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ABSTRACT

LEVERAGING MULTI-RADIO COMMUNICATION FOR MOBILE
WIRELESS SENSOR NETWORKS

FEBRUARY 2010

JEREMY J. GUMMESON

B.Sc., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Tilman Wolf

An important challenge in mobile sensor networks is to enable energy-efficient commu-

nication over a diversity of distances while being robust to wireless effects caused by node

mobility. In this thesis, we argue that the pairing of two complementary radios with het-

erogeneous range characteristics enables greater range and interference diversity at lower

energy cost than a single radio. We make three contributions towards the design of such

multi-radio mobile sensor systems. First, we present the design of a novel reinforcement

learning-based link layer algorithm that continually learns channel characteristics and dy-

namically decides when to switch between radios. Second, we describe a simple protocol

that translates the benefits of the adaptive link layer into practice in an energy-efficient

manner. Third, we present the design of Arthropod, a mote-class sensor platform that

combines two such heterogneous radios (XE1205 and CC2420) and our implementation

of the Q-learning based switching protocol in TinyOS 2.0. Using experiments conducted

in a variety of urban and forested environments, we show that our system achieves up to
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52% energy gains over a single radio system while handling node mobility. Our results

also show that our system can handle short, medium and long-term wireless interference in

such environments.
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CHAPTER 1

INTRODUCTION

Mobile sensor networks have received increased research attention recently with ap-

plications ranging from vehicular networks (e.g. DieselNet [3]) to animal tracking (e.g.

ZebraNet [9]). The choice of the wireless radio is perhaps the single most crucial design

parameter for designing a mobile sensor network. The wireless radio must enable node-to-

node and node-to-basestation communication over distances dictated by application needs,

while being energy-efficient and robust to wireless effects introduced by mobility patterns.

With advances in communication technologies, a spectrum of wireless radios are available

to meet the needs of a sensor network. Table 1.1 depicts four common wireless radios used

by today’s sensor network platforms. As shown in the table, wireless radios are generally

designed with a communication range in mind. For example, the Xtend and the XE1205

radios are designed for low-bitrate long-range communication over distances of a mile or

more. In contrast, 802.11 and CC2420 radios enable high and low bandwidth communica-

tion, respectively, over short ranges of hundreds of feet or less. Thus, the sensor network

designer must make a critical design choice. She can either choose a long-range radio en-

abling nodes to communicate over long distances but at the expense of expending more

power. Or she can choose a shorter range radio that is more power-efficient but forego

communication over longer distances.

Note that traditional techniques for range adaptation via power control or range elon-

gation via the use of directional antennas do not address this tradeoff for mobile sensor

networks. As shown in Table 1.1, modern radios support range adaptation using power

control — a higher power setting can be used to increase the communication range of the

1



Radio Bandwidth transmit power levels (min, max), steps transmit energy/bit (min,max) receive power max outdoor range

CC2420 250 Kbps (-25,0dBm),31 102,208nJ/bit 56.7mW 80m
XE1205 38.1 Kbps (0,15dBm),4 1803,5276nJ/bit 42.0mW 80m - 800m
XE1205 76.8 kbps (0,15dBm),4 894,2617nJ/bit 42.0mW 80m - 800m
802.11b 11 Mbps (0,15dBm),4 -,120nJ/bit 900mW 100m
XTend 9.6kbps (0,30dBm),4 57.3,380.2uJ/bit 240mW 2-3km

Table 1.1: A spectrum of radio hardware

radio. While it is possible to choose a long range radio and use lower power settings for

short range communication, doing so is far less efficient than using a short range radio for

communicating over shorter distances. As shown in Table 1.1, the lowest power setting on

the XTend radio is still 561x more expensive than using the CC2420 radio. Using a radio at

its maximum range is never desirable, as packet loss rates increase with distance; the radios

mentioned in Table 1.1 typically have a packet loss rate of∼ 30% at the reported distances,

further emphasizing the need for appropriate radio hardware. Similarly, it is not feasible

to use a radio designed for short range communication and to “increase” its range by us-

ing directional antennas. Directional antennas have been used successfully to increase the

communication range of such radios – for example, the Mobisteer project [13]. However,

since directional antennas are bulky, it is not feasible to deploy them in many mobile sensor

network settings; for instance, animal tracking deployments require compact packaging of

the mobile sensors.

These observations about the hardware characteristics of low-power radios lead us to

the following thesis statement: A wireless sensor system that employs both short and long-

range radios is capable of achieving the energy efficiency benefits of the short range radio

as well as the range benefits of the long-range radio.

We validate this statement by pairing two complementary radios with heterogeneous

range characteristics. This hardware enables mobile sensor nodes with the ability to achieve

a significantly greater range diversity at a lower total energy cost when compared to a

single radio. The use of multiple radios has been extensively investigated in the cellular

community [28], but the radios employed in cellular devices are used to either maximize

2



bandwidth or achieve interoperability. The key idea of our work is to operate each radio

over a range where it is more energy efficient and to switch to the other radio whenever

a mobile node moves from one radio’s effective range to another. Specifically, we choose

a high bandwidth spread spectrum radio with poor range characteristics and a variable

bitrate radio tuned to have low bandwidth but better range. The two radios also operate

in two isolated frequency bands – an impossibility with a single radio. In this manner, we

achieve the best-of-both-worlds and eliminate the drawbacks of a single radio platform. An

additional benefit of pairing complementary radios is that it enables adaptation to channel

interference—by dynamically choosing the radio with the least interferences from other

wireless devices. When using the two radios to adapt to interference, the variable bitrate

radio is tuned for higher bandwidth but reduced range to better complement the alternate

radio interface. The isolated frequency bands used by each radio allows robust adaptation.

We present the design of a heterogeneous multi-radio platform and system for handling

range dynamics, where the choice of which radio to use for communication is made dy-

namically based on current channel characteristics, specifically wireless channel variations

caused by device mobility and range effects. To shield applications from the increased

complexity of choosing between radios, we present the design of a unified link layer that

transparently chooses which radio to employ for communication between a pair of nodes.

At the core of such a link layer is an adaptive algorithm that can dynamically decide when

to use each radio for a wide range of mobility patterns. Such an algorithm is non-trivial

since it needs to continually monitor and “learn” channel characteristics for the two radios

and determine which one provides the lowest energy communication channel. Additionally,

the practical implementation of such an adaptive link layer on sensor platforms presents a

significant challenge since the energy and resource overhead for monitoring, learning, and

switching between radios needs to be kept as low as possible.

