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Abstract

In this paper we give new elementary proofs of basic results due to Gelfand, Kapranov, and Zelevinsky
which express discriminants and results in terms of determinants of direct images of stably twisted Cayley–
Koszul complexes of sheaves.
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1. Statement of results

The main result in this paper is the following.

Theorem 1.1. Let X be a linearly normal smooth2 subvariety of P
N . Let V be a holomorphic

vector bundle over X. Let (E •
R(V (m)), ∂•

f ) and (E •
�(V (m)), ∂•

f ) denote the resultant complex

and the discriminant complex3 twisted by V (m), respectively. Then the following holds, provided
m ∈ Z is sufficiently positive.

E-mail address: stpaul@math.wisc.edu.
1 Supported by an NSF DMS grant # 0505059.
2 Smoothness is only required for part (b). For (a) it is enough that X be irreducible.
3 Precise definitions of all the terms appearing in the statement are given in subsequent sections.
0001-8708/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2009.02.012
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(a) The determinant of the resultant complex is the X-resultant:

Tor
(
E •

R

(
V (m)

)
, ∂•

f

)= R
rank(V )
X (f ), f ∈ Mn+1,N+1(C).

(b) Assume that the dual of X is non-degenerate. Then the determinant of the discriminant com-
plex is the X-discriminant:

Tor
(
E •

�

(
V (m)

)
, ∂•

f

)= �
rank(V )
X (f ), f ∈ (CN+1)∨.

When V = OX this statement is due to Gelfand, Kapranov, and Zelevinsky who built upon
and clarified work of Arthur Cayley. Concerning discriminants, more general results have been
obtained by Jerzy Weyman in [18] where he takes the higher cohomology into account. Con-
cerning resultants, in the general case of an arbitrary coherent sheaf F supported on X “Chow
complexes” have been constructed by Eisenbud and Schreyer in [3]. What justifies this paper is
that our proofs are completely elementary in nature. “Elementary” means that we avoid advanced
homological methods. For example, no use is made of the derived category, or the Grothendieck,
Knudsen, and Mumford theory of determinants. This machinery is replaced by a very simple
scaling argument, some elementary combinatorial manipulations of Chern polynomials, and a
direct application of the Hirzebruch–Riemann–Roch formula. In this way we hope to draw the
attention of geometric analysts interested in the K-stability and special metrics problem of Käh-
ler geometry to this fascinating area of algebraic geometry and commutative algebra.

2. Preliminaries on determinants

2.1. The torsion of a finite-dimensional chain complex

To begin let (E •, ∂•) be a bounded complex of finite-dimensional C vector spaces,

0 → E0 ∂0−→ · · · → Ei ∂i−→ Ei+1 ∂i+1−−→ · · · ∂n−→ En+1 → 0.

Recall that the determinant of the complex (E •, ∂•) is defined to be the one-dimensional vector
space

Det
(
E •)(−1)n :=

n+1⊗
i=0

( ri∧
Ei

)(−1)i+1

, ri := dim
(
Ei
)
.

Remark 1. Det(E •) does not depend the boundary operators.

As usual, for any vector space V we set V −1 := HomC(V ,C), the dual space to V . Let
Hi(E •, ∂•) denote the ith cohomology group of this complex. When V = 0, the zero vector
space, we set det(V ) := C. The determinant of the cohomology is defined in exactly the same
way

Det
(
H •(E •, ∂•))(−1)n :=

n+1⊗( bi∧
Hi
(
E •, ∂•))(−1)i+1

, bi := dim
(
Hi
(
E •, ∂•)).
i=0



S.T. Paul / Advances in Mathematics 221 (2009) 1345–1363 1347
We have the following well-known facts [2,16].

D1. Assume that the complex (E •, ∂•) is acyclic, then Det(E •) is canonically trivial

τ
(
∂•): Det

(
E •)∼= C. (2.1)

As a corollary of this we have,

D2. There is a canonical isomorphism4 between the determinant of the complex and the deter-
minant of its cohomology:

τ
(
∂•): Det

(
E •)∼= Det

(
H •(E •, ∂•)). (2.2)

It is D1 which is relevant for our purpose. It says that there is a canonically given nonzero
element of Det(E •), provided this complex is exact. The essential ingredient in the construc-
tion of X-resultants (i.e. Cayley–Chow forms ) and X-discriminants (i.e. dual varieties) consists
in identifying this canonical “section.” In order to proceed we recall the Torsion (denoted by
Tor(E •, ∂•)) of the complex (E •, ∂•).

