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Abstract

Let g be a simple Lie algebra over an algebraically closed field of characteristic zero. The goal of this
note is to prove a closed formula for the Dynkin index of a principal sl2-subalgebra of g.
© 2009 Elsevier Inc. All rights reserved.
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Introduction

The ground field k is algebraically closed and of characteristic zero. Let g be a simple Lie
algebra over k. The goal of this note is to prove a closed formula for the Dynkin index of a
principal sl2-subalgebra of g, see Theorem 3.2. The key step in the proof uses the “strange
formula” of Freudenthal–de Vries. As an application, we (1) compute the Dynkin index any
simple g-module regarded as sl2-module and (2) obtain an identity connecting the exponents of
g and the dual Coxeter numbers of both g and g∨, see Section 4.

1. The Dynkin index of representations and subalgebras

Let g be a simple finite-dimensional Lie algebra of rank n. Let t be a Cartan subalgebra,
and � the set of roots of t in g. Choose a set of positive roots �+ in �. Let � be the set of
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simple roots and θ the highest root in �+. As usual, ρ = 1
2

∑
γ>0 γ . The Q-span of all roots is a

(Q-)subspace of t∗, denoted E. Choose a non-degenerate invariant symmetric bilinear form (,)g
on g as follows. The restriction of (,)g to t is non-degenerate, hence it induces the isomorphism
of t and t∗ and a non-degenerate bilinear form on t∗. We require that (θ, θ)g = 2, i.e., (β,β)g = 2
of any long root β in �.

Definition 1 (E.B. Dynkin).

(1) Let s be a simple subalgebra of g. The Dynkin index of s in g is defined by

ind(s ↪→ g) = (x, x)g

(x, x)s
, x ∈ s.

(2) If ν :g → sl(V ) is a representation of g, then the Dynkin index of the representation, denoted
indD(g,V ) or indD(g, ν), is defined by

indD(g,V ) = ind
(
g ↪→ sl(V )

)
.

It is not hard to verify that, for the simple Lie algebra sl(V ), the normalised bilinear form is
given by (x, x)sl(V ) = tr(x2), x ∈ sl(V ). Therefore, a more explicit expression for the Dynkin
index of a representation ν : g → sl(V ) is

indD(g,V ) = tr(ν(x)2)

(x, x)g
. (1.1)

Conversely, the index of a simple subalgebra can be expressed via indices of representations.
Namely,

ind(s ↪→ g) = indD(s,g)

indD(g, adg)
. (1.2)

The denominator in the right-hand side represents the index of the adjoint representation of g,
and the numerator represents the index of the s-module g.

The following properties easily follow from the definition:

Multiplicativity: If h ⊂ s ⊂ g are simple Lie algebras, then ind(h ⊂ s) · ind(s ⊂ g) = ind(h ⊂ g).

Additivity: indD(g,V1 ⊕ V2) = indD(g,V1) + indD(g,V2). It is therefore sufficient to determine
the indices for the irreducible representations.

Theorem 1.1. (Dynkin [2, Theorem 2.5].) Let Vλ be a simple finite-dimensional g-module with
highest weight λ. Then

indD(g,Vλ) = dimVλ

dimg
(λ,λ + 2ρ)g.

Although it is not obvious from the definition, the Dynkin index of a representation is an
integer. This was proved by E.B. Dynkin [2, Theorem 2.2] using lengthy classification results.
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Later, he gave a better proof that is based on a topological interpretation of the index. A short
algebraic proof is given in [5, Chapter I, §3.10].

Example 1.2.

(1) Let Rd be the simple sl2-module of dimension d + 1. Then indD(sl2,Rd) = (
d+2

3

)
.

(2) Recall that θ is the highest root in �+. By Theorem 1.1,

indD(g, ad) = (θ, θ + 2ρ)g = (θ, θ)g
(
1 + (ρ, θ∨)g

) = 2
(
1 + (ρ, θ∨)g

)
.

Note that the value (ρ, θ∨)g does not depend on the normalisation of the bilinear form.
The integer 1 + (ρ, θ∨) is customary called the dual Coxeter number of g, and we denote
it by h∗(g). Thus, indD(g, ad) = 2h∗(g). In the simply-laced case, h∗(g) = h(g)—the usual
Coxeter number. For the other simple Lie algebras, we have h∗(Bn) = 2n−1, h∗(Cn) = n+1,
h∗(F4) = 9, h∗(G2) = 4.

Andreev, Vinberg, and Elashvili applied the Dynkin index of representations to some
invariant-theoretic problem [1]. To this end, they adjusted the index so that it does not depend on
the choice of a bilinear form on g.

