

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 221 (2009) 1115-1121

www.elsevier.com/locate/aim

On the Dynkin index of a principal sl₂-subalgebra

Dmitri I. Panyushev^{a,b,1}

^a Independent University of Moscow, Bol'shoi Vlasevskii per. 11, Moscow 119002, Russia ^b Institute for Information Transmission Problems, B. Karetnyi per. 19, Moscow 127994, Russia

Received 14 August 2008; accepted 29 January 2009

Available online 19 March 2009

Communicated by Bertram Kostant

Abstract

Let \mathfrak{g} be a simple Lie algebra over an algebraically closed field of characteristic zero. The goal of this note is to prove a closed formula for the Dynkin index of a principal \mathfrak{sl}_2 -subalgebra of \mathfrak{g} . © 2009 Elsevier Inc. All rights reserved.

Keywords: Simple Lie algebra; Dynkin index; Freudenthal's strange formula

Introduction

The ground field k is algebraically closed and of characteristic zero. Let \mathfrak{g} be a simple Lie algebra over k. The goal of this note is to prove a closed formula for the Dynkin index of a principal \mathfrak{sl}_2 -subalgebra of \mathfrak{g} , see Theorem 3.2. The key step in the proof uses the "strange formula" of Freudenthal–de Vries. As an application, we (1) compute the Dynkin index any simple \mathfrak{g} -module regarded as \mathfrak{sl}_2 -module and (2) obtain an identity connecting the exponents of \mathfrak{g} and the dual Coxeter numbers of both \mathfrak{g} and \mathfrak{g}^{\vee} , see Section 4.

1. The Dynkin index of representations and subalgebras

Let \mathfrak{g} be a simple finite-dimensional Lie algebra of rank *n*. Let \mathfrak{t} be a Cartan subalgebra, and Δ the set of roots of \mathfrak{t} in \mathfrak{g} . Choose a set of positive roots Δ^+ in Δ . Let Π be the set of

E-mail address: panyush@mccme.ru.

0001-8708/\$ – see front matter $\,$ © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.aim.2009.01.015

URL: http://www.mccme.ru/~panyush.

¹ Supported in part by R.F.B.R. grant 06-01-72550.

simple roots and θ the highest root in Δ^+ . As usual, $\rho = \frac{1}{2} \sum_{\gamma>0} \gamma$. The Q-span of all roots is a (Q-)subspace of t^{*}, denoted \mathcal{E} . Choose a non-degenerate invariant symmetric bilinear form (,)g on g as follows. The restriction of (,)g to t is non-degenerate, hence it induces the isomorphism of t and t^{*} and a non-degenerate bilinear form on t^{*}. We require that $(\theta, \theta)_g = 2$, i.e., $(\beta, \beta)_g = 2$ of any long root β in Δ .

Definition 1 (E.B. Dynkin).

(1) Let \mathfrak{s} be a simple subalgebra of \mathfrak{g} . The *Dynkin index* of \mathfrak{s} in \mathfrak{g} is defined by

$$\operatorname{ind}(\mathfrak{s} \hookrightarrow \mathfrak{g}) = \frac{(x, x)_{\mathfrak{g}}}{(x, x)_{\mathfrak{s}}}, \quad x \in \mathfrak{s}$$

(2) If v: g → sl(V) is a representation of g, then the *Dynkin index of the representation*, denoted ind_D(g, V) or ind_D(g, v), is defined by

$$\operatorname{ind}_{\mathcal{D}}(\mathfrak{g}, V) = \operatorname{ind}(\mathfrak{g} \hookrightarrow \mathfrak{sl}(V)).$$

It is not hard to verify that, for the simple Lie algebra $\mathfrak{sl}(V)$, the normalised bilinear form is given by $(x, x)_{\mathfrak{sl}(V)} = \operatorname{tr}(x^2), x \in \mathfrak{sl}(V)$. Therefore, a more explicit expression for the Dynkin index of a representation $\nu : \mathfrak{g} \to \mathfrak{sl}(V)$ is

$$\operatorname{ind}_{\mathcal{D}}(\mathfrak{g}, V) = \frac{\operatorname{tr}(\nu(x)^2)}{(x, x)_{\mathfrak{g}}}.$$
(1.1)

Conversely, the index of a simple subalgebra can be expressed via indices of representations. Namely,

$$\operatorname{ind}(\mathfrak{s} \hookrightarrow \mathfrak{g}) = \frac{\operatorname{ind}_{D}(\mathfrak{s}, \mathfrak{g})}{\operatorname{ind}_{D}(\mathfrak{g}, \operatorname{ad}_{\mathfrak{g}})}.$$
(1.2)

The denominator in the right-hand side represents the index of the adjoint representation of \mathfrak{g} , and the numerator represents the index of the \mathfrak{s} -module \mathfrak{g} .

