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There exist optimal symmetric equilibria in the Green-Porter model [4, S] hav- 
ing an elementary intertemporal structure. Such an equilibrium is described entirely 
by two subsets of price space and two quantities, the only production levels used by 
firms in any contingency. The central technique employed in the analysis is the 
reduction of the repeated game to a family of static games. Journal of Economic 
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1. INTRODUCTION 

A subject of major interest in oligopoly theory is the nature and degree 
of implicit collusion that can be sustained amongst quantity-setting firms, 
via strategies that make output levels at time t depend upon aspects of the 
history of the oligopoly prior to t. The scope of such strategies clearly is 
limited by the extent of the firms’ knowledge of that history. By far the 
most attention has been given to the case in which the production levels of 
all firms in each previous period are common knowledge (see, for example, 
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Friedman [3] and Abreu [ 11). The consequences of invoking the opposite 
polar assumption about information are explored in two important papers 
by Porter [S] and Green and Porter [4]. In their setting, firms cannot 
observe one another’s past production levels; thus the actions of a firm are 
functions only of past prices, and possibly of the firm’s own quantity 
history. Information about the history of production is further obscured by 
the fact that there is a stochastic component to the market price; the level 
of aggregate production cannot be inferred precisely from the price. Our 
paper exhibits strategies for the firms in the Green-Porter model that form 
optimal symmetric sequential equilibria [7] of the discounted oligopolistic 
supergame. The equilibria have an extremely simple intertemporal struc- 
ture, and their optimality is established under very general conditions. 

Porter [8] studies the problem of how to maximize discounted profits 
with strategies based on trigger prices and Cournot-Nash reversion. He 
assumes that firms produce some quantity q less than the Cournot-Nash 
amount, until the price drops below a trigger price p in some period. 
Thereafter, all firms produce their Cournot-Nash quantities for T periods, 
after which they return to q (which is maintained until price again falls 
beIow 8, and so on). Porter characterizes the choice of q, p, and T (the lat- 
ter may be infinite) that yields cartel members the greatest discounted 
profit, subject to the constraint that the resulting regime must be a sequen- 
tial equilibrium. 

The optimization described above is severely limited in that it restricts 
attention to a small subset of the strategies available to cartel members. 
Included among the restrictions implicitly imposed by Porter are the 
following: 

(i) The critical set of prices that trigger T periods of “punishment” 
is of the form [O,p], that is, a tail test is used. 

(ii) The trigger price at time t is independent of prices prior to t - 1, 
so review strategies such as those used by Radner [9] are ruled out. 

(iii) Only one punishment is used: a firm cannot increase its quantity 
by different amounts, or for a different number of periods, depending on 
how low the preceding price was. 

(iv) A firm’s output at t cannot be a function of its previous outputs. 

(v) Punishments more severe than Cournot-Nash reversion are not 
permitted (see Abreu [ 1 I). 

Porter understands that a global optimum may not be achieved by 
equilibria of the sort he considers, and explains that complexity poses a 
major problem: “Since we will later allow the cartel to maximize joint value 
subject to enforcement constraints, the restriction to simple trigger 
strategies may not be desirable, given that more general strategies may lead 
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to better outcomes... Unfortunately, models with strategies such as these 
are extremely complicated for computational purposes, and it is dif~~~~t to 
obtain any interesting results.” [S, p. 3161. 

After modifying the model (Sect. 2) by replacing the continuum of 
possible production levels with a discrete production set for each player, we 
are able to dispense with all five restrictions listed above. We find that 
there exist equilibria of surprising simplicity which are optimal among all 
pure strategy symmetric sequential equilibria.’ In these equilibria, only two 
quantities are ever produced. To compute which quantity to produce in 
period t a firm simply needs to remember the price in the previous period 
and which quantity was specified by the equilibrium in that previous 
period. Thus the sequence of equilibrium production levels is a Markov 
chain. In fact, (ii), (iii), and (iv) above are satisfied by these optimal 
equilibria: once (i) and (v) are relaxed Porter’s remaining conditions are 
unrestrictive! These results require only mild regularity assumptions on 
demand, and the stochastic disturbance in price can enter in a rather 
general way. 

The central technique employed is the reduction of the repeated game to 
a static structure from which can be extracted the optimal equilibria in 
question (and indeed, equilibria supporting any symmetric equilibrium 
payoff vector). The analysis has a strong flavor of dynamic programming, 
and is in the tradition of the stochastic game literature beginning with 
Shapley [ 121 as well as the more recent papers of Abreu [I f and Radner, 

yerson, and Maskin [lo]. Notice that every pure strategy symm~tr~e 
sequential equilibrium (hereafter SSE) must prescribe other “suCcessor’- 
SSE’s to follow each one-period price history (we show that quantity 
histories can be ignored). One can imagine constructing a new game by 
truncating the discounted supergame as follows: after each first-period 

lace the SSE successor by the payoffs associated with that suc- 
cessor. The first-period equilibrium quantities will still constitute an 
equilibrium of the new game, and the resulting total payoffs will also be the 
same. More generally (if less intuitively), for any bounded set IV of real 
numbers, let B(W) c R represent the total payoffs that players could 
receive in pure strategy equilibria of truncated games in which each first- 
period price is followed by some symmetric payoff drawn from l+‘. At the 
end of the single period of the truncated game, firms receive their conven- 
tional one-period profits, plus some element of W (the same for each 
player), depending on the price that arises; the expected value of this sum, 
discounted to the beginning of the period, will be one element of 

