see Jackson (2008), Ioannides (2012), and Jackson et 
al. (2017).

5 One can interpret the group g in (1) in terms of networks so that group g captures all agents who individual i is 
connected to. In that case, the game underlying the linear-in-means model is a game on networks in which Ng − 1 is the 
number of agents who are directly connected (direct friends) to i.

6 The key difference between the local-average and the local-aggregate model is that the former aims to capture the role 
of social norms, such as conformist behavior or peer pressure, on outcomes (Patacchini and Zenou, 2012; Liu et al., 2014;
Blume et al., 2015; Topa and Zenou, 2015; Boucher, 2016), while the latter highlights the role of knowledge spillovers 
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Thus, there is a discrepancy between the theoretical analysis of the local-aggregate model and 
the empirical applications using the linear-in-means model or local-average model. In this study, 
we analyze the comparative statics, welfare properties, and policy implications of the local av-
erage model and show that these properties are very different from those of the local-aggregate 
model.7 Indeed, we show that the differences between the local aggregate and the local average, 
although seemingly minor, lead to substantial divergence in both positive and normative prescrip-
tions. In other words, the local-aggregate model fails to approximate the local-average model in 
each of the following key dimensions: comparative statics, welfare properties, and policy recom-
mendations.

Our main findings are summarized as follows. First, we characterize the Nash equilibrium in 
the local-average model and show that individual efforts, social norms,8 and aggregate effort are 
the weighted sums of productivity, whereby the weights are non-linear functions of the taste for 
conformity. To understand these results, we compare two extreme cases: pure individualism and 
total conformism. Under pure individualism, each agent’s equilibrium effort is equal to her intrin-
sic productivity and is independent of her own social norm. By contrast, under total conformism, 
all agents choose the same level of effort, which is equal to the weighted mean of individual 
productivity, whereby the weights are proportional to the degree (numbers of links) of the agents 
in the network. Whether total effort is higher under pure individualism or total conformism de-
pends on the correlation between the productivity distribution across individuals and the degree 
distribution of the social network.

Second, we provide comparative statics of individual and aggregate efforts with respect to the 
key parameters of the model. We focus especially on the taste for conformity. Endogenous social 
norms give rise to general-equilibrium effects. A complex interplay between these effects may 
result in a non-monotonic relationship between the taste for conformity and individual efforts. 
Whether an individual is above or below her social norm is key for understanding the shape of 
this relationship. Interestingly, in regular networks, aggregate effort remains neutral to changes 
in the taste for conformity and is always equal to aggregate productivity.

We also study the impact of adding a link on the equilibrium efforts of all agents in the 
network. All agents in the network increase their effort if and only if a link between two agents 
with sufficiently high productivities is added in the network. This result is driven by the following 
snowball effect. When a link is formed between two very productive agents, their social norm 
increases, because the effort of the newly added agent is high. The best response for the agent 
for whom the social norm increases is to increase her effort. This, in turn, increases the effort 
of her neighbor, which increases her social norm, and so forth. Note that, when a link is created 
between a high-productive and a low-productive agent, then the low-productive agent increases 

on outcomes (Ballester et al., 2006, 2010; Bramoullé et al., 2014; De Marti and Zenou, 2015). Bramoullé et al. (2009)
provide conditions for identification in the local-average model while Liu et al. (2014) derive conditions for identification 
in the local-aggregate model.

7 In this study, we are interested only in positive peer effects, which is why we compare the local-aggregate model with 
the local-average one—both are games with strategic complementarities; that is, an increase in the effort of a neighbor 
increases the marginal utility of own effort. Another well-studied model in network games is a game with strategic 
substitutability (Bramoullé and Kranton, 2007; Bramoullé et al., 2014; Allouch, 2015) in which there are negative peer 
effects, that is, an increase in the effort of an individual’s neighbor decreases the marginal utility of making own effort. 
This is not the topic of analysis in this study, since we focus on the linear-in-means model in which peer effects are 
supposed to be positive.

8 There are different definitions of social norms in the literature (see, e.g., Akerlof, 1997; Dutta et al., 2019). Here, we 
define the social norm of an agent as the average action of her neighbors.
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her effort, because her social norm increases while the high-productive agent decreases her effort 
because her social norm is reduced. As a result, the impact of adding this link on the effort of all 
agents in the network is ambiguous. Using these results, we discuss the key-link policy, whose 
aim is to determine the link between two agents which, once removed, reduces total crime the 
most. We show that, irrespective of the network structure, the planner should remove the link 
between the two most productive agents in the network.

Third, we provide a complete welfare analysis of the local-average model. We derive a neces-
sary and sufficient condition for the equilibrium to be socially optimal. However, this condition 
is not likely to hold in most networks. Indeed, each agent exerts externalities on her neighbors, 
which she does not take into account when making effort. In particular, when the effort of agent 
i’s neighbor (say, agent j ) is below her own social norm, then an increase in i’s effort increases 
the social norm of j , which has a negative impact on j ’s conformist utility, because j ’s effort is 
now further away from her own social norm. In this case, agent i exerts a negative externality on 
her neighbor j . To restore the first best, the planner taxes agents who exert negative externalities 
on their neighbors. If the effort of agent i’s neighbor (say, agent j ) is above her own social norm, 
then the reasoning is the same in reverse, so that to restore the first best, the planner subsidizes
agents who exert positive externalities on their neighbors. This is very different from the policy 
implications of the local-aggregate model, in which agents always exert positive externalities on 
their neighbors so that the planner always subsidizes agents and gives higher subsidies to more 
central agents. Here, if central agents have higher productivity, they are more likely to exert nega-
tive externalities on their neighbors, since the latter are more likely to have effort below their own 
social norms. For example, in a star-shaped network, if the central agent has, on average, higher 
productivity than that of the peripheral agents, in the local-aggregate model, to restore the first 
best, the planner gives the highest subsidy to the central agent. By contrast, in the local-average 
model, the planner taxes the central agent and subsidizes the peripheral agents.

We also consider different extensions of our benchmark model. First, we extend our utility 
function so that agents have different tastes for conformity. We show that all our results are robust 
to this extension. Second, we consider an anti-conformist model in which agents benefit from 
deviating from the social norm of their friends. We show that if agents are not too anti-conformist, 
then our results hold even if some agents provide zero effort in equilibrium. However, when 
agents become more anti-conformist, then either no equilibrium exists or multiple equilibria 
prevail. We also consider a model in which agents may want to make effort above the average 
effort of their friends. In this model, contrary to our benchmark model in which agents either 
overinvest or underinvest in efforts compared to the first best, we show that they tend to mostly 
overinvest, because they always want to exert efforts above the social norm of their neighbors. 
Finally, we extend our model to directed and weighted networks and show that all our results are 
robust to this extension.

Next, we study the implications of our model for network formation. Specifically, we con-
sider a two-stage model in which, in the first stage, agents form links, and in the second stage, 
they exert effort. We show that, in the local-aggregate model, the unique pairwise Nash equilib-
rium is the complete network. On the contrary, in the local-average model, the unique pairwise 
Nash equilibrium is the complete homophilous network in which agents of the same type form 
a complete network but never create links with agents of the other type. In other words, the 
local-average model provides a simple explanation of homophilous behavior, whereas the local-
aggregate model fails to do so.
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Finally, we discuss the differences in policy implications of the local-average and the local-
aggregate models. We show that, in the former model, group-based policies are more efficient 
while in the latter model, it is better to implement individual-based or key-player policies.

Contributions to the literature Other researchers have studied the local-average (conformist) 
model in network games.9 Patacchini and Zenou (2012) and Liu et al. (2014) characterized Nash 
equilibrium and showed that it exists and is unique; Blume et al. (2015) and Golub and Morris
(2017) introduced imperfect information10; Boucher (2016) embedded the local-average model 
into a network formation model, while Olcina et al. (2017) embedded it into a learning model.11

To the best of our knowledge, ours is the first study analyzing the comparative statics properties 
of the local-average model as well as its welfare and policy implications. Ours is also the first 
study to examine how adding or removing a link changes the effort of all agents in the network.

One may argue that many peer-effect empirical studies cannot distinguish between the local-
average and the local-aggregate model because, in the usual case, the size of the reference 
group is constant in the sample. For example, if the reference group is the neighborhood, the 
class, or co-workers, then the network is the same for everyone, namely, a complete graph in 
which all the students in a class, residents of a neighborhood, or employees of a firm are in-
terlinked. Fortunately, because of network data availability, many recent studies have precisely 
described the network of agents (see, e.g., Christakis and Fowler, 2007; Bramoullé et al., 2009;
Calvó-Armengol et al., 2009; Banerjee et al., 2013; for overviews, see Breza, 2016; Jackson et 
al., 2017) and therefore, can easily distinguish between the two models. Thus, the results of the 
present study can be used to derive adequate policy recommendations for each model.12

The rest of the paper unfolds as follows. In Section 2, we develop the local-average model and 
characterize the best response functions. In Section 3, we study the comparative statics proper-
ties of the model. In Section 4, we investigate the welfare properties of the local-average model. 
Section 5 considers different extensions of our model. In Section 6, we examine the policy impli-
cations of our results. Finally, Section 7 concludes. All proofs are in Online Appendix A. Online 
Appendix B provides a comparison between the local-average and the local-aggregate model. In 
Online Appendix C, we provide a probabilistic interpretation of our model. In Online Appendix 
D, we provide a simple example that shows how a mean-preserving spread of the productivity 
impacts own and aggregate outcome. In Online Appendix E, we provide additional results and 
examples on the comparative statics of the taste for conformity while in Online Appendix F, we 
compare equilibrium and first-best outcomes for specific networks. In Online Appendix G, we 
consider different extensions of our model.