The following properties easily follow from the definition:

Multiplicativity: If $\mathfrak{h} \subset \mathfrak{s} \subset \mathfrak{g}$ are simple Lie algebras, then $\operatorname{ind}(\mathfrak{h} \subset \mathfrak{s}) \cdot \operatorname{ind}(\mathfrak{s} \subset \mathfrak{g}) = \operatorname{ind}(\mathfrak{h} \subset \mathfrak{g})$. *Additivity*: $\operatorname{ind}_{D}(\mathfrak{g}, V_{1} \oplus V_{2}) = \operatorname{ind}_{D}(\mathfrak{g}, V_{1}) + \operatorname{ind}_{D}(\mathfrak{g}, V_{2})$. It is therefore sufficient to determine the indices for the irreducible representations.

Theorem 1.1. (Dynkin [2, Theorem 2.5].) Let V_{λ} be a simple finite-dimensional g-module with highest weight λ . Then

$$\operatorname{ind}_{\mathrm{D}}(\mathfrak{g}, V_{\lambda}) = \frac{\dim V_{\lambda}}{\dim \mathfrak{g}} (\lambda, \lambda + 2\rho)_{\mathfrak{g}}.$$

Although it is not obvious from the definition, the Dynkin index of a representation is an integer. This was proved by E.B. Dynkin [2, Theorem 2.2] using lengthy classification results.

Later, he gave a better proof that is based on a topological interpretation of the index. A short algebraic proof is given in [5, Chapter I, §3.10].

Example 1.2.

- (1) Let R_d be the simple \mathfrak{sl}_2 -module of dimension d + 1. Then $\mathsf{ind}_{\mathsf{D}}(\mathfrak{sl}_2, \mathsf{R}_d) = \binom{d+2}{3}$.
- (2) Recall that θ is the highest root in Δ^+ . By Theorem 1.1,

$$\operatorname{ind}_{\mathrm{D}}(\mathfrak{g}, \operatorname{ad}) = (\theta, \theta + 2\rho)_{\mathfrak{g}} = (\theta, \theta)_{\mathfrak{g}} (1 + (\rho, \theta^{\vee})_{\mathfrak{g}}) = 2 (1 + (\rho, \theta^{\vee})_{\mathfrak{g}})$$

Note that the value $(\rho, \theta^{\vee})_{\mathfrak{g}}$ does not depend on the normalisation of the bilinear form. The integer $1 + (\rho, \theta^{\vee})$ is customary called the *dual Coxeter number* of \mathfrak{g} , and we denote it by $h^*(\mathfrak{g})$. Thus, $\operatorname{ind}_{D}(\mathfrak{g}, \operatorname{ad}) = 2h^*(\mathfrak{g})$. In the simply-laced case, $h^*(\mathfrak{g}) = h(\mathfrak{g})$ —the usual Coxeter number. For the other simple Lie algebras, we have $h^*(\mathbf{B}_n) = 2n-1$, $h^*(\mathbf{C}_n) = n+1$, $h^*(\mathbf{F}_4) = 9$, $h^*(\mathbf{G}_2) = 4$.

Andreev, Vinberg, and Elashvili applied the Dynkin index of representations to some invariant-theoretic problem [1]. To this end, they adjusted the index so that it does not depend on the choice of a bilinear form on g.

Definition 2 (*Andreev–Vinberg–Elashvili, 1967*). Let $v : \mathfrak{g} \to \mathfrak{sl}(V)$ be a finite-dimensional representation of a simple Lie algebra. Then

$$\mathrm{ind}_{\mathrm{AVE}}(\mathfrak{g},V) := \frac{\mathrm{ind}_{\mathrm{D}}(\mathfrak{g},V)}{\mathrm{ind}_{\mathrm{D}}(\mathfrak{g},\mathrm{ad})} = \frac{\mathrm{tr}(\nu(x)^2)}{\mathrm{tr}(\mathrm{ad}_{\mathfrak{g}}(x)^2)}, \quad x \in \mathfrak{g}.$$