3



1.1 Contributions

In this thesis, we propose a multi-radio hardware and link layer solution for range-

adaptive mobile wireless sensor networks. Our work has three major contributions:

Q-Learning based Unified Link Layer: Our first contribution is a reinforcement-

learning based algorithm that enables adaptatation across radios with different power/range

tradeoffs. This algorithm learns the characteristics of radio channels through exploration

and continually adapts to use the more efficient one.

Multi-radio Switching Protocol: Our second contribution is a energy-efficient switch-

ing protocol that translates the benefits of the Q-learning based adaptation algorithm into

practice. The protocol transparently switches between radios, thereby providing the ab-

straction of a unified link layer to applications executing on multi-radio platforms.

Heterogeneous Multi-Radio Sensor Platform: Our third contribution is the design of

a new mote-class sensor platform, the Arthropod, that pairs two radios with complemen-

tary characteristics: the CC2420 and XE1205. These radios have very different maximum

ranges (80 meters vs 800 meters), and also significantly differ in their maximum power

output (0 dBm vs 15 dBm) Thus, the Arthropod offers good potential for range adaptation

to handle mobility effects.

We conduct mobility experiments using our hardware and software prototype in a vari-

ety of settings—urban/indoor, urban/outdoor, foliage— and for a range of mobility patterns

—continuous and nomadic— that are typical in mobile sensor network deployments. Our

experiments show that we obtain up to 52% improvements in energy efficiency over using

only one of the two radios on the platform, while achieving a loss rate only marginally

higher than using just the high-power radio. Our experiments on interference dynamics

show that our link layer can adapt to short, medium and long-term wireless interference,

while yielding a significant reduction in energy usage over a single radio system.
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CHAPTER 2

RELATED WORK

ince radio diversity presents clear benefits along a number of dimensions: energy, ro-

bustness to interference, increased bandwidth and ease of deployment, a number of multi-

radio systems have been designed in recent years. This has primarily involved a separa-

tion of control tasks such as neighbor discovery or neighbor wakeup from data transmis-

sion. Such a separation has been achieved by pairing 802.11 with the CC2420 [12] or the

CC1000 [10, 15, 23], 802.11 with a custom radio for Wake-On-Wireless [22], [18], and

802.11 with an XTend [26] radio [3] for the UMassDieselNet DTN [4]. While such static

allocation of roles to radios offers useful benefits, it does not fully utilize the potential of

multi-radio systems. In our system, either radio can be used for control or data communi-

cation and the choice of which radio to use for communication is made dynamically based

on current channel characteristics.

Multiple radio interfaces have also been exploited for increasing bandwidth and toler-

ating disconnection on mobile wireless devices. The Mobile Access Router [20] exploits

multiple types of radio interfaces (eg. 802.11, GPRS, etc), or interfaces tied to different

service providers to aggregate bandwidth and avoid stalled transfers. A related technique is

PTCP that uses link-layer striping [8] to achieve a similar goal. All these mechanisms are

aggressive in using multiple interfaces and do not take energy into account when choosing

an interface. An updated Wake-On-Wireless system [1] and Context-for-Wireless [17] use

802.11 with cellular radios for data transmissions, with a static preference given to 802.11

when available.
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One dynamic, energy-aware system is Coolspots, which combines 802.11 with Blue-

tooth [14]. Coolspots chooses Bluetooth transmission when available, and 802.11 when

Bluetooth is insufficient to meet the bandwidth requirements. However, the choice of when

to use a radio is made using coarse-grained feedback from the network layer, and neglects

the benefits of a fine-grained, link-layer approach; this type of approach is useful because

it allows a system to react quickly to short term dynamics. Another approach to dynam-

ically utilizing a multi-radio system to achieve is found in [21] and [11]. These systems

pair 802.11 with 802.15.4 and chooses the appropriate interface based on data size; energy

efficiency is achieved by batching packet transmission. Achieving efficiency by increas-

ing latency is beneficial, but instead our work focuses on reducing energy consumption by

reacting to variations in mobility and channel conditions. Other systems, such as Triage

extend this paradigm from multiple radios to multiple platforms [2]; however in this work

a single platform is sufficient to process data transmission from both radios.

Recent work on wireless mesh networks has explored designs with multiple radios per

node. For instance, carefully planned mesh networks can exploit multiple radios to make

channel assignment more effective [5]. However, these approaches have not addressed the

problem of algorithms to dynamically react to changing channel characteristics, and do not

consider energy efficiency.
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CHAPTER 3

A Q-LEARNING BASED MULTI-RADIO LINK LAYER

Our work assumes the availability of a heterogeneous dual-radio hardware platform.

As previously mentioned, a multiple radio system can achieve greater range diversity and

better interference adaptation than a single radio alternative. A potential drawback of ad-

ditional hardware is an increase in the complexity of software required to manage radio

parameters. To overcome these challenges, we present a unified link layer that is driven by

a learning algorithm that adapts radio state parameters based on packet statistics. To real-

ize the decisions made by this algorithm, we also employ a radio-switching protocol that

handles transitions between different hardware configurations. The result is a single-radio

abstraction that is robust with respect to interference and mobility dynamics.

Mobile multi-radio systems regularly incur unpredictable and widely varying condi-

tions due to channel effects such as shadowing, fading, and multi-path effects, as well as

varying interference. While adapting to these dynamics, the channel has hidden state: con-

ditions on the radio not being used. In order to avoid local minimum, the system must

periodically attempt to explore other operating states.

In particular, we have chosen to use a reinforcement technique called Q-Learning that

provides exactly the properties required: a simple reward for making correct decisions and

an ability to explore other operating points periodically [24]. In this chapter, we intro-

duce some concepts from reinforcement learning and outline the design of the adaptation

algorithm that is at the core of our unified multi-radio link layer.

7



Algorithm 1 Q-Learning
1: Initialize Q(s, a) aribitrarily
2: Repeat(for each step of episode):
3: Choose a from s using policy derived from Q (ε-greedy)
4: Take action a, observe r, s′

5: Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
6: s← s′;
7: until s is terminal

3.1 Introduction to Q-Learning

Q-Learning is a reinforcement-learning technique to enable decision-making for agents

in an unknown environment [24]. An agent continually takes an action from a set of pos-

sible actions and observes some reward associated with the outcome of their decision. In

Q-Learning, there is a ”Q-Matrix” that updates according to the reward received, and the

state transitions. This Q-Matrix is used to determine which action is optimum while an

agent is in a given state; A Q-Matrix has a corresponding Reward-Matrix that contains the

reward to be received by the agent for arriving at a particular state. In Q-Learning, the

agent will occasionally take a random action to explore states that have not been visited for

some time.

