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We introduce a formal definition of perfect Bayesian equilibrium (PBE) for 
multi-period games with observed actions. In a PBE, (P) the strategies form a 
Bayesian equilibrium for each continuatron game, given the specified beliefs, and 
(B) beliefs are updated from period to period in accordance with Bayes rule 
whenever possible, and satisfy a “no-signaling-what-you-don’t-know” condition. 
PBE is equivalent to sequential equilibrmm if each player has only two types, or 
there are only two periods, but differs otherwise. Equivalence is restored by 
requiring that (B) apply to the relative probabilities of types with posterror 
probability zero. Journal of Economic Literature Classification Number: 026. 
i ‘ 1991 Academic Press. Inc. 

1. INTRODUCTION 

Kreps and Wilson’s [7] notion of consistent beliefs and sequential equi- 
librium provides one answer to the question, “What are reasonable inferen- 
ces for a player to make if he sees an opponent play an action that has zero 
probability according to the equilibrium strategies?” Roughly, their answer 
is that after a deviation players infer (1) that all players will continue to 
follow the equilibrium strategies and (2) that the deviation was the result 
of a random mistake or “tremble,” as in Selten [lo], where the trembles 
are independent across information sets, and a player’s probability of 
trembling is measurable with respect to his own information. Beliefs are 
“consisjent” if they can be derived using Bayesian inference from arbitrarily 
small trembles. A combination of a strategy profile and a system of beliefs 
is a sequential equilibrium if the beliefs are consistent, and if the strategies 
are “sequentially rational” in the sense that at every information set the 
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player’s strategy maximizes his expected payoff given his beliefs and the 
strategies of his opponents. 

In most applications of dynamic games of incomplete information, 
economists have used the weaker equilibrium concept “perfect Bayesian 
equilibrium” or “PBE” instead of sequential equilibrium. In a PBE, the 
strategies are required to be sequentially rational given the beliefs, but 
milder restrictions are imposed on the way that the beliefs are revised 
following zero-probability events. Of the several versions of PBE in the 
literature, the weakest places no restrictions at all on the beliefs off the 
equilibrium path. While this weak version may sometimes be appropriate, 
in other situations economists may prefer a more restrictive version of PBE 
that is closer to the sequential equilibrium concept. This paper develops 
several such versions. 

The idea behind the restrictions we impose is that a player’s deviation 
should not signal information that the player himself does not possess. We 
develop this theme in classes, of games of increasing generality, in each case 
without reference to the sequences of trembles used to define sequential 
equilibrium.’ As the games become more complex, the conditions we 
impose become more complex as well. All of our conditions are implied by 
consistency, and in some cases they are equivalent to it. Although we are 
agnostic about the plausibility of our various conditions, we think this 
paper may be of interest to those who apply equilibrium refinements to the 
study of particular economic situations. Our work can be viewed either as 
proposing new and less restrictive equilibrium concepts, or as providing 
further explanation of what the sequential equilibrium restriction entails. 

We focus on multi-period games with observed actions, where the 
players move simultaneously in each period, and each period’s play is 
revealed before the next period begins. The only asymmetry of information 
in these games is that each player knows his own “type” (Harsanyi [6]), 
which is chosen by nature at the start of play and revealed only to him; 
each player’s payoff function depends on his type and possibly on the other 
players’ types as well. This class of games includes many applications to 
economics, such as bargaining, reputation and predation games. 

We begin by developing a definition of “PBE for games with 
independent types.” This definition requires that: 

(i) Bayes’ rule should be used to update beliefs about player i’s type 
from period t to period (r + 1) whenever player i’s period-t action has 
positive probability conditional on the history of previous play; 

(ii) the posterior beliefs at any date should be that the players’ types 
are independently distributed; and 

’ Two other papers that develop equilibrium refinements without explicit use of trembles 
are Blume, Brandenberger. and Dekel [l] and Weibull [ 1 I]. 
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(iii) the beliefs about a player at the beginning of period (t + 1) 
depend only on the history up to date t and on that player’s date-t action, 
but not on the other players’ date-t actions. 

We prove that beliefs satisfying these conditions are consistent (and 
therefore that PBE is equivalent to sequential equilibrium) if there are only 
two types per player or only two periods. 

When some players have three or more possible types and there are at 
least three periods, the definition of PBE given above is weaker than 
sequential equilibrium in the following way. After some sequences of 
actions, some of player i’s types may be assigned zero probability by his 
opponents. As we show, sequential equilibrium requires that at every 
period there be a commonly agreed ranking of the relative probability of 
each player’s zero-probability types. In particular, some of the zero- 
probability types may be “infinitely more likely” than others. This ranking 
follows from the “trembles” explanation of deviations, because the zero- 
probability types are assigned positive probabilities that converge to zero, 
and the limiting ratios of these probabilities defines the “infinitely more 
likely” relationship. This leads us to develop a more restrictive version of 
PBE that we call “perfect extended-Bayesian equilibrium,” or “PEBE.” 
First, we suppose that at each date, the players are prepared to assign 
relative probabilities to any pair of types of their opponents, even those 
that have probability zero. That is, the beliefs about each player are a 
“conditional probability system” in the terminology of Myerson [9]. Then 
we require the three conditions we gave above to hold for the beliefs about 
the relative probabilities of any two types of any player, and not only for 
absolute probabilities. These conditions imply that the players do have 
orderings over zero-probability types, and that these orderings are updated 
in the way that consistency requires. Thus PEBE is equivalent to sequential 
equilibrium with finitely many types and periods. The additional con- 
straints implied by the extended version may or may not be attractive, but 
they seem different in kind and spirit from the desiderata Kreps and Wilson 
used to motivate the sequential equilibrium concept. 

We then extend the PEBE definition in a straightforward way to games 
with correlated types. Once again, the set of PEBE coincides with the set 
of sequential equilibria. The generalization of the “no-signaling-what-you- 
don’t-know” conditions is that the beliefs about other players than player 
i at the beginning of period (t + 1) conditional on player i’s type depend 
only on the history up to date t and on date t actions by player i’s rivals. 

While our paper concentrates on multi-period games with observed 
actions, the reader may wonder how our ideas can be used to give a defmi- 
tion of PBE for general extensive form games. We provide such a definition 
in Section 6, and demonstrate its equivalence with sequential equilibrium. 
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Section 2 describes multi-period games of incomplete information, and 
Section 3 derives our equivalence result with two independent types 
per player or two periods. Section 4 shows why conditions on relative 
probabilities are needed when there are more than two types, and develops 
the equivalence result for that case. Section 5 provides a definition of PBE 
for correlated types, and shows that it is equivalent to sequential equi- 
librium. Section 6 gives a version of our conditions for general extensive 
forms. 