Define κi := dim(∂iE
i), now choose Si ∈∧κi (Ei) with ∂iSi �= 0, then ∂iSi ∧ Si+1 spans∧ri+1 Ei+1 (since the complex is exact), that is

ri+1∧
Ei+1 = C ∂iSi ∧ Si+1.

With this said we define5

Tor
(
E •, ∂•)(−1)n := (S0)

−1 ⊗ (∂0S0 ∧ S1) ⊗ (∂1S1 ∧ S2)
−1 ⊗ · · · ⊗ (∂nSn)

(−1)n .

Then we have the following reformulation of D1:

D3.

Tor
(
E •, ∂•) is independent of the choices Si. (2.3)

By fixing a basis {ei
1, e

i
2, . . . , e

i
ri
} in each of the terms Ei we may associate to this based exact

complex a scalar

Tor
(
E •, ∂•;{ei

1, e
i
2, . . . , e

i
ri

}) ∈ C
∗

which is defined through the identity:

Tor
(
E •, ∂•)= Tor

(
E •, ∂•;{ei

1, e
i
2, . . . , e

i
ri

})
det
(
. . . , ei

1, e
i
2, . . . , e

i
ri
, . . .
)
,

4 A “canonical isomorphism” is one that only depends on the boundary operators, not on any choice of basis.
5 The purpose of the exponent (−1)n will be revealed in the next section.
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where we have set

det
(
. . . , ei

1, e
i
2, . . . , e

i
ri
, . . .
)(−1)n := (e0

1 ∧ · · · ∧ e0
r0

)−1 ⊗ · · · ⊗ (en+1
1 ∧ · · · ∧ en+1

rn+1

)(−1)n
.

When we have fixed a basis of our exact complex (that is, a basis of each term in the complex)
we will call Tor(E •, ∂•; {ei

1, e
i
2, . . . , e

i
ri
}) the torsion of the based exact complex. It is, as we

have said, a scalar quantity.

Remark 2. In the following sections we often base the complex without mentioning it explicitly
and in such cases we write (incorrectly) Tor(E •, ∂•) instead of
Tor(E •, ∂•; {ei

1, e
i
2, . . . , e

i
ri
}).

We have the following well-known scaling behavior of the torsion, which we state in the next
proposition. Since it is so important for us, we provide the proof, which is nothing more than the
rank plus nullity theorem of linear algebra.

Proposition 2.1 (The degree of the torsion as a polynomial in the boundary maps).

deg Tor
(
E •, ∂•)= (−1)n+1

n+1∑
i=0

(−1)i i dim
(
Ei
)
. (2.4)

Proof. Let μ ∈ C
∗ be a parameter. Then

Tor
(
E •,μ∂•)(−1)n = (S0)

−1 ⊗ (μ∂0S0 ∧ S1) ⊗ (μ∂1S1 ∧ S2)
−1 ⊗ · · · ⊗ (μ∂nSn)

(−1)n

= μκ0−κ1+κ2−···+(−1)nκn Tor
(
E •, ∂•)(−1)n

.

It is clear that

κ0 − κ1 + κ2 − · · · + (−1)nκn =
n+1∑
i=0

(−1)i+1i(κi + κi−1) (κn+1 = κ−1 := 0).

Exactness of the complex implies that we have the short exact sequence

0 → ∂i−1E
i−1 ι−→ Ei ∂i−→ ∂iE

i → 0.

Therefore κi + κi−1 = dim(Ei). �
3. The geometric technique

3.1. Direct images of Cayley–Koszul complexes

We let C
k denote the k-dimensional affine space over C. Our concern is with irreducible

subvarieties Z of an affine space C
k associated to a smooth, linearly normal subvariety X of P

N .
Such subvarieties Z arise in the following manner. Assume there exists a vector subbundle S of
the trivial bundle E := X × C

k such that the image of the restriction to I of the projection of E
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onto C
k is Z, where I denotes the total space of S . We shall always take f to be a variable point

in C
k .

There is the exact sequence of vector bundles on X

0 → S → E π−→ Q → 0.

In this case there is tautological regular section s of p1
∗(Q) whose base locus is I . p1 denotes

the projection of E to X. We let pI denote the restriction of p2 to I . Z denotes the image of I

under pI . This situation is pictured below in what we will call the basic set up following the
terminology of J. Weyman (see [19]).

p1
∗(Q)

π2

π1

Q

p

I
ι

pI

X × C
k

p1

p2

X

Z
i

C
k

In our applications we shall have that Z is an irreducible algebraic hypersurface in Ck , and
that pI : I → Z is a resolution of singularities. Therefore, in the remainder of this section we
assume that Z has codimension one.