It follows that $ind_{AVE}(\mathfrak{g}, ad_{\mathfrak{g}}) = 1$ and

$$\operatorname{ind}_{\operatorname{AVE}}(\mathfrak{g}, V_{\lambda}) = \frac{\dim V_{\lambda}}{\dim \mathfrak{g}} \cdot \frac{(\lambda, \lambda + 2\rho)_{\mathfrak{g}}}{(\theta, \theta + 2\rho)_{\mathfrak{g}}}$$

2. The "strange formula"

Let \mathcal{K} be the Killing form on \mathfrak{g} , i.e., $\mathcal{K}(x, x) = tr(ad_{\mathfrak{g}}(x)^2)$, $x \in \mathfrak{g}$. The induced bilinear form on \mathfrak{t}^* (and \mathcal{E}) is denoted by \langle , \rangle . It is the so-called *canonical* bilinear form on \mathcal{E} . The canonical bilinear form is characterised by the following property:

$$\langle v, v \rangle = \sum_{\gamma \in \Delta} \langle v, \gamma \rangle \langle v, \gamma \rangle = 2 \sum_{\gamma > 0} \langle v, \gamma \rangle \langle v, \gamma \rangle \quad \text{for any } v \in \mathcal{E}.$$
(2.1)

The "strange formula" of Freudenthal-de Vries (see [3, 47.11]) is

$$\langle \rho, \rho \rangle = \frac{\dim \mathfrak{g}}{24}.$$

Using our normalisation of $(,)_{\mathfrak{q}}$, the "strange formula" reads

$$(\rho, \rho)_{\mathfrak{g}} = \frac{\dim \mathfrak{g}}{12} h^*(\mathfrak{g}). \tag{2.2}$$

Indeed, it is well known that $\langle \theta, \theta \rangle = 1/h^*(\mathfrak{g})$ (see e.g. [6, Lemma 1.1]). Therefore, the transition factor between two forms \langle , \rangle and $\langle , \rangle_{\mathfrak{g}}$ (considered as forms on \mathcal{E}) equals $2h^*(\mathfrak{g})$. Using the transition factor, we can also rewrite Eq. (2.1) in terms of $\langle , \rangle_{\mathfrak{g}}$:

$$h^*(\mathfrak{g})(v,v)_{\mathfrak{g}} = \sum_{\gamma>0} (v,\gamma)_{\mathfrak{g}}(v,\gamma)_{\mathfrak{g}}.$$
(2.3)

3. The index of a principal sl₂-subalgebra

If $e \in \mathfrak{g}$ is nilpotent, then the exists a subalgebra $\mathfrak{a} \subset \mathfrak{g}$ such that $\mathfrak{a} \simeq \mathfrak{sl}_2$ and $e \in \mathfrak{a}$ (Morozov, Jacobson). If *e* is a *principal* nilpotent element, then the corresponding \mathfrak{sl}_2 -subalgebra is also called principal. (See [2, §9] and [4, Section 5] for properties of principal \mathfrak{sl}_2 -subalgebras.) Let $(\mathfrak{sl}_2)^{\mathrm{pr}}$ be a principal \mathfrak{sl}_2 -subalgebra of \mathfrak{g} . In this section, we obtain a uniform expression for $\mathrm{ind}((\mathfrak{sl}_2)^{\mathrm{pr}} \hookrightarrow \mathfrak{g})$.

Recall that Δ has at most two root lengths. Let θ_s denote the short dominant root in Δ^+ . (Hence $\theta = \theta_s$ if and only if Δ is simply-laced.) Set $r = \|\theta\|^2 / \|\theta_s\|^2 \in \{1, 2, 3\}$. Along with \mathfrak{g} , we also consider the Langlands dual algebra \mathfrak{g}^{\vee} , which is determined by the dual root system Δ^{\vee} . Since the Weyl groups of \mathfrak{g} and \mathfrak{g}^{\vee} are isomorphic, we have $h(\mathfrak{g}) = h(\mathfrak{g}^{\vee})$. However, the dual Coxeter numbers can be different (cf. \mathbf{B}_n and \mathbf{C}_n).

The half-sum of positive roots for \mathfrak{g}^{\vee} is

$$\rho^{\vee} := \frac{1}{2} \sum_{\gamma > 0} \gamma^{\vee} = \sum_{\gamma > 0} \frac{\gamma}{(\gamma, \gamma)_{\mathfrak{g}}}.$$

It is well known (and easily verified) that $(\rho^{\vee}, \gamma)_{\mathfrak{g}} = \mathsf{ht}(\gamma)$ for any $\gamma \in \Delta^+$. (This equality does not depend on the normalisation of a bilinear form.) It follows that $h^*(\mathfrak{g}^{\vee}) = (\rho^{\vee}, \theta_s) = \mathsf{ht}(\theta_s)$.