Definition 2 (Andreev–Vinberg–Elashvili, 1967). Let ν : g → sl(V ) be a finite-dimensional rep-
resentation of a simple Lie algebra. Then

indAVE(g,V ) := indD(g,V )

indD(g, ad)
= tr(ν(x)2)

tr(adg(x)2)
, x ∈ g.

It follows that indAVE(g, adg) = 1 and

indAVE(g,Vλ) = dimVλ

dimg
· (λ,λ + 2ρ)g

(θ, θ + 2ρ)g
.

2. The “strange formula”

Let K be the Killing form on g, i.e., K(x, x) = tr(adg(x)2), x ∈ g. The induced bilinear form
on t∗ (and E) is denoted by 〈,〉. It is the so-called canonical bilinear form on E. The canonical
bilinear form is characterised by the following property:

〈v, v〉 =
∑
γ∈�

〈v, γ 〉〈v, γ 〉 = 2
∑
γ>0

〈v, γ 〉〈v, γ 〉 for any v ∈ E. (2.1)

The “strange formula” of Freudenthal–de Vries (see [3, 47.11]) is

〈ρ,ρ〉 = dimg

24
.

Using our normalisation of (,)g, the “strange formula” reads

(ρ,ρ)g = dimg
h∗(g). (2.2)
12



1118 D.I. Panyushev / Advances in Mathematics 221 (2009) 1115–1121
Indeed, it is well known that 〈θ, θ〉 = 1/h∗(g) (see e.g. [6, Lemma 1.1]). Therefore, the transition
factor between two forms 〈,〉 and (,)g (considered as forms on E) equals 2h∗(g). Using the
transition factor, we can also rewrite Eq. (2.1) in terms of (,)g:

h∗(g)(v, v)g =
∑
γ>0

(v, γ )g(v, γ )g. (2.3)

3. The index of a principal sl2-subalgebra

If e ∈ g is nilpotent, then the exists a subalgebra a ⊂ g such that a 
 sl2 and e ∈ a (Morozov,
Jacobson). If e is a principal nilpotent element, then the corresponding sl2-subalgebra is also
called principal. (See [2, §9] and [4, Section 5] for properties of principal sl2-subalgebras.) Let
(sl2)

pr be a principal sl2-subalgebra of g. In this section, we obtain a uniform expression for
ind((sl2)

pr ↪→ g).
Recall that � has at most two root lengths. Let θs denote the short dominant root in �+.

(Hence θ = θs if and only if � is simply-laced.) Set r = ‖θ‖2/‖θs‖2 ∈ {1,2,3}. Along with g,
we also consider the Langlands dual algebra g∨, which is determined by the dual root system
�∨. Since the Weyl groups of g and g∨ are isomorphic, we have h(g) = h(g∨). However, the
dual Coxeter numbers can be different (cf. Bn and Cn).

The half-sum of positive roots for g∨ is

ρ∨ := 1

2

∑
γ>0

γ ∨ =
∑
γ>0

γ

(γ, γ )g
.

It is well known (and easily verified) that (ρ∨, γ )g = ht(γ ) for any γ ∈ �+. (This equality does
not depend on the normalisation of a bilinear form.) It follows that h∗(g∨) = (ρ∨, θs) = ht(θs).

Proposition 3.1. For a simple Lie algebra g with the corresponding root system �, we have

∑
γ>0

ht2(γ ) = dimg

12
h∗(g)h∗(g∨)

r. (3.1)

Proof. The equality in (3.1) is essentially equivalent to the “strange formula.”
Applying Eq. (2.3) to v = ρ∨, we obtain

h∗(g)
(
ρ∨, ρ∨)

g
=

∑
γ>0

(
ρ∨, γ

)
g

(
ρ∨, γ

)
g

=
∑
γ>0

ht2(γ ). (3.2)

For g∨, the strange formula says that (ρ∨, ρ∨)g∨ = dimg

12 h∗(g∨). Although the normalised bi-
linear forms (,)g and (,)g∨ are proportional upon restriction to E, they are not equal in general.
Indeed, the square of the length of a long root in �∨ with respect to (,)g equals 2r . Hence the
transition factor is r and

(
ρ∨, ρ∨)

g
= r

(
ρ∨, ρ∨)

g∨ = dimg

12
h∗(g∨)

r. (3.3)

Then the assertion follows from (3.2) and (3.3). �
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Theorem 3.2. ind((sl2)
pr ↪→ g) = dimg

6 h∗(g∨)r .

Proof. Combining Eq. (1.2), Example 1.2(2), and Definition 2 yields the following formula for
the index of a simple subalgebra s in g:

ind(s ↪→ g) = h∗(s)
h∗(g)

· indAVE(s,g). (3.4)

We use this formula with s = (sl2)
pr. Let h be the semisimple element of a principal sl2-triple.