Observe that the assumption on the codimension of Z in C
k forces rank(Q) = n + 1. In

this case, following G. Kempf (see the section on “Historical Remarks” in [14]), we may study
the irreducible equation of Z (denoted by RZ(f )) through an analysis of the direct image of a
Cayley–Koszul complex of sheaves on X × C

k . We have the free resolution over OX×Ck

(
K•(p∗

1

(
Q∨)), (s ∧ ·)∗)→ ι∗OI → 0; Kj

(
p∗

1

(
Q∨)) := n+1−j∧

p∗
1

(
Q∨). (3.1)

More generally, let V denote any vector bundle on X. Then we will consider the twisted complex

(
K•(p∗

1

(
Q∨))⊗ p∗

1 V , (s ∧ ·)∗)→ ι∗OI ⊗ p∗
1 V → 0,

(s ∧ ·)∗ denotes interior multiplication. (3.2)

Let f ∈ C
k , then we may pull the twisted Cayley–Koszul complex back to X via the map

if :X → X × C
k, if (x) := (x, f ). (3.3)

Then i∗f (K•(p∗
1(Q∨))⊗p∗

1 V , (s ∧·)∗) is an acyclic complex of vector bundles on X whenever

f ∈ C
k \ Z.
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Next we make a positivity assumption on V . We assume that

Hj
(
X,Ki

(
Q∨)⊗ V

)= 0 for all i and all j > 0. (3.4)

It follows from Serre’s theorem (see [17]) and the Leray hypercohomology spectral sequence
that the complex of finite-dimensional vector spaces is also exact(

E •(V ), ∂f

) := (H 0(X,K•(Q∨)⊗ V
)
, ∂•

f

)
, f ∈ C

k \ Z,

∂•
f = (s(·, f ) ∧ ·)∗. (3.5)

Choose bases {e(•)
j } in each term of E •(V ). Then by the construction of the previous section we

have a nowhere zero (and finite) rational function6

f ∈ C
k \ Z → Tor

(
E •(V ), ∂•

f ;{e(•)
j

}) ∈ C
∗. (3.6)

Moreover, an application of the Nullstellensatz to the numerator and denominator implies at once
that this rational function must be a power of RZ(f ). We state this in the following proposition.

Proposition 3.1. There is an integer q (the Z-adic order of the determinant) such that

Tor
(
E •(V ), ∂•

f

)= RZ(f )q . (3.7)

Recall that the torsion spans the determinant of the complex

C Tor
(
E •(V ), ∂•

f

)= n+1⊗
j=0

bj∧
H 0
(

X,

( j∧
Q∨
)

⊗ V
)(−1)j

bj := h0
(

X,

j∧
Q∨
)

. (3.8)

Remark 3. In particular the determinant of the complex (E •(V ), ∂•
f ) is a polynomial, or the

reciprocal of a polynomial.

If we assume that the boundary operators ∂f are linear over C we may deduce from (3.7) and
(2.4) the following well-known corollary.

Corollary 3.1. Assume that ∂f depends linearly on f . Then the degree of Z can be computed as
follows:

qdeg(RZ) =
n+1∑
j=0

(−1)j+1jh0
(

X,

j∧
Q∨
)

. (3.9)

6 In our applications the boundary operators ∂f depend linearly on f .
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Proof.

qdeg(RZ) = (−1)n+1
n+1∑
j=0

(−1)j jh0(X,Kj
(

Q∨)⊗ V
)

=
n+1∑
j=0

(−1)(−1)n+1−j (n + 1 − j)h0
(

X,

n+1−j∧ (
Q∨)⊗ V

)

=
n+1∑
j=0

(−1)j+1jh0
(

X,

j∧(
Q∨)⊗ V

)
. �

Corollary 3.2. C
k 
 f → Tor(E •(V ), ∂•

f ; {e(•)
j }) ∈ C

∗ is a constant mapping if and only if the
right-hand side of (3.9) vanishes.

4. Discriminants and resultants

4.1. Resultants

Let X ⊂ PN be an n-dimensional irreducible subvariety of PN with degree d . Then the asso-
ciated hypersurface to X is defined by

ZX := {L ∈ G | L ∩ X �= ∅}, G := G
(
N − n − 1,P

N
)
.