Algorithm 1 shows the procedure for Q-Learning [24]. The learning algorithm uses

three parameters — the learning rate α, discount factor γ, and the ε-greedy parameter. The

learning rate places a limit on how quickly learning occurs. If this parameter is set too

low, it will take a long time for the system to learn, while if set too high, will cause the

Q-Values to never converge to optimal values. The discount factor is used to determine

how much emphasis is placed on future rewards. Setting this parameter low will optimize

for immediate rewards, while setting this parameter high will place more importance on

future rewards. Parameter ε determines with what probability a random action is explored,

rather than choosing an action with the highest Q-Value.

8



3.2 Designing a Unified Link Layer using Q-Learning

We now describe how Q-Learning can be used to adapt between different radios in the

case of a dual-radio sensor node. As noted earlier, we assume the availability of a multi-

radio platform with complementary radios (e.g. a short-range low-power and long-range

high-power radio). In Chapter 5, we describe one such platform that we have designed

that combines a CC2420 and XE1205 radio. We also assume a traffic model where mobile

nodes periodically report sensor readings and transfer data between each other when in

range.

We first consider the case where each radio is set to a single power level. In this case,

Q-Learning uses a two state model (one for each radio) where the action taken by the agent

is either to stay with the same radio or switch to the alternate radio. The agent will switch

radios if conditions deteriorate on the current radio (or is disconnected), or if conditions

improve on the alternate radio. These dynamics are captured in the Q-Matrix at a rate gov-

erned by α and γ through feedback from packets transmitted over the current radio, as well

as from exploration packets transmitted over the other radio (with frequency determined by

ε). The optimal rate exploration packets should be sent is determined largely by mobility

rate and interference dynamics; ideally this rate would be determined adaptively. If the

agent finds that the alternate radio has a higher Q-Value (i.e. lower energy consumption),

the agent will choose to use this new radio interface.

This two state model may be expanded to an n-state model, where each state represents

a radio at a particular transmit power level, each representing a particular range/power

tradeoff. For example, four states would be required for two radios, each with two trans-

mit power level options. However, increasing the number of states comes at the cost of

either increased exploration overhead or decreased exploration frequency since exploration

requires time and energy. We reduce this overhead in the n-state case by considering only

three states at a time — the current state and two adjacent states, a lower-range/lower-

power state, and a higher-power/higher-range state. Both these adjacent states could be on

9



the same radio or a different radio. Thus, exploration is limited to only two states at any

time.

Reward matrix: A key aspect of Q-Learning adaptation is defining the reward ma-

trix R for each state. The unified link layer receives information about the number of

retransmission attempts and number of congestion backoffs for each packet that it trans-

mits through either radio; these metrics are used to determine the reward for the current

choice of radio / power level. We model the reward as an estimate of the amount of energy

associated with the channel metrics collected for a given packet. The amount of energy

to transmit a given packet is a function of packet size, static radio parameters such as re-

ceive/transmit power and channel sense time, number of retransmission attempts, and the

number of congestion backoffs. Energy is a cost, rather than a reward, so its value is neg-

ative. The following equation shows how rewards are calculated where i is the number of

retransmissions:

r[i] = −(i · (PacketSize ·ByteT ime · TxPower +
AckT imeOut ·RxPower)

+RxPower · (AckRTT )
+PacketSize ·ByteT ime · TxPower)

While the above equation determines the reward when a packet is successfully trans-

mitted, we also need to consider the case when a packet is unsuccessful after a pre-defined

maximum number of retries. In this case, we want the Q-Learning algorithm to progres-

sively try higher power states until it reaches the highest power state. To obtain this behav-

ior, when a packet transmission is unsuccessful on a low-power state, we assign a large neg-

ative reward to encourage the algorithm to switch to a higher power state sooner, thereby

limiting the number of lost packets. We achieve this behavior by selecting a policy for

choosing an action, a, from the set of actions, s, with the maximal Q value or the minimal

expected energy consumption for a packet transmission. Once the highest power state is
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reached, if packet transmission is still unsuccessful, a zero reward is assigned since there is

no point in switching back to other lower power states until the connection is re-established

at the high-power state.
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CHAPTER 4

A MULTI-RADIO SWITCHING PROTOCOL

Translating the Q-Learning based switching algorithm to a working protocol presents a

non-trivial challenge. When a sender decides to switch to or explore another radio, it needs

to notify the receiver of such an action. However, an explicit handoff may not always work,

for example, the receiver may be unreachable by the current radio due to mobility. A trivial

solution would be for the receiver to keep both radios always active, obviating the need

for handoff. However, this option is clearly inefficient as it requires both radios to be in

receive mode, consuming significant energy. Thus, a key challenge that we address is: how

can we design a practical protocol for switching between radios that is energy-efficient and

reliable?

In the rest of this chapter, we describe the sender and receiver side design for our adap-

tive multi-radio block transfer protocol. For simplicity, we consider a dual-radio system

with a high-power radio (HIGH) and low-power radio (LOW) with only one power level

per radio.

4.1 Sender State Machine

The state machine at the sender is shown in Figure 4.1. We first describe the normal

operation of the state machine before discussing how we handle exceptional cases that

arise due to losses and disconnections. When data transfer starts, the sender first needs to

“wakeup” the receiver from its IDLE state. There are many approaches to duty-cycling

and wake up (e.g. SMAC [27], BMAC [16]), and we assume that one of these approaches

12



qOutput == EXP / 
Send(exp_pkt) 

LOW
ON Handoff

IDLE

qOutput == Low-ON / 
Off(high)

HIGH
ON

(qOutput == EXP || Low-ON) / -

qOutput == High-ON / 
Off(low)

Timeout || END_BLOCK / 
Off(low), Duty-cycle (high) 

END_BLOCK / 
 Off(low), Duty-cycle(high) Timeout || END_BLOCK / 

Off(low), Duty-cycle(high) 

(qOutput == EXP || High-ON) / -

Data / 
Send wakeup msg

Timeout / 
 Off(low), On(high) 

Figure 4.1: Sender state machine. qOutput denotes the output of the Q-Learning algorithm,
which can be either explore, turn on low-power radio (low), or turn on the high-power radio
(high). Transitioning from the IDLE state requires a wakeup message.

are available for the radio. Once the wakeup command is successful, the sender transitions

from IDLE to HIGH-ON state.