W is said to be self-generating (in the context of a particular 

1 Abraham Neyman pointed out to us that an extension to mixed strategies would not be as 
straightforward as we previously thought. 
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game) if W_C B( IV). Let V be the set of payoffs a player can receive in the 
various SSE’s of the repeated game. Section 3 establishes that every self- 
generating set is a subset of I’. Moreover, V itself is self-generating. Con- 
sequently V is the largest bounded fixed point of the set-valued map B. 

Section 4 proves that for any compact set W, the image under B of W is 
the same as the image of the extreme points of W. This proposition is 
analogous to bang-bang theorems in optimal control theory (see, for 
example, Artstein [2]). Together with the results of the previous section, it 
yields an elementary proof that V is compact (see Sect. 5), so best and 
worst SSE’s exist whenever V is nonempty. Its implication for the repeated 
game is a dramatic dimensional simplification. If u is the payoff associated 
with any SSE, v can be supported by an SSE which in every contingency 
(except for the first period) looks like the first period of either the best or 
the worst SSE. The first period of the equilibrium yielding r~ is no longer an 
exception if v is the optimal element of V. These results are explained in 
detail in Section 6, which presents in addition a result on the sensitivity of 
maximal cartel profits to changes in the discount rate. 

The conclusion raises the possibility of applying the analytic approach 
taken here to other classes of repeated games. 

2. THE MODEL 

The structure presented here is based entirely upon the model developed 
in Porter [S] and Green and Porter [4]. Departures from their 
assumptions are noted below. The oligopoly is modelled by an N-person 
infinitely repeated game with discounting. The first step in defining the 
game is to specify the single-period component game G. 

The Single-Period Game 

N identical firms simultaneously choose quantities qi, i= l,..., N, of out- 
put to produce. Whereas in [8] all non-negative output levels are feasible, 
we assume that there is an indivisibility in production: only integer mul- 
tiples of some fundamental unit of production (which, of course, may be 
arbitrarily small) can be produced. This assumption simplifies the 
mathematics involved in Section 4. While it is a departure from tradition, it 
would appear to represent an increase in realism. Firms incur a total 
production cost c(q;) > 0 ([S] requires constant marginal cost). Market 
price p is a random variable whose distribution T(p; q) depends on 
aggregate production q. In [S], the inverse demand function is linear in 4, 
and stochastic noise 19 enters as an additive or multiplicative disturbance: 
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p = a + bq + 6 or p = (a + bq) 0. We dispense with these assumptions. The 
payoff of firm i given p is 

where q, is the quantity produced by firm j. Firms maximize expected 
profit. We will denote by Ei the expected value of rci (assumption (Al) 
below guarantees that “i is well defined), that is, 

where p(q) = j? p dT(p; q). Thus the one-period game is given by 

G = (S, )...) s,; 5, )...) EN), where Si= (0, 1, 2 ,... }, i= I,.,., N. 

We assume that: 

(Al) There exists a constant K such that q.p(q) 6 K for all qe S! _ 
(Note that S1 = Cf= 1 S,.) 

(A2) T(p; q) is absolutely continuous in p, Let g(p; q) be the 
corresponding probability density. 

(A3) The set .Q = (pJg(p; q) > 0} is contained in + and is indepen- 
dent of qES1. 

This assumption, which will later be relaxed slightly, ensures that under 
no circumstances will firms be able to infer from the price that with 
probability 1, someone has deviated from equilibrium behavior. Ability to 
make such inferences substantially changes the nature of the problem. 

(Ah) c(0) = 0, c(q) 3 0 for all q E S,, and there exist c0 > 0 and q. > Q 
such that c(q) 3 cO. q for all q 3 qo. 

(A5) G has a symmetric Nash equilibrium (in pure strategies). 

The Repeated Game G”(6). 

G”(6) is the infinitely repeated game defined by the component game G 
and the discount factor SE (0, 1). A strategy gr for firm i specifies an 
output in each period t = 1, 2,..., as a function of past prices 
P l-l = (p(l),...,p(r- 1)) and the firm’s own past quantities qj - I = 
(qi(l),..,, qi(t-1)). Thus oi=(ai(l), a,(2),...), where ai(l)ESi an 
a,(t): Q’-’ x Si’-r + Si is a (Lebesgue) measurable function for each t 3 2. 
A strategy profile c has the form g = (cT~?..., a,), and for each t 3 2, 
a(t)(p’- ‘; qrM1) = (al (t)(p’- ‘; 4:-l),..., oN(f)(pr- ‘; q;‘)), where q’- ’ = 
(q(l),..., q(i- I)), and q(s) = (ql (s),..., qds)), s = L..., f- 1. 
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Given a history H(t) = (p’; qf) and a strategy profile c’, we will denote by 
CJ/ H(tj the strategy profile induced by u on the subtree following H(t). Thus, 
for any sequence of prices p(l),..., p(s) and any sequence of quantity vec- 
tors ~(1 I,..., Y(S), 

4 If(r) (s + 1 w  Y”) 

= 4s + t + 1 )(P(l )Y.., p(t), P(1 L p(s); q(l),..., q(t), Y(l),..., Y(S)). 