It is easy to see that ZX is an irreducible hypersurface (of degree d) in G. Since the homogeneous
coordinate ring of the Grassmannian is a UFD, any codimension one subvariety with degree d is
given by the vanishing of a section RX of the homogeneous coordinate ring7

{RX = 0} = ZX; RX ∈ PH 0(
G, O(d)

)
.

Following the terminology of Gelfand, Kapranov, and Zelevinsky [7] we call RX the Cayley–
Chow form of X or simply the X-resultant. Following [12] we can be more concrete as follows.
Let M0

n+1,N+1(C) be the (Zariski open and dense) subspace of the vector space of (n + 1) ×
(N + 1) matrices consisting of matrices of full rank. We have the canonical projection

p :M0
n+1,N+1(C) → G

(
N − n,C

N+1),
defined by taking the kernel of the linear transformation. This map is dominant, so the closure of
the preimage

p−1(ZX) ⊂ M0
n+1,N+1(C) = Mn+1,N+1(C)

7 See [4, Exercise 7, p. 140].
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is also an irreducible hypersurface of degree d in Mn+1,N+1(C). Therefore, there is a unique8

(symmetric multihomogeneous) polynomial (which will also be denoted by RX) such that

Z := p−1(ZX) = {RX(wij ) = 0
}; RX(wij ) ∈ P d

[
Mn+1,N+1(C)

]
.

RX(wij ) is a polynomial of degree d in the (n + 1) × (n + 1) minors of (wij ),

RX(wij ) =
∑

|α|=d

cα1,α2,...,αb
PI1

α1PI2
α1 . . . PIb

αb ,

PI := det

⎛⎜⎝
w1i1 . . . w1in+1

w2i1 . . . w2in+1

. . . . . . . . .

wn+1i1 . . . wn+1in+1

⎞⎟⎠ .

Therefore,

RX(τwij ) = τd(n+1)RX(wij ). (4.1)

Gelfand, Kapranov, and Zelevinsky [6–10] have extended and clarified work of Cayley on
discriminants and resultants by exhibiting �X (respectively RX) as the determinant of the direct
image of a complex of sheaves (E •

�(V (m)), ∂•
f ) (respectively (E •

R(V (m)), ∂•
f )) on X through an

application of the construction in the previous section. We first consider the case of resultants. In
this case the basic data is chosen as follows: V is a holomorphic vector bundle on X,

E = X × Mn+1,N+1(C),

S = {(x, (l0, l1, . . . , ln)
) ∣∣ li (x) = 0; 0 � i � n

}
,

li denotes a linear form on C
N+1, (4.2)

Q ∼=
n+1︷ ︸︸ ︷

O(1)X ⊕ O(1)X ⊕ · · · ⊕ O(1)X,

V (m) = V ⊗ OX(m), m � 0 ∈ Z.

In this situation the basic diagram takes the following shape:

p1
∗(O(1)X ⊕ · · · ⊕ O(1)X)

π2

π1

O(1)X ⊕ · · · ⊕ O(1)X

p

IR
ι

pI

X × Mn+1,N+1(C)
p1

p2

X

Z
i

Mn+1,N+1(C)

8 Unique up to scaling.
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It is not hard to see that the direct image complex (for m � 0) is given as follows:

Ei
R

(
V (m)

)= H 0(X, V
(
m − (n + 1 − i)

))⊗ n+1−i∧ (
C

n+1)∨,

Ei
R

(
V (m)

) 
 P ⊗ ψ
∂i
f−→

n∑
i=0

liP ⊗ (ei ∧ ·)∗(ψ) ∈ Ei+1
R

(
V (m)

)
,

f = (l0, l1, . . . , ln), {. . . , ei, . . .} denotes the standard basis of Cn+1,

C Tor
(
E•

R

(
V (m)

)
, ∂•

f

)= n+1⊗
j=0

P(m−j)∧
H 0(X, V (m − j)

)(−1)j (n+1
j )

,

P (m) denotes the Hilbert polynomial of V . (4.3)

4.2. Discriminants

Recall that the dual variety of (X,L), usually denoted by X̂, is the set of hyperplanes (iden-
tified with linear forms) f ∈ P̂N (the dual projective space) tangent to X. Generally the dual
variety is an irreducible hypersurface in P̂N . Assuming that X̂ has codimension one, let �X de-
note the irreducible polynomial defining X̂. We call �X the discriminant of X. Below we set
d̂ := deg(X̂).

X̂ = {f ∈ P
N ∨ ∣∣�X(f ) = 0

}
.