2. MULTI-PERIOD GAMES WITH OBSERVED ACTIONS 

In Sections 2 through 5, we will consider only a restricted class of games; 
that of multi-period games with observed actions, as defined by Fudenberg 
and Levine [Z]. Players are denoted by i= 1, 2, . . . . I. Each player i has a 
type ei which is drawn from a finite set Oi. The vector of all players’ types 
is denoted by 0 E 0 = Xj, 1 Oi. All players have the same prior distribution 
p( .) on 0. We assume for the moment that the types are independent, so 
that p = n pi, where p, is the marginal distribution over player i’s type. At 
the beginning of the game, each player is told his own type, but is not given 
any information about the types of his opponents. That is, player i’s parti- 
tion of 0 when his type is 0; is $(tIi) = (0’ 1 Z3: = 0,). For notational 
simplicity we identify the set of player i’s partitions with the set 0, of his 
types. As the types are independent, player i’s initial beliefs about the types 
of his opponents are given by the prior distribution ppi= njripj. 

The game is played in “periods” t = 1,2, . . . . with the property that at 
each period t, all players simultaneously choose an action which is then 
revealed at the end of the period. (This specification is more general than 
it may appear, because the set of feasible actions can be time and history 
dependent, so that games with alternating moves are included.) We assume 
that players never receive additional observations of 8. For notational sim- 
plicity, we assume that each player’s possible actions are independent of his 
type. Let ho = 0, and let A ,(ZzO) be the set of player i’s possible first-period 
actions. If the history of moves (other than Nature’s choice of types) before 
t is h’- ‘, then player i’s period-t action must belong to A, (h’- ‘); if 
Q’EX~=~ Ai(h’- ‘) is played at time f, we set h’= (/I+‘, af). We assume 
that the action sets are finite, and that every player always has at least one 
feasible action. Since each player i knows 8; but not 8-i, the information 
set corresponding to player i’s move in period t is identified with an 
element of H’- ’ x Oj, where H’- ’ is the set of all feasible histories at 
date t. 

A (behavior) strategy n; for player i is a sequence of maps from 
0,x Hz-’ to d(Ai(h’-I)), where d(Ai(h’-‘)) is the space of probability 
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distributions over player i’s date-r feasible actions given h’- ’ and 
~,(a, / Qi, It-‘) is the conditional probability that type Oi plays ai given 
history h’-‘. A strategy profile 7c = (rc;)j, 1 specifies a strategy for each 
player i: Player i’s payoff ui(hr, Bi, Bip 1) depends on the final history hr, 
his own type, and the types of his opponents Ki. (Note that the payoffs 
need not be separable over periods.) In a Bayesian Nash equilibrium 
(Harsanyi [6]) each player’s strategy maximizes his expected payoff given 
his opponents’ strategies and his prior beliefs about their types. 

To extend the spirit of subgame perfection to these games, we would like 
to require that the strategies yield a Bayesian Nash equilibrium, not only 
for the whole game, but also for the “continuation games” starting in each 
period r after every possible history 11’~ ‘. Of course, these continuation 
games are not “proper subgames,” because they do not stem from a 
singleton information set. Thus to make the continuation games into true 
games we must specify the players’ beliefs at the start of each continuation 
game. We denote player i’s conditional beliefs that his opponents’ types are 
Ki by p,(Q-, ( Bi, h’ - ‘), and assume that such beliefs are defined for all 
players i, dates t, histories It’- ‘, and types Bi. 

A priori it is not obvious that these beliefs must be common knowledge, 
but in accordance with most work on refinements we will assume that they 
are.2 Under the common-knowledge assumption, for each h’- ’ there is a 
single probability distribution on 0, denoted p( .), such that 

where ~(0, 1 h’-l) is the marginal probability of oi given h’-‘, so that the 
individual players’ beliefs p,(K, 1 Qi, h’- ‘) correspond to the conditional 
probability ~(0~~ 1 Bj, Iz’- ‘) for all 0; whose probability is positive given 
h’- ‘. We will require that this equality hold for ail types f3,, and simplify 
the notation by setting p, (8 ~ i 1 ., . ) = ~(0 ~ i I ., . ). Later we will require that 
the strategies following history h’-- I should yield a Bayesian equilibrium 
relative to the beliefs p(. I h’- ‘) for all histories h’- ‘, including those which 
have zero probability according to the equilibrium strategies. 

3. REASONABLE BELIEFS WITH INDEPENDENT TYPES 

Which systems of beliefs are reasonable? A minimal requirement is that 
beliefs should be those given by Bayes’ rule where Bayes’ rule is applicable, 
i.e., along the equilibrium path. [This weak requirement plus a twist 

‘One exception to this common-knowledge requirement is the notion of a “c-perfect 
equilibrium,” which is developed in Fudenberg, Kreps, and Levine [3]. 
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similar to the no-signaling condition delined below corresponds to the 
definition of perfect Bayesian equilibrium given in our [4] paper.] Kreps 
and Wilson [7] give a series of examples to motivate the idea that further 
restrictions may be natural. They then propose the notion of consistent 
beliefs, and note that it imposes all of the restrictions their examples 
suggest. 

Recall that an assessment (p, TC) is consistent (Kreps and Wilson [7]) if 
there is a sequence of totally mixed strategy profiles 7~” -+ 7~ such that the 
beliefs $ computed from 7~” using Bayes’ rule converge to p. We will say 
that ($, 7~~) “justifies” (p, 7~). (A strategy profile is totally mixed if at every 
information set the associated behavioral strategy puts strictly positive 
probability on every action. Thus the beliefs associated with a totally mixed 
strategy profile are completely determined by Bayes’ rule. Note that in our 
context, a totally mixed strategy profile is one in which at each period t for 
every history Pi every type of each player i assigns positive probability 
to every action in A I (h’- i ). Remember also that in a totally mixed strategy 
profile the randomizations by different players are independent, as are the 
randomizations of a single player at different information sets). 

We will reexamine the question of how to restrict the players’ beliefs in 
the context of multi-period games with observed actions. The additional 
structure provided by these games may permit a sharper intuition about 
which restrictions to impose, and will allow us to give a simple charac- 
terization of the implications of consistency. 

One additional restriction is that at any date t with beliefs p(. 1 A’+‘), the 
beliefs at date (t + 1) should be consistent with Bayes’ rule applied to the 
given strategies and the period-t beliefs, even if those strategies assign 
probability zero to history A’-‘. To motivate this restriction, consider a 
game where player 1 has two types, 0 and 0. Fix an equilibrium where no 
type of player 1 plays a certain action a in the first period. Since Bayes’ law 
does not determine player 2’s beliefs when this occurs, we can specify that 
following this deviation player 2 thinks player 1 is type 0. Now if player 1 
does play action a in the first period, let the equilibrium strategies predict 
that he will play b in the second period regardless of his type. It might then 
seem natural that player 2’s beliefs at the start of period 3 when player 1 
has played a and then b should be the same as his beliefs at the start of 
period 2, i.e., that player 1 is type 8. However, since player 2’s corre- 
sponding information set is off the equilibrium path, other beliefs for 
player 2 would not violate Bayes’ law. For example, we could specify that 
player 2 is now certain that player 1 is type 8. To rule out this reversal of 
beliefs, we need to require that each player’s beliefs in each period be 
consistent with Bayes’ law applied to his beliefs of the previous period and 
the equilibrium strategies. This restriction is related to Kreps and Wilson’s 
notion of structural consistency and also their conditions (5.3) and (5.4). 
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A more subtle condition is that no player i’s deviation be treated as con- 
taining information about things that player i does not know. (If the devia- 
tions are thought of as “random errors,” this corresponds to the assump- 
tion that each player’s probability of error depends only on factors known 
to that player.) In a multi-period game with independent types, the condi- 
tion is simply that the beliefs about different players’ types be independent, 
and that each player’s deviations be taken as signals only about that 
player’s type. (Section 5 treats the case of correlated types, where one 
player’s deviation can signal information about the type of another.) Given 
that the priors are independent and that players’ deviations are thought of 
as uncorrelated, these conditions are a natural extension of the spirit of 
Bayesian updating. 

