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Abstract

O. Lazarev and E.H. Lieb proved that, given f1, . . . , fn ∈ L1 ([0, 1] ; C), there exists a smooth function
Φ that takes values on the unit circle and annihilates span { f1, . . . , fn}. We give an alternative proof of
that fact that also shows the W 1,1 norm of Φ can be bounded by 5πn + 1. Answering a question raised by
Lazarev and Lieb, we show that if p > 1 then there is no bound for the W 1,p norm of any such multiplier
in terms of the norms of f1, . . . , fn .
c⃝ 2013 Elsevier Inc. All rights reserved.
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The Hobby–Rice Theorem [1] states

Theorem 1. If f1, . . . , fn ∈ L1 ([0, 1] ; R) then there exists Φ : [0, 1] → {−1, 1} with at most
n discontinuities such that for each k 1

0
fk(t)Φ(t)dt = 0.

The theorem has applications in L1 approximation and in combinatorics, particularly necklace
splitting problems [3]. An elegant proof of the Hobby–Rice Theorem was given by Pinkus [4]
using the Borsuk–Ulam Theorem.
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Motivated by a problem in mathematical physics, Lazarev and Lieb [2] extended this result to
obtain a smooth annihilator taking values on the unit circle, i.e.,

Theorem 2. If f1, . . . , fn ∈ L1 ([0, 1] ; C) then there exists θ ∈ C∞ ([0, 1] ; R) such that

∀k,
 1

0
fk(t)e

iθ(t)dt = 0. (0.1)

Lazarev and Lieb suggested that there should be a simpler proof, and in this spirit, we offer
the following proof. They also raised the question of calculating the H1

= W 1,2 norm of fkeiθ .
Corollary 4 shows there is such θ with

eiθ(·)


W 1,1 ≤ 5πn + 1. We also show that for p > 1
there exists a large class of normed spaces N =


(N , ∥·∥N )


including L1 so that

eiθ(·)


W 1,p

cannot be bounded by ∥ f1∥N , . . . , ∥ fn∥N .

Proof of Theorem 2. We may assume f1, . . . , fn are linearly independent in L1 and thus choose
0 = t0 < t1 < · · · < tn < tn+1 = 1 so that

M :=

 f1 (t1) · · · f1 (tn)
...

. . .
...

fn (t1) · · · fn (tn)


is invertible and each t j is a Lebesgue point of all fk (Lemma 9).

For each u, v ∈ [−1, 1], let θu+iv : [−1, 1] → R be a step function that consecutively
takes the values 0, π2 , π,

3π
2 on intervals of lengths 1+u

2 , 1+v
2 , 1−u

2 , 1−v
2 , respectively. Thus 1

−1 eiθu+iv(t)dt = u + iv.
Choose ψ ∈ C∞


R; R+


supported on [−1, 1] such that


ψ(t)dt = 1. Let ψh(t) =

ψ (t/h) /h.
Also let IS be the indicator function of S. Define θ#

h,z = θz I(h−1,1−h) + 2π I[1−h,∞) and

θh,z =


θz if h = 0
ψh ∗ θ#

h,z if 0 < h < 1.

Note that if h > 0 then θh,z (−1) = 0 and θh,z(1) = 2π , while θ (m)h,z (±1) = 0 for all m ≥ 1.
Define D = {z ∈ C : |z| ≤ 1} , d = min j∈{0...n}


t j+1 − t j


/2, and Q : [0, d] × Dn

→ Cn :

Q (h; z⃗) =



 n
j=1

z j · fk

t j


k=1...n

if h = 0 n
j=1

 1

−1
fk

th + t j


eiθh,z j (t)dt


k=1...n

if 0 < h ≤ d

with z⃗ := (z1, . . . , zn). Since Q (0; z⃗) = M (z⃗), Lemma 10 shows there is δ ∈ (0, d] such that
for all z⃗ ∈ Dn

z⃗ − M−1 (Q (δ; z⃗)) ∈
1
2

Dn .

Let Lδ = [0, 1] \
n

j=1


t j − δ, t j + δ


. By applying the Hobby–Rice Theorem1 to f1 ILδ ,

. . . , fn ILδ and smoothing a finite set of discontinuities, we obtain φ ∈ C∞ ([0, 1] ; R) supported

1 The Riemann–Lebesgue Lemma also suffices, but the Hobby–Rice Theorem enables us to compute a bound of the
W 1,1 norm in Corollary 4.
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on Lδ so that

r⃗ :=


Lδ

fk(t)e
iφ(t)dt


k=1...n

∈
δ

2
M

Dn .

Since φ vanishes together with all its derivatives at all t j ± δ, for all z⃗ ∈ Dn

θ∗

z⃗ (t) =


θδ,z j


t − t j


/δ

+ 2π ( j − 1) if t ∈


t j − δ, t j + δ


and 1 ≤ j ≤ n

φ(t) if t ∈ [0, t1 − δ)

φ(t)+ 2π j if t ∈

t j + δ, t j+1 − δ


and 1 ≤ j ≤ n − 1

φ(t)+ 2πn if t ∈ (tn + δ, 1]

is in C∞ ([0, 1] ; R). Lemma 11 establishes the continuity of

T (z⃗) :=

 1

0
fk(t)e

iθ∗

z⃗ (t)dt


k=1...n

= δQ (δ; z⃗)+ r⃗ .