In order to study the discriminant of X ↪→ P
N we consider the cone over X, which we denote

by X̃. Let {Fα} denote any generating set for the homogeneous ideal of X. Then

T 1,0(X̃) = {(p,w) ∈ X × C
N+1
∣∣∇Fα(p) · w = 0 for all α

} ι
↪→X × C

N+1.

Taking the dual of the inclusion ι gives a surjection π , and hence an exact sequence

0 → S → X × (CN+1)∨ π−→ T 1,0(X̃)∨ → 0. (4.4)

For discriminants the basic data is as follows:

E = X × (CN+1)∨,

S = {(p,f )
∣∣ T 1,0

p (X̃) ⊂ Ker(f )
}
,

Q ∼= T 1,0(X̃)∨,

V (m) = V ⊗ OX(m), m � 0 ∈ Z. (4.5)
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In this situation the basic diagram takes the following shape:

p1
∗(T 1,0(X̃)∨)

π2

π1

T 1,0(X̃)∨

p

I�
ι

pI

X × (CN+1)∨
p1

p2

X

Z
i

(CN+1)∨

Observe that T 1,0(X̃)∨ is isomorphic to J1(OX(1)), the sheaf of one jets of OX(1). The Cayley–
Koszul complex of sheaves is in this case given as follows:

E i
�

(
V (m)

) := n+1−i∧
J1
(

OX(1)
)∨ ⊗ V (m),

∂i
f := (j1(f ) ∧ ·)∗, f ∈ H 0(X, OX(1)

)
.

The complex of global sections is then

Ei
�

(
V (m)

) := H 0
(

X,

n+1−i∧
J1
(

OX(1)
)∨ ⊗ V (m)

)
,

∂i
f = (j1(f ) ∧ ·)∗. (4.6)

Proposition 5.1 below together with (2.1) implies that the torsion is given as follows:

Tor
(
E •

�

(
V (m)

)
, ∂•

f

)
=

n+1⊗
j=0

detH 0
(

X,

j−1∧
T

1,0
X ⊗ V (m − j)

)(−1)j

⊗ detH 0
(

X,

j∧
T

1,0
X ⊗ V (m − j)

)(−1)j

. (4.7)

Then the geometric formulation of (3.7) is given in the following proposition.

Proposition 4.1. (See Gelfand, Kapranov, Zelevinsky [7,9].) The complex (E •
�(V (m)), ∂•

f ) is
exact provided f is not tangent to X. The complex (E •

R(V (m)), ∂•
f ) is exact provided f does not

meet X.

Therefore the determinants

f ∈ (CN+1)∨ → Tor
(
E •

�

(
V (m)

)
, ∂•

f

)
,

f ∈ Mn+1,N+1(C) → Tor
(
E •(V (m)

)
, ∂• ) (4.8)
R f
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are rational functions9 on (CN+1)∨ (respectively Mn+1,N+1(C)) which are nowhere zero away
from {�X = 0} (respectively {RX = 0}).

5. Proof of the Main Theorem

The main result of this paper is the following special case of (3.7). As we have mentioned
already, this is due to Gelfand, Kapranov, and Zelevinsky (see [7]) in the case when V = OX .

Main Theorem (The Cayley method).

(a) The determinant of the resultant complex is the X-resultant

Tor
(
E •

R

(
V (m)

)
, ∂•

f

)= R
rank(V )
X (f ), f ∈ Mn+1,N+1(C).

(b) The determinant of the discriminant complex is the X-discriminant

Tor
(
E •

�

(
V (m)

)
, ∂•

f

)= �
rank(V )
X (f ), f ∈ (CN+1)∨.

5.1. New proofs

(a) It follows from (4.8) and the Nullstellensatz that there exists q ∈ Z such that

Tor
(
E •

R

(
V (m)

)
, ∂•

f

)= R
q
X(f ). (5.1)

Next we simply scale the left-hand side of (5.1), and use the fact that the boundary operators ∂•
f

for the resultant complex are linear in the matrix coefficients of f .
On the one hand, we have from (5.1) and (4.1) that

Tor
(
E •

R

(
V (m)

)
, ∂•

μf

)= R
q
X(μf ) = μqd(n+1)R

q
X(f ) = μqd(n+1)Tor

(
E •

R

(
V (m)

)
, ∂•

f

)
. (5.2)

Therefore,

deg
(
Tor
(
E •

R(m), ∂•
f

))= qd(n + 1).