DEFINITION 3.1. An assessment (p, n) for a multi-period game with 
observed actions and independent types is reasonable if for all histories 
A’- 1: 

(1) Bayes’ rule is used to update beliefs whenever possible: For all 
players i, and for each a,EA,(h’-l), if jdi with ~~(4~1 h’+‘)>O and 
rc,(a, 1 di, h’- ‘) > 0 (that is, a, has positive probability conditional on 
h’- ’ ), then 

(2) the posterior beliefs are independent: 

140 I h’) = n AQi I h’) for all 19 and h’; and 

(3) the beliefs about player i at period t + 1 depend only on h’- ’ and 
player i’s period-t action a:: 

~(0~ 1 h’-‘, a’) = ~(0, 1 h’- ‘, ii’) for all Bi, and all a’, ii’ with ai = iii. 

Conditions (2) and (3) combined are the “no-signaling-what-you-don’t- 
know” condition: since the prior distribution is independent, and the past 
history of play is public information at the start of each period, each player 
i continues to form his beliefs about players j and k independently, and if 
player j unexpectedly deviates in period t, the interpretation of his devia- 
tion is independent of the simultaneous action of any other player. Note 
that condition (1) implies that (3) holds for actions whose conditional 
probability given h’-’ is positive. Note also that “reasonability” allows the 
beliefs about player i’s type at time t to be completely arbitrary following 
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a move by player i that has probability zero conditional on h’ - ‘. The only 
constraints are that player i’s actions not change the beliefs about player 
j’s type, and that, after i’s first zero-probability move results in some new 
beliefs about his type, subsequent beliefs be determined by Bayes’ rule and 
the strategy profile rr until player i deviates again. Thus it is easy to check 
whether an assessment is reasonable. 

While reasonability captures the three criteria we have discussed, those 
three do not exhaust the implications of sequential equilibria in general 
games. However, reasonability is equivalent to consistency if each player 
has at most two types, and the types are independent. 

DEFINITION 3.2. A perfect Bayesian equilibrium (PBE) of a multi- 
period game with observed actions and independent types is an assessment 
(p, rc) satisfying 

(B) (p,r~) is reasonable, and 
(P) For each period t and history h’- ‘, the continuation strategies 

are a Bayesian equilibrium for the continuation game given the beliefs 
j.f(-\h’-‘). 

PROPOSITION 3.1. Consider a multi-period game with observed actions. 
Suppose that each player has only two possible types, that both types have 
nonzero prior probability, and that types are independent. Then an assess- 
ment (p, n) is consistent tff it is reasonable. 

COROLLARY 3.1. Under the hypotheses qf Proposition 3.1, the sets of 
perfect Bayesian equilibria and sequential equilibria coincide. 

Remark. The condition that both types have positive prior probability 
is necessary because PBE permits a type with zero prior probability to 
have positive posterior probability following a zero-probability action. 
Kreps and Wilson exclude zero-probability types from the class of games 
they consider, but their definition extends immediately to such games, 
where it implies that any type with zero ex ante probability has probability 
zero throughout the game, as Nature’s moves are not subject to trembles. 
For this reason, the set of sequential equilibria is not upper-hemicon- 
tinuous in prior beliefs at limit points that assign some types probability 
zero. The set of PBE can change when zero-probability types are added, 
while the set of sequential equilibria is not altered by the addition of such 
types. However, the set of sequential equilibria can change discontinuously 
when types are added whose prior probability is arbitrarily small, a point 
that is developed in Fudenberg, Kreps, and Levine [3]. 
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Proof: If (p, rc) is consistent, fix a sequence of totally mixed strategy 
profiles rcn -+ n with associated beliefs p” + p. Since the 7tn correspond to 
independent randomizations, each player’s strategy 7~; depends only on his 
type 0, and the public history h’- ‘, and the types are independent, the $’ 
satisfy ( I), (2), and (3). Since these properties are preserved in passing to 
the limit, consistent beliefs are reasonable. 

Conversely, imagine that (‘, n) is reasonable. We establish the following 
claim by induction on T, the number of periods: 

CLAIM. In a T-period game with initial beliefs u” = u(. 1 ho), if (,u, n) is 
reasonable then for any strictly positive prior assessment p”O.” -+ u” there 
exists a sequence of totally mixed strategy profiles zn -+ 71 such that the 
beliefs p’s” = p(. 1 h’) computed from (p’,“, n”) using Bayes’ rule converge to 
the specified beliefs ,u at every information set. Moreover, if p’,” is strictly 
positive (i.e., has full support), we can take p’,” = p”. 

Note that proving this claim is sufficient for our result as the prior 
distribution is assumed to put positive probability on all types in 0. The 
reason we consider sequences .u”.” converging to ,u” as opposed to simply 
p” itself is that we will proceed by induction: First we will construct tirst- 
period trembles, then second-period trembles, and so on. In this process we 
will wish to treat view ho as the initial history in a continuation game from, 
say, period 2, and in so doing we will need to use the beliefs corresponding 
to first-period trembles. 

Proof of Claim. I. We begin with a %-period game, where each player 
i has two possible types 0, and 6,. Here the only beliefs which are relevant 
are those following the first period’s play h’, which we denote p’ = P(. I h’). 
Because p is reasonable, the beliefs p: about player i depend on h’ only 
through player i’s choice of action a;. ’ In the obvious notation, we let 
,u;(af) = ,u(e, / h’); we define fiti, ‘Ic,, and nj analogously. 

Choose a sequence 8” + 0 and let p”.n + ,n(h’) be such that for all 8; and 
i, bob” > en. Without loss of generality we assume that ,$ > 0 for all i. 
For each player i we define the sets is, of actions in the support of 77, and 
0, of actions that 71i assigns zero probability; the sets _Pi and 0, are defined 
analogously. We will now construct totally mixed strategy profiles Z” + 7c 
such that the associated posterior beliefs computed from p”.n and 7~” using 
Bayes’ rule converge to the specified posterior pi. To do this we construct 
nr separately for each player i, beginning with those pairs (a,!, di) for which 
Ei(af I ei) =O. That is, we first construct the trembles for type 0, and 
actions in Q, and type 8, and actions in ai; the strategies 7~: for other 
action-type pairs are constructed by subtracting the trembles assigned to 
the zero-probability actions. 
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(a) Let us specify the probabilities that player i uses action 
~7; E Qin 0;. If jii(a:) is positive, we choose ~:(a,?) + 0 and &‘(a:) + 0 so 
that 

(i) &(Uf )/j&(uf) = ,!iJrlL ,$%:(u~)/$%:(af ). 