Without loss of generality, we may assume that h is dominant. Then α(h) = 2 for any α ∈ �.
Put h̃ = h/2. Then γ (h̃) = ht(γ ) for any γ ∈ � and ad h̃ has the eigenvalues −1,0,1 in (sl2)

pr.
Hence

indAVE
(
(sl2)

pr,g
) = tr(adgh̃)2

tr(adsh̃)2
=

∑
γ∈� ht2(γ )

2
=

∑
γ>0

ht2(γ ).

Since h∗(sl2) = 2, the theorem follows from Proposition 3.1 and Eq. (3.4). �
Below, we tabulate the values of index for all simple Lie algebras.

g An Bn Cn Dn E6 E7 E8 F4 G2

ind((sl2)pr ↪→ g)
(n+2

3
) n(n+1)(2n+1)

3

(2n+1
3

) (n−1)n(2n−1)
3 156 399 1240 156 28

Remark 3.3. For the exceptional Lie algebras, Dynkin computed the indices of all sl2-
subalgebras, see [2, Tables 16–20].

Note that the index of a principal sl2 is preserved under the unfolding procedure g � g̃ applied
to multiply laced Dynkin diagram. Namely, ind((sl2)

pr ↪→ g) = ind((sl2)
pr ↪→ g̃), where the four

pairs (g, g̃) are: (Cn,A2n−1), (Bn,Dn+1), (F4,E6), (G2,D4). This is, of course, explained by
the multiplicativity of the index of subalgebras and the fact that ind(g ↪→ g̃) = 1.

Remark 3.4. Proposition 3.1 provides a uniform expression for
∑

γ>0 ht2(γ ). One might ask for
a similar formula for

∑
γ>0 ht(γ ). However, such a formula seems to only exist in the simply-

laced case. Indeed, for any g we have 2(ρ,ρ∨)g = ∑
γ>0(γ,ρ∨)g = ∑

γ>0 ht(γ ). If � is simply-
laced, then ρ∨ = 2ρ/(θ, θ)g = ρ, and using the “strange formula” one obtains

∑
γ>0

ht(γ ) = 2(ρ,ρ)g = dimg

6
h(g).

Question. Consider the function s �→ f (s) = ∑
γ>0 hts(γ ). Are there some other values of s

such that f (s) has a nice closed expression?
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4. Some applications

(A) Let ν : g → sl(Vλ) be an irreducible representation. Our first observation is that using The-
orems 1.1 and 3.2 we can immediately compute the Dynkin index of Vλ as (sl2)

pr-module:

indD
(
(sl2)

pr,Vλ

) = ind
(
(sl2)

pr ↪→ sl(Vλ)
) = ind

(
(sl2)

pr ↪→ g
) · ind

(
g ↪→ sl(Vλ)

)
= ind

(
(sl2)

pr ↪→ g
) · indD(g,Vλ)

= dimg

6
h∗(g∨)

r · dimVλ

dimg
(λ,λ + 2ρ)g

= dimVλ

6
· h∗(g∨) · r · (λ,λ + 2ρ)g.

Furthermore, we have

indD
(
(sl2)

pr,Vλ

) = indD(sl2, ad) · indAVE
(
(sl2)

pr,Vλ

) = 4 · indAVE
(
(sl2)

pr,Vλ

)
(4.1)

and

indAVE
(
(sl2)

pr,Vλ

) = tr(ν(h̃)2)

tr((ad h̃)2)
=

∑
μVλ

μ(h̃)2

2
,

where notation μ  Vλ means that μ is a weight of Vλ, and the sum runs over all weights accord-
ing to their multiplicities. Since μ(h̃) = (μ,ρ∨)g, we finally obtain

∑
μVλ

(
μ,ρ∨)2

g
= dimVλ

12
· h∗(g∨) · r · (λ,λ + 2ρ)g. (4.2)

This can be compared with the formula of Freudenthal–de Vries (see [3, 47.10.2]):

∑
μVλ

〈μ,ρ〉2 = dimVλ

24
〈λ,λ + 2ρ〉. (4.3)

One can verify that Eqs. (4.2) and (4.3) agree in the simply-laced case, where ρ is proportional
to ρ∨.

(B) Let m1, . . . ,mn be the exponents of g. Regarding g as (sl2)
pr-module, one has g =⊕n

i=1 R2mi
[4, Corollary 8.7]. Then using Example 1.2(1), Eqs. (3.4), (4.1), and the additivity of

the index of representations, we obtain the identity

dimg

6
h∗(g∨)

r = ind
(
(sl2)

pr ↪→ g
) = h∗(sl2)

h∗(g)

n∑
i=1

indAVE(sl2,R2mi
)

= 1

2h∗(g)

n∑
i=1

indD(sl2,R2mi
) = 1

2h∗(g)

n∑
i=1

(
2mi + 2

3

)
.
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