On the Gaps between Numbers which Are Sums of Two Squares

Ian Richards
Department of Mathematics, University of Minnesota,
Minneapolis, Minnesota 55455

Besides considering sums of two squares $s=x^{2}+y^{2}$, we can generalize to the case of numbers representable by arbitrary binary quadratic forms of a fixed discriminant $D\left(D \neq m^{2}\right)$.

Theorem. Let D be a fixed discriminant. Let s_{1}, s_{2}, \ldots be the sequence, arranged in increasing order, of positive integers representable by any binary quadratic form of discriminant D. Then:

$$
\limsup _{n \rightarrow \infty} \frac{s_{n+1}-s_{n}}{\log s_{n}} \geqslant \frac{1}{|D|} .
$$

Apparently this result exceeds all known estimates. (Compare Erdös [1], where the term $\log s_{n}$ is divided by " $\log \log "$ factors.) However, the construction is strikingly simple.

Here is the construction. The details will follow. For clarity, we restrict our attention to the case $s=x^{2}+y^{2}$. Fix an integer k (the size of the gap). For each prime $p \leqslant 4 k, p \equiv 3(\bmod 4)$, let $\beta=\beta(p)$ be the highest power such that $p^{3} \leqslant 4 k$. Let P be the product of p^{B+1} over all such primes p. Define $y, 1 \leqslant y \leqslant P$, by

$$
4 y \equiv-1(\bmod P)
$$

Then none of the numbers in the interval

$$
\{y+1, y+2, \ldots, y+k\}
$$

is the sum of two squares.
On the other hand, easy estimates show that $P<e^{(1+\varepsilon) 4 k}$, whence the size k of the gap is related to the size P of the numbers inside it by $k>$ $(1+\varepsilon)^{-1}(1 / 4) \log P$.

Here are the details of the proof. For the size of P, we note that
$p^{\beta+1} \leqslant(4 k)^{2}$, and that the number of primes $p \equiv 3(\bmod 4), p \leqslant 4 k$, is asymptotic to $2 k / \log 4 k$. Thus:

$$
P<(4 k)^{2[(1 \mid \varepsilon)(2 k / \log 4 k)]}=e^{(1 \mid \varepsilon) 4 k} .
$$

To show that $y+1, \ldots, y+k$ are not sums of two squares, we argue as follows. Since $4 y \equiv-1(\bmod P)$,

$$
4(y+j) \equiv 4 j-1(\bmod P) \quad \text { for } \quad 1 \leqslant j \leqslant k
$$

Now $4 j-1$ must be divisible by some prime $p \equiv 3(\bmod 4)$ to an odd power α. Clearly $\alpha \leqslant \beta(p)$ (the highest power of p which is $\leqslant 4 k$). Since P is divisible by $p^{\beta+1}$, this means that p also divides $(y+j)$ exactly to the power α. Hence $(y+j)$ is not the sum of two squares.
Q.E.D.

For the case of a general discriminant D, the primes $p \equiv 3(\bmod 4)$ are replaced by the primes p for which the Kronecker symbol $(D / p)=-1$. The factor $|D|$ replaces 4 throughout, and the congruence $4 y \equiv-1$ is replaced by $|D| y \equiv r$, where r is any number such that $(D / r)=-1$. Otherwise the proof goes as before.

We conclude with two remarks and a note of thanks. Firstly, the proof was not found this way. The original idea was to use the Chinese Remainder Theorem to juggle the arithmetic progression $\{3,7,11, \ldots, 4 j-1\}$. The fact that all of the resulting congruences turned out to be the same came as a surprise. Secondly, if we considered primitive representations by forms of discriminant D, then the constant $1 /|D|$ could be replaced by $2 /|D|$. For in our proof, the modulii p^{3+1} could be replaced by p.

The fact that this proof works for general rather than primitive representations was pointed out to me by Paul Erdös. It is a pleasure to extend to him my regards and thanks.

Reference

1. P. Erdös, Some problems in elementary number theory, Publ. Math. Debrecen 2 (1951). 103-109.