If &(a: ) = 0, then since there are only two types, pZ (a;) = 1. This means we 
can choose the rcl so that 

(ii) fii(uf)/pi(uf)= lim ~~“EC(~f)/~~~~;(uf). 
n - %I 

(b) Now we consider actions u,! E _P, n oi and construct 5: but do 
not yet specify 7~:. If rP>O, then (p, 7~) reasonable implies that ~,(a,!) = 1. 
Let 7?‘(uf) + 0, and note for future reference that as long as 
~:(a:) -P am, the beliefs pr(uf) corresponding to action ff: will converge 
to a point mass on e, as desired. If (p=O, then we have two cases 
depending on whether ,G;(u,!) is non-zero or zero. If it is non-zero, we 
choose %;(a: ) -+ 0 so that 

(iii) p;(u,‘)/ji,(uf)= lim ~~“~~(u~)/$%~(uf). 
n - -x 

If ,E,(u,L) = 0, then since there are only two types, ~,(a!) = 1, and we choose 
the 751 so that 

Note that as long as a; --+ n, eqs. (iii) and (iv) guarantee that &‘(a:) -+ 
b(a,‘). 

(c) For actions uf in P,nQ; we know that pi(uf)= 1. For these 
actions let 8; be any sequence converging to zero; then as long as 
75: + 5; > 0 the posteriors will have the appropriate limit. 

(d) Finally we specify rry(uf I 0,) for actions in Pj(O,) by 

7c;(u; ) e,) = 7c&7; ) l9i) - c,: E ode,) 7cy(cif 1 e,) 
#Pj(ei) ’ 

where #P,(Q,) denotes the number of actions in Pi(Oj). That is, we 
subtract the trembles on zero-probability actions from the positive 
probabilities. Note that, for all B,, 
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Since rcr(u! I ej) + 0 for all USE O,(e,), rcr 4 xi. By construction, the 
posteriors Jo’,’ obtained by updating PO,” using $ converge to p. Finally, 
note that if p” assigns positive probability to both types of Bi, we can take 
P o,n = PO. This proves our claim for two-period games. 

II. Now we extend the claim to games of length T by induction. 
Assume that the claim is true for all games with T- 1 or fewer periods, and 
consider a game G with T periods along with a reasonable assessment 
(,u, n). Let G,- i be the game from period 1 through period (T- 1). By 
inductive hypotheses, there exist initial beliefs ~‘3~ and totally mixed 
strategy profiles nT- l.n of G,- , such that the associated posterior beliefs 
$ converge to p at every information set through period T- 1. Given the 
beliefs p T ~ 1.n at the start of period T, we must show how to choose the 
period-T probabilities rc:(aT) so that the posterior beliefs at the start of the 
period T+ 1 converge to pT. To do so, we now apply the algorithm 
developed in Part I to initial beliefs fi’,” = pT- ‘zn. If we then specify that 
players follow x’- i.n through period T- 1 and ~:(a~?) at period T, we will 
have constructed profiles n? for the T-period game G such that the beliefs 
computed using prior p”,n and strategy profile rcn converge to ,U at every 
information set. Q.E.D. 

Proposition 3.1 assumes two types per player. Alternatively, we could 
allow an arbitrary number of types per player, but only two periods (that 
is, only one round of Bayesian updating) and preserve the equivalence 
between PBE and sequential equilibria. 

PROPOSITION 3.2. Consider a two-period game with observed actions and 
independent types. Then an assessment (p, 7t) is consistent iff it is reasonable. 
Hence the sets of pecfert Bayesian equilibria and sequential equilibria 
coincide. 

Proof: This is a consequence of the proof of Proposition 4.1: The trem- 
bles constructed there can be constructed in the first period of any game, 
because the initial beliefs p” are totally mixed and thus generate a condi- 
tional probability system in the sense of Definition 4.1, and for totally 
mixed beliefs conditions l’, 2’, and 3’ reduce to 1, 2, and 3. Q.E.D. 

4. EXTENDED REASONABLE BELIEFS 

When there are more than two types, reasonable beliefs need not be con- 
sistent. This is illustrated in the fragment of a game in Fig. 1. This figure 
depicts a situation where player 1 has three possible types, 0;, d;, and 0:, 
but where at time t Bayesian inference given the previous play has led to 
the conclusion that player 1 must be type 8 :. The equilibrium strategies at 
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Date t 

Date (t+l) 

FIGURE 1 

this point, which are written in curved brackets in the figure, are for type 
0; to play a;, type 0; to play a;, and type 0: to play a:. Since the first 
two types have zero probability, player 2 expects to see player 1 play a:. 
What should he believe if he sees one of the other two actions? The beliefs 
in the figure (given in the square brackets) are that if player 2 sees a; he 
concludes he is facing type ti;, while a; is taken as a signal that player 1 
is type 13;. Since our definition of PBE places no constraints on the beliefs 
about a player who has just deviated, the situation in Fig. 1 is compatible 
with PBE. 

However, the situation of Fig. 1 cannot be part of a sequential equi- 
librium. To see this, imagine that there were trembles 7~” that converged to 
the given strategies x and such that the associated beliefs p’ converged to 
the given beliefs p. Let the probability that ,u’ assigns to type 0; at period 
t be EL and let the probability of type Sp be E:. Since p” converges to p, 
both E: and E,: converge to 0, and x”(a; I I!?;) and n”(a; 1 0:) converge to 
zero as well. Since ~~((3; 1 a;) = p’(l3;) 7c”(a; I O;l)/& ~“(0,) 7cfl(a; 1 O,), in 
order to have ~“(0;l ( a; ) converge to 1 it must be that EL/E: converges to 
zero. In order for the beliefs following a; to be concentrated on type 0; 
when 0; plays a; with probability one while (3: assigns it probability zero, 
the prior beliefs must be that 0; is infinitely more likely than 0;. On its 
own this requirement is compatible with sequential equilibrium. However, 
considering the beliefs following a; leads to the conclusion that &;/EL con- 
verges to zero, i.e., that 0; is infinitely more likely than 0;, and these two 
conditions are jointly incompatible with the beliefs’ being consistent. 

The example shows that in order to have an equivalence between PBE 
and sequential equilibrium when there are more than two types, the defini- 
tion of beliefs must be extended to capture the relative probabilities of zero- 
probability types, and that restrictions must be imposed on the way that 
these relative probabilities are updated. 

For any finite set Q, let 2O denote the set of all subsets of Q. 

DEFINITION 4.1 (Myerson [9] ). A conditional probability system on a 
finite sample space Q is a collection of functions v(A I B) from 2n x 2R to 
[0, l] such that 

(i) for each A E 2*, v(o I A) is a probability distribution on A, 
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and 

(ii) for AGBcrCE2R with B#@, v(A 1 B).v(B( C)=v(A 1 C). 

Myerson shows that v is a conditional probability system if and only if 
it corresponds to the limits of the conditional probabilities associated with 
a distribution that assigns positive probability to every w E Q. Thus condi- 
tional probability systems over the whole game tree are related to consis- 
tent beliefs. This characterization differs from the definition of consistent 
beliefs, for the latter requires that the “trembles” be interpretable as mixed 
strategies of the game, which imposes many constraints on the way the 
trembles are constructed. 

Let H denote the space of all possible partial histories h’ at any time 
t: H= I., Lr,h,l h’. 