On the other hand, linearity and (2.4) say that we have

Tor
(
E •

R

(
V (m)

)
, ∂•

μf

)= Tor
(
E •

R

(
V (m)

)
,μ∂•

f

)= μ#Tor
(
E •

R

(
V (m)

)
, ∂•

f

)
,

# =
n+1∑
i=0

(−1)i+1i

(
n + 1

i

)
dim
(
H 0(X, V (m − i)

))
.

It follows at once from (2.4) that10

9 More, precisely, they are functions once bases are chosen.
10 h0(X, V (m − i))) denotes the dimension of the vector space H 0(X, V (m − i))).
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deg
(
Tor
(
E •

R(m), ∂•
f

))= n+1∑
i=0

(−1)i+1i

(
n + 1

i

)
h0(X, V (m − i)

)
. (5.3)

Next we simply evaluate the right-hand side.
In order to proceed, we recall some elementary facts about numerical functions. Let f be any

numerical function, recall that the backwards difference of f is defined as follows:

�−f (m) := f (m) − f (m − 1); �k+1− f (m) := �k−f (m) − �k−f (m − 1).

Let fl(m) := ml , then it is easy to see that

�k−fl(m) =
∑

0�j�k

(−1)j
(

k

j

)
(m − j)l .

It is not difficult to verify that

�k−fl(m) =
{

k!, if k = l,

0, if l < k.

We will also consider the forward difference operator:

�+f (m) := f (m + 1) − f (m); �k+1+ f (m) := �k+f (m + 1) − �k+f (m),

�k+fl(m) =
∑

0�j�k

(−1)j+1
(

k

j

)
(m + j)l .

Similarly we have that

�k+fl(m) =
{

(−1)k+1k!, if k = l,

0, if l < k.

The dimension h0(X, V (m − i)) is a polynomial to which we apply the previous remarks on
numerical functions,

h0(X, OX(m − i)
)= n∑

k=0

bk(m − i)k; bn = d

n! rank(V ).

We have

deg
(
Tor
(
E •

R(m), ∂•
f

))= n+1∑
j=0

(−1)j+1j

(
n + 1

j

)
h0(X, V (m − j)

)

=
n+1∑ n∑

(−1)j+1j

(
n + 1

j

)
bk(m − j)k
j=0 k=0
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=
n∑

k=0

bk

n+1∑
j=0

(−1)j
(

n + 1

j

)
(m − j)k+1

=
n∑

k=0

bk�
n+1− fk+1(m)

= (n + 1)!bn

= d(n + 1) rank(V ).

Therefore,

q = rank(V ).

Before we proceed to part (b) we should emphasize that in case (a) we needed to know apriori
that the degree of the X-resultant is given by

deg(RX) = d(n + 1).

There are many interesting formulas available which compute, in varying levels of generality, the
degree of the X-discriminant (see [11,13,15]). In the present case it is most convenient to use the
following expression for the degree of the dual variety, due to Beltrametti, Fania, and Sommese.

Proposition. (See Beltrametti, Fania, Sommese [1].) The projective dual variety X̂ is a hyper-
surface if and only if cn(J1(OX(1))) �= 0 and in this case its degree d̂ is given as follows:

d̂ =
∫
X

cn

(
J1
(

OX(1)
))

. (5.4)

Another application of (2.4) gives that

deg
(
Tor
(
E •

�

(
V (m)

)
, ∂•

f

))= n+1∑
j=0

(−1)j+1jh0
(

X,

j∧
J1
(

OX(1)
)∨ ⊗ V (m)

)
.

The Nullstellensatz implies that there is q ∈ Z such that

Tor
(
E •

�

(
V (m), ∂•

f

))= �
q
X(f ).

Therefore,

n+1∑
j=0

(−1)j+1jh0
(

X,

j∧
J1
(

OX(1)
)∨ ⊗ V (m)

)
= qd̂.

Our aim is to show that q = rank(V ).
We will require the following well-known fact.
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Proposition 5.1. There is an exact sequence of vector bundles on X:

0 → OX(−1)
ι−→ T 1,0(X̃) ∼= J1

(
OX(1)

)∨ π−→ T 1,0(X) ⊗ OX(−1) → 0. (5.5)

Since we will need an explicit description of the maps in the sequel to this paper we recall the
construction in detail.

The holomorphic tangent bundle to the cone on X (viewed as a bundle over X) is given by

T 1,0(X̃) = {(p,w) ∈ X × C
N+1
∣∣∇Fα(p) · w = 0 for all α

} ι
↪→X × C

N+1.