9 Some studies have introduced conformity in the utility function without an explicit network analysis but the social 
norm is usually assumed to be exogenous. See, among others, Akerlof (1980, 1997), Kandel and Lazear (1992), Bernheim
(1994), and Fershtman and Weiss (1998).
10 See Ghiglino and Goyal (2010), Bloch and Quérou (2013), and Chen et al. (2018), who also developed theoretical 
network models with average effects but focusing on different issues.
11 Olcina et al. (2017) forms part of the wide literature on learning on networks using the DeGroot model, whereby the 
utility function is implicitly assumed to be equivalent to the local-average model. For an overview of this literature, see 
Golub and Sadler (2016).
12 For example, Carrell et al. (2013) assigned students to peer groups so that the academic performance of the least able 
students was maximized. The authors showed that using average peer effects to “optimally” design these groups without 
taking into account the network relationships between these students could backfire, since they found a negative and 
significant treatment effect for the least able students.
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2. The local-average model

2.1. Definitions and notation

Consider n ≥ 2 individuals (or agents) who are embedded in a network g. The adjacency ma-
trix G = [gij ] is an (n ×n)-matrix with {0, 1} entries, which keeps track of the direct connections
in the network. By definition, agents i and j are directly connected if and only if gij = 1; other-
wise, gij = 0. We assume that the network is undirected, that is, gij = gji , and has no self-loops, 
that is, gii = 0.

Denote by Ĝ = [̂gij ] the (n × n) row-normalized adjacency matrix defined by ĝij := gij /di , 
where di is individual i’s degree, or the number of her direct neighbors, that is, di := ∑n

j=1 gij .
Each agent i = 1, 2, . . . , n is described by: (i) her productivity αi ∈ R+, which is an exoge-

nous characteristic; (ii) her effort xi ∈ R+, which is agent i’s choice variable; and (iii) her 
position in the network g, which defines her social norm. Following the standard notation, we set

α := (α1, α2, . . . , αn)
T ∈ Rn+, x := (x1, x2, . . . , xn)

T ∈ Rn+,

while the subscript (−i) means dropping a vector’s ith coordinate:

x−i := (x1, . . . , xi−1, xi+1, . . . , xn)
T ∈Rn−1+ .

Finally, agent i’s social norm, xi , is defined as the average effort across her neighbors, namely,

xi :=
n∑

j=1

ĝij xj (2)

In equilibrium, each agent’s effort xi is represented13 as a convex combination of her own 
exogenous productivity αi and her endogenous social norm xi . This is very much in the spirit of 
the linear-in-means model (1).

2.2. Preferences

Agent i’s utility function has a standard linear-quadratic structure and is given by

Ui(xi,x−i ,g) = αixi − 1

2
x2
i − θ

2
(xi − xi)

2 , (3)

where αi > 0 stands for agent i’s individual productivity, while θ > 0 is the taste for confor-
mity.14

The utility function (3) has two terms. The first term, αixi − x2
i /2, is the utility of exert-

ing xi units of effort when there is no interaction with other individuals. The second term, 

13 See equation (11) below.
14 Note the difference between (3) and the local-aggregate model (Ballester et al., 2006), where the utility of agent 
i = 1, 2, . . . , n is given by

Ui(xi ,x−i ,g) = αixi − 1

2
x2
i + θ

n∑
j=1

gij xixj , (4)

that is, it is the aggregate effort of peers, 
∑n

j=1 gij xj , which positively affects own utility. In Online Appendix B, we 
compare the local-average and the local-aggregate model.



P. Ushchev, Y. Zenou / Journal of Economic Theory 185 (2020) 104969 7
−θ (xi − xi)
2 /2, captures the peer-group pressure faced by agent i, who seeks to minimize her 

social distance from her reference group, and suffers a utility reduction equal to θ (xi − xi)
2 /2

from failing to conform to others.15

For the sake of analytical convenience, we reparametrize the taste for conformity by setting

λ := θ

1 + θ
, 0 ≤ λ < 1. (5)

By plugging (5) into (3), we obtain

Ui(xi,x−i ,g) = αixi − 1

2
x2
i − 1

2

(
λ

1 − λ

)
(xi − xi)

2 (6)

The two parameterizations, (3) and (6), are clearly equivalent. Indeed, as observed from (5), λ is 
a monotone transformation of θ .

We now point out some important properties of the utility function (6), which provides useful 
intuition about our main results. First, if i and j are neighbors, we have

∂Ui(xi,x−i ,g)

∂xj

� 0 ⇐⇒ xi � xi . (7)

In other words, when agent j makes effort xj , she exerts a positive (negative) externality on her 
neighbor i if and only if the effort of i is above (below) i’s social norm. This is important in the 
welfare section, since we observe that the equilibrium effort differs from the first-best, because 
agents fail to internalize externalities when choosing their effort levels. These externalities are 
positive or negative depending on whether the effort is above or below the social norm. This 
highlights the importance of having endogenous social norms.

Second, efforts are strategic complements. Indeed, for ̂gij > 0,

∂2Ui(xi,x−i ,g)

∂xixj

> 0, (8)

which means that the higher is the effort of an individual’s peer, the higher is the individual’s 
marginal utility of exerting effort.

Third, the cross-effect of individual i’s effort xi and the taste for conformity λ is given by:

∂2Ui(xi,x−i ,g)

∂xi∂λ
� 0 ⇐⇒ xi � xi . (9)

In other words, if xi > xi (xi < xi ), then, when agents become more conformist, an increase in xi

increases (reduces) the gap between xi and xi , which leads to a decrease (increase) in the utility 
level. In other words, an increase in λ decreases (increases) the marginal utility of exerting effort 
for individual i if xi > xi (xi < xi ). We refer to this assumption when discussing the comparative 
statics of λ.

Finally, the cross-effects of effort and productivity are positive, as for any i, j, k = 1, 2, . . . , n
we have

∂2Ui(xi,x−i ,g)

∂xj ∂αk

≥ 0. (10)

15 This is the standard way in which economists have modeled conformity (see, among others, Akerlof, 1980, 1997; 
Kandel and Lazear, 1992; Bernheim, 1994; Fershtman and Weiss, 1998; Patacchini and Zenou, 2012; Boucher, 2016).
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Hence, productivities α and efforts x satisfy the standard Milgrom–Shannon conditions, which 
guarantee monotone comparative statics in supermodular games (see Proposition 2 below). How-
ever, this is not the case for the comparative statics in terms of the taste for conformity λ (see 
(9)).

To summarize, the utility function (3)—equivalently, (6)—is the standard way economists 
have modeled conformity. However, the social norm xi is usually assumed to be exogenous (see, 
e.g., Akerlof, 1980, 1997), which makes the problem less interesting, because it abstracts from 
general equilibrium effects (Dutta et al., 2019). Here, we endogenize the social norm by making 
it dependent on the network structure. In that case, agents create externalities for each other 
through the social norm that they do not take into account when exerting their effort. This leads 
to new policy implications that we explore in Sections 4 and 6.

2.3. Nash equilibrium

Each individual i chooses xi to maximize (6) taking the network structure g and the effort 
choices x−i of other agents as given. By computing agent i’s first-order condition (FOC) with 
respect to xi , we obtain the following best-reply function for each i:

xi = (1 − λ)αi + λxi. (11)

After some normalizations, it should be clear that (11) is equivalent to the standard linear-in 
means model (1) in which individual effort is a function of individual observable characteristics 
αi , which can also depend on the characteristics of neighbors, and on the endogenous peer effect 
xi .

Combining (11) with the definition (2) of agent i’s social norm, we find that the vector x∗ :=(
x∗

1 , x∗
2 ..., x∗

n

)T of equilibrium efforts must be a solution to

x = (1 − λ)α + λĜx, (12)

where α := (α1, . . . , αn)
T is the productivity vector.16

Proposition 1 (Equilibrium efforts, norms, and utilities).

(i) There exists a unique interior Nash equilibrium x∗, which is given by

x∗ = M̂α, (13)

16 Observe that the linear-in-means model (1) is closely related to the spatial-autoregressive (SAR) model in the spatial 
econometrics literature (LeSage and Pace, 2009) and is usually written in matrix form as

x = β + λĜx + ε,

where, as in our model, ̂G is a row-normalized matrix that captures the distance or proximity in the geographical space (or 
any other space, e.g., the social space) between different agents or entities, such as geographical areas. In this literature, 
the main reason for the matrix ̂G to be row-normalized is to obtain an intuitive interpretation of λ as the weighted average 
impact of neighbors but also to avoid explosive spatial multipliers implied by λ (by analogy to time-series econometrics, 
in which the autoregression parameter λ is expected to be strictly less than 1 in modulus; see Hamilton, 1994). Equation 
(12) is clearly equivalent to the spatial-autoregressive model and it gives a microfoundation of the SAR model via the 
utility function (3) or (6).
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where M̂ = [m̂ij ] is an (n × n)-matrix of marginal effects defined as follows17:

M̂ := (1 − λ)
(
I − λĜ

)−1 = (1 − λ)

∞∑
k=0

λkĜk. (14)

(ii) The equilibrium social norms x∗ are given by

x∗ = ĜM̂α = (1 − λ)

∞∑
k=0

λk Ĝk+1α. (15)

(iii) For each i = 1, 2, . . . , n, agent i’s equilibrium utility level is given by

U∗
i (α, λ,g) = 1

2

⎡
⎢⎣α2

i − 1

λ

⎛
⎝αi −

n∑
j=1

m̂ij αj

⎞
⎠2

⎤
⎥⎦ . (16)