DEFINITION 4.2. An extended belief system for a multi-period game with 
observed actions and independent types is a collection of (I+ 1) functions, 

qi:2@x2@‘xH+[0, l-J, i E I, 

and 

p:OxH+[O, 11, 

such that for all t and h’, qi(. 1 ., h’) is a conditional probability system on 
Oi, and the marginal of p on Oi satisfies 

for all i, Bi, and h’. 

This definition requires that the joint distribution p be compatible with 
the conditional probability systems vi on each player i’s type. In particular, 
the relative probability of any two types is well-defined after each h’-’ : oi 
is infinitely more likely than 0, if and only if ~~(8~ ( (ei, di), h’+‘)= 1; Qi is 
“as likely” as 0, if 0 < ~~(0, 1 (0;, di), h’- ‘) < 1. It is easily verified that with 
a conditional probability system, the relationship “infinitely more likely 
than” is transitive on Oi. 

The assumption of a coherent system of beliefs about types is weaker 
than the assumption that there is a complete conditional probability system 
over all of the nodes of the tree. This latter assumption, which is satisfied 
by beliefs generated from “trembles” b la Kreps and Wilson, requires that 
the relative probabilities of any two nodes of the tree be well-defined, so 
that player 3 is prepared to evaluate the relative probability of player 1 
being type 0, after history h’ and of player 2 being type 8, after a different 
history fi”. However, comparisons of relative probabilities at nodes corre- 
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sponding to different observed histories through period t are not relevant 
for the play of the game, because such nodes are never in the same infor- 
mation set. Moreover, an extended belief system does not even generate a 
conditional probability system over all of 0 for a given h’, as the relative 
probabilities of the zero-probability types of different players need not be 
well defined. Once again, in our class of games this additional structure 
need not be assumed to ensure that beliefs are consistent. 

DEFINITION 4.3. An extended assessment (p, q, rc) for a multi-period 
game with observed actions and independent types is reasonable if for all 
histories h’- I, players i, and pairs (ei, 8,): 

(1’) Bayes’ rule is used to update beliefs conditional on h’- ’ and 
(Qi, 0,) wherever possible: For each USE Ai(h’-‘), and all a’ with ai = ai, 

qj(Oj 1 (Oi, 8i), hfpl, U')Xj(Uj ( O~~h'~')v]i(~;~ (O,,dj),/Zp') 

= q;(O, I (O,, &), h'- l, a') 71j(U1 ) d,, h'+ ') qi(8; I (di, &), /7--l). 

(2’) The posterior beliefs are independent: 

Ad I h’) = n Ad, I A’) for all 0 and h’. 

(3’) The beliefs about the relative probabilities of piayer i’s types at 
period t + 1 depend only on h’- ’ and player i’s period-t action u: : 

Note that conditons (l’), (2’), and (3’) are the same as (l), (2), and (3), 
except that they apply more generally to relative probabilities, and that 
they reduce to (1 ), (2), and (3) when p has full support. 

The pairwise Bayes rule condition (1’) implies that if Bi is infinitely more 
likely than 8, given P1, and rc,(ui I 8j, P’)>O, then after ai is observed 
in period t, dj is still infinitely more likely than 0,. Similarly, if two types 
are as likely given 11’~ ‘, and both play action ai with positive probability, 
the two types remain as likely. This will allow us to define a numerical 
ordering over all types in Oi for any history in H so that the order of a type 
stays constant whenever the observed action is one that its strategy assigns 
positive probability, and the order increases whenever the type’s strategy 
assigns the observed action probability zero. This ordering plays a key role 
in the proof that reasonable extended beliefs are consistent.3 

3 This is reminiscent of Kreps and Wilson’s [7] idea of a labeling, but it is simpler, as we 
only need to label the types, as opposed to all of the nodes of the game. The more general 
concept we develop in Section 6 does generate an ordering over all nodes. 
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DEFINITION 4.4. A perfect extended-Bayesian equilibrium (PEBE) of a 
multiperiod game with observed actions and independent types is an 
extended assessment (p, rl, 7t) satisfying 

(B) (11, q, rc) is reasonable, and 
(P) For each period t and each history A’-‘, the continuation 

strategies are a Bayesian equilibrium for the continuation game given the 
beliefs p(. 1 h’- ‘). 

PROPOSITION 4.1. A reasonable extended system of beliefs is consistent, 
i.e., it is the limit of a sequence of beliefs computed from totally mixed 
strategies of the extensive form. 

Proof See Appendix. 

COROLLARY 4.1. The sets of PEBE and sequential equilibria coincide. 

5. CORRELATED TYPES 

When the players’ types are not drawn from independent distributions, 
player i’s actions in general signal not only his type, but also those of 
players whose types are correlated with his. We now generalize the defini- 
tion of PEBE and the equivalence result of Section 4 to this situation. 

When we allow correlation, the prior joint distribution p(B) may now 
differ from the product of the prior marginals. To simplify the analysis, we 
assume a form of imperfect correlation, namely that all combinations of 
types in 0 have positive probability. 

Assumption 5.1. For all 0~ 0, p(8)>0. 

This implies in particular that all types of player i agree about which 
opponents’ types have positive probability. As before, let ~(0 1 h’- ‘) denote 
the prior probability of 9 conditional on h’- ‘. We will let ~(0~~ ) 8,, h’+‘) 
denote the conditional probability of 8_ i given Bi and h’- 1 and let 
p(Bi I h’- ‘) and p(Oi I h’- ‘, a:) be the marginal probability of 0, conditional 
on h’-’ and on h’-’ and player i’s date-t action af, respectively. In 
contrast with the independent case, ~(0~ 1 h’- ‘, af) need not equal 
p(Qi I h’- ‘, af) because the other players’ actions can be correlated with 
player i’s type. Note also that we define these distributions even for 
histories that are off the equilibrium path. We will require that 
p(Ki ( Bi, h’- ‘) p(tIi I h’- ‘) = p(e I h’- ‘) for all 8 = (e,, Ki) and h’- l. 

As suggested by an associate editor of this journal, an easy way to work 
with correlated distributions is to transform the game into one with inde- 
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pendent types, and then map the resulting equilibrium strategies and beliefs 
to strategies and beliefs in the original game. Specifically, let /j be the 
product of independent uniform marginal distributions fii on Oi, so that 

b(U)=[fi, (#Bj)]-’ forall f3E0. 

Let the transformed utility functions be 

a,(hT, ej, epj)=p(e-j 10;) Ui(hT9 B,, 0-j). (5.1) 

(The conditional probabilities are well-defined because p has full support.) 
Myerson [8] observes that the original and transformed games have the 
same Bayesian Nash equilibria: A strategy maximizes the expected value of 
ui( ., Oi, 8 -i) with respect to beliefs p(. I t!IJ if and only if it maximizes the 
expected value of tii( ., Bi, Ki) = p(Ki / Oi) ui( ., Oi, Ki) with respect to 
uniform beliefs p(. 1 (3,). 

It is straightforward to check that this observation extends to the set of 
sequential equilibria. We give a proof for completeness. 