Switching and exploration between the radios requires a handshake between the sender

and receiver; first, the sender sends a packet indicating that a switch needs to be done, and

if the packet is transmitted successfully, the sender and receiver can synchronously switch

states to the second radio or explore on it. To perform such a handshake, the sender state

machine includes a handoff state in which both radios are turned on. To illustrate, consider

a switch from the HIGH-ON to LOW-ON state triggered by the Q-Learning algorithm.

The state machine first sends a data packet while remaining in the current state with the

handoff flag set. If the packet is successfully transmitted, the state machine transitions to

the HANDOFF state. (Note that the receiver is in the BOTH-ON state at this point and can

receive on both radios). From this state, the sender can send a packet on the LOW radio

to transition to LOW-ON state. A similar process is done during exploration. The sender

and receiver transition synchronously to the HANDOFF and BOTH-ON states respectively,
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NEXT_STATE = LOW / 
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EXPLORE || Timeout / 
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END_BLOCK / 
 Off(low), Duty-cycle(high) END_BLOCK / 

Off(low), Duty-cycle(high) 

Wakeup / 
On(high), Off(low)

EXPLORE || Timeout / 
On(low), On(high)

Figure 4.2: Receiver state machine

and stay in this state until exploration is complete, after which they switch back to whatever

state they were in earlier.

Finally, we also deal with various cases where the state machines at the sender and

receiver may become out-of-sync due to lost packets/acks, or complete loss of connectivity

on one or both radios. If the LOW radio is currently in use and becomes disconnected,

the sender times out, transitions to the HIGH-ON state and attempts to transmit using the

long range radio. (Note that the receiver switches to the BOTH-ON state after a similar

timeout, and is ready to receive on the HIGH radio.). If this fails as well, then after another

timeout, the sender switches to IDLE mode since it means that the sender and receiver are

out-of-range of both radios.

4.2 Receiver State Machine

The state machine at the receiver is shown in Figure 4.2. When data transfer starts, the

receiver is in the IDLE state, where it operates with the HIGH radio in duty-cycled mode,

and the LOW radio in off mode. This enables wakeup by the long-range radio to maximize

contact time between the sender and receiver. The receiver is woken up out of this state

by a long preamble on the HIGH radio, and switches to the HIGH-ON state. Switching

between the two radios occurs through a handoff state where both radios are switched on
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and ready to receive. When the receiver gets a packet with the handoff flag set, it transitions

to the BOTH-ON state. It stays in this state until the sender informs the receiver to switch to

either the LOW-ON or the HIGH-ON state. The receiver transitions back to the IDLE mode

when the END BLOCK flag is set in a packet indicating that the sender has completed the

current transfer of a block.

The receiver state machine also handles a number of exceptional cases that may arise.

When the receiver is in the LOW-ON or HIGH-ON state and does not receive a packet for

a short duration, it transitions to the BOTH-ON state. This enables the receiver to deal

with two cases: (a) the sender is using one radio whereas the receiver is out-of-sync and

listening on the other radio, (b) the sender is out of range of the current radio but in range

of the other radio. If no packet is received in the BOTH-ON state, it implies that the sender

has dropped out of contact of both radios, therefore the receiver switches back to the IDLE

state.

Summary of benefits: Having described the sender and receiver state machines, we

now briefly describe the main benefits of our switching protocol.

• Active mode efficiency: During a block transfer, we minimize the amount of time

for which both radios are turned on at the sender and receiver. This ensures that our

system almost always consumes only as much energy as a single radio system.

• Low packet overhead: All state transitions in our protocol are triggered by flags set

in data packets. There are no additional control packets, hence our protocol has

extremely low packet overhead.

• Robustness: Our protocol is robust to channel vagaries and different mobility pat-

terns, and can recover from lost packets/acks, disconnections, and out-of-sync states.
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CHAPTER 5

ARTHROPOD IMPLEMENTATION

We have built a prototype multi-radio platform called Arthropod and have implemented

the Q-Learning based adaptive link-layer and switching protocol. This chapter describes

the hardware and software implementation of our system.

5.1 Hardware Architecture

Our Arthropod sensor platform consists of a low-power microcontroller and a pair of

heterogeneous low-power radios. The current prototype employs a MSP430 microcon-

troller, a CC2420 radio, and an XE1205 radio. Rather than constructing such a platform

from scratch, we employed an existing Tinynode sensor platform [6], which contains a

MSP430 processor and the XE1205 radio, and augmented it with a custom-built daughter-

board comprising the CC2420 radio. We constructed the daughterboard by connecting an

EasyBee CC2420 evaluation board [19] to several GPIO pins and an SPI bus available on

the Tinynode. Figure 5.1(a) depicts the resulting prototype hardware of Arthropod.

The particular choice of the XE1205 and the CC2420 radios was governed by their com-

plementary characteristics (see Table 1.1). The two radios operating in mutually exclusive

frequency bands—900MHz and the 2.4GHz for the XE1205 and CC2420, respectively—

enabling better interference adaptation. The table also shows that when operating at 0

dBm, both radios yield a range of 80m. However, the energy figures also indicate that if

5 or more retransmissions are needed on the CC2420, it is cheaper to use the XE1205 in-

stead. In practice, retransmissions are more expensive since the sender needs to keep the

radio active to receive the acknowledgment.
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(a) Hardware Prototype

Application

Unified link layer

XE1205 MACCC2420 MAC

XE1205 radioCC2420 radio

(b) Software Architecture

Figure 5.1: System Components: (a) Hardware prototype comprising the Tinynode and a
CC2420 expansion board and (b) Unified Link Layer for the radios

Arthropod also enables range diversity. While the peak range of the XE1205 is 2 kms

for a bandwidth setting of 1.2 Kbps and +15dBm power level, we were unable to get reliable

transmission on the XE1205 at this setting due to known calibration problems with the

TinyNode’s XE1205 radio. Therefore, we use a data rate of 38.1 Kbps @+15dBm, at which

setting the maximum range is 800m. In contrast, the CC2420 cannot transmit beyond 0dBm

and thus has a maximum range of 80m.

5.2 Software Architecture

The software implementation for Arthropod is an adaptive link-layer that unifies the

individual MAC layers for the two radios. We have implemented a unified radio interface

as part of the TinyOS-2.x operating system for motes [25]. The unified radio interface

consists of two primary components: TinyOS-2.x drivers for the XE1205 and CC2420

radios and a unified link layer that manages the radio drivers. Figure 5.1(b) shows the
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XE1205 Radio CC2420 Radio
Ack RTT 1.79ms 1.04ms

Ack Timeout 2.6ms 2.4ms
Avg. Congestion Backoff 10.4ms 10.4ms

Channel Sense Time 1.6ms .756ms

Table 5.1: Timing for MAC layer operations

arrangement of these software components. More implementation details may be found in

[7].