Below we abuse notation as follows. On the one hand, π denotes the map

T 1,0(X̃)
π−→ T 1,0(X) ⊗ OX(−1) → 0.

On the other hand, we also denote by π the projection onto P
N

π : CN+1 \ {0} → P
N.

Finally we can define π in (5.5) by the formula (where π(v) = p)

T 1,0(X̃) 
 (p,w) → π(p,w) := π∗|v(w) ⊗ v ∈ T 1,0(X) ⊗ OX(−1).

The rationale for this follows from the fact that for all w ∈ C
N+1 and α ∈ C

∗ we have

π∗|αv(w) = 1

α
π∗|v(w).

To see this, one just writes down the Jacobian of π : CN+1 \{0} → P
N in the affine chart {z0 �= 0}:

π∗|z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− z1
z2

0

1
z0

0 0 0 . . . 0

− z2
z2

0
0 1

z0
0 0 . . . 0

− z3
z2

0
0 0 1

z0
0 . . . 0

. . . 0 0 0 1
z0

. . . 0

− zN

z2
0

0 0 0 0 . . . 1
z0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The jet exact sequence induces an exact sequence on all of the (twisted) exterior powers

0 →
i−1∧

T
1,0
X ⊗ V (m − i) →

i∧
J1
(

OX(1)
)∨ ⊗ V (m) →

i∧
T

1,0
X ⊗ V (m − i) → 0. (5.6)

Therefore, when m � 0 taking global sections gives the short exact sequence of vector spaces
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0 → H 0
(

X,

i−1∧
T

1,0
X ⊗ V (m − i)

)
→ H 0

(
X,

i∧
J1
(

OX(1)
)∨ ⊗ V (m)

)

→ H 0
(

X,

i∧
T

1,0
X ⊗ V (m − i)

)
→ 0. (5.7)

From which we deduce the identity

h0
(

X,

i∧
J1
(

OX(1)
)∨ ⊗ V (m)

)
= h0
(

X,

i−1∧
T

1,0
X ⊗ V (m − i)

)

+ h0
(

X,

i∧
T

1,0
X ⊗ V (m − i)

)
.

Next we express the dimension of the space of global sections as an integral via the Hirzebruch–
Riemann–Roch formula:

h0
(

X,

i∧
T 1,0(X) ⊗ V (m − i)

)
=
∫
X

Td(X)Ch

( i∧
T

1,0
X ⊗ V (m − i)

)
. (5.8)

Therefore we have

deg
(
Tor
(
E •

�

(
V (m)

)
, ∂•

f

))
=

n+1∑
i=0

(−1)i+1i

(
h0
(

X,

i−1∧
T

1,0
X ⊗ V (m − i)

)
+ h0
(

X,

i∧
T

1,0
X ⊗ V (m − i)

))

=
∫
X

Td(X)

(
n+1∑
i=0

(−1)i+1i

{
Ch

( i−1∧)
Ch(−1) + Ch

( i∧)})
Ch
(

V (m)
)
.

Where we have defined
∧i :=∧i

(T
1,0
X (−1)). The Chern character expressions involving

∧−1

and
∧n+1 are taken to be zero. Next observe that

n+1∑
i=0

(−1)i+1i

{
Ch

( i−1∧)
Ch(−1) + Ch

( i∧)}

= Ch(−1) +
n∑

i=1

(−1)i+1 Ch

( i∧)(
i − (i + 1)Ch(−1)

)

=
n∑

i=0

(−1)i Ch

( i∧)
+ (e−ω − 1

) n∑
i=0

(−1)i+1(i + 1)Ch

( i∧)
. (5.9)

We have written Ch(−1) = 1 + (e−ω − 1). Next we require a combinatorial lemma.
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Lemma 5.1. Let E be a rank n vector bundle on an n-dimensional variety X. Then the following
identities hold:

n∑
i=0

(−1)i Ch

( i∧
E

)
= cn

(
E∨),

n∑
i=0

(−1)i i Ch

( i∧
E

)
= (−1)ncn−1(E) + (−1)n+1

2

(
c1(E)cn−1(E) − 3ncn(E)

)
. (5.10)

Remark 4. The first of these identities is due to Borel and Serre (see [5]).