PROPOSITION 5.1. Assessment (@, ti ) is a sequential equilibrium of the 
transformed (independent types) game lf and only if the assessment (p, n) 
defined by p(eei I Oi, h’) = p(epi I ei) fi(Opi 1 hr)/CeL, p(Ki I Oi) p(K, I hf) 
and 71 = 72 is a sequential equilibrium of the original (correlated types) game. 

Proof: First we claim that (,G, fi) is consistent if and only if (p, rc) is. To 

see this, note that for any full-support prior p on 0, and any totally mixed 
strategy ?I”, player l’s posterior beliefs about his opponents’ types 
history h’ = (a’, . . . . . a’) are 

g(e- i I e,, hr) = 

while player I’s posterior beliefs in the transformed game with prior 
just 

P”(e-i I ei, h’) = 

so that 

,4B-i I 0,) F”(Ki I Oi, h’) 
p”(e-i I ‘i7 ht)=~sL,,e,P(e-i 1 ei) jiyetpi 1 ei, ho’ 

given 

(5.2) 

fi are 

(5.3) 

(5.4) 

Taking limits in (5.4) shows that (p, p) is consistent iff (fi, 72) is. 
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Next we claim that for each player i and every h’, maximizing utility u, 
given beliefs p and opponents’ strategy nli is equivalent to maximizing 
utility ii given beliefs ,& and 7i-, = xpi. To verify this, let Pn(hT 1 h’- ‘, 0) 
be the probability under 71 of reaching hr given observed history h’ and 
types 8, and note that player is expected utility conditional on reaching h’ 
is 

which is proportional to 

1 fi(O-, I Ojy h') Pn(hr 1 h', 0) p(O-j ) 4,) Ui(hr~ Oj, 0-j) 
0-t 

= c fi(OK, 1 oi, h') P(hT I h', 0) li,(h7; oj, Oei). Q.E.D. 
H-, 

Proposition 5.1 gives a simple method for checking whether an assess- 
ment is consistent when types are correlated. One transforms beliefs into 
independent beliefs and then applies the conditions developed in Sections 3 
and 4. Conversely, one may wonder what these conditions on the beliefs for 
independent types imply for the beliefs p. We conclude this section by men- 
tioning some of these implications. 

Suppose that given some history h’- ‘, only player i has possibly (but not 
necessarily) deviated: There exists i!-, and 0, such that ~(4~~ 1 oi, h’~ ‘) > 0 
(types I%, had positive probability given 0, at the beginning of period t) 
and n-,(al,J I!~~, A’-‘)>0 (actions aLi are played with positive probabil- 
ity by types 8 ~ i). It can be shown that given our assumption of full support 
for the prior, p(&, I Bi, h’- ‘) > 0 for all Oi; that is, which types 0 _; have 
positive probability conditional on Oi does not depend on Bi: see 
Lemma 5.1 in Fudenberg and Tirole [S]. 

Using conditions (1) and (2) of Definition 3.1 for the independent beliefs 
fi and transforming back to the correlated beliefs p yields 

and 

Pte I h’) =Pte-j l Oi, h’) P(O, l II’) 
,U(O-j / Oi, hrp’) Tc-i(Uli I O&j, hfp')/.i(Oj I h’-‘, Uf) 

=~~~_,.e,,~(71-iIBj,h’~‘)?r.-j(U’jIA_j,h’~’)~(ai(h’~‘,Uj)’ 

(5.6) 
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A few comments are in order. Condition (5.5) is the familiar Bayes for- 
mula for updating beliefs on player i’s rivals given their observed behavior 
and player i’s type. Note that the denominator of the right-hand side of 
(5.5) is positive for 0, by assumption. As we observed, it is therefore 
positive for each 8,. 

Condition (5.6) would be more transparent in the form 

(5.7) 

where we use the assumption ~(0 I h’-‘)=p(Ki I %,, hf--1)p(8i 1 h’-‘). 
However, the right-hand side of (5.7) is not well defined if its denominator 
is equal to 0. This is the case in particular if ai has zero probability condi- 
tional on h’+’ (that is, ,u($, I hrpl) ~,(a: I 8,) = 0 for all gi). When ai has 
zero probability, one can still preserve the power of Bayes’ rule by “short 
circuiting” the Bayesian updating for player i and writing the condition 
directly in terms of the posterior beliefs ~(8, 1 h’- ‘, a,!). 

6. GENERAL CONDITIONS 

The definitions of reasonable beliefs in the previous sections exploited 
the special structure of games with observed actions. In these games, two 
nodes in the same information set always correspond to identical histories 
of play through the end of the last period, so that the only uncertainty 
relates to the opponents’ types and to their simultaneously chosen actions 
in the current period. Since beliefs about the actions are pinned down by 
the equilibrium strategies, we had only to concern ourselves with under- 
tainty about the types. 

While this structure let us develop simple definitions, those definitions do 
not apply to more general games. This section develops a definition of 
reasonable beliefs for general games, which turns out to be equivalent to 
consistency. 

We now consider extensive form games with nodes XE X, information 
sets h E H, and actions a E A(h). 

For each XEX and a l A(h(x)), there is a unique successor J(X, a). Thus 
the nodes of X are partially ordered by precedence: x is before y and y is 
after x if there is a succession of nodes and actions x’ =4(x, a), 
x” = d(X), a’), . ..) y = g(xn, a”). We require that this partial order extend to 
information sets, so that if x E h, x’ E h’ and .Y’ is after .x, then no x” E h’ is 
before x. 
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If x’ is after x, we define X(X 1 X) to be the probability under n of the 
succession of actions that lead from x to x’. 

Let Z denote the set of terminal nodes. Given a subset Y of nodes of the 
tree, Z(Y) is the subset of terminal nodes that are preceded by some 
element in Y. 

As suggested by the associate editor, we now assume that there exists a 
conditional probability system v(. 1 .) on the set of all terminal nodes (see 
Definition 4.1). This conditional probability system induces conditional 
beliefs p(. / . ): For any subsets A and B of X, such that Z(A) s Z(B), 
AA I B) = v(Z(A) I Z(B)). 

Note that this is stronger than the existence of separate conditional 
probability systems for each information set, which we assumed in Sec- 
tions 4 and 5. It is also stronger than assuming some conditional probabil- 
ity system over nodes of the tree, as this latter assumption on its own does 
not require that the probability of a node be at least as large as that of the 
node’s successors. That is, we can define conditional probability systems on 
nodes that do not respect the tree’s structure. In contrast, when the relative 
probabilities of nodes are derived from the relative probabilities of their 
terminal successors, the conditional probability system already incor- 
porates a great deal of the tree’s structure. Indeed, Myerson [9] shows 
that these conditional probability systems correspond to the limits of 
conditional probabilities computed from strictly positive assignments of 
probabilities to every action at every node. These assignments need not be 
mixed strategies, as they need not respect the information sets of the game: 
For example, a given action may have different probabilities at two nodes 
in the same information set. 

This section develops “no-signaling” conditions in the spirit of our delini- 
tion of PEBE, and shows that they imply the distributions generating the 
conditional probability system are indeed mixed strategies, so that the 
associated beliefs are consistent. 

DEFINITION 6.1. (i) An extended assessment (v, 7c) is a profile of 
strategies rr and a conditional probability system v on the terminal nodes. 