Several comments are in order. First, taking a closer look at the structure of the marginal effect 
m̂ij of agent i’s productivity on agent j ’s effort, we obtain

m̂ij =
∞∑

k=0

(1 − λ)λk︸ ︷︷ ︸
geometric

distribution

ĝ
[k]
ij . (17)

As seen from (17), m̂ij is decomposed into a series whose kth term is proportional to ĝ[k]
ij , that 

is, the normalized number of paths from i to j of length k in the social network. Surprisingly, 
the coefficients of the series are given by the standard geometric distribution with the odds ratio 
equal to θ ≡ λ/(1 −λ). Therefore, although the game under study is fully deterministic, one may 
inquire whether the marginal effects m̂ij have some probabilistic origin. In Online Appendix C, 
we demonstrate that the local average model is observationally equivalent to an average outcome 
of a naive social learning model.18

Second, there is no need to impose any conditions on θ ≡ λ/(1 − λ) (except that θ > 0) to 
guarantee the existence of a unique and interior Nash equilibrium. This is not the case in the local 
aggregate model.19

Third, it is readily verified that, if agents are ex ante homogeneous, that is, if αi = αj for any 
i, j = 1, 2, . . . , n, then, regardless of the network structure, the equilibrium effort levels are the 
same across agents: x∗

i = x∗
j for any i, j = 1, 2, . . . , n. This result displays another significant 

difference with the local aggregate model, in which the outcome is represented by the Katz–
Bonacich centralities of the agents. Here, the impact of the network structure on equilibrium is 

17 Because ̂G is row-normalized and 0 ≤ λ < 1, the matrix M̂ of marginal effects is well defined and can be represented 
by the Neumann series. This follows from Corollary 5.6.16 in Horn and Johnson (1985, Ch. 5, p. 301), in which the 
suitable matrix norm is the maximum row sum norm.
18 A similar result was obtained by Golub and Morris (2017).
19 Indeed, in the local-aggregate model for which the utility function is given by (4), one needs a condition on θ (i.e., θ <

1/μ(G, where μ(G) is the largest eigenvalue of G), to prove the uniqueness of equilibrium. In the local-average model, 
one does not need such a condition, because the matrix to be inverted is 

(
I − λĜ

)
, where ̂G is the row-normalized matrix 

of G. The largest eigenvalue of ̂G equals one and thus, the condition for invertibility of 
(
I − λĜ

)
is λ := θ/(1 + θ) < 1, 

which is always true.
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mediated by the correlation between the productivity distribution α and the degree distribution 
of the network g. We return to this property in Sections 3 and 4.

Fourth, instead of assuming (3) or (6), the following utility function can be assumed:

Ui(xi,x−i ,g) = αixi − 1

2
x2
i − θ

2

n∑
j=1

ĝij (xi − xj )
2, (18)

and exactly the same first-order condition (11) can still be obtained and thus, the same equilib-
rium effort x∗

i . The interpretation of the utility function (18) is still in terms of conformism but 
now, each individual pays some cost from deviating from the action of each of her neighbors 
instead of the average action of her neighbors.

Even if the equilibrium effort is the same and equals x∗
i , the equilibrium utility is different.20

As a result, the equilibrium effort x∗
i and its comparative statics results are the same but the 

welfare analysis and its comparative statics may differ, because the equilibrium utilities and thus, 
welfare are different.21

Finally, in part (iii) of Proposition 1, we calculate the equilibrium utility level of each agent 
in the network as a function of the parameters of the model. An important aspect of this model is 
whether individual i’s effort is above or below her own social norm. The following result clarifies 
this relationship.

Lemma 1. For each i = 1, 2, . . . , n, we have

x∗
i � x∗

i ⇐⇒ αi �
n∑

j=1,j �=i

m̂ij

(1 − m̂ii)
αj . (19)

This lemma shows that agent i’s own effort is above (below) her social norm if and only if 
her productivity is higher (smaller) than the weighted average of the other productivities in the 
network. For example, in a star network, if the central agent is more productive than the others, 

20 It is easily verified that, in our model, the equilibrium utility is given by

Ui(x
∗
i ,x−i ,g) = αix

∗
i − 1

2
(x∗

i )2 − θ

2
(x∗

i )2 + θx∗
i x̄∗

i − θ

2

⎛
⎝ n∑

j=1

ĝij x∗
j

⎞
⎠2

while, in this new model with preferences given by (18), we have:

Ui(x
∗
i ,x−i ,g) = αix

∗
i − 1

2
(x∗

i )2 − θ

2
(x∗

i )2 + θx∗
i x̄∗

i − θ

2

n∑
j=1

ĝij (x∗
j )2

The only difference between these two utility functions is the last term which is clearly different, since 
(∑n

j=1 ĝij x∗
j

)2 =
(x̄∗

i
)2 �= ∑n

j=1 ĝij (x∗
j
)2.

21 As noted by Boucher and Fortin (2016), another utility function could have generated the same first-order conditions 
(11) and thus, the same equilibrium effort x∗

i
. It is given by

Ui(xi ,x−i ,g) = αixi − (1 + θ)

2
x2
i + θxi

n∑
j=1

ĝij xj .

However, in this case, the properties of the model are very different, since it is no longer a conformist model.
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then her effort is always above the social norm of her neighbors (the peripheral agents), who, in 
turn, exert effort below that of their social norm, since the latter is the effort of the central agent. 
This is a useful insight that helps us to understand the main results of Sections 3 and 4.

2.4. Linear-in-means model and heterogeneity: an example

In the Introduction, we discuss how peer effects are estimated in the literature using the linear-
in-means model (see (1)), which captures an average effect. In reality, the same average effect 
can have a very different impact on outcomes, depending on other moments of the distribution, 
in particular, the variance.22 Contrary to the linear-in-means model, the local-average model can 
address this issue, since it encompasses a network approach whereby the group each individual 
belongs to is determined by her direct neighbors. In that case, the whole distribution matters in 
evaluating the impact of peers on outcomes.

To illustrate this, in Online Appendix D, we provide a simple example that shows how a 
mean-preserving spread of the productivity impacts own and aggregate outcome. This example 
shows that estimating a linear-in-means model may be misleading, because it focuses only on the 
average effect and does not take into account other characteristics of the distribution of efforts in 
the population. In this example, we show that the local-average model can have a very different 
prediction than the linear-in-means model, depending on the value of λ, the taste for conformity, 
and the value of t . Indeed, with exactly the same average characteristic (here, productivity) in the 
group (here, network), the individual effort level may vary a lot. In this example, these changes 
are driven by t , which is proportional to the standard deviation of the productivity distribution. 
As a result, when studying the impact of the social norm on individual effort, one should not only 
take into account the average social norm of the reference group but also its variance.

3. Comparative statics

We aim to understand the properties of our model by performing some comparative statics 
exercises of the Nash equilibrium with respect to the key parameters of the model: (i) the pro-
ductivity vector α; (ii) the taste for conformity λ; and (iii) the density/sparsity of social network 
g.

3.1. Effect of productivity

Let us start with the productivity α of all agents. We have the following result:

Proposition 2 (Comparative statics for productivity).

(i) For all i, j = 1, 2, . . . , n, the marginal effects of a change in individual i’s productivity αi

on individual j ’s equilibrium effort x∗
j and individual j ’s social norm x∗

j are positive and 
do not exceed 1:

22 For example, in a classroom of 30 students, the impact of an average test score of 50/100 is very different if all 
students have a test score of around 50/100 (i.e., low variance with a very homogeneous distribution of test scores) than 
when some students have very high test scores and others have very low test scores (i.e., high variance with a very 
heterogeneous distribution of test scores).



12 P. Ushchev, Y. Zenou / Journal of Economic Theory 185 (2020) 104969
0 <
∂x∗

j

∂αi

< 1, 0 <
∂x∗

j

∂αi

< 1.

(ii) The equilibrium utility of each individual i = 1, 2, . . . , n is increasing with her own pro-
ductivity:

∂U∗
i (α, λ,g)

∂αi

> 0.

(iii) For any j �= i, agent i’s equilibrium utility U∗
i (α, λ, g) increases (decreases) in response 

to a small change in αj , if and only if agent i’s equilibrium effort x∗
i is above (below) her 

equilibrium social norm x∗
i ; that is, sign

[
∂U∗

i

∂αj

]
= sign

(
x∗
i − x∗

i

)
, or equivalently, using 

Lemma 1,

∂U∗
i

∂αj

� 0 ⇐⇒ αi �
n∑

l=1,l �=i

m̂il

(1 − m̂ii)
αl

The first result is straightforward because, as implied by (13), each x∗
i is a convex combination 

of productivity and social norms. The second result, although intuitive, is relatively difficult to 
show. Indeed, when own productivity αi increases, own effort x∗

i increases, which raises U∗
i , the 

equilibrium utility of i, but the social norm x∗
i also increases, which can increase or decrease U∗

i

depending on whether x∗
i is higher or lower than x∗

i . We show in the proof that the first direct 
effect is stronger than the second indirect effect, so that an increase in αi always increases U∗

i . 
When we analyze the effect of αj on U∗

i for j �= i, we find a similar result, that is, the impact 
depends on whether x∗

i is above or below x∗
i .

3.2. Effect of conformity

We now look at the impact of taste for conformity λ on individual and social outcomes.

3.2.1. Pure individualism versus total conformism
To obtain some intuition, we begin by contrasting two extreme cases: pure individualism (λ =

0), where i’s utility depends only on own productivity αi ; and total conformism (λ → 1), where 
i’s utility depends only on others’ behavior. To obtain these results, we use the observational 
equivalence between our models and that of the Markov chain developed in Online Appendix 
C to compare the outcomes generated by perfect individualism (λ = 0) and total conformism 
(λ = 1).