TinyOS-2.x Radio Drivers: The interfaces to the CC2420 and XE1205 radios allow

for fine-grain control of many parameters including link layer acknowledgments, clear

channel assessment, radio channel selection, data rate and transmit power. Table 6.6 shows

some performance metrics collected from the corresponding drivers that are relevant to our

multi-radio system. Each radio MAC layer supplies feedback required by our unified link

layer: whether or not a packet was acknowledged, and the number of congestion backoffs

experienced for the current transmission attempt. Table 6.6 shows performance metrics

relevant to our multi-radio system.

Unified Link Layer: In order for our multi-radio platform to be usable at an application

level, our system provides a unified link layer that determines the radio interface currently

best suited for communication (shown in Figure 5.1(b)). To the programmer, there is a

single interface to send and receive packets to and from the node, and the link-layer system

handles addressing and transmission over the individual radios, hidden from the program-

mer. Our unified link layer takes care of monitoring channel conditions for each packet

transmission, and determines which radio interface is currently most energy-optimum. At

its core, this link layer is implemented using our Q-learning algorithm that uses feedback

from the individual radio MAC layers to build a history and determine which radio is per-

forming best. Our link layer also implements the multi-radio switching protocol described

in the previous chapter. One existing limitation of our unified link-layer is that energy op-
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timizations do not consider the energy being expended by the receiver. Several possible

solutions to this limitation are discussed in Chapter 7.

Duty-cycling: Our implementation of the switching protocol uses the low power listen

(LPL) protocol for duty-cycling radios [16]. In this approach, the sender can wakeup the

receiver in a completely asynchronous manner by sending a long preamble that is at least as

long as the sleep cycle of the receiver. The sender uses such a long preamble to “wakeup”

the receiver and initiate the block transfer.

While LPL is available as part of both the CC2420 and XE1205 radio stacks in TinyOS

2.0, we experienced several problems with the XE1205 LPL implementation. For example,

the XE1205 interface would occasionally silently drop a packet transmission while report-

ing successfully acknowledged delivery to the receiver. To circumvent this problem, the

IDLE state switches off the long-range XE1205 radio and duty-cycles the CC2420 radio.

This is not ideal for reasons outlined in Chapter 4 — wakeup using the long-range radio

ensures greater contact duration between nodes.
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CHAPTER 6

EXPERIMENTAL EVALUATION

In this chapter, we present a detailed evaluation of the Q-learning based unified link

layer using a combination of experiments using data traces, results from Q-Learning run-

ning on an Arthropod mote, as well as implementation benchmarks. Our evaluation has

four parts. First, we evaluate the performance of the Q-learning link layer in adapting to

a diverse set of mobility patterns. Second, using traces we evaluate how well the learning

algorithm handles power control across the two radio interfaces. Third, we evaluate the

efficacy of Q-learning for handling interference dynamics. Finally, we present benchmarks

from an implementation of the link layer for an Arthropod mote to demonstrate that the

described Q-Learning algorithm is efficient and has low resource usage.

6.1 Datasets

To ensure repeatable experimentation of the link layer, we gathered datasets under dif-

ferent conditions using our hardware prototype. We obtained four types of datasets that are

a good representation of mobility patterns found in mobile sensor network deployments.

We then gathered four more datasets that represent different interference dynamics. Ta-

ble 6.1 contains a brief summary of the four mobility datasets collected, while Table 6.2

summarizes the interference datasets.

The datasets were obtained from two Arthropod motes - one Arthropod mote sends 20

byte packets with increasing sequence numbers over both radio interfaces at a fixed rate (2

Packets / second). A second mote places both radios in receive mode and acknowledges

all packets received on each radio interface. For each packet, the sending node records the
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Environment Mobility Pattern example scenario
urban-indoor continuous w/ obstructions people in a building
urban-outdoor continuous partial LOS moving vehicle
urban-outdoor nomadic bus w/ stops

foliage nomdic bus w/ stops

Table 6.1: Brief summary of mobility traces.

number of congestion backoffs experienced while trying to send the packet, as well as the

number of retransmissions before receiving an acknowledgement from the receiver. The

maximum number of backoffs is set to 6, and retransmissions is set to a limit of 10, after

which the link layer at the sender gives up on the transmission.

In addition to link layer statistics we also store the radio chosen by the Q-learning al-

gorithm for each packet. This allows us to verify that the algorithm is functioning correctly

by comparing the decisions to the losses seen on each interface.

For the mobility datasets, we configure the long-range XE1205 radio to a data-rate to

38.1 kbps and power level 15 dbm, whereas the short-range CC2420 radio transmits at

the default 250 kbps at 0dbm. The traces are obtained by having both the radios transmit

packets back to back at the rate of about 2 pkts/second. For each packet, the number

of backoffs and retransmissions are logged in the local flash memory of the sender, and

retrieved later.

6.1.1 Traces showing continuous mobility

We obtained datasets with continuous mobility to represent two practical sensor appli-

cation scenarios: wearable sensors and vehicular sensor networks.

• Indoors: This trace was collected indoors within our department. The receiver is

stationary while the sender moves up and down the length of the corridor of the

building (120 meters) transmitting packets while moving at a normal walking speed.
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The nodes are obstructed from each other by numerous walls as they move apart.

The up-and-down movement pattern is repeated five times.

This trace was collected in our research building with the receiving node stationary

in our lab. The sending node travels up and down the length of the corridor of the

building (120 meters) transmitting packets while moving at a normal walking speed,

transmitting at a rate of 2/second. The relative positions of the nodes cause an in-

creasing number of walls to obstruct communication as the node moves away from

the receiver. Analysis of the trace shows that the number of retransmissions required

to successfully acknowledge a packet reaches its limit before reaching the end of the

corridor; this indicates that the trace is suitable for showing transitions between the

two radios using the Q-Learning algorithm. To verify the algorithm never becomes

”stuck” on a particular interface, we repeat the movement pattern five times.

• Outdoors: This trace was collected on a stretch of road outside our department.

The receiving node was placed on a bus stop shelter; the sender approaches the

receiver from 600 meters, initially obstructed by buildings and foliage. The node

briefly pauses at the bus shelter and continues down the street another 300 meters

disappearing behind foliage and buildings. The sender moves at a rate of roughly 9

meters/second.