Given a strategy profile g, a path (q(l), q(2)($), q(3)(p2),...) for the 
game is generated in the following way. In the first period firms produce 
q(1) = (crl (l),..., ~~(1)) and a price p(l) arises from the density 
g(.;~iN_lqi(l)). In period t, t>2, firms produce q(t)@-I)= 
a(t)(p(l),...,p(t- 1); q(l),..., q(t- l)(piP2)), and the market price p(t) is 
drawn from the density g(. ; cyzl qj(t)(pfpl)). The value ui(cr) of the 
strategy profile n for firm i is the present discounted value of expected 
payoffs in every period. Define 

R,(o; t)=sb* ... jam 71i(4(t)(P’-‘);P(t))‘g 
( 
P(l); f qj(l) ' "' 

j=l J 

'g 
i 

Ptt)i f 4j(t)(Pf-') dP(1)...dP(t). 
j= 1 1 

Then 

ui(o)= f 6’~R,(cq f). 
t=1 

Single-period payoffs are received at the end of each period; U,(a) is the 
value of the infinite stream discounted to the beginning of period 1. 

We use sequential equilibrium (see Kreps and Wilson [7]) as the 
solution concept in the repeated game. A strategy profile g is symmetric if 
01(t)=(T2(t)= ... = oN(t) for all t 3 1. (A5) guarantees the existence of a 
symmetric sequential equilibrium in pure strategies (SSE), because the 
strategy profile specifying that in every period, independently of the 
history, each firm produces its Cournot-Nash output is easily shown to be 
a sequential equilibrium.’ Therefore the set 

is nonempty. 

V= {ul(o)la is an SSE} 

‘We abuse terminology throughout by referring to a profile CJ as a sequential equilibrium. 
Technically, we mean that there exists a system of beliefs p such that (p, (T) is a sequential 
equilibrium. Extensions to repeated games of the ideas of consistency and sequential 

rationality used in defining a sequential equilibrium are immediate. 
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Assumption (Al) and the fact that supergame payoffs are discounted 
imply the existence of a bounded set 3 c S, such that any strategy for firm i 
specifying (in any contingency) an action qi$ 3, is strongly dominated. 
(Al) there exists K > 0 such that q .8(q) < K for all q E S, . Note that for 
any 4,YESI2 

Since c(q) > 0 for all q E S,, the maximum single-period payoff for player 
i is bounded by K, and consequently the maximum supergame payoff for 
player E’is bounded by 6K/(l--6). For any q>q*=max(q,, K/(~,(l-6)))~ 
the maximum supergame payoff that firm i faces if it produces the quantity 
q, for any aggregate production y E S, for the rest of the firms, is bounded 
bY 

6” (q.j(q+y)-c(q)+6K/(l -S,} <6. (K-coy-MKl(1 -S)} CO, 

and since firm i can always choose to produce q = 0 (and therefore get a 
supergame payoff of 0), firm i will only consider production quantities in 
z= [0, q*] n S,. This fact can be used to slightly relax assumption (A3) 
by requiring only that the set Q defined there be contained in B, an 
independent of (ql ,..., qN) E 3”‘. 

In the course of the previous argument we Rave shown that 
VE [O, 6K/( 1 - S)], hence V is bounded. 

3. REDUCTION TO A ONE-PERIOD PROBLEM 

For each repeated game G”(6), we define below a function B: 2’ --f 2’, 
where 2R is the power set of the real numbers. From this function one can 
recover V, the set of all payoffs received by a player in various SSE’s (sym- 
metric sequential equilibria). B provides a simple method of constructing 
an SSE giving any desired payoff u E V to each firm. The function B is 
related to a class of truncated games associated with G”(6) as described in 
the Introduction. This relationship is developed in what follows, to give 
intuitive motivation for the definitions and propositions; it is not needed 
for any of the formal results. The following definitions implicitly depend 
upon a particular game G”(6). 

642/39/l-15 
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DEFINITION. Given a set II’s R, a pair (q, U) with q E 3, and U: Q -+ W 
(Lebesgue) measurable, is admissible with respect to W if it satisfies the 
following incentive compatibility constraints: 

5l (4. eN) + jQ U(P) .g(p; N. q) dp 

8e,(4q.eN-l)+ u(p).g(p;(N-l).q+~)dp I for all q E S, 
Q 

where e,,, = (l,..., 1) E RN. 