It is straightforward to observe that, under pure individualism (λ = 0), we have x∗
i = αi . In 

this case, norms play no role, and there are incentives for an individual to exert neither higher 
nor lower effort than her intrinsically desirable level, αi . However, the outcome when λ → 1 is 
less obvious.

Proposition 3 (Totally conformist agents). For any network structure, individual efforts in a to-
tally conformist society are given by

lim
λ→1

x∗
i (λ) = πα =

n∑
j=1

πjαj , for all i = 1, . . . , n, (20)

where π ≡ (π1,π2, . . . , πn) are normalized degrees of agents:
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πi := di∑n
j=1 dj

, for all i = 1,2, . . . n, (21)

Proposition 3 shows that, for any network structure, when agents are perfectly conformist, the 
equilibrium effort depends only on the weighted productivity in the network, where the weights 
depend on the network structure. This implies, in particular, that πj is the probability that a 
perfectly conformist individual i exerts a level αj of effort. This means that, when λ → 1, the 
effort of all agents in the network is the same and that the level of these efforts depends on the 
network structure captured by π and on the productivity distribution captured by α. Thus, the 
probabilistic interpretation of the model helps us to understand the totally conformist society, 
which is otherwise difficult to characterize.23

We are now equipped to compare the purely individualist society (λ → 0) and the totally 
conformist society (λ → 1).

Proposition 4 (Individualist versus conformist society).

(i) Individual effort:

lim
λ→0

x∗
i (λ) � lim

λ→1
x∗
i (λ) ⇐⇒ αi �

n∑
j=1

πjαj

(ii) Aggregate effort:

lim
λ→0

∑
i

x∗
i (λ) � lim

λ→1

∑
i

x∗
i (λ) ⇐⇒

n∑
j=1

αj � n

n∑
j=1

πjαj

Part (i) of Proposition 4 shows that the effort exerted by each agent i can be higher or lower in 
a pure individualist society than in a completely conformist one if the productivity of i is above 
or below the weighted average productivity in the network. This result depends on both own 
productivity and the network structure. Part (ii) of Proposition 4 shows that conformity is not 
necessarily good for aggregate effort. However, when αi and πi are positively (negatively) corre-
lated, that is, agents with higher productivity have (less) more central positions in the network,24

then perfect conformity increases aggregate effort.
How do individual and aggregate efforts change when the taste for conformity varies? To 

answer this question, we study the comparative statics with respect to the conformity parameter 
λ.

23 A similar result in terms of conformity limits was shown by Golub and Morris (2017), but in the context of imperfect 
information.
24 Indeed, it is straightforward to show that:

n∑
j=1

πj αj � 1

n

n∑
j=1

αj ⇐⇒ Corr (π ,α) � 0,

where Corr (π ,α) is the correlation between π and α. If Corr (π ,α) > 0 (< 0), then more productive agents are also 
more (less) central (in terms of degree centrality) in the network.
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3.2.2. The impact of the taste for conformity on outcomes
Let us totally differentiate (11) with respect to λ. We obtain

dx∗
i = −αi dλ︸ ︷︷ ︸

productivity
effect

+ x∗
i dλ︸ ︷︷ ︸

direct
norm effect

+λ
(
∂x∗

i /∂λ
)
dλ︸ ︷︷ ︸

indirect
norm effect

(22)

Indeed, when λ increases, the individual effort of individual i, x∗
i , is affected in three differ-

ent ways. First, there is a negative productivity effect, according to which, when conformity 
increases, the impact of own productivity on effort decreases. Second, there is a positive direct 
social-norm effect, indicating that, when λ increases, the impact of the social norm on own effort 
increases. These are straightforward direct effects due to the fact that, when λ increases, agents 
pay more attention to their neighbors than to themselves. There is a third, more subtle effect, 
the indirect social-norm effect, which can be positive or negative. This effect shows that, when 
λ increases, the social norm itself changes as i changes her effort and her peers become more 
conformist. The effect is ambiguous as i’s friends may increase or decrease their effort following 
an increase in λ. As a result, the total effect of λ on x∗

i is ambiguous. To understand this better, 
using (11), (22) can be written as

dx∗
i = − (

x∗
i − x∗

i

) dλ

1 − λ
+ λ

∂x∗
i

∂λ
dλ

We now see that the total impact of a change of λ crucially depends on whether the individual 
effort of i is above or below her own social norm. As observed from (9), this is because the effect 
of λ on the marginal utility of effort is ambiguous and depends on the gap, xi − xi , between 
the individual’s effort and her social norm. In particular, when λ increases, agents become more 
conformist, and the gap between xi and xi matters more.

Recall that π = (π1, . . . , πn) is the normalized degree distribution of the network g (see (21)). 
We obtain the following result.

Proposition 5 (Non-monotonicity of individual efforts in conformism).

(i) For any λ ∈ (0,1), if ∂x∗
i /∂λ > 0 for some i, then it has to be that ∂x∗

j /∂λ < 0 for some 
j �= i.

(ii) When λ is small, we have

∂x∗
i

∂λ
≷ 0 ⇐⇒ αi ≶

n∑
j=1

ĝij αj (23)

(iii) Assume that the following conditions hold:
n∑

j=1

πjαj ≤ αi <

n∑
j=1

ĝij αj . (24)

Then, agent i’s individual effort x∗
i (λ) has an interior global maximum in λ.

(iv) Assume that the following conditions hold:
n∑

j=1

πjαj ≥ αi >

n∑
j=1

ĝij αj . (25)

Then, agent i’s individual effort x∗(λ) has an interior global minimum in λ.
i
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Part (i) of Proposition 5 provides an expression of the impact of conformity on individual i’s 
effort. We show that it crucially depends on whether both individual i and all other agents in the 
network (since all agents are path-connected to each other) make efforts above or below the social 
norm of their friends. In particular, if we order agents by their productivity in descending order, 
so that αmax := α1 and αmin := αn are the highest and lowest values of productivity among the 
n agents in the network, respectively, then, by Lemma 1, it has to be that x∗

1 > x∗
1 and x∗

n < x∗
n. 

As a result, because some individuals exert effort above the norm and some below the norm, the 
total impact of λ on an individual is ambiguous, and has to increase for some individuals and 
decrease for others. Equation (23) shows that, for small λ, the sign of this derivative depends 
only on whether i’s productivity is above or below that of her peers.25

Observe that this comparative statics result is very different to that obtained in the local-
aggregate model in which an increase in λ or θ (social multiplier or social interaction effect in 
the local-aggregate model; see (4)) always leads to an increase in effort x∗

i . This is important 
for policy purposes, because, as noted by Boucher and Fortin (2016), if there is a positive policy 
shock on λ, and we observe that individual effort either decreases or the effect is non-monotonic, 
then we know that the underlying utility function is defined by the local-average model (see (3)
or (6)) and not by the local-aggregate model. To know which utility function each agent has when 
choosing her effort is important for policy implications, as discussed in Section 6 below.

Parts (ii) and (iii) of Proposition 5 provide sufficient (but not necessary) conditions for x∗
i to 

vary non-monotonically with λ.26 Based on these conditions, which depend only on the produc-
tivity parameters and the structure of the network, αi cannot be neither too high nor too low for 
the relationship between x∗

i and λ to be non-monotonic. Clearly, if λi is very high (low), which 

implies that x∗
i is very likely to be above (below) x∗

i , then 
∂x∗

i

∂λ
is negative (positive). Conditions 

(24) and (25) also guarantee a global interior maximum or minimum in λ. In particular, if αi is 
above (below) the productivity in the network, there is a global interior maximum (minimum), 
which means that an increase in λ first has a positive (negative) impact on x∗

i and then a negative 
(positive) one.

In fact, the non-monotonicity expressed in parts (ii) and (iii) of Proposition 5 can be complex 
and not necessarily U shaped or bell shaped. In Fig. 1, we provide an example for a chain network 
with 13 nodes in which increasing λ yields an S shape. In this chain network, node 0 is in the mid-
dle, nodes 1, 2, 3, 4, 5, and 6 are on the right side of node 0, while nodes −1, −2, −3, −4, −5, 
and −6 are on the left side of node 0.27

In Proposition 5, we show that the impact of λ on individual effort is very complex and difficult 
to sign. In Corollary E.1 in Online Appendix E, we show that the same non-monotonicity results 
hold for the aggregate effort, which is an important aspect of this model.28 Also, in Proposition 
E1 in Online Appendix E, we demonstrate that, in regular networks, the aggregate effort does 
not vary with λ. This is because, in a regular network, there is perfect compensation between the 
positive impact of λ on low-productive agents and the negative impact of λ on high-productive 
agents. As a result, neither the average nor aggregate effort in a regular network are affected by a 

25 Proposition G4 in Online Appendix G.2 generalizes Proposition 5 when the taste for conformity is individual specific 
and equal to λi for each agent i.
26 We give sharper conditions for some specific types of network structures in Section E.3 in Online Appendix E.
27 The values of productivity are assumed to be: α0 = 0.75, α1 = 1 = α−1, α2 = 0.5 = α−2, α3 = α−3 = 0.25, α4 =
0.5 = α−4 =, α5 = 2α−5, and α6 = 0.5 = α−6.
28 For example, in crime, we would be interested in analyzing how conformity affects individual crime effort but also 
the total crime level in the network.
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Fig. 1. Non-monotonic effect of λ on individual effort for a chain network with n = 13.

change in λ. In Section E.4 in Online Appendix E, we illustrate this result by means of a circular 
network. When we rewire the links in this network without changing the network topology, we 
show that the convergence of agents’ efforts to the average effort can be faster or slower than in 
the original network depending on the rewiring.