6.1.2 Traces showing nomadic mobility

Nomadic mobility refers to the case where nodes move for some time, pause at a spe-

cific location for a while, and continue in the same pattern. This type of movement behavior

is common amongst sensors monitoring people or a habitat sensor network. We obtained

two such traces:

• Urban Outdoor: This trace was collected at our campus near some large HVAC

buildings and parking lots. The sender starts in close proximity to the receiver and

moves away at a normal walking speed. The sender pauses for a minute at locations
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Dataset Interference Type Description
Long Interference 30 minute periods indoors; 100ft range; XE1205@0dBm

Medium Interference 200-235 packet bursts indoors; 100ft range; XE1205@0dBm
Short Interference 25-32 packet bursts indoors; 100ft range; XE1205@0dBm
Low Interference ambient indoors; 100ft range; XE1205@0dBm

Table 6.2: Summary of interference traces.

50m, 60m, 80m, and 70m away from the receiver, and finally returns to the receiver

location. Line of sight is limited during this trace resulting in poor performance for

the CC2420 radio.

• Habitat Outdoor: This trace was collected outdoors in a wooded rural area with

significant foliage. The sender starts 100 meters from the receiver and approaches the

sender at a slow walking speed. The receiver pauses for 2 minutes near the receiver,

and then moves away at a slow walking speed to a location 100 meters away. At all

locations, significant number of trees introduce signal attenuation. The XE105 has

good connectivity for the entire experiment, while the CC2420 moves in and out of

range.

6.1.3 Traces showing interference dynamics

We obtained datasets with interference at four different time-scales, all representing an

urban-indoor environment. To generate controlled interference on each radio channel, we

arrange a set of jamming motes close to both the sending and receiving nodes. The Telos

and Tinynode interferer motes run a program that sends packets at 0dBm as quickly as

possible with CSMA/CA disabled on the CC2420 and XE1205 radios respectively.

An adjustment to the Tinynode radio stack was necessary for the interfering nodes:

The packet preamble was modified to prevent the XE1205 on the sending Arthropodfrom

dominating the SPI bus shared with the Flash.
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• Long interference trace: This trace represents a scenario where one radio has a

clear communications channel for a long period of time (30 minutes, 1800 packets)

during which the second radio is being interfered with, followed by a period where

the second radio has a clear communications channel for a long period (30 minutes)

while the first radio is interfered with. For the final 30 minutes, all interfering nodes

remain silent and any losses or congestion backoffs that occur are due to ambient

interference.

• Medium interference trace: This trace demonstrates a scenario where channel con-

ditions are changing more rapidly and favors different radios at different times. Inter-

ference is generated in shorter bursts such that each radio sees alternating busy and

clear channels varying from 200 - 235seconds.

• Short interference trace: This trace represents a scenario where even shorter bursts

of interference appear on each channel. This dataset was collected using an identical

setup to the previous case, but with active and silent periods 25 - 32 seconds in length.

• Low interference trace: This trace represents a scenario where no motes are trans-

mitting and the interfering nodes are completely turned off. The only backoffs and

retransmissions observed, were due to cross-traffic from other wireless devices such

as 802.11, which was very limited since the experiment was performed during the

evening and the CC2420 was configured to use IEEE 802.15.4 channel 26, which

does not overlap with 802.11 channels.

6.2 Evaluation of Q-Learning for Mobility Dynamics

These experiments evaluate the performance of the Q-learning algorithm in a MAT-

LAB simulation environment and its performance for the various mobility traces described

above. To get an accurate measure of the performance of the Q-learning based link layer,

we emulate the behavior of the sender and receiver state machine (Chapter 3) given the
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Figure 6.1: Energy consumed per successful packet for each dataset and strategy

sequence of packet losses observed in the traces. (Later, in Section 6.5 we show that this

emulation accurately corresponds to the performance of the real protocol in practice.)

For all datasets, we used an identical set of Q-Learning parameters: α = 1.0, γ = 0.7

and ε = 0.025. These parameters were chosen since they seem to work well across a range

of mobility datasets.

Q-Learning Performance: Figure 6.1 and Figure 6.2 summarize the energy per suc-

cessful packet transmission and loss rates observed by our adaptive multi-radio link layer

in comparison with using just one of the radios. In terms of energy consumption, the

Q-Learning approach reduces energy consumption compared to the XE1205 radio by an

average of 27% (the maximum reduction is 53.6% for the Outdoor Bus dataset), while in-

curring roughly 2-4% increased loss across the four cases. The slightly increased loss rate

of Q-learning is caused by exploring an alternate interface periodically and transient losses

caused while the algorithm is still learning. Similar energy gains of a maximum of 62.5%

and an average of 44.6% are obtained over an approach that just uses the CC2420 radio but

the improvements in loss rate are significantly higher (25%-60%). The results show that

in all cases, the energy consumption of the adaptive multi-radio link layer is better than
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Figure 6.2: Percent Packets lost for the two radio interfaces and Q-Learning implementa-
tion

exclusively using either the CC2420 or XE1205 radio, while keeping the link loss rate to

be close to that observed by the long-range XE1205 radio.

As can be seen, the worst case for the Q-Learning protocol is the outdoor nomadic trace

where our benefits are only marginal in terms of energy. This is because connectivity using

the CC2420 radio is highly sporadic and also very lossy (65% loss). Thus, our link layer is

unable to take advantage of the CC2420 radio due to the high dynamics on it.

In summary, our results show that Q-learning can provide significant gains in terms of

energy while only increasing packet loss marginally; when an opportunity arises for com-

munication over the CC2420 radio interface, our unified link layer is capable of exploiting

its increased energy efficiency.

6.3 Algorithm performance for power control across radios

A logical extension to the unified link layer is handling transmission power control in

addition to radio selection. The CC2420 radio is capable of transmitting packets from -

25dBm up to 0dBm, while the XE1205 can transmit from 0dBm to 15dBm. Increasing

transmit power will provide longer range connectivity but uses additional energy; the op-
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radio/power-level % packets lost energy consumed
XE1205@0dBm 4.24 .659mJ/Tx Success
XE1205@15dBm 0 .925mJ/Tx Success
CC2420@-25dBm 37.01 1.1mJ/Tx Success
CC2420@0dBm 35.45 1.2mJ/Tx Success

Q-Learning 3.53 .430mJ/Tx Success

Table 6.3: Statistics for Dual Radio / Power Control Trace

timum strategy will choose the minimum transmit power level on the most efficient radio

without significantly increasing loss rate.