(ii) Let p denote the conditional beliefs associated with v. The 
extended assessment (v, n) is generally reasonable if 

(1) for all information sets h, actions a E A(h), and nodes x E h, 

da I A) = A&, a) I x1; 
(2) for all information sets h, nodes x and y in h, and actions 

aEA(h), 

144x, a) I 46 a), 4.h 0)) = Ax I x, Y). 
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Condition (1) incorporates Bayes’ rule as well as “no-signaling-what- 
you-don’t-know for positive probability actions”: The probability of action 
a E A(h) is the same at all nodes in h. Condition (2), which is implied by 
condition (1) when rc(a 1 h) > 0,4 guarantees no-signaling-what-you-don’t- 
know even when a has zero probability at h. Conditions (1) and (2) which 
require that ~1 respects the information structure, are very weak. As we will 
see, the strong assumption is that of the existence of a conditional 
probability system. 

PROPOSITION 6.1. An extended assessment (v, n) is generally reasonable 
ordy if (p(. 1 h), KC) is consistent, where p(. / 11) is the restriction of ,u to nodes 
in h. ConverselSy, if (p, 7~) is consistent, it can be extended to a generally 
reasonable assessment (v, IT). 

Proof of Proposition 6.1. If (CL, n) is consistent, then the totally mixed 
strategies rcn + rt generate a conditional probability system v on terminal 
nodes whose conditional probabilities at each information set converge to 
,u. Hence, a consistent assessment can be extended to a generally reasonable 
extended assessment. 

Conversely, if (v, n) is a generally reasonable extended assessment, then 
from Myerson [9] there is a sequence of strictly positive probability 
distributions P” on Z such that for Z, c Z, s Z, v(Z, 1 Z2) = 
lim n-r m(pn(zl)lp”(zz)). 

For any two subsets A and B of X with Z(A) E Z(B) define p”(A ) B) = 
f’“(Z(A))IP”(Z(B)). 

Now arbitrarily select a single node x,, at each information set h, and 
define 

Zfl(Q I h) = PLn(4Xh> a) I Xh) = PH(Z(4Xh, ~)))/P”(Zb,)). 

~“(a 1 h) is strictly positive for all a and h because P” has full support, and 
c o,EA(h, ~?(a’ I h) = 1 by construction. So the rP are totally mixed 
strategies. It remains to show that n” + n and that the beliefs fi” generated 

4 We have 

P(4-c 0) I 4% a). 3(.v, a)) = v(Z(4.L a))) 
V(Z(J(X, a))) + V(Z(d(Y, a))) 

v(Z(x)) Ma I h) 
= G(x)) r(u I h)+ v(Z(y)) n(n 1 h) 

= Ax I .‘i, YX 

where the first and the third equalities come from the definition of p and the second results 
from (i) and the definition of p. 
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by rc” converge to the conditional beliefs p generated by v. That rcn + n 
results from condition ( 1) of Definition 6.1. Next, from the definition of n”, 
for any h and for any X’ in h, 

lim 7rn(u I x’) = lim ~Y(cI(x~, a) / sh) = v(Z(,~(x~, a))/Z(x,) = x(a ( 12) 
,I - T 

where the last equality follows from condition (1) of Definition 6.1. 
Finally, we check that the conditional beliefs @” computed from r? con- 

verge to the conditional beliefs p generated by v. By definition, for all h and 
x E h, P”(.Y 1 x, xh) = P”(Z(x))/[P”(Z(.u)) + P”(Z(x,))] and from condition 
(2) of Definition 6.1 and it” + p we have 

p(x I I, Xh) =,,liJmL PYZ(3(X, Cz))/[P”(Z(J(X, a))) + P”(Z(5(X,, a)))] 

= lim P”(Z(x))/[P”(Z(x)) + P”(Z(s,))]. 
n + ,-mz 

Therefore 

lim P”(z(:~(x, a)))/P”(Z(x)) = lim P”(Z(.j(xh, a))/P”(Z(x,)) 
n--r n - % 

= lim n’*(a 1 h), 
,,‘x’ 

and so it does not matter which x,, is chosen as reference node in informa- 
tion set h to define the rc”(. 1 II). Therefore (as one can check) the beliefs ,C” 
generated by the strategies 7~” yield in the limit the same first-order beliefs 
p as the converging sequence p” obtained from v. Thus, (v, n) defines a 
consistent assessment. Q.E.D. 

APPENDIX 

Proof of Proposition 4.1. We will say an extended belief system (II”, sr) 
converges to (p, vi) when IZ tends to infinity if for each history h’, 
~“(8, / h’) -+ ,u(S; j h’) and $‘(t?, / 8,, h’) + qi(8,j 8,, h’) for all 0, c 0; and 
all 8,. 

Since each q,(. I ., h’) is a conditional probability system, the “infinitely 
more likely than” relation defines a finite partition, or relative ordering, of 
Oi. (This is proved by Myerson [9].) A labeiling k:: Oi-r R is compatible 
with V, if Icf(f?,) < Ici(ei) if and only if q,(O, I (O,, d,), h’) = 1. (We will fix the 
history h’ so that the notation kj( .) should not be confusing.) 

As in the proof of Proposition 3.1, we proceed by induction, beginning 
with a two-period game whose prior beliefs (p(. I ., ho), qi(. I ., ho)) are 
reasonable (but need not be strictly positive). 
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Fix k” and h’ = (ho, a’), and suppose we are given an ordering ku(O,), 
compatible with qi(. 1 ., ho). 

Consider a sequence of strictly positive reasonable conditional belief 
systems WY. I hoI, 9:(. I ., ho)) 

(a) that converges to (,u(. 1 ho), qi(. I ., /I’)) and 

(b) such that letting kp-min,, kp(ei), there exists a function 
ny(fI,, n) + IUp with 0 < Ay(Oi) < + cx, for all Qi and ~“(0~ 1 ho)= 
jvz?(H,, n)( l/n)@“f) -k:‘. (That is, ~~(8, I ho) is O(kp(0,) -lip), where O(k) is 
the class of functions converging to zero at rate (I/n)“). 

We claim that conditions (l’), (2’), and (3’) imply that there exists a 
sequence of totally mixed strategies ~:(a, I oi, ho) + rci(a, I Bi, ho) such that 
(a) the conditional belief system (p”(. I /I’), q;(. 1 ., II’)) obtained from 
Bayes’ rule converges to (p(. I h’), ql(. I ., h’)), (b) there exists A,‘(61i, n), 
such that p’*(O, I h’) = ip(tIi, n)(l/n)k:‘U1)~minii;‘j’n;) and j.f(0,, n) -+ j-f(6),) 
with O<if(B,)< +-;x;. 

Note that condition (3’) implies that ~~((3, I ., h’) = q,(fI, I ., (ho, a,)), 
where a, = a:. Note also that the conditional probability system at date 1 
imposes only a relative ordering of the types 8,; that is, many different 
functions kf are compatible with the same ordering. We use this degree of 
freedom to specify a particular choice of kf that allows us to find trembles 
such that conditions (a) and (b) are satisfied at date I if they are satisfied 
at date 0. 