Hereafter, for a vector (ql ,..., qN) E nj!= i gj and a measurable function 
u: R, -+ R, we use the notation 

Ej(q, >..., qN; u) = 6 C(q1,..., q&l + JQ 4~) ‘g (P; ;:I qj) dP] 

for all i = l,..., N. 

DEFINITION. For each Ws R define 

B( w) = IEl (4 ’ eN7 . u)l(q, U) is admissible with respect to W}. 

Let Q and U be functions with domain B(W) such that for every 
w  E B(W), (Q(W), U(W)) is admissible with respect to W, and 
w  = E, (Q(W) e,; U(W)). Such a pair of functions exists (there may be 
many; if so, choose one pair) by the definition of B(W). Notice that 
B(W) c 6(co( W) + iti($..., s)>, so B(W) is bounded when W is bounded. 
(Here, co(W) denotes the convex hull of W.) 

An alternative definition of B(W) can be given via a class of one-period 
games that are modifications of the component game G. For any 
measurable function U: R, --f W, define G(u; 6) = (3 ,..., 3; E, ( . ; U) ,..., 
EN(. ; u)). This is the same game as G, except that players’ payoffs are the 
sum of their payoffs in G and the expected value of the reward function U, 
all discounted by 6. If (q,..., q) is a Nash equilibrium of G(u; 6), then by 
definition (q, U) is admissible with respect to W and El(q. e,; u) E B(W). 
Conversely, any w  E B( W) is the payoff associated with some symmetric 
pure strategy equilibrium of G(u; 6), for some U: 52 -+ W. In other words, 
the incentive compatibility constraints invoked in the definition of the 
admissibility of (q, U) precisely express the fact that for any player with 
payoff function Ej( ; u), q is a best response to (q,..., q). 

DEFINITION. WE R is self-generating if WC B(W). 
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PROPQSITION 1 (Self-generation). For any bounded set WE 
implies B( W) E Y. 

Proof. The idea of the proof is to exhibit, for each u’ E B(W), an SSE 
C+(W) with u,(ci(w)) = w  for all i= l,..., N. With Q and U as defined above, 
for each w  E B(W), let U’(w) = w, U’(w) = U(w), and 

U’(w)(p’)= U(U’~‘(w)(p’~‘))(P(t)) for all pr E L?’ and f = 2, J,.... 

The functions U’ are well defined because W, the range oi U, is contained 
in B(W), the domain of U. For each M’E B( W), define the symmetric 
strategy profile 8(w) by 

&;(w)(l)= Q(w) and b<(w)(t+ 1 )(p’; qf)= Q(U’(w)(p’)), I= 1, 2,.... 

Notice that &(w)(t + 1) does not depend on the quantity history 
q’= (q(f),..., y(t)); consequently when referring to tilHCr,, we will write ~3j~,~ 
suppressing the redundant quantity arguments of N(t) = (p’; q’). We first 
show that the value of 6(w) for each player is 1~. Since 

Q(~‘(w)(P’)) = Q(~‘-‘(U(N(P(~ ))NP(~),..., ~(t))),~ 

one can check that 

3w)l p(1,=4Yw)(PC~)J). 

By definition of the functions Q and U, we have 

u:=6 n,(&(w).e~)+~~U(w)(p).g(P;~.Qili!)dp~. 
i i 

Also, by definition 

ui(ci(w))=d 
i 

fi(b(w’)(l))+/ &(6(W)i,)‘g(p; N’&(M;)(l)) tip 
R 1 

for all i = l,..., N. 

But ~?(w)(l)=Q(w)~e, and d(w)j,=&(U(~)(~)). Therefore 

w-“i(6(w))=s J { u(w)(P)-uU,(~(U(w’)(p)))} ‘g(p; 74. Q(W)) dp3 
.a 

3 It is understood that when I= 1, the right side of this eqnality becomes 
Q(@(U(wNFJ(~))))= ecU(~a,(P(l))). 
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SO 

Iw-uj(fqw))l cq sup Ix- tJi(6(X))l .g(p; N. Q(w)) 4. 
0 xsS(W) 

Since g is a probability density, and the above inequality holds for every 
wEB( 

SUP IW-Uj(S(W))i <6’ SUP /X-Vi(6(X))j. 
WEB(W) XEB(W) 

However, since 3 is compact and B(W) is bounded, the last inequality 
implies that 

sup ~w-vi(8(w))l =o. 
WEB(W) 

Hence ui(&(w)) = w  for each w  E B( W) and i = l,..., N. 
Next we show that C?(W) is a Nash equilibrium for each w  E B(W). 