To evaluate power control across radio interfaces, we collected a packet trace simi-

lar to the Indoor Continuous described earlier. In addition to logging retransmissions and

backoffs for the XE1205@15dBm and CC2420@0dBm, we log similar statistics for the

XE1205 and CC2420@0dBm and -25dBm respectively. The number of states in the Q-

Learning algorithm increases from 2 to 4; we maintain a Q-value for each radio/power

level combination. To reduce exploration overhead, we only explore the radio/power com-

binations adjacent to the current setting. Logically, the next setting expected from a mobile

node would be one higher if the distance between sender and receiver has increased and

one lower if the distance has decreased. Such an approach would scale even if there were

more power states being considered per radio.

Table 6.3 summarizes the results and compares the Q-learning approach to just using

one of the two radios at one of the power levels. As can be seen, Q-learning is 54% better

in terms of energy consumption per successful transmission than only using the XE1205

radio at 15dBm but has comparable loss rate. The energy benefits over using the CC2420

radio are 64%; the loss rate also reduces by an order of magnitude. Overall, the Q-Learning

based adaptive algorithm sends roughly 40% and 10% of the packets using XE1205 at 0

dBm and 15 dBm; and 25% of the packets on the CC2520 at -25 dBm and 0 dBm. The

results validate that Q-Learning is able to utilize each power state opportunistically.
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These results show that the unified link layer is very effective at handling power control

across multiple radio interfaces. Our scheme uses 2.5x less power than the highest power

radio with only a negligable packet loss increase. Each setting is used effectively at the

appropriate range.

6.4 Evaluation of Q-Learning for Interference Dynamics

Our next set of experiments evaluate the performance of the Q-learning algorithm and

its adaptability to changing interference conditions. Like before, these experiments were

performed in MATLAB, using the data traces described in the previous section as input.

We compare the Q-learning algorithm against two alternate techniques. As a baseline,

we use an omniscient strategy that has knowledge of the complete dataset, and is always

able to make an optimal decision regarding which radio should be used. It is important to

note that it is impossible for this strategy to be realized in practice - it is only used as a base-

line to gauge how closely Q-Learning performs relative to such a best case strategy. The

second is a non-adaptive naı̈ve approach that only looks at the first 100 packets sent across

each radio interface. This approach takes the ratio of cumulative energy consumption ex-

pended by each radio for this set of packets, and determines a probability p, corresponding

to the the ratio of energy expended by the CC2420 vs XE1205 radio. For all other pack-

ets, the link layer transmits the packet on the CC2420 radio with probability p, and on the

XE1205 radio with probability 1− p.

Temporal Adaptability: First, we illustrate the adaptability of Q-Learning using a

time-series plot of the medium interference trace, shown in Figure 6.3. The staircase shape

of the CC2420 and XE1205 radios cumulative energy consumption is caused by bursts

of interference introduced by the Telos motes and Tinynodes. The portions of the plot

with a steep slope indicate that the radio is consuming an increased amount of energy per

packet because of congestion and interference. Every time interference is encountered, this

causes an entry in the Q-Matrix to grow increasingly negative at a rate determined by the
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Figure 6.3: Cumulative energy consumption for Long Bursts of Interference

reward r (energy consumption) and Q-Learning parameters α and γ. Q-Learning settles

on the radio with best channel characteristics, and periodically explores the other radio

(ε = 0.01). This gives Q-Learning the opportunity to adapt when communication patterns

change in the network. As a result, the Q-Learning plot represents a hybrid of the CC2420

and XE1205 energy plots, where the radio with a minimum slope is chosen during each

burst after a brief learning period, resulting in a smoothing of energy consumption over

time with consistently better performance than each individual radio.

Aggregate Q-Learning Performance: Figure 6.4 summarizes how Q-learning per-

forms relative to other schemes across all the datasets. For both long and medium term

interference, Q-learning performs extremely well compared to choosing a single radio or

the multi-radio naı̈ve scheme. For long-term interference, the XE1205 radio consumes 4.2

times more energy than our system, the CC2420 consumes 4.8 times more energy, and the

naı̈ve algorithm consumes 4.5 times more energy. For medium time-scale interference, the
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Figure 6.4: Relative performance of Q-Learning for different interference patterns: (1)
Long, (2) medium, (3) short, (4) low external interference

XE1205 radio alone consumes 5.6 times more energy than is consumed by our algorithm,

and the CC2420 radio consumes roughly 1.6 times more energy, while the naı̈ve two-radio

algorithm also uses around 1.6 times more energy. The gains are intuitive since the naı̈ve

algorithm is non-adaptive and assumes that the behavior across the first 100 packets will

be representative of future channel conditions. The Q-learning algorithm, however, is not

as efficient as the omniscient approach which consumes 77% of the energy used by Q-

Learning in the case of long-term interference and 69% of the energy used by Q-Learning

in the case of short-term interference. This is because the omniscient algorithm wastes no

energy exploring the two channels and also is never impacted by channel dynamics.

The short interference trace represents a case where Q-learning can be expected to per-

form badly since the channel is switching behavior every 30 packets. When we choose the

exploration factor, ε, to be small, it is difficult to learn with few samples that the current

radio-channel has become poor and the other radio channel has improved from its previous

30



Switching Protocol State % Time Spent
HIGH ON 10.7
LOW ON 78.1
BOTH ON 11.2

Table 6.4: Time Spent During Different Receive States

state. When undersampling the channel in this manner, the learning algorithm eventually

converges on following the radio that uses less overall energy, but does not make improve-

ments beyond the better of the two radios. The low interference trace represents a scenario

where the environment has limited dynamics since there is very little external interference.

For this scenario, our Q-Learning algorithm will choose the more energy-efficient radio

(CC2420) and encounter a slight amount of overhead as a result of exploring the more

energy-expensive channel periodically. In both these cases, Q-learning is almost as effi-

cient as choosing the best radio.

In summary, our results show that Q-learning can provide significant performance

gains when there is medium and long term interference that is greater than 200 packets

in length. Even in hard to learn conditions such as short bursts of interference, and low in-

terference conditions with limited dynamics, Q-Learning performs only marginally worse

than the better of the two radios.

6.5 Implementation Results

To validate our implementation and show the performance of the radio switching pro-

tocol, we collect a new dataset with the same mobility pattern as the indoor continuous

dataset. For this experiment, a pair of sender and receiver nodes run the switching protocol

and Q-Learning algorithm online. This study aims to measure the actual per packet energy

costs incurred by the sender and receiver. In particular, the receiver can become out-of-

sync with the sender, resulting in the receiver turning both radios on, or timing out, all of

which costs energy and results in more packet losses. For the mobility rates used in our
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Figure 6.5: Energy spent per packet by the sender and receiver. Labels on sender bars
indicate packet loss rates.

experiments we chose a timeout value of 2 seconds. Finally, we also breakdown the % time

spent by the receiver in different states of the receiver state machine.