So assign a real number kt(di) as follows: 

(i) if rri(ai 1 8,, ho) >O, then kf(Oi) = kp(O,); 

(ii) if n,(a, ( @,, ho) =O, then k,!(Qi) > kP(8,); (A.1 1 

(iii) ki(Oi) < k,!(ei) ifand only if qj(8, I (ei, di), /I’) = 1 

(i.e., iff 0; is infinitely more likely than 4, at date 1). 
(A.l(iii)) is simply the condition that the labelling be compatible with 

the conditional probability system, which we know is feasible. That a com- 
patible labelling exists that satisfies (i) and (ii) results from Bayes’ rule (l’), 
which implies that the relative ordering of two types at date 1 which play 
aj with positive probability is the same as that at date 0, and that if 
vi(Hi I (ei, di), ho) > 0 and 7ci(ur I 8,, ho) > 0, then ki(tIi) G kj(d,), with strict 
inequality if ~~(0, ) S,, ho) = 0. 

Now we construct “preliminary trembles” 9, which generate the desired 
relative probabilities, but do not necessarily add up to 1 at each informa- 
tion set. Later we will modify these to obtain the totally mixed strategies 
n”. 
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First, for all oj with rri(ai 1 Bi, ho) > 0, set til(ai 1 ej, ho) = ~,(a, 1 f3;, ho). 
Second, pick a number k in the range of k)( .). 

(M) If 30: with rr;(a, 1 8:, ho > 0, and k,‘(@) = k, then for any /lli with 
k,!(O,)=k and ~,(a, 1 dj,ho)=O, set 

(note that all terms in the numerator and denominator of the right-hand 
side of (A.2) are strictly positive). 

(p) If for all 8, with kf(Oi)= k, ni(ai I 8,, ho) =O, then pick an 
arbitrary such 0: and set 

1 k;(B;)-k:(Of) 
qu, 1 of, ho) = ; 

0 
(A.3) 

Then for all 8, with kj(t?,) = k, set 

(again, all terms in the numerator and denominator of the right-hand side 
of (A.4) are strictly positive). 

Note that these definitions of the fi insure that the relative posterior 
probabilities of 8, and 4, are those given by Bayes’ rule for Bj and 0, of the 
same posterior order. 

After we have constructed the 5” as above for each k in the range of 
k,‘( .), we adjust the 72” to assure that they sum to one, Let Z(6,) = 
St: 1 ni(iii I Bi, ho) =0} and let #Z(0,) be the number of actions in Z(0;). 

qu, 1 ej, ho) = 7y(u, I e,, ho) if 7c,(u, I 8;, ho) = 0 (A.5) 

and 

if rc, (a, 1 Bi, ho) > 0. Clearly, for n large enough, those trembles are positive. 
This ensures that x,, rr;(ui 1 Bi, ho) = 1. 
Now we check that n’(u, 1 Oj, ho) + ni(ai I ei, ho). This is obvious if 

ni(u, I 8,, h”)>O. If ni(u, I Bi, ho) =O, there is a (3: with k,‘(P)= kf(Oi). 
There are two possible cases: 

1n case (a), the facts that kf(@) = k](6,), ~,(a, ( O:, ho) > 0, 
~~(a, 1 di, ho) = 0, and (A.l(i) and (ii)) imply that kp(flf) > k:(t),), or equiv- 
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alently, ~~(0; 1 (6:, (I,), ho) = 0 and ~~(8, ) (of, 0,), ho) = 1. Now consider 
(A.2). By assumption, q:(. 1 ., ho) converges to qi(. 1 ., ho). Furthermore, the 
three terms on the right-hand side of (A.2) that are not indexed by n are 
strictly positive. We conclude that ii:(a, / 0,,, ho) = $(a, / 8,, ho) converges 
to 0 = rti(ui ( tIi, ho). Note further that, from (A.2) and 

qy(ej’ I (ef, e,), ho) y(e; j ho) j.p(ef, n) I k%f)-kf(e~) 
q;(e, 1 (e:, e,), ho) = g(e, 1 ~0) = #e,, n) 0 ii 

, (A.7) 

there exists yp(e,, n) + yp(e,) such that 0 < $(ei) < + CC and 

fi:b, I e,, ho) = sv,, 4 

1 kfM,)- k;W,) 

0 
n (A.8) 

Thus the tremble constructed for type B, belongs to 0(kf (0,) - kp(ei)). 
In case (B), (A.3), (A.4) the induction hypothesis, and the fact that 

k,!(t);) =kf(ei) imply that there exists yp(B,, n) + yp(e,) such that 
0 < yp(0,) < + co and 

(A.9) 

But from (ii), kf(8,)>kp(B,), so that 72:(u, 1 t!I,, ho) converges to 
0 = ni(a, I 8,, ho). Furthermore, the tremble belongs to O(k,!(ei) - kp(e,)), 

Note that in both cases (a) and (p), induction hypothesis (b) at date 0 
together with (A.8) or (A.9) implies that induction hypothesis (b) is 
satisfied at date 1. 

Finally, we check that the totally mixed strategies rcr together with the 
full-support priors pL” give rise to conditional probability systems 
ql(. I ., h’) that converge to qi(. I ., h’). 

Fix 8, and 6;. First suppose that O<q,(8, / (8,, B:), h’) < 1 (that is, 
kf(0,) =lz,!(tI;)). Bayes’ rule implies that 

oej I (ei, e:), A’ ) 
nei I hl) 

E p(ej 1 hl) + gye; 1 ~1) 
g(ei 1 ho) ~;(a, I ei, ho) 

= p(ei I ho) 7lr(Ui I e,, ho) + g(e: I ho) ~c;(u, I e:, ho) 
C(ei I (ei,e:), ho) nr(a[ I Oi, ho) 

= q:,(e, I 04, e;), ho) q~, I ei, ho) + tg(e; I (ei, e;), 120) x:(a, 1 e;, hoj 
(A.lO) 
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(A.lO), together with (A.2) or (A.4) (depending on whether (a) or (b) 
applies), implies that qy(0,I (ej, fI:), h’) converges to yli(di ( (ej, f3,!), h’) = 
kw, I (6, ef), wh(e, I (6 efk hl)+t(e; I cc efh h’)). 

Last, note that the induction hypothesis (b) at date 0 and (A.7) (or 
(A.8)) imply that for any 8, and e,!, 

ev, I (6, eih ~1) 

Henceifkf(e,)>k,‘(e:), $‘(eil (e,,e:),h’) convergestOo=qi(e,I(e,,e(),h’). 

To conclude, the trembles &‘(a, I 8,, 11’) lead to a strictly positive 
reasonable belief system that (a) converges to (p(. I h’), qi(. I ., 15’)) for all 
h’ and satisfies (b) as well. We now proceed by induction as in the proof 
of Proposition 3.1. By inductive hypothesis, there are totally mixed beliefs 
p”(. I h’- ’ ) + pL(. I lzfp ’ ), whose associated conditional beliefs converge to 
qj(. ( ., h’-‘) in a way consistent with (b). Thus we can use the algorithm 
defined above to construct trembles that yield strictly positive belief 
systems that converge to (p(. I h’), q(. I ., h’)) for any h’. This proves in 
particular that the beliefs ,u( . 1 h’) are consistent. Q.E.D. 
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