Proposition 3.1. For a simple Lie algebra \mathfrak{g} with the corresponding root system Δ , we have

$$\sum_{\gamma>0} ht^2(\gamma) = \frac{\dim \mathfrak{g}}{12} h^*(\mathfrak{g}) h^*(\mathfrak{g}^{\vee}) r.$$
(3.1)

Proof. The equality in (3.1) is essentially equivalent to the "strange formula."

Applying Eq. (2.3) to $v = \rho^{\vee}$, we obtain

$$h^{*}(\mathfrak{g})(\rho^{\vee},\rho^{\vee})_{\mathfrak{g}} = \sum_{\gamma>0} (\rho^{\vee},\gamma)_{\mathfrak{g}} (\rho^{\vee},\gamma)_{\mathfrak{g}} = \sum_{\gamma>0} ht^{2}(\gamma).$$
(3.2)

For \mathfrak{g}^{\vee} , the strange formula says that $(\rho^{\vee}, \rho^{\vee})_{\mathfrak{g}^{\vee}} = \frac{\dim \mathfrak{g}}{12}h^*(\mathfrak{g}^{\vee})$. Although the normalised bilinear forms $(,)_{\mathfrak{g}}$ and $(,)_{\mathfrak{g}^{\vee}}$ are proportional upon restriction to \mathcal{E} , they are not equal in general. Indeed, the square of the length of a long root in Δ^{\vee} with respect to $(,)_{\mathfrak{g}}$ equals 2r. Hence the transition factor is r and

$$\left(\rho^{\vee},\rho^{\vee}\right)_{\mathfrak{g}} = r\left(\rho^{\vee},\rho^{\vee}\right)_{\mathfrak{g}^{\vee}} = \frac{\dim\mathfrak{g}}{12}h^{*}(\mathfrak{g}^{\vee})r.$$
(3.3)

Then the assertion follows from (3.2) and (3.3). \Box

Theorem 3.2. $\operatorname{ind}((\mathfrak{sl}_2)^{\operatorname{pr}} \hookrightarrow \mathfrak{g}) = \frac{\dim \mathfrak{g}}{6} h^*(\mathfrak{g}^{\vee})r.$

Proof. Combining Eq. (1.2), Example 1.2(2), and Definition 2 yields the following formula for the index of a simple subalgebra \mathfrak{s} in \mathfrak{g} :

$$\operatorname{ind}(\mathfrak{s} \hookrightarrow \mathfrak{g}) = \frac{h^*(\mathfrak{s})}{h^*(\mathfrak{g})} \cdot \operatorname{ind}_{\operatorname{AVE}}(\mathfrak{s}, \mathfrak{g}).$$
(3.4)

We use this formula with $\mathfrak{s} = (\mathfrak{sl}_2)^{\text{pr}}$. Let *h* be the semisimple element of a principal \mathfrak{sl}_2 -triple. Without loss of generality, we may assume that *h* is dominant. Then $\alpha(h) = 2$ for any $\alpha \in \Pi$. Put $\tilde{h} = h/2$. Then $\gamma(\tilde{h}) = \operatorname{ht}(\gamma)$ for any $\gamma \in \Delta$ and ad \tilde{h} has the eigenvalues -1, 0, 1 in $(\mathfrak{sl}_2)^{\text{pr}}$. Hence

$$\mathsf{ind}_{\mathsf{AVE}}\big((\mathfrak{sl}_2)^{\mathsf{pr}},\mathfrak{g}\big) = \frac{\mathsf{tr}(\mathsf{ad}_{\mathfrak{g}}\tilde{h})^2}{\mathsf{tr}(\mathsf{ad}_{\mathfrak{g}}\tilde{h})^2} = \frac{\sum_{\gamma \in \Delta}\mathsf{ht}^2(\gamma)}{2} = \sum_{\gamma > 0}\mathsf{ht}^2(\gamma).$$

Since $h^*(\mathfrak{sl}_2) = 2$, the theorem follows from Proposition 3.1 and Eq. (3.4). \Box

Below, we tabulate the values of index for all simple Lie algebras.

g	A _n	\mathbf{B}_n	\mathbf{C}_n	\mathbf{D}_n	E ₆	\mathbf{E}_7	\mathbf{E}_8	\mathbf{F}_4	G ₂
$\text{ind}((\mathfrak{sl}_2)^{pr} \hookrightarrow \mathfrak{g})$	$\binom{n+2}{3}$	$\frac{n(n+1)(2n+1)}{3}$	$\binom{2n+1}{3}$	$\frac{(n-1)n(2n-1)}{3}$	156	399	1240	156	28

Remark 3.3. For the exceptional Lie algebras, Dynkin computed the indices of *all* \mathfrak{sl}_2 -subalgebras, see [2, Tables 16–20].