The maximum data rate achievable by our software implementation for a pair of nodes

transmitting continuously is 70kbps. However, while logging packet statistics to the exter-

nal flash, the data rate reduces to 14kbps. This lower data rate is a result of the Tinynode

platform multiplexing the SPI bus between the XE1205 radio and the external flash mem-

ory. As a result, the sender and receiver are not continuously sending data which causes

idle gaps to appear between packets. This forces the receiver to expend additional energy

while waiting for packets to arrive. Since the idle time is an artifact of our evaluation, we

ignore these periods when presenting results.

To understand the energy efficiency of our protocol at the sender, Figure 6.5(a) com-

pares the energy consumed by a single radio strategy to that of the dual radio implementa-

tion. The per packet energy consumption numbers presented for the CC2420 and XE1205

only cases are from Section 6.2. The results in Figure 6.5(a) show that our adaptive al-

gorithm is 64% more efficient than a CC2420-only scheme, and 43% more efficient than

an XE1205-only scheme verifying the gains found in simulation. These energy efficiency

gains are achieved while maintaining a loss rate of 1.6% which is not substantially higher

than the XE1205 loss rate of 0.6% and much lower than the 43.0% loss rate of the CC2420
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Task Latency Energy
Radio Selection 19.3us 104nJ

Q-Matrix Update 43.6us 235nJ
Transmit 20-Byte packet (XE1205 @ 0dBm and 76.8kbps) 3.9ms 218uJ

Transmit 20-Byte packet (CC2420 @ 0dBm) 1.7ms 92uJ

Table 6.5: Latency and Energy consumption for link-layer components

radio. These results validate our simulation study and show that substantial sender-side

energy gains are acheivable by opportunistically using the CC2420 radio, while providing

a loss rate comparable to that of the XE1205 radio.

Figure 6.5(b) shows the amount of energy consumed at the receiver as a result of the

decisions made by the sender. The energy efficiency of the receiver will always fall some-

where between the efficiency of the XE1205 and CC2420 radios, depending on how often

each is used. Bringing up both radio interfaces is an unavoidable result of the radio switch-

ing protocol and represents overhead beyond that of a single radio strategy. Additionally,

transition times from sleep to idle/receive mode represent overhead. Our evaluation shows

that the dual-radio protocol used 70% less energy than the XE1205, but 13% more energy

than the CC2420. It is important to note that the receiver uses an order of magnitude less

power than the sender, which means the sender-side gains overshadow the receiver-side

losses.

Finally, we provide a breakdown of the percentage of packets the receiver spends in

each state of the switching protocol in Table 6.4. The receiver spends 10.7% of time in the

HIGH-ON state, 78.1% of time in the LOW-ON state and 11.2% of time in the BOTH-ON

state. Ideally the radio switching protocol will only force the receiver into the BOTH-ON

state while exploring or handing off between radios. Exploration accounts for 4% of this

time, while the other 7.2% is caused by explicit handoffs and timeouts.
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XE1205 Radio CC2420 Radio
Ack RTT 1.79ms 1.04ms

Ack Timeout 2.6ms 2.4ms
Avg. Congestion Backoff 10.4ms 10.4ms

Channel Sense Time 1.6ms .756ms
Sleep to Active Mode Transition Time 1.5ms 0.58ms

Table 6.6: Driver performance for MAC layer operations

6.6 Microbenchmarks

In this section, we briefly discuss measurement-based latency and energy consumption

microbenchmarks based on our implementation of the unified link layer. As shown in

Table 6.5, the energy/latency overhead imposed on the CPU by our multi-radio adaptation

algorithm implementation on the Arthropod is highly efficient and consumes less than a

hundredth of the energy/latency of the radios used. This shows that the overhead introduced

by software can be compensated by larger performance gains achieved through intelligent

radio selection. The amount of memory overhead of our implementation is 111 bytes,

which is a very small portion of the available 10kB. A much larger portion of program

memory is required, however, because two radio stacks need to be instantiated; supporting

an additional radio stack requires an additional 12kB resulting in a total usage of 29kB out

of the available 48kB of program memory, although we believe that this can be optimized

considerably.

We also micro-benchmarked MAC layer operations in our TinyOS drivers. Table 6.6

shows the individual components based on which the reward matrix is populated as de-

scribed in Chapter 3. These measurements were used to compute the total energy cost of a

transmitted packet and account for overheads in the state transitions of a receiver.
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Figure 6.6: Cumulative energy performance increase for different parameter values

6.7 Parameter Sensitivity

In this section we study the sensitivity of Q-learning to its parameters: α, γ and ε. To

demonstrate the algorithm’s robustness to parameter variation, we use our mobility dataset

to show how the total energy consumption of the Q-Learning algorithm changes with re-

spect to changes in parameter values. Figure 6.6 shows a number of plots, where for each

plot we fix α and vary γ. The plots are very similar across several different α values and

demonstrate that as long as α and γ are chosen within a reasonable range, the performance

of Q-Learning is stable. We repeated this procedure for the interference datasets, and found

similar results.

Overall, we have found that a larger α value is generally helpful in mobility traces

due to the need for fast switching. As the traces become more nomadic in nature (i.e. as

they involve more waiting and less movement), the optimal choice of α reduces a little.

However, 0.9 ≤ α ≤ 1 seems to be ideal in almost all settings. The choice of ε impacts
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how fast we can switch but it also impacts the energy consumption. A high ε can lead to

more exploration overhead but is more reactive. We found that exploration roughly every

10 seconds or so provides a good balance but this can be tuned depending on expected

dynamics. Finally, we found that the results were not very sensitive to γ, and works best in

the range 0.5 ≤ γ ≤ 0.85.
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CHAPTER 7

CONCLUSIONS

In conclusion, we have made three major contributions in this thesis. First, we de-

signed a new multi-radio sensor platform, the Arthropod, that pairs two radios - CC2420

and XE1205 - that offer diversity in frequency, power and range. Second, we presented

the design of a Q-Learning-driven adaptive link layer that provides the abstraction of a

single radio to the applications, and third, we presented a protocol that switches between

radios depending on which radio offers the most energy-efficient communication channel.

Experiments using a number of interference and distance datasets confirm that the system

can provide effective adaptation to a range of dynamics. We also showed that the learning

algorithm can be easily implemented with limited memory and computational overhead on

a mote-class sensor platform.
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