Because G”(6) and 8(w) are symmetric in players, it is sufficient to work 
only with player 1. Define the subsets of strategies for the first player 
C(t, x), t = 1, 2 )...) x E W, in the following way: z E C(t, x) if z(s) = til (x)(s) 
for all s> t. Also let (r, K,(x)) = (7, 8,(x) ,..., B,,,(x)). We first show that 
for t> 1, if ~~(2, S-,(x))<01(8(x)) for all z~C(t, x) and all XE W, then 
v~(z,~~1(~))6v~(~(~))forallz~~(t+1,~)andallx~W.Letx~ Wand 
z E C(t + 1, x). Notice that 

Then 

71 (p,r(l)) E C(t, WXNP)) for all p E 0. 

%(5 S-,(x))=6 %(2(l), Q(x).eN-l)+ 
1 s “l(d(p,r(l))> a-,(ux)(P))) 

D 

.g(P;z(l)+(N-l).Q(x,,dP 
i 

66 E1($l), Q(x).~~-~) 
1 

+s 01 (~(U(X)(P))) .dp; ~(1) + (N- 1) * Q(x)) dp 
52 

=J cl(z(l), Q(x).~~-~) 

+s, Vx)(~).dp;~(l)+U’+- l).Q(x))dp 
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66 ~l(Q!x).eN)i-{ U(xi(~)-elp;‘.Q(x):di?) 
n 

(since(Q(x), U(x)) is admissible w.r.t. W) 

= x = v1 (c?(x)). 

For t=l, z~x(l,~) only if z=~(x). Thus v~(~~~~~(x))=v,(~(x-)). We 
have then shown, by induction, that for every t > 1, no player wishes to 
deviate from 6(x) in the first t periods given that he must conform with 
6(x) thereafter. 

Finally, assume that there exist w  E IV, a strategy o1 for player 1 an 
E > 0 such that 

But for T sufficiently large, 

Therefore the strategy o? EC(T, W) defined by o?(t) = o1 (t) for all 
l= l,.,., T- 1, satisfies 

Vl(G, e- 1 (w)) 3 w $ e/2. 

This is a contradiction. Therefore B(w) is a Nash equilibrium. 
It remains only to show that for each w  E B(W), C?(W) is a sequential 

equilibrium. Let player i’s beliefs at an information set following price 
history pr, when i has followed some strategy ci, be generated by the belief 
that the profile (8, (w),..., 8,-1(w), [Ti, bi+ 1 (w),..., c?~(M’)) is being followed 
(with certainty), where iri=(oi(l) ,..., oi(t),ri,(t+l),~,(t+2) ,... ). The 
problem of consistency (see [7]) does not arise, because (A3) ensures tinat 
every price observation is compatible with the above beliefs. Note that 
actions prior to period (t + 1) do not affect payoffs from (t + 1) onward, 
and B(W) is independent of quantity histories. Therefore beliefs about the 
past are irrelevant, and to demonstrate sequential rationality, it is sufficient 
to show that after every price history, the profile induced by 6(w) on t 
“‘remainder supergame” is a Nash equilibrium. Now, for any price history 
PI, t 3 1, 

6(W)l,f = cq Uf(w)(pZ)). 

Since w* = U’(w)(p’) E W, and we have just shown that a(x) is a Nash 
equilibrium for all x E B(W), 6(w) is an SSE. Q.E.D. 
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(A3) implies that “essentially” there are no unreached information sets in 
equilibrium, since a player can only see himself deviate and any price is 
consistent with equilibrium behavior for the other players. Hence, Nash 
equilibria are essentially sequential and any Nash equilibrium c can be 
transformed into an SSE o’ which is independent of quantities and 
generates the same (modulo sets of measure zero) stochastic process of out- 
comes as U. 

Our proof could be shortened somewhat by noting that the strategies 
c?(w) are “unimprovable” (in no contingency is a one-shot deviation 
profitable) and invoking an important result from dynamic programming 
(see especiahy Howard [.5] and Kreps [6]) stating that an unimprovable 
strategy is optimal after any history. 

The idea of the proof of Proposition 1 can be explained informally using 
the modified component games described earlier. Suppose that UT E B(W) 
for some self-generating set W. Any SSE with value w  has to specify some q 
for all firms to produce in the first period, and “successor” SSE’s for each 
price p( 1) that might arise. These successor profiles implicitly generate a 
“future reward function” u(p). Begin to construct a(w) (of Proposition 1) 
by choosing a pair (q; U) that is admissible with respect to W, and satisfies 
w= E, (q,..., q; u). b(w) specifies that each firm produce q in period 1, and 
implicitly “promises” future rewards u(p) for each p( 1) that might arise. 
(For the moment, postpone worrying about how 8(w) will provide SSE’s 
that deliver the promised utilities.) If each firm takes these future rewards 
as given, essentially the modified game G(u; 6) is being played in the first 
period of the supergame, and (q,..., q) is an equilibrium of that game. Since 
for all p, u(p) is in W, it is possible, following any first-period price p(l), 
for G(w) to “deliver” u(p(1)) by choosing another admissible pair (r, v) 
with u(p( 1)) = E, (r,..., r; v), specifying that r be produced in period 2, and 
“promising” future rewards 24~42)) beyond period 2. Again, if firms believe 
that v(p(2)) will occur if p(2) is the realization of the price in the second 
period, it is optimal for them to produce (r,..., r), an equilibrium of the 
game G(v; 6). Repeating this process, one can generate, for any given t, 
quantities to be produced by obedient firms in the first t periods for every 
possible history; in fact, the proof of the proposition uses an inductive step 
to define c?(w)(t) for all t. This produces a strategy profile from which no 
one wishes to deviate in only one period (admissibility of the (q, U) pair 
invoked in each contingency guarantees this). Finally, unimprovability 
implies that no firm will deviate from c?(w) even if it is free to do so in 
infinitely many periods. 