Note that the index of a principal \mathfrak{sl}_2 is preserved under the unfolding procedure $\mathfrak{g} \sim \tilde{\mathfrak{g}}$ applied to multiply laced Dynkin diagram. Namely, $\operatorname{ind}((\mathfrak{sl}_2)^{\operatorname{pr}} \hookrightarrow \mathfrak{g}) = \operatorname{ind}((\mathfrak{sl}_2)^{\operatorname{pr}} \hookrightarrow \tilde{\mathfrak{g}})$, where the four pairs $(\mathfrak{g}, \tilde{\mathfrak{g}})$ are: $(\mathbf{C}_n, \mathbf{A}_{2n-1})$, $(\mathbf{B}_n, \mathbf{D}_{n+1})$, $(\mathbf{F}_4, \mathbf{E}_6)$, $(\mathbf{G}_2, \mathbf{D}_4)$. This is, of course, explained by the multiplicativity of the index of subalgebras and the fact that $\operatorname{ind}(\mathfrak{g} \hookrightarrow \tilde{\mathfrak{g}}) = 1$.

Remark 3.4. Proposition 3.1 provides a uniform expression for $\sum_{\gamma>0} ht^2(\gamma)$. One might ask for a similar formula for $\sum_{\gamma>0} ht(\gamma)$. However, such a formula seems to only exist in the simply-laced case. Indeed, for any \mathfrak{g} we have $2(\rho, \rho^{\vee})_{\mathfrak{g}} = \sum_{\gamma>0} (\gamma, \rho^{\vee})_{\mathfrak{g}} = \sum_{\gamma>0} ht(\gamma)$. If Δ is simply-laced, then $\rho^{\vee} = 2\rho/(\theta, \theta)_{\mathfrak{g}} = \rho$, and using the "strange formula" one obtains

$$\sum_{\gamma>0} \mathsf{ht}(\gamma) = 2(\rho, \rho)_{\mathfrak{g}} = \frac{\dim \mathfrak{g}}{6} h(\mathfrak{g}).$$

Question. Consider the function $s \mapsto f(s) = \sum_{\gamma>0} ht^s(\gamma)$. Are there some other values of s such that f(s) has a nice closed expression?

4. Some applications

(A) Let $\nu : \mathfrak{g} \to \mathfrak{sl}(V_{\lambda})$ be an irreducible representation. Our first observation is that using Theorems 1.1 and 3.2 we can immediately compute the Dynkin index of V_{λ} as $(\mathfrak{sl}_2)^{\text{pr}}$ -module:

$$\operatorname{ind}_{D}((\mathfrak{sl}_{2})^{\operatorname{pr}}, V_{\lambda}) = \operatorname{ind}((\mathfrak{sl}_{2})^{\operatorname{pr}} \hookrightarrow \mathfrak{sl}(V_{\lambda})) = \operatorname{ind}((\mathfrak{sl}_{2})^{\operatorname{pr}} \hookrightarrow \mathfrak{g}) \cdot \operatorname{ind}(\mathfrak{g} \hookrightarrow \mathfrak{sl}(V_{\lambda}))$$
$$= \operatorname{ind}((\mathfrak{sl}_{2})^{\operatorname{pr}} \hookrightarrow \mathfrak{g}) \cdot \operatorname{ind}_{D}(\mathfrak{g}, V_{\lambda})$$
$$= \frac{\dim \mathfrak{g}}{6} h^{*}(\mathfrak{g}^{\vee})r \cdot \frac{\dim V_{\lambda}}{\dim \mathfrak{g}} (\lambda, \lambda + 2\rho)_{\mathfrak{g}}$$
$$= \frac{\dim V_{\lambda}}{6} \cdot h^{*}(\mathfrak{g}^{\vee}) \cdot r \cdot (\lambda, \lambda + 2\rho)_{\mathfrak{g}}.$$