To summarize, in this section, we show that the impact of the taste for conformity λ on i’s 
effort depends on the productivity of each individual and the network topology, which determines 
the links between all agents and, thus, the peer pressure (via the social norm) that neighbors exert 
on own effort. Therefore, the effect of a higher taste for conformity on own effort is complex and 
determined by whether the individual is an “underdog” or someone who has high productivity. 
If we consider crime, this determination is important, since it shows how delinquents influence 
each other and how an individual’s crime effort is affected by the degree of conformism in the 
peer group she belongs to.

3.3. Do agents exert more effort in denser networks?

We now consider the consequences of a change in the network structure by asking the follow-
ing question: how does adding a new link to the existing network affect the equilibrium efforts? 
In the local-aggregate model, the answer is straightforward: because of strategic complementar-
ities, regardless of the productivities αs, all agents always exert more effort in denser networks. 
However, as the following proposition shows, this is not always true in the local-average model.

Proposition 6. Assume that agents i and j are not connected to each other (gij = 0). Then, 
adding a link between i and j leads to:

(i) an increase in everyone’s effort, if the following two conditions hold simultaneously:

αi >

∑
l �=i

(
m̂il − λm̂jl

)
αl

1 − λ − m̂ii + λm̂jj

, (26)

αj >

∑
l �=j

(
m̂jl − λm̂il

)
αl ;and (27)
1 − λ − m̂jj + λm̂ii
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(ii) a reduction of everyone’s effort, if the inequalities are opposite in (26) and (27).

Otherwise, there is an ambiguous outcome.

This proposition shows that, in any network, adding a link between two agents who have high 
(low) productivities not only increases (decreases) the effort of these two agents but also increases 
(reduces) the effort of all the other agents in the network. Indeed, if we connect agent i to a 
high-productivity agent j , then i’s norm increases and the best response for i is to increase her 
effort (see (11)). This implies that the norm of i’s neighbors increases, which, in turn, increases 
their effort, and so forth. Similarly, if we connect j to a high-productivity agent i, then j ’s norm 
increases and the best response for j is to increase her effort. We have again the same snow-ball 
effect. The same reasoning applies in the opposite direction if we connect two low-productive 
agents. Indeed, if agent i connects to low-productivity agent j , then i’s norm decreases, which 
reduces i’s effort. This, in turn, decreases the norm of i’s neighbors, which reduces their effort, 
and so forth.

To illustrate this result, consider a star network with three agents in which agent 1 is in the 
center. The row-normalized adjacency matrix is then given by

ĜS =
⎛
⎝ 0 0.5 0.5

1 0 0
1 0 0

⎞
⎠

Let us first assume that α1 = 2, α2 = 1 and α3 = 0.5, so that the star is more productive than the 
peripheral agents are. It is easily verified that

x∗S = 1

4(1 + λ)

⎛
⎝ 3λ + 8

−λ2 + 8λ + 4
λ2 + 8λ + 2

⎞
⎠ , x∗S = 1

4(1 + λ)

⎛
⎝ 8λ + 3

3λ + 8
3λ + 8

⎞
⎠ .

According to part (ii) of Proposition 6, adding the link 2–3 between the two less productive 
agents should decrease the efforts of all agents in the network. Let us verify this. By adding the 
link between agents 2 and 3, the network becomes complete and the row-normalized adjacency 
matrix is now given by

ĜC =
⎛
⎝ 0 0.5 0.5

0.5 0 0.5
0.5 0.5 0

⎞
⎠

In that case, we obtain

x∗C = 1

2(2 + λ)

⎛
⎝ 8 − λ

4 + 3λ

2 + 5λ

⎞
⎠ , x∗C = 1

2(2 + λ)

⎛
⎝ 3 + 4λ

5 + 2λ

6 + λ

⎞
⎠ .

It is easily verified that x∗S
i > x∗C

i , for all i = 1, 2, 3, so that adding the link 2–3, indeed, de-
creases the effort of all agents in the network. Consider first agent 2. By adding the link 2–3, her 
social norm decreases, that is, x∗S

2 > x∗C
2 , since, before adding the link 2–3, the social norm of 

agent 2 was equal to the effort of agent 1, a very productive agent, while, after adding the link 
2–3, it becomes the average of the efforts of 1 and that of 3, a low-productive agent. Since agent 
2’s norm decreases, her best response is to decrease her effort. The same reasoning applies for 
agent 3, whose norm changes from the effort of agent 1 to the average effort of agents 2 and 3. 



18 P. Ushchev, Y. Zenou / Journal of Economic Theory 185 (2020) 104969
Thus, agent 3’s norm decreases and her best response is to decrease her effort. Since both agents 
2 and 3 reduce their effort, the social norm of agent 1, which is the average effort of agents 2 and 
3, decreases and her best response is to decrease her effort. As a result, by adding the link 2–3, 
all agents reduce their effort.

Assume now that α1 = 0.5, α2 = 1, and α3 = 2 so that the peripheral agents are now the most 
productive ones in the network. Then, it is easily verified that adding the link 2–3 increases the 
effort of all agents in the network, as predicted by part (i) of Proposition 6. This is because, 
when the link 2–3 is added, the social norm of agent 2 increases, as it changes from being equal 
to the effort of agent 1, a low-productive agent, to the average effort of agents 1 and 3, where 3 
is a high-productive agent. Her best response is to increase her effort. The same applies to agent 
3. Since both agents 2 and 3 increase their effort, agent 1 also increases her effort, because her 
social norm increases.

Finally, if we assume that α1 = 1, α2 = 0.5, and α3 = 2, then adding the link 2–3 has no clear 
monotonic effect on the effort of all agents in the network. Indeed, on the one hand, it increases 
the social norm of agent 2, who increases her effort, but reduces the social norm of agent 3, who 
decreases her effort. This implies that the effect on the social norm of agent 1 (and her effort), 
which is the average effort of agents 2 and 3, would be ambiguous.

Observe that the results obtained in Proposition 6 can easily be extended to removing links.

Remark 1. Assume gij = 1. If both (26) and (27) hold, then removing the link between agents 
i and j decreases the effort of all agents in the network. If the inequalities are opposite in (26)
and (27), then removing the link between agents i and j increases the effort of all agents in the 
network. Otherwise, the effect of removing the link i-j is ambiguous.

This is an important result that has interesting policy implications. Consider crime. The usual 
objective of the planner is to reduce total crime, which, here, amounts to reducing aggregate 
effort. Thus, Remark 1 helps us answer the following question: if the planner wants to reduce total 
crime, which link should she remove from the network? This is referred to as the key-link policy. 
As Remark 1 shows, the planner needs to remove the link between the two most productive 
agents in the network and this is independent of the network structure. Ballester et al. (2010)
determined the key link in the local-aggregate model and showed that it strongly depends on the 
network structure, in particular, the Katz–Bonacich centrality of the two agents involved in the 
key link. The main advantage of our result in Remark 1 is that the planner does not need to know 
the network but only the crime productivity of all agents in the network, which can be determined 
in the data by their crime records.

What does a key-link policy mean in the real-word? A link removal would lead to a disrup-
tion of the communication between two criminals. For example, when a police officer keeps 
watch over a street, she disrupts the possible communication between criminals from the same 
neighborhood. Another example of a key-link policy is to move a delinquent teenager to another 
residential location where there are less delinquents.29 By doing so, this delinquent stops her 
activities and communication with other delinquents in the older residential area.30

29 See, for example, Ludwig et al. (2001) and Kling et al. (2005, 2007), who study the moving to opportunity experiment 
that relocates families from high- to low-poverty neighborhoods. The authors found that this policy reduces juvenile 
arrests by 30 to 50% of the arrest rate for control groups.
30 For a general discussion of removing links and disrupting the network in criminal activities, see Lindquist and Zenou
(2019).
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4. Welfare and first best

We now analyze socially optimal outcomes. For that, let us first calculate the first-best out-
come of this economy and then determine the taxes/subsidies that can restore the first best.

4.1. First best

Define the social welfare W as

W :=
∑

i=1,2,...,n

Ui(xi,x−i ,g). (28)

The following proposition characterizes the first best and establishes a necessary and sufficient 
condition for the Nash equilibrium in efforts to be socially optimal.

Proposition 7 (First best).

(i) For each i = 1, 2, . . . , n, the first-best effort xO is a solution to

xi = (1 − λ)αi + λxi + λ

n∑
j=1

ĝj i

(
xj − xj

)
, (29)

or, in matrix form,

x = (1 − λ)α + λĜx + λĜT
(
I − Ĝ

)
x. (30)

(ii) For the Nash equilibrium to be the first best (x∗ = xO ), it is necessary and sufficient that 
the vector α of productivity satisfies the following system of linear constraints:

ĜT (I − Ĝ)M̂α = 0. (31)

(iii) Moreover, for any network,

n∑
i=1

xO
i =

n∑
i=1

αi. (32)

Part (i) of Proposition 7 clearly shows the difference in effort between the Nash equilibrium 
(see (11)) and the first best (see (29)). In particular, compared to the Nash equilibrium, the first 
best has an extra term, λ 

∑n
j=1 ĝj i

(
xj − xj

)
, which could be positive or negative. In fact, this 

extra term is the result of the following derivation: 
∑

j �=i

∂Uj

∂xj

∂xj

∂xi
(see the proof of Proposition 7), 

where ∂xj

∂xi
> 0, that is, an increase in i’s effort increases the average effort of j ’s friends if i and 

j are friends, and ∂Uj

∂xj
= ( λ

1−λ
) 
(
xj − xj

)
� 0. This last result implies that, if xj > xj (xj < xj ), 

then an increase in xj reduces (increases) the difference between xj and xj , which, because of 
conformism, increases (decreases) utility. Thus, at the Nash equilibrium, when deciding their 
individual effort, agents do not take into account the effect of their effort of the social norm of 
their peers, which creates an externality that can be positive or negative. Indeed, if individual 
i has friends for whom xj > xj (xj < xj ), then when she exerts her effort, she does not take 
into account the fact that she positively affects xj , the norm of her friends, which increases 
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(decreases) the utility of their neighbors. In that case, compared to the first best, individual i
underinvests (overinvests) in effort, because she exerts positive (negative) externalities on her 
friends.