Since z⃗ − M−1 (Q (δ; z⃗)) and 1
δ

M−1 (r⃗) are in 1
2 Dn for all z⃗ ∈ Dn , then z⃗ −

1
δ

M−1 (T (z⃗)) ∈

Dn . By Brouwer’s Fixed Point Theorem, there exists z⃗0 ∈ Dn such that z⃗0−
1
δ

M−1 (T (z⃗0)) = z⃗0,
that is to say T (z⃗0) = 0. �

Definition 3. Let

∥g (·)∥W 1,p =

 1

0
|g(t)|p dt +

 1

0

g′(t)
p dt

 1
p

and ∥g (·)∥ ◦

W
1,p =

 1

0

g′(t)
p dt

 1
p

.

Corollary 4. If f1, . . . , fn ∈ L1 ([0, 1] ; C) then there exists θ ∈ C∞ ([0, 1] ; R) such that for
each k 1

0
fk(t)e

iθ(t)dt = 0

and
eiθ(·)


W 1,1 ≤ 5πn + 1.

Proof. The calculation of the bound follows from a careful selection of φ in the preceding proof.
The Hobby–Rice Theorem applied to the n real parts and n imaginary parts of fk ILδ implies that
there exists φ#

: R → {0, π} with at most 2n discontinuities such that for each k
fk(t)ILδe

iφ#(t)dt = 0.

Since this equation still holds if φ# is replaced with π − φ#, choose such φ# that is non-zero on
at most n points at the boundary of Lδ . Thus φ# ILδ has at most 3n discontinuities. Choose η > 0
so that by selecting

φ =


φ# ILδ+η


∗ ψη
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then

r⃗η :=


Lδ

fk(t)e
iφ(t)dt


k=1...n

∈
δ

2
M

Dn .

Note that φ vanishes together with all its derivatives at all t j ± δ. Also note that φ# ILδ+η

has no more discontinuities than φ# ILδ , which is at most 3n. Thus there exist m ≤ 3n and
0 < y1 < · · · < ym < 1 such that φ# ILδ+η (t) or π − φ# ILδ+η (t) for all t ∈ [0, 1] \ {y1, . . . , ym}

is equal to π
m

j=1 (−1) j+1 I[y j ,∞)(t). Consequently,
Lδ

θ∗

z⃗

′
(t)
 dt =


Lδ

φ′(t)
 dt

=

 1

0

φ′(t)
 dt

=

 1

0

φ# ILδ+η ∗ ψη

′

(t)

 dt

≤ π

m
j=1

 1

0


I[y j ,∞) ∗ ψη

′

(t)dt

≤ 3πn.

Recall that θδ,z is an increasing function with θδ,z (−1) = 0 and θδ,z(1) = 2π for all z ∈ D.

Thus
 t j +δ

t j −δ

θ∗

z⃗

′

(t)

 = 2π for 1 ≤ j ≤ n and so
 1

0

θ∗

z⃗

′

(t)

 dt ≤ 5πn. Consequently,eiθ∗

z⃗ (·)
 ◦

W
1,1 ≤ 5πn and

eiθ∗

z⃗ (·)


W 1,1
≤ 5πn + 1. Since maxt∈[0,1]

θ∗

z⃗ (t)
 ≤ (2n + 1) π , it

follows that
θ∗

z⃗ (·)


W 1,1

≤ (7n + 1) π . �

Clearly, if f1, . . . , fn are real valued, they may be combined into
 n

2


complex valued func-

tions and the bounds reduce accordingly.
For p > 1 the situation is different.

Definition 5. Let

A( f ) =


θ ∈ C∞ ([0, 1] ; R) :

 1

0
f (t)eiθ(t)dt = 0


.

Definition 6. Let

ρ( f ) = inf

 1

0

θ ′(t)
p dt : θ ∈ A( f )


.

Definition 7. Let

(Υn f ) (t) =


f

2n t


if 0 ≤ t ≤ 2−n

0 otherwise.

Theorem 8. Assume N is a norm for which there exists f ∈ L1 ([0, 1] ; C) such that 0 <

∥Υn f (·)∥N < ∞ for all n ≥ 1 and ρ( f ) > 0.
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Then, given any l, K ∈ R+, there exists g ∈ L1 ([0, 1] ; C) such that ∥g (·)∥N = l and
ρ(g) > K .