PROPOSITION 2 (Factorization). V= B(V). 

ProoJ Consider w  E V. We show that w  E B( V). By definition, there 
exists an SSE (T such that vi(o)= w, i= l,..., N. Define q=a, (1) and 
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u: Q --f R by u(p) = u1 (cr\CP,oCln) for every p E -Q+ Since 0 is a symmetric 
strategy profile, 0,(1)=0,(l) for all i=2 ,..., It’, and ~l(~,~~~), is also sym- 
metric. By (A3) the information sets (p, ~~(1)). i= I,..., N are reached in 
equilibrium for all p E 52. Because 5 is a sequential equihbrium, this implies 
that Q/ (P,~Cljj is a sequential equilibrium too. Hence D[ IP.O(z )) is an SSE and 
u(p) = zir (crl CP,OCljj) E I/’ for all p E 52. By definition, 

E,(q.e,;u)=d 
i 

%iq-e,)+jr MPl~$(p;N.q)~p 
a 1 

= uj (5) = w, 

and to complete the proof we need only check that the pair (4, u) satisfies 
the incentive compatibility constraints of admissibility. For any YG 3, 
define 0; by o$(l)=y and ~~j~P,~~=~l~~P~y~ for all PEQ and r~s. Then 

o is a Nash equilibrium, therefore U, (Q) > ol ((T:, cd. 1 ), that is, 

as required. This establishes that VL B(V). By Proposition 1, 8( V) G V. 
QED. 

In any SSE C, the value to firm i of the successor SW specified following 
a given first-period price p must be independent of the quantity that i 
produced in period 1 (this is because no one else has observed that quan- 
tity, and hence i faces the same future environment regardless of his initial 
output level). Thus the value of G for each player can be factorized into two 
terms: the profit from first-period production, and the discounted expected 
value of a reward function u(p)= c~(~\~~~~,,~~~~~). Since cr.j(pl,bO(liJ is an SSE, 
this reward function is drawn from V. This, together with the constraints 
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that the firms are willing to produce ~(1) = (q,..., q) in period 1, means 
precisely that (q, U) is admissible with respect to V. Thus the requirements 
for (T to be an SSE are exactly those needed for u(a) to be in B(V), and 
therefore V = B( V). 

COROLLARY 1. For every w  E V, there exists an SSE CJ such that 
v1 ((T) = w  andfor every t > 1, o(t) is independent of the quantity components 
of the history H(t)= (p(l) ,..., p(t); q(1) ,..., q(t)). 

ProoJ: For each w  E V, b(w) (defined in Proposition 1) is such an SSE. 
Q.E.D. 

We have shown that V can be recovered from the function B. By 
Proposition 2, V is a fixed point of B; Proposition 1 implies V is the largest 
bounded fixed point of B. Moreover, since V is self-generating, any element 
w  of V is the payoff of G(w), the SSE constructed in Proposition 1. This 
supergame equilibrium is described entirely by two functions Q and U, and 
the number w. Sections 4 and 5 prove that U may be chosen to have a 
“bang-bang” property tha makes the intertemporal structure of the 
equilibrium entirely elementary. 

4. BANG-BANG REWARD FUNCTIONS 

Proposition 4 shows that if the pair (q, ti) is admissible with respect to a 
compact set IV, there exists a function U taking on only the two values 
G=max W and Y= min W, such that (q, ti) is admissible and 
E, (q ,..., q; U) = E, (q ,..., q; ti), that is, the value is unchanged. As a con- 
sequence, if V is compact (as Sect. 5 will establish), each function U(x), 
x E V, used in constructing 8(w) can be chosen to have range {_v, 17). 

PROPOSITION 3. Let (q, ~2) be an admissible pair with respect to a compact 
set WE R. Let w  = min W and W= max W. Then there exists a function 
U: Q + {w, I?> such that (q, U) is admissible with respect to W and 
E, (a..., q; 4 = E, (q,..., q; fi). 

Prooj Define the sets 

p(q) = {u: Q -+ co( W)l(q, U) is admissible w.r.t. co(W)>, 

= {u: LJ + co( w)] El (y, q. e,- r ; U) 6 El (q * e,; U) for all y E s}, 

and 

F= (~~,u(q)lEl(q~eN; u)=El(q.eN; cl>. 