This result contrasts with that obtained in the local-aggregate model in which agents always 
underinvest in effort, because they always exert positive externalities on their neighbors. Here, 
even though the efforts are strategic complements (see (8)), agents can exert positive or negative 
externalities on their neighbors. This is why, in the local-aggregate model, the planner always 
wants to subsidize agents (Helsley and Zenou, 2014) while, in the local-average model, the plan-
ner subsidizes agents who underinvest in effort and taxes agents who overinvest in effort. We 
investigate these issues in detail in Section 4.3 below.

Part (ii) of Proposition 7 gives an exact condition on the productivity vector α that ensures that 
the Nash equilibrium in efforts is always optimal. Unfortunately, this condition is very unlikely 
to hold in most networks, as shown in Online Appendix E.

Finally, in part (iii), we demonstrate that, for any network, the aggregate first-best effort 
is independent of λ, the taste for conformity, and is equal to the aggregate productivity in the 
network. In particular, this implies (see Proposition E1 in Online Appendix E) that, for regular 
networks, we have:

n∑
i=1

x∗
i =

n∑
i=1

xO
i =

n∑
i=1

αi.

In other words, for regular networks, even if the individual effort is generally not optimal, 
the aggregate effort in a network is always optimal. This is because, in regular networks, the 
positive and negative externalities imposed by agents on their neighbors exactly cancel out, so 
that the aggregate effect is optimal. Consequently, when the network is regular, some agents 
overinvest while others underinvest, and it is not possible that all agents underinvest. This result 
stands in sharp contrast to the local aggregate model, in which all agents exert too little effort in 
equilibrium, regardless of whether the network is regular or not.

Remark 2. If agents are ex ante homogeneous in productivity, that is, αi = αj for all i, j =
1, 2, . . . , n, then the Nash equilibrium in effort is always optimal. Furthermore, if det(Ĝ) �= 0, 
the converse is also true.

Indeed, if agents are ex ante homogeneous, we know that, in equilibrium, the position in the 
network does not matter and all agents exert the same effort level, which is equal to the common 
social norm in the network. As a result, there are no more social interactions, since xi = xi , for 
all i, and each utility depends only on own productivity. Thus, the equilibrium is always optimal.

In Online Appendix F, we illustrate condition (31) for specific networks. We show that for the 
equilibrium efforts to be optimal, there needs to be some compensation for the externalities that 
agents exert on others. In particular, for bipartite networks, such as the star and circular network, 
the average productivity of the different agents has to be the same, which is very unlikely to be 
the case.

4.2. Equilibrium versus first-best outcomes in a sufficiently conformist society

Let Corr (π,α) be the correlation between the productivity distribution α and the degree dis-
tribution π .
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Proposition 8 (First best in a sufficiently conformist society). If Corr (π,α)<0 (Corr (π ,α)>0), 
then there exists λ ∈ (0,1) such that, in equilibrium, for any λ > λ, all agents underinvest (over-
invest) in effort compared to the first best.

This result implies that more central agents make higher effort and exert stronger externali-
ties on their neighbors. As a result, all agents overprovide effort. This result is true when λ is 
sufficiently high since, in that case, externalities to neighbors become very important. For ex-
ample, in a star network with three agents, we show below that λ does not need to be very high 
(λ > λ = 1/2) for the result in Proposition 8 to hold (see footnote 31).

Remark 3. In a perfectly conformist society,

lim
λ→1

xO
i = 1

n

n∑
j=1

αj , for all i = 1,2, . . . , n (33)

This result shows that, when the society becomes perfectly conformist, the first-best effort is 
the same for all agents and does not depend on the position of each agent in the network. All 
agents should make an effort equal to the average productivity in the network. This implies that, 
unless the network is regular, the equilibrium in effort is never optimal when λ is sufficiently 
close to 1.

4.3. Restoring the first best

Let us return to the general case in which λ can take any value and assume that condition (31)
does not hold. Then, to restore the first best, the planner can either subsidize or tax efforts. Let 
SO

i denote the optimal per-effort subsidy for each agent i, where

SO
i = λ

(1 − λ)

∑
j �=i

ĝj i

(
xO
j − xO

j

)
.

If we add one stage before the effort game is played, the planner announces the optimal per-effort 
subsidy SO

i for each agent i such that,

U
SO

i

i =
(
αi + SO

i

)
xi − 1

2
x2
i − 1

2

(
λ

1 − λ

)
(xi − xi)

2 (34)

Observe that, when each agent i chooses xi that maximizes (34), she takes SO
i as given, in 

particular, xO
j and xO

j . In that case, the solution of this maximization problem for each agent i is 
the first-best.

Proposition 9 (Subsidies). The first best is restored if the social planner gives to each agent i the 
following tax/subsidy per unit of effort:

SO
i = λ

(1 − λ)

∑
j �=i

ĝj i

(
xO
j − xO

j

)
(35)

or, in matrix form:

SO = λ

(1 − λ)
ĜT

(
I− Ĝ

)
xO.
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By doing so, the planner restores the first best and subsidizes (taxes) agents whose neighbors 
make efforts above (below) their social norms. In other words, it is necessary to subsidize agents 
who exert effort below that of their neighbors and to tax those who exert effort above that of their 
neighbors.

Let us illustrate this result with an example. Assume a star network in which n = 3, and agent 
i = 1 is the star. Set α1 = 2, α2 = α3 = 1, so that the star is more productive than the peripheral 
agents are. Since α1 = 2 > 1 = (α2 + α3) /2, condition (31) is not satisfied, and hence, the Nash 
equilibrium is not optimal. We have

x∗ = 1

(1 + λ)

⎛
⎝ 2 + λ

1 + 2λ

1 + 2λ

⎞
⎠ , xO = 1

(1 + 4λ)

⎛
⎝ 2 + 5λ

1 + 6λ

1 + 6λ

⎞
⎠ .

The star agent overinvests compared to the first best 
(
x∗

1 > xO
1

)
. Indeed, since x∗

2 = x∗
3 < x∗

2 =
x∗

3 = x∗
1 , the externality term λ 

∑n
j=1 ĝj i

(
xj − xj

)
(see (29)) is negative and the star, when 

deciding her effort level, does not take into account the negative externalities she exerts on agents 
2 and 3. For the peripheral agents 2 or 3, we obtain x∗

2 = x∗
3 � xO

3 = xO
2 ⇐⇒ λ � 1/2, so 

that they may overinvest or underinvest in effort, depending on the value of λ.31 However, the 
externality term is always positive, since x∗

1 > x∗
1 and thus, agents 2 and 3 always exert positive 

externalities on agent 1. As a result, the planner should tax agent 1 and subsidize agents 2 and 
3. Since x2 = x3, it is easily verified that the subsidies per unit of effort are equal to SO

1 =
2λ

(1−λ)
(xO

2 −xO
1 ) < 0 and SO

2 = SO
3 = λ

(1−λ)
(xO

1 −xO
2 ) > 0. The subsidies or taxes exactly correct 

for the externalities exerted by the agents. We obtain:

SO = λ

(1 + 4λ)

⎛
⎝ −2

1
1

⎞
⎠ (36)

Clearly, this result strongly depends on the productivity values. For example, if α1 = 0.5 and 
α2 = α3 = 1 so that the productivity of the central agent is the lowest, then, to restore the first 
best, the planner now needs to subsidize agent 1 (the star) and to tax agents 2 and 3 (the peripheral 
agents) since, now, the former exerts positive externalities on agents 2 and 3 while the latter exert 
negative externalities on agent 1.

5. Extensions

In this section, we develop several extensions of the baseline local-average model. We con-
sider weighted networks, heterogeneous tastes for conformity, anti-conformist attitudes, ambi-
tious behavior, and network formation. These extensions show how various features of individual 

31 Observe that, for the star network with n = 3 and α1 = 2, α2 = α3 = 1, we have

3∑
j=1

πj αj = α1

2
+ α2 + α3

4
= 3

2
>

4

3
= 1

3

3∑
j=1

αj ,

which means that Corr (π ,α) > 0, since the star has both a higher productivity and a higher degree than the peripheral 
agents. Thus, our results confirm Proposition 8. When λ > λ = 1/2, all three agents in the star network overinvest in 
effort compared to the first best. It is also easily verified that, if we now assume for the same network that α1 = 1, 
α2 = α3 = 2, then, 

∑3
j=1 πjαj = 3

2 < 5
3 = 1

3
∑3

j=1 αj , and thus, Corr (π ,α) < 0. In this case, if λ > λ = 1/2, all 
three agents in the star network underinvest in effort compared to the first best.
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behavior affect our main results and how our model can be applied to a wide range of different 
contexts.

5.1. Weighted networks

Consider, first, an extension of the baseline local-average model in which the network is di-
rected, weighted, and may have self-loops, as in the standard DeGroot model (Golub and Jackson, 
2010). Let W = [wij ] be an arbitrary (n × n) row-normalized irreducible matrix with non-
negative entries. Each cell wij , i, j = 1, 2, . . . , n, gives the relative impact (weight) of agent 
j ’s effort on agent i’s social norm xi , defined as follows: xi ≡ ∑n

j=1 wijxj . In particular, we do 
not rule out self loops, that is, we allow for the possibility that wii > 0 for some i. Otherwise, 
agent i’s utility function is the same as in the baseline model and given by (3).