Proof. Choose ϵ > 0 and θ ∈ A (Υn f ) such that
 1

0

θ ′(t)
p dt < ρ (Υn f ) + ϵ. Then

(Υ−nθ) |[0,1] ∈ A( f ), and so

ρ (Υn f )+ ϵ >

 1

0

θ ′(t)
p dt

≥

 2−n

0

θ ′(t)
p dt

= 2−n
 1

0

θ ′

2−n t

p
dt

= 2n(p−1)
 1

0

θ 2−n t
′p

dt

≥ 2n(p−1)ρ( f )

proving ρ (Υn f ) ≥ 2n(p−1)ρ( f ).
Also, since A(g) = A(cg) for all c ≠ 0 then

2n(p−1)ρ( f ) ≤ ρ (Υn f ) = ρ

lΥn f/ ∥(Υn f ) (·)∥N


.

Consequently, if n is large enough so that 2n(p−1)ρ( f ) > K then g := lΥn f/ ∥(Υn f ) (·)∥N has
the property that ρ(g) > K and ∥g (·)∥N = l. �

The W 1,p norms of fk(t)eiθ(t) fare no better, since if f1(t) = 1, then
 f1 (·) eiθ(·)


W 1,p =eiθ(·)


W 1,p ≥ (maxk ρ ( fk))

1
p .

Lemmas

We include the lemmas that were used above, some or all of which may be familiar to the
reader.

Lemma 9 (Infinite Gaussian Elimination). If f1, . . . , fn ∈ L1 ([0, 1] ; C) are linearly indepen-
dent in L1, then there exist t1, . . . , tn ∈ (0, 1) so that

M :=

 f1 (t1) · · · f1 (tn)
...

. . .
...

fn (t1) · · · fn (tn)


is invertible and t j is a Lebesgue point of fk for each j, k ∈ 1 . . . n.

Proof. Let P be the set of points in (0, 1) that are Lebesgue points for all fk .
The case n = 1 is clear. If n > 1, let us assume inductively that there are t1, . . . , tn−1 ∈ P

such that M ′
:=


fk

t j

(n−1)×(n−1) is invertible. Thus there exist β1, . . . , βn−1 ∈ C such that

β1 . . . βn−1


M ′
=


fn (t1) . . . fn (tn−1)

.

Furthermore, since f1, . . . , fn are linearly independent in L1, there exists tn ∈ P such that

yn := fn (tn)− β1 f1 (tn)− · · · − βn−1 fn−1 (tn) ≠ 0.

Thus M :=


fk

t j


n×n has a non-zero determinant, namely yn det M ′. �
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Lemma 10. If t0 ∈ (0, 1) is a Lebesgue point of f ∈ L1 ([0, 1] ; C), then, uniformly in z ∈ D,

lim
h→0+

 1

−1
f (th + t0) · θh,z(t)dt = f (x) · z.

Proof. Given ϵ > 0, let δ1 < ϵ/20π (| f (t0)| + 1). If 0 < h < δ1, then, since θz(t) is a step
function, for all values of t ∈ (2h − 1, 1 − 2h) that are not within distance h of a discontinuity
of θz, θh,z(t) = θz(t). Since there are at most three discontinuities of θz in (2h − 1, 1 − 2h) and
θh,z(t), θz(t) ∈ [0, 2π ],

2π · 6h ≥

 1−2h

2h−1

θh,z(t)− θz(t)
 dt

and so 1

−1

eiθh,z(t) − eiθz(t)
 dt ≤

 1

−1

θh,z(t)− θz(t)
 dt

≤ 2π · (6 + 4) h

< ϵ/ (| f (t0)| + 1) .

Choose δ2 > 0 so that if 0 < h < δ2 then 1

−1
| f (th + t0)− f (t0)| dt < ϵ/2

and let δ = min {δ1, δ2}. Then
 1

−1
f (th + t0) · eiθh,z(t)dt −

= f (t0)·z   1

−1
f (t0) · eiθz(t)dt


≤


 1

−1
( f (th + t0)− f (t0)) eiθh,z(t)dt

+

 1

−1
f (t0)


eiθh,z(t) − eiθz(t)


dt


≤

 1

−1
| f (th + t0)− f (t0)| dt + | f (t0)|

 1

−1

eiθh,z(t) − eiθz(t)
 dt

< ϵ. �

Lemma 11. If f ∈ L1 ([0, 1] ; C), t0 ∈ (0, 1), and 0 < h < min {t0, 1 − t0}, then

q(z) :=

 1

−1
f (th + t0) eiθh,z(t)dt

is a continuous function of z ∈ D.

Proof. Since θ#
h,z is a step function whose intervals of constancy vary continuously with z, for

ϵ > 0, there exists δ > 0 such that if |z1 − z2| < δ then 1

−1

θ#
h,z1

(t)− θ#
h,z2

(t)
 dt < ϵ/


∥ f ∥L1 + 1


h ∥ψ(t)∥L∞ .
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Then eθh,z1 (t) − eθh,z2 (t)


L∞
≤
θh,z1(t)− θh,z2(t)


L∞

< ϵ/

∥ f ∥L1 + 1


and so

|q (z1)− q (z2)| ≤

 1

−1

 f (th + t0)


eiθh,z1 (t) − eiθh,z2 (t)
 dt

< ϵ. �
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