Since for each y E 3, E, (y, q. eN _ 1 ; U) is linear and continuous in u when 
L”(sZ; R) is endowed with the weak- * topology, it is easy to check that 
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~(4) and F are convex, and by Alaoglu’s theorem [ll ], weak-” compact. 
Since (q, Z;) is admissible w.r.t. co(W), F is nonempty and by the 
Krein-Milman theorem, F has an extreme point. In what follows we show 
that each extreme point ii of F has the bang-bang property that 
U(P)E {w, W} for all PEG?. 

The proof is by contradiction. Assume that U is an extreme point of F, 
but there exists a set McQ of positive (Lebesgue) measure such that 
@f 4 (w, Jq f or each p~A4. Without loss of generality, we can assume 
that there exists E > 0 such that z?(M) G [w + E, W-E] (see, for example, 
Proposition 14, p. 61 in Royden [ll]). 

Let m be the cardinality of 3. Partition M into m + 1 sets M(k), 
k= I,..., m + 1, of positive measure. Define the matrix A = (o,,~) in the 
following way: 

+ = i M(k) g(P; tN- 1) ’ 4 + Y) 4 for all y E S and all ,k = I,..., M + 1. 

Let XEIY+~ be a non-zero solution of A. x =O with /xkj <E for all 
k = I,..., m + 1. Such a solution exists because A has m rows and IPZ + 1 
columns. Define the function u: 52 --, f-s, c) by 2: = Crz,’ xk. xMckt, where 
xMCk) is the characteristic function of M(k). Since (u+ u)+zL”(Q; co(W)) 
and E,6y,q.e,~,;u+v)=El(y,q.e,_,;u) for all YES, (C+U)EF. 
Similarly (U - v) E F. However ii = (U + v)/2 $ (ii - v)/2, contradicting the 
fact that U is extreme. Therefore ii: D -+ {p, W 1 as asserted. 

Finally, since { 1?-‘, I+> c W, (q, U) is admissible w.r.t. W. 

Let W be any compact subset of R, and define w  = mm W and 
W = max W. An immediate consequence of Proposition 4 is that 

5. COMPACTNESS OF V 

If the bang-bang result is to be applied to the set V, the compactness of 
the latter must first be established. Self-generation and Proposition 3 itself 
furnish an elegant line of proof. We begin by showing that the operator 
preserves compactness. 

PROPQSITION 4. Let WG R be compact. Then B(W) is compact. 

ProojI By Proposition 3, B(W) = B(co( W)). We show that B(co( W)) is 
compact. Let p(q) be as defined in Proposition 3. Then B(co( W)) = 

UqEsE~I:(q.en)xAq)l. S’ mce p(q) is compact for each 9 E S, E, is con- 
tinuous in U, and 3 is finite, B(co( W)) is compact as required. QED. 
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COROLLARY 2. V is compact. 

Proof: Notice that IV1 c W, implies B( W,) E B( W,) (the operator B is 
monotone). Let cl(V) denote the closure of V. Since V is bounded (see 
Sect. 2), cl(V) is compact. B(cl( V)) contains B(V) = V, by monotonicity, 
and by Proposition 4 B(cl( V)) is compact. Hence cl(V) c B(cl( V)), 
therefore Proposition 1 implies cl(V) E V, that is, V is closed, and hence 
compact. Q.E.D. 

Recall that (A5) implies V is nonempty. 

COROLLARY 3. Let V = max V and _v = min V. Then 

z?=max{E,(q.e,; u)l(q, u) is admissible w.r.t. V}, 

and 

_v=min(E,(q.e,; u)l (q, u) is admissible w.r.t. V}. 

Proof. U = max B(V) and _v = min B(V) by Proposition 2. Q.E.D. 

6. THE ELEMENTARY INTERTEMPORAL STRUCTURE OF SSE’s 

The results of the last two sections make it possible to simplify further 
the equilibria that support elements of V. We show that for every w  E V, 
there exists an SSE with value w, that is completely described by three 
quantities and three subsets of n. If w  = V or _u, only two quantities and two 
subsets are required. These two quantities are the only ones produced in 
the equilibrium in question, the alternation between them constituting a 
Markov process. A further application of these results occurs in the proof 
(given later in this section) of the monotonicity of maximal symmetric car- 
tel profits in the discount rate 6. 

Recall that the profile I was constructed in Section 3 (for any w  E V) 
by choosing, for each CC E V, a pair (Q(G), U(G)) that was admissible with 
respect to V, and satisfied G = E, (Q(G),..., Q(G); U(G)). Proposition 3 
shows that this pair can always be chosen such that the range of the 
function U(G) is simply (3, fi>. In what follows we assume that the 
functions Q and U were indeed chosen this way. A trivial argument 
establishes that for any w  E V, only two quantities are ever produced after 
period 1 in the equilibrium 6(w). In period t 3 2, the production level is 
Q( U’- ‘(w)(p’+ ‘)), which is either Q(C) = 4 or Q(a) = 4 (depending on 
p’-l), since u and y are the only values that U’-‘(w)($F’)= 
U(U’-2(w)(p’-2))(p(t- 1)) can assume. 
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For any G’, U(G) partitions price space into a “reward” region, in which 
U(%)(p) = V, and a “punishment” region, in which U(G)(p) =_v. 

region and its complement as follows: 

R(G) = (p E Q U(lG)(p) = IT>, 

R’(G) = {p E Q U(G)(p) =k‘}. 