In Online Appendix G.1, we study this more general model with the adjacency matrix W
and show that most of our results (total conformism, comparative statics, and welfare) remain 
qualitatively the same.

In Proposition G3, we show that a slight change in the network W may increase everyone’s 
effort if highly productive agents have more impact on everyone’s social norms. This echoes our 
result established in Proposition 6 in which we demonstrate that adding a link in the network 
may increase everyone’s effort if this link is between two highly productive agents. However, in 
the weighted network model, this result is much easier to prove, because the standard calculus 
technique can be used to study the consequences of small changes in the weights on outcomes.

5.2. Heterogeneous tastes for conformity

In Online Appendix G.2, we relax the assumption that λ is the same across all agents by 
allowing each agent i to have a specific taste for conformity λi . We first show that our existence, 
uniqueness, and interiority results when λ is the same for all agents (Proposition 1) are robust to 
this extension.

Then, Proposition G4 provides additional intuition about the non-monotonicity results of 
Proposition 5. We show that higher conformity of some agents—namely, those who exert efforts 
below their social norms—increases everyone’s effort because of strategic complementarities, 
while higher conformity of the others has the opposite effect. Therefore, it is not surprising that 
the total effect is ambiguous, as Proposition 5 states.

5.3. Anti-conformism

We now consider what happens if agents are anti-conformist,32 that is if the taste for confor-
mity θ is negative. In this case, the magnitude of |θ | can be viewed as the degree to which an 
agent wants to be different from the others (although not necessarily better than the others). In 
other words, each individual obtains a benefit of θ2 (xi − xi)

2 if she does not conform to the norm 
of her neighbors. This model can still be considered a local-average model but it is now a game 
with strategic substitutes (θ < 0) instead of strategic complements (θ > 0).

In Proposition G5 of Online Appendix G.3, we derive our main results for the anti-conformist 
model. We show that our model can be extended to the case of anti-conformity if agents are 

32 See Bramoullé et al. (2004), Bramoullé (2007), Grabisch and Rusinowska (2010a,b), and Grabisch et al. (2017) for 
network models with anti-conformist agents but in very different settings.
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not too non-conformist (|θ | < 1/2), although it loses a good deal of tractability. In particular, 
because we have a game with strategic substitutes, even if the equilibrium is unique, it is not 
always interior.

For example, in the case of a dyad (n = 2), in Online Appendix G.3, we show that the two 
agents exert strictly positive effort only if they are not too heterogeneous in terms of produc-
tivities, not too anti-conformist, or both. When this is not the case, then some agent may exert 
zero effort (see (G.25), which totally characterizes the Nash equilibrium for the dyad network). 
Indeed, in the anti-conformist model with a dyad network, when the difference in productivity 
between the two agents is too high, then it becomes optimal for the low-productivity agent to 
exert zero effort, because she wants to differentiate herself as much as possible from the high-
productivity agent (whose effort is her social norm). On the contrary, when the productivity 
difference is not too large, then the low-productivity agent can still differentiate herself from the 
high-productivity agent and exert positive effort. This never happens in the conformist model, 
because agents always want to be as close as possible to each other.33

Furthermore, we show that, in contrast to Proposition 2, the impact of αj on x∗
i is a priori am-

biguous. Finally, we demonstrate that if agents are very anti-conformist, there are either multiple 
equilibria or an equilibrium fails to exist.

5.4. Ambition and social norms

It seems realistic to assume that agents may benefit from choosing an effort that is higher than 
the average effort of their neighbors. To address this issue, let us extend our utility function (3)
so that, for each individual i, it is now given by

Ui(xi,x−i ,g) = αixi − x2
i

2
− θ

2
(xi − βixi)

2 ,

where βi ≥ 1 is agent i’s ambition factor. Since βi ≥ 1, the “reference effort” of each individual 
i is now higher than the social norm xi of her neighbors.34 Denote βmax ≡ max{β1, . . . , βn}. 
Then, if λβmax < 1, there exists a unique interior equilibrium.

To investigate the welfare properties of this model, assume that all agents are ex ante identical, 
that is, α1 = . . . = αn = α > 0, and that they have the same ambition factor, that is, β1 = . . . =
βn = β > 1. In that case, we show in Appendix G.4, that, in equilibrium, each individual exerts 
an effort above the social norm (average effort) of their direct friends.

Moreover, for regular networks, we show that all agents overinvest in equilibrium compared 
to the social optimum. For non-regular networks, we demonstrate (see Proposition G6) that if the 
agents are either sufficiently conformist (high λ) or sufficiently non-conformist (low λ), they all 
overinvest in equilibrium compared to the first best. These results contrast with Proposition 7 for 
the benchmark model, in which the equilibrium is socially optimal when productivities do not 
vary across agents. This is because ambitious behavior creates an additional positive externality, 

33 Observe that, when all agents have the same productivity α and |θ | is low enough, then the conformist and anti-
conformist models lead to the same outcome, that is, all agents make an effort equal to α. When |θ | becomes larger, then 
even with ex ante identical agents and a regular network, in the anti-conformist model, there may be multiple equilibria 
in which one agent makes a higher effort than the other. See Figure G5 in Online Appendix G.3. This never occurs in the 
conformist model since, with identical productivities, all agents always make the same effort for any possible network, 
including the regular one.
34 See Ghiglino and Goyal (2010), who also develop a model in which agents want to consume more than the average 
consumption (social norm) of their neighbors.
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which cannot be fully internalized by individuals even in the absence of any ex ante heterogene-
ity.

5.5. Network formation

Thus far, we have assumed that the network is fixed and taken as given when agents decide 
their effort level. Consider now a two-stage game in which, in the first stage, agents create links 
(endogenous network formation) while, in the second stage, they exert effort.

Assume, for simplicity, that there are two types of agents: high-productivity agents for which 
αi = αH and low-productivity agents for which αi = αL, with αH > αL > 0. Assume also that 
creating or severing a link is costless.

In Proposition G7 in Online Appendix G.5, we show that, in the local-aggregate model, the 
only pairwise Nash equilibrium35 is the complete network in which all agents of any type are 
linked to each other. On the contrary, in the local-average model, the only pairwise Nash equi-
librium is a network of two disconnected components; in each component, all agents of the same 
type form a complete network. This network is called the completely homophilous network.

This means that, in the local-aggregate model, there is complete “integration” of the two 
types of agents while, in the local-average model, there is complete “segregation” of the two 
types of agents so that extreme homophily behavior prevails in equilibrium. In other words, in 
the local-aggregate model, even if agents are heterogeneous in terms of productivities, complete 
homophily cannot emerge because, independently of the type, there is always a benefit of forming 
new links due to strong positive spillovers.

On the contrary, in the local-average model, an agent of one type never wants to form a link 
with an agent of the other type. Indeed, when agents have the same productivity α, independently 
of their position in the network, they all exert the same effort level and have the same social norm, 
both equal to α. As a result, they no longer bear the cost of not conforming to their social norm 
and their equilibrium utility equals α2/2. However, if an agent forms a link with someone of a 
different type, she suffers an extra loss, because a gap between her effort and her social norm 
emerges. For this reason, in the local-average model, agents of one type are better off not having 
links with agents of the other type. Using the same reasoning, one can show that, if we introduce 
a cost of forming and severing links, we still have the same pattern, that is, complete homophily 
or segregation in the local-average model, and integration and heterophily in the local-aggregate 
model, but there may be more than one equilibrium. Furthermore, we can easily generalize our 
results to more than two types of agents.

6. Policy implications: local-average versus local-aggregate model

As stated in the Introduction, there are two main models of games on networks with positive 
peer effects (strategic complementarities): the local-average and the local-aggregate model. In 
the local-average model, deviating from the average effort of one’s peers negatively affects the 
utility of an individual (see (3)). The closer each individual’s effort is to the average of her 
friends’ efforts, the higher is her utility. By contrast, in the local aggregate model, the sum of the 
efforts of an individual’s peers positively affects the utility of each individual (see (4)). When 
peers exert more effort, the utility derived from own effort increases.

35 For a precise definition of pairwise Nash equilibrium, see Bloch and Jackson (2006).
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We believe that it is important to be able to disentangle different behavioral peer-effect models 
because, even if they look very similar, they have different policy implications. To highlight these 
differences between the models, we consider in the next subsection education and crime and 
observe how these two models yield different policy implications.

6.1. Policy implications: education

In terms of education, if the local-aggregate model describes well the preferences of students 
(Calvó-Armengol et al., 2009), then any individual-based policy, such as vouchers, would be ef-
ficient, because if one or more “key” students (e.g., the disruptive ones) are positively affected 
by the policy, because of peer effects (social multiplier), many other students are also positively 
affected. If, on the contrary, we believe that the local-average model describes students’ pref-
erences more adequately, then we should change the social norm in the school or classroom 
(group-based policy) and attempt to implement the idea that it is “cool” to work hard at school. 
Affecting a few students will not change anything if it does not change the social norm in the 
school.