Furthermore, we have

$$\operatorname{ind}_{D}((\mathfrak{sl}_{2})^{\operatorname{pr}}, V_{\lambda}) = \operatorname{ind}_{D}(\mathfrak{sl}_{2}, \operatorname{ad}) \cdot \operatorname{ind}_{\operatorname{AVE}}((\mathfrak{sl}_{2})^{\operatorname{pr}}, V_{\lambda}) = 4 \cdot \operatorname{ind}_{\operatorname{AVE}}((\mathfrak{sl}_{2})^{\operatorname{pr}}, V_{\lambda})$$
(4.1)

and

$$\operatorname{ind}_{\operatorname{AVE}}\left((\mathfrak{sl}_2)^{\operatorname{pr}}, V_{\lambda}\right) = \frac{\operatorname{tr}(\nu(\tilde{h})^2)}{\operatorname{tr}((\operatorname{ad}\tilde{h})^2)} = \frac{\sum_{\mu \dashv V_{\lambda}} \mu(\tilde{h})^2}{2},$$

where notation $\mu \dashv V_{\lambda}$ means that μ is a weight of V_{λ} , and the sum runs over all weights according to their multiplicities. Since $\mu(\tilde{h}) = (\mu, \rho^{\vee})_{g}$, we finally obtain

$$\sum_{\mu \to V_{\lambda}} \left(\mu, \rho^{\vee}\right)_{\mathfrak{g}}^{2} = \frac{\dim V_{\lambda}}{12} \cdot h^{*}(\mathfrak{g}^{\vee}) \cdot r \cdot (\lambda, \lambda + 2\rho)_{\mathfrak{g}}.$$
(4.2)

This can be compared with the formula of Freudenthal-de Vries (see [3, 47.10.2]):

$$\sum_{\mu \to V_{\lambda}} \langle \mu, \rho \rangle^2 = \frac{\dim V_{\lambda}}{24} \langle \lambda, \lambda + 2\rho \rangle.$$
(4.3)

One can verify that Eqs. (4.2) and (4.3) agree in the simply-laced case, where ρ is proportional to ρ^{\vee} .

(B) Let m_1, \ldots, m_n be the exponents of \mathfrak{g} . Regarding \mathfrak{g} as $(\mathfrak{sl}_2)^{\text{pr}}$ -module, one has $\mathfrak{g} = \bigoplus_{i=1}^n \mathsf{R}_{2m_i}$ [4, Corollary 8.7]. Then using Example 1.2(1), Eqs. (3.4), (4.1), and the additivity of the index of representations, we obtain the identity

$$\frac{\dim\mathfrak{g}}{6}h^*(\mathfrak{g}^{\vee})r = \operatorname{ind}((\mathfrak{sl}_2)^{\operatorname{pr}} \hookrightarrow \mathfrak{g}) = \frac{h^*(\mathfrak{sl}_2)}{h^*(\mathfrak{g})} \sum_{i=1}^n \operatorname{ind}_{\operatorname{AVE}}(\mathfrak{sl}_2, \mathsf{R}_{2m_i})$$
$$= \frac{1}{2h^*(\mathfrak{g})} \sum_{i=1}^n \operatorname{ind}_{\operatorname{D}}(\mathfrak{sl}_2, \mathsf{R}_{2m_i}) = \frac{1}{2h^*(\mathfrak{g})} \sum_{i=1}^n \binom{2m_i+2}{3}.$$

1120

References

- [1] Е.М. Андреев, Э.Б. Винберг, А.Г. Элашвили, Орбиты наибольшей размерности полупростых линейных групп Ли, Функц. Анализ и его Приложен. 1 (4) (1967) 3–7 (in Russian); English translation in: E.M. Andreev, E.B. Vinberg, A.G. Elashvili, Orbits of greatest dimension in semisimple linear Lie groups, Funct. Anal. Appl. 1 (1967) 257–261.
- [2] Е.Б. Дынкин, Полупростые подалгебры полупростых алгебр Ли, Матем. Сборник 30 (2) (1952) 349– 462 (in Russian); English translation in: E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. Ser. 2 6 (1957) 111–244.
- [3] H. Freudenthal, H. de Vries, Linear Lie Groups, Academic Press, New York, 1969.
- [4] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group polynomial rings, Amer. J. Math. 81 (1959) 973–1032.
- [5] A.L. Onishchik, Topology of Transitive Transformation Groups, J. Barth, Leipzig, 1994.
- [6] D. Panyushev, Isotropy representations, eigenvalues of a Casimir element, and commutative Lie subalgebras, J. London Math. Soc. (2) 64 (2001) 61–80.