Let R= R(C) and fc’= R”(u). In the first perio of the SSE B(w), eat 
firm produces Q(W), and some price p( 1) is generated. If p( 1) fall 
second-period production is 4, and third-period pro ction is d 
by whether or not p(2) belongs to the favorable set If instead 
in R”(w), second-period production is q, and third-period production is 4 if 
p(2) is in 67, or 4 otherwise. In any period t > 2, either the favorable regi- 
is in effect (firms are producing 4 and enjoying relatively high expecte 
profits) or an unfavorable regime is operative (firms produce 4, a higher, 
less profitable quantity except in the degenerate case where 4 =g). 
Associated with these states are the reward regions R and R’, respectively. 
The regime in period t + 1 is favorable if and on1 if p(t) lies in the reward 
region associated with the regime of period r. ence, 6(w) is described 
entirely by the quantities Q(w), 4, and q, and th eward regions R(w), R, 
and 8”. Of course if w is 13 or y, only two quantities and regions are involved. 
A probability measure is induced on price space by equilibrium behavior 
(given some history); the probability measures the sets R and & give the 
probabilities of remaining in the reward and unishment states, respec- 
tively. 

The next result concerns the sensitivity of maximal symmetric profits to 
changes in the discount rate. Since this requires reference to two different 
sets V (one for each discount rate) and two functions B, we now make the 
dependence on 6 explicit by writing V(6), U(6), g(6), R(W; a), and so on 

PROPOSITION 5 (Monotonicity in discount factor). Lei 6, ancl S2 he tu’o 
discount factors such that 0 < 6 1 < d2 < 1. Then 

(1) ((1-S*l/S,).~(~z)~((l-S1)/~1).~(~1), 

(2) 6(1-62)/s2)‘(21(~2)-23(62))~((1-~1)/~!j.(u(6,)-zlj6,)) 

That is, $6) and the length of the interval co( V(S)) are increasing in 6, evelz 
when discounted profits are “normalized” by the ,&actor (1 - 6)/6. 

Prooj Define 
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For each y E R, let [y] denote the constant function from 52 into {y }. It 
is easy to check that if (q, U) is admissible with respect to V(6,), 
(q, u + [r]) is admissible with respect to W, for all y E [cc, a]. Let (4, U) be 
admissible with respect to V(6,) and satisfy E,(q. e,; U, 6,)= $6,). Then 
(4, U-t [a]) is admissible with respect to W, and 

El(~~eN;u+[I~l,6,)=b, 
i 

7il(cj.eN)+J’ ii(p).g(p;N.q)dp+a 
n I 

= 6, 7261) - 
( ! 7+Cr 

1 

By a similar argument, there exists (g, _u) admissible with respect to 
V(6,) such that E1(g.e,;_u,6,)=_v(6,) and E,(g.e,;_u+ [cr], 6,)= 
~(6,) + _a. Thus W c B( W, ; 6,). By Proposition 3, B( W, ; 6,) = B( W; 6,). 
Hence, by Proposition 1, WC V(6,), and 

v(6,)3v(6,)+a and _v(&) <a(s,) +cr. 

The reader may verify that these inequalities imply (1) and (2) above. 
Q.E.D. 

7. CONCLUSION 

This paper shows that every SSE payoff in the Green-Porter model 
[4, S] can be supported by sequential equilibria that are easily described, 
and are extremely simple in their intertemporal structure. In every period 
of the optimal SSE (and in all but the first period of any SSE), firms 
produce according to one of two “regimes,” corresponding to the first 
periods of the best and worst SSE’s, respectively. The alternation between 
the two regimes resulting from equilibrium behavior is a Markov process. 
Potential complexities such as employing varying severities of 
“punishment” depending on how far a price realization is from its “normal” 
range, or making the set of prices that trigger a change from the favorable 
to the unfavorable regime depend on recent price history, do not arise. 
These and other results are derived by reducing the repeated game to a 
static structure that is far more accessible for the purpose of analysis. This 
technique also enables us to work with much weaker assumptions than 
those invoked in earlier papers on this subject. Apart from minor regularity 
conditions, the cost and inverse demand functions are unrestricted, and the 
stochastic nature of demand is modelled in quite a general way. 
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While the paper has focused exclusively on the Green-Porter model, it 
demonstrates an approach to the study of repeated games that might be of 
broader interest. The factorization and self-generation properties of Sec- 
tion 3 in particular have analogues in many classes of supergames. Such 
results are available, for example, for the simple strategy profiles of Abreu 
[i], and yield an alternative proof of the existence of an optimal simple 
penal code. Adaptation of the function B to particular strategic situations 
should permit productive analysis of many repeated games heretofore con- 
sidered intractable. 
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