An example of an educational policy that has attempted to change the social norm of students 
is the charter-school policy. Charter schools are very good at screening teachers and selecting 
the best ones. In particular, the “No Excuses policy” (Angrist et al., 2010, 2012) is a highly stan-
dardized and widely replicated charter model that features a long school day, an extended school 
year, selective teacher hiring, and strict behavioral norms, while it emphasizes traditional reading 
and math skills. The main objective is to change the social norms of disadvantaged children by 
being very strict on discipline. This is a typical policy that is in accordance with the local-average 
model, since its aim is to change the social norms of students in terms of education. Angrist et 
al. (2012) focus on special needs students who may be underserved. The study’s results show 
average achievement gains of 0.36 standard deviations in math and 0.12 standard deviations in 
reading for each year spent at a charter school called the Knowledge is Power Program (KIPP) 
Lynn, with the largest gains coming from the Limited English Proficient (LEP), Special Educa-
tion (SPED), and low-achievement groups. The authors show that the average reading gains were 
driven almost entirely by SPED and LEP students, whose reading scores rose by roughly 0.35 
standard deviations for each year spent at KIPP Lynn.36

In summary, an effective policy for the local-average model would be to change people’s 
perceptions of “normal” behavior (i.e., their social norm) so that a school-based policy could 
be implemented. Meanwhile, for the local-aggregate model, this would not be necessary and an 
individual-based policy should instead be implemented.

6.2. Policy implications: crime

It is well documented that crime is, to a large extent, a group phenomenon, and the source of 
crime is located in the intimate social networks of individuals (see, e.g., Warr, 2002; Bayer et al., 
2009; Damm and Dustmann, 2014).

36 See also Curto and Fryer (2014), who study the SEED schools, which are boarding schools serving disadvantaged 
students located in Washington DC and Maryland. The SEED schools, which combine a “No Excuses” charter model 
with a 5-day-a-week boarding program, are the United States’ only urban public boarding schools for the poor for 
students in grades 6–12. Using admission lotteries, Curto and Fryer (2014) show that attending a SEED school increases 
achievement by 0.211 standard deviation in reading and by 0.229 standard deviation in math per year.
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In the local-aggregate model, a key-player policy (Ballester et al., 2006; Zenou, 2016; Lee 
et al., 2018), whose aim is to remove the criminal that reduces total crime in a network the 
most, would be the most effective way of reducing total crime.37 In other words, the removal 
of the key player can have large effects on crime because of the feedback effects or “social 
multipliers” at work. Indeed, as the proportion of individuals participating in criminal behavior 
increases, the impact on others is multiplied through social networks. Thus, criminal behavior 
can be magnified, and interventions can become more effective.

On the contrary, a key-player policy would have nearly no effect in the local-average model, 
since it would not affect the social norm that committing crime is morally wrong. To be effective, 
one would have to change the norm for each of the criminals, which is clearly a more difficult 
objective. In that case, it is necessary to target a group or gang of criminals to reduce crime dras-
tically. This illustrates the fact that, for the local-aggregate model, individual-based policies are 
more appropriate while, for the local-average model, group-based policies are more effective.38

6.3. Which model is the most empirically relevant?

Which model is relevant is clearly an empirical question. To statistically identify whether the 
average model or the aggregate model is more appropriate for a particular outcome, Liu et al.
(2014) proposed the following methodology. It is necessary to estimate an augmented model, 
which includes both average and aggregate peer effects, and to determine which one is statisti-
cally significant. Using data for the National Longitudinal Study of Adolescent to Adult Health 
(Add Health), Liu et al. (2014) showed that, for study effort in education, the endogenous peer ef-
fect is mostly captured by a social-conformity (local average) effect rather than a social-multiplier 
(local aggregate) effect. This implies that a charter-school policy that aims to change the social 
norms of students (as in Angrist et al., 2010, 2012) would be the most effective policy to im-
prove education in schools. On the other hand, for sport activities, Liu et al. (2014) found that 
both social-conformity and social-multiplier effects contribute to the endogenous peer effect. 
Moreover, Lee et al. (2018), who studied juvenile delinquency, showed that the local-aggregate 
model is at work for the AddHealth data. This implies that a key-player policy would be the most 
effective policy to reduce crime for adolescents in the United States.

6.4. An illustrative example

Let us illustrate the above discussion about individual versus group-based policy with a simple 
example. Consider the network g in Fig. 2 with n = 11 players. This network was considered by 
Ballester et al. (2006) to illustrate their formula of the key player. In this network, player 1 bridges 
together two fully intra-connected groups with five players each.

6.4.1. An individual-based policy: key player
Consider a network-crime model in which agents choose crime effort that maximizes their 

utility, which can be based on either the local-aggregate or the local-average model. As an il-
lustration of an individual-based policy, we consider the key player policy, which consists of 

37 In Section 3.3, we also discuss the difference between the local-average and local-aggregate models in terms of the 
key-link policy, whose aim is to choose how to optimally remove a link between two criminals in order to minimize the 
total crime level in a network. See, in particular, Remark 1 and the discussion that follows.
38 For recent overviews on place-based policies, see Kline and Moretti (2014) and Neumark and Simpson (2015).
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Fig. 2. A bridge network.

determining the player who, once removed from the network, reduces total crime effort the most. 
To make the comparison between the two models easier, we assume that agents are ex ante iden-
tical, that is, αi = 1, for all i = 1, . . . n. We also assume that θ = 0.2.

The local-aggregate model Consider the local-aggregate model whereby the utility function 
is given by (4). Then, if θ < 1/μ(g) (where μ(g) is the largest eigenvalue of g),39 then a unique 
Nash equilibrium in efforts exists, which is equal to:

x∗ = (I − θG)−1 1

It is easily verified that the key player is agent 1 (Ballester et al., 2006). In particular, the total 
crime effort in equilibrium is equal to 91.67 while, after the removal of individual 1, it is 50. 
Thus, the removal of player 1 leads to a decrease of total crime activity by 45.46%. This is 
because removing player 1 disrupts the network and leads to two different networks that are no 
longer connected. The change in efforts after the removal of agent 1 varies a lot depending on the 
position in the network. For example, agent 2, who was directly linked to 1, reduces her effort 
from 9.17 to 5 (45.47% reduction) while agent 3, who was two links away from 1, decreases her 
effort from 7.78 to 5 (35.73% reduction).

The local-average model Consider now the local-average model in which the utility function 
is given by (3). We have shown that the Nash equilibrium is given by

x∗ = M̂α = 1

(1 + θ)

(
I − θ

(1 + θ)
G

)−1

1

It is easily verified that all agents make the same effort level equal to 1 (which is the social 
norm) so that total crime effort is 11. Let us remove player 1 (or in fact any other player) and 
renormalize the resulting adjacency matrix. It is easily checked that nothing changes since each 
player still makes an effort of 1 and the social norm is exactly the same and equal to 1. Because 
there is one less player in the network, the total effort is now given by 10 and the reduction in 
total crime is then equal to 9.09%.

In summary, an individual policy, such as the key player, has a big impact on total crime 
when the preferences of agents are based on the local-aggregate model while it has nearly no 
impact when the preferences are based on the local-average model. As a result, if the planner 
believes that the agents have preferences according to the local-aggregate model and implements 
a key-player policy while, in fact, agents have local-average preferences, then this example shows 
that this policy will fail to reduce crime, as agents will not change their criminal behavior.

39 This condition is verified for the network displayed in Fig. 2, since θ = 0.2 < 0.227 = 1/μ(g).
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6.4.2. A group-based policy: changing the norm
Consider again the network g in Fig. 2 and implement a group-based policy, which is common 

to everybody. For example, consider a reduction of α from 1 to 0.7. All agents in the network are 
affected in the same way.

The local-aggregate model By implementing such a policy, it is easily verified that total 
crime effort decreases from 91.67 (before the policy) to 64.17 (after the policy), giving a reduc-
tion in total crime of 30%.

The local-average model In this model, the effort and social norm change for all agents in 
the network. It is easily verified that all agents now reduce their crime effort to 0.7 and the social 
norm is now given by 0.7. As a result, we switch from a total crime effort of 11 (before the policy) 
to 7.7 (after the policy), that is, a reduction in total crime of 30%. In other words, changing the 
social norm from 1 to 0.7 now has a large impact on total crime in the network.

In summary, a group-based policy, such as changing the social norm by reducing the produc-
tivity of all agents in the network, has a much bigger impact on total crime when the preferences 
of agents are based on the local-average model. However, a group-based policy is less efficient 
when the agent’s preferences are based on the local-aggregate model. Again, if the planner has 
the wrong beliefs about agents’ preferences, then the impact of a group-based policy on reducing 
crime may be limited.

7. Concluding remarks

In this study, we analyze the linear-in-means model (also known as the local-average model 
in the network literature), which is the workhorse model in empirical work on peer effects. 
Apart from their position in the network, agents are heterogeneous in terms of productivity. 
We characterize the Nash equilibrium in efforts of this game in which each agent minimizes 
the social distance between her own effort and that of her peers (her own social norm). While 
individual productivity positively affects equilibrium effort, the impact of taste for conformity 
is non-monotone. Both the sign and the magnitude of this conformity effect depend on whether 
an individual is above or below her own social norm. We also study how adding or removing 
a link affects the aggregate effort in the network and show that it depends on the productivity 
of the agents involved in the link. Equilibria are usually inefficient and we provide a condi-
tion on the productivity distribution and the network structure that guarantees the efficiency of 
equilibrium. Because this condition often fails to hold, we show how to restore the first best. Un-
expectedly, the optimal taxation/subsidy scheme is to subsidize agents whose peers would exert 
efforts above their social norms while taxing agents whose peers would exert efforts below their 
social norms. Hence, the planner does not necessarily subsidize central agents, as is the case in 
the local-aggregate model.

More generally, we consider our framework to be rich enough to encompass many real-world 
situations in which people are conformist and dislike to deviate from the social norms of their 
friends. We also believe that our results lead to important policy implications that can be tested 
empirically. In particular, we shed light on the debate on whether individual-based policies are 
more effective in maximizing welfare or minimizing total activity (in the case of crime) than 
group- or place-based policies.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .104969.
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