Proof of Lemma 5.1. The proof of (5.10) is quite simple. To begin let {λ1, λ2, . . . , λn} be the
Chern roots of E. Fix p ∈ Z, 0 � p � n. We have

p!
n∑

i=1

(−1)i i Chp

( i∧
E

)
= −

∑
1�i�n

λ
p
i + 2

∑
1�i<j�n

(λi + λj )
p − 3

∑
1�i<j<k�n

(λi + λj + λk)
p + · · ·

+ (−1)l l
∑

1�i1<i2<···<il�n

(λi1 + · · · + λil )
p + · · · + (−1)nn

( ∑
1�i�n

λi

)p

.

Fix k ∈ N and mj ∈ N+ satisfying
∑k

j=1 mj = p. Observe that k necessarily satisfies 0 � k � p.
Then the coefficient of the monomial

λi1
m1λi2

m2 . . . λik
mk

in the sum ∑
1�i1<i2<···<il�n

(λi1 + · · · + λil )
p

is given by(
p

m1 m2 . . .mk

)
× #
{
S | S ⊂ {1,2, . . . , n}; #(S) = l; {i1, i2, . . . , ik} ⊂ S

}
=
(

p

m1 m2 . . .mk

)
×
(

n − k

l − k

)
.

Therefore the coefficient of λi1
m1λi2

m2 . . . λ
mk

ik
in the sum

p!
n∑

(−1)i i Chp

( i∧
E

)

i=1
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is given by

(
p

mi1 mi2 . . .mik

) ∑
k�l�n

(−1)l l

(
n − k

l − k

)

=
(

p

mi1 mi2 . . .mik

)
(−1)k

∑
0�j�n−k

(−1)j (k + j)

(
n − k

j

)

=
(

p

mi1 mi2 . . .mik

)
(−1)k+1�n−k+ f1(k).

If p � n − 2 then n − k � 2. In this case the sum vanishes. Next we observe that k is forced to
satisfy k = n − 1 whenever p = n − 1. In this case mj = 1 for all j . The typical monomial is

λ1λ2 . . . λn

λi

.

The corresponding coefficient is then

(n − 1)!(−1)n�1+f1 = (−1)n(n − 1)!.

Therefore,

(n − 1)!
n∑

i=1

(−1)i i Chn−1

( i∧
E

)
= (−1)n(n − 1)!

n∑
i=1

λ1λ2 . . . λn

λi

= (−1)n(n − 1)!cn−1(E).

When p = n = k there is only one monomial

λ1λ2 . . . λn = cn(E).

The corresponding coefficient is (−1)nnn!.
The last case is when p = n and k = n − 1. Here the typical monomial takes the shape

λi

λk

(λ1λ2 . . . λn), i �= k,

each of which are weighted with coefficient

1

2
(−1)n+1n!.

The sum of such monomials is therefore
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λ1λ2 . . . λn

n∑
i=1

∑
k �=i

λi

λk

= λ1λ2 . . . λn

(
n∑

i=1

λi

n∑
k=1

1

λk

− n

)

=
n∑

i=1

λi

n∑
k=1

λ1λ2 . . . λn

λk

− nλ1λ2 . . . λn

= c1(E)cn−1(E) − ncn(E).

Therefore,

n!
n∑

i=1

(−1)i i Chn

( i∧
E

)

= (−1)nnn!cn(E) + 1

2
(−1)n+1n!(c1(E)cn−1(E) − ncn(E)

)
= 1

2
(−1)n+1n!(c1(E)cn−1(E) − 3ncn(E)

)
.

Justification of the first identity can be carried out in exactly the same manner, this completes the
proof of the lemma. �

Putting all of this together gives the identity

n+1∑
i=0

(−1)i+1i

(
Ch

( i−1∧)
Ch(−1) + Ch

( i∧))
= cn

(
Ω

1,0
X (1)

)+ ωcn−1
(
Ω

1,0
X (1)

)
.

Therefore,

deg
(
Tor
(
E •

�(m), ∂•
f

))
=

n+1∑
i=0

∫
X

Td(X)(−1)i+1i

(
Ch

( i−1∧)
Ch(−1) + Ch

( i∧))
Ch
(

V (m)
)

= rank(V )

∫
X

(
cn

(
Ω

1,0
X

)+ ωcn−1
(
Ω

1,0
X (1)

))
.

Another application of the exact sequence

0 → OX(−1)
ι−→ J1
(

OX(1)
)∨ π−→ T 1,0(X) ⊗ OX(−1) → 0 (5.11)

shows at once that

cn

(
J1
(

OX(1)
))= cn

(
Ω

1,0
X (1)

)+ ωcn−1
(
Ω

1,0
X (1)

)
.

This completes the proof of Main Theorem.
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