On the Lazarev-Lieb extension of the Hobby-Rice theorem

Vermont Rutherfoord

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
Received 2 February 2013; accepted 28 April 2013
Available online 31 May 2013
Communicated by C. Fefferman

Abstract

O. Lazarev and E.H. Lieb proved that, given $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$, there exists a smooth function Φ that takes values on the unit circle and annihilates span $\left\{f_{1}, \ldots, f_{n}\right\}$. We give an alternative proof of that fact that also shows the $W^{1,1}$ norm of Φ can be bounded by $5 \pi n+1$. Answering a question raised by Lazarev and Lieb, we show that if $p>1$ then there is no bound for the $W^{1, p}$ norm of any such multiplier in terms of the norms of f_{1}, \ldots, f_{n}. © 2013 Elsevier Inc. All rights reserved.

MSC: primary 81 V 70
Keywords: Hobby-Rice theorem; Density functional theory

The Hobby-Rice Theorem [1] states
Theorem 1. If $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{R})$ then there exists $\Phi:[0,1] \rightarrow\{-1,1\}$ with at most n discontinuities such that for each k

$$
\int_{0}^{1} f_{k}(t) \Phi(t) d t=0 .
$$

The theorem has applications in L^{1} approximation and in combinatorics, particularly necklace splitting problems [3]. An elegant proof of the Hobby-Rice Theorem was given by Pinkus [4] using the Borsuk-Ulam Theorem.

[^0]Motivated by a problem in mathematical physics, Lazarev and Lieb [2] extended this result to obtain a smooth annihilator taking values on the unit circle, i.e.,

Theorem 2. If $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$ then there exists $\theta \in C^{\infty}([0,1] ; \mathbb{R})$ such that

$$
\begin{equation*}
\forall k, \quad \int_{0}^{1} f_{k}(t) e^{i \theta(t)} d t=0 \tag{0.1}
\end{equation*}
$$

Lazarev and Lieb suggested that there should be a simpler proof, and in this spirit, we offer the following proof. They also raised the question of calculating the $H^{1}=W^{1,2}$ norm of $f_{k} e^{i \theta}$. Corollary 4 shows there is such θ with $\left\|e^{i \theta(\cdot)}\right\|_{W^{1,1}} \leq 5 \pi n+1$. We also show that for $p>1$ there exists a large class of normed spaces $\mathcal{N}=\left\{\left(N,\|\cdot\|_{N}\right)\right\}$ including L^{1} so that $\left\|e^{i \theta(\cdot)}\right\|_{W^{1, p}}$ cannot be bounded by $\left\|f_{1}\right\|_{N}, \ldots,\left\|f_{n}\right\|_{N}$.
Proof of Theorem 2. We may assume f_{1}, \ldots, f_{n} are linearly independent in L^{1} and thus choose $0=t_{0}<t_{1}<\cdots<t_{n}<t_{n+1}=1$ so that

$$
M:=\left[\begin{array}{ccc}
f_{1}\left(t_{1}\right) & \cdots & f_{1}\left(t_{n}\right) \\
\vdots & \ddots & \vdots \\
f_{n}\left(t_{1}\right) & \cdots & f_{n}\left(t_{n}\right)
\end{array}\right]
$$

is invertible and each t_{j} is a Lebesgue point of all f_{k} (Lemma 9).
For each $u, v \in[-1,1]$, let $\theta_{u+i v}:[-1,1] \rightarrow \mathbb{R}$ be a step function that consecutively takes the values $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$ on intervals of lengths $\frac{1+u}{2}, \frac{1+v}{2}, \frac{1-u}{2}, \frac{1-v}{2}$, respectively. Thus $\int_{-1}^{1} e^{i \theta_{u+i v}(t)} d t=u+i v$.

Choose $\psi \in C^{\infty}\left(\mathbb{R} ; \mathbb{R}^{+}\right)$supported on $[-1,1]$ such that $\int \psi(t) d t=1$. Let $\psi_{h}(t)=$ $\psi(t / h) / h$.

Also let I_{S} be the indicator function of S. Define $\theta_{h, z}^{\#}=\theta_{z} I_{(h-1,1-h)}+2 \pi I_{[1-h, \infty)}$ and

$$
\theta_{h, z}= \begin{cases}\theta_{z} & \text { if } h=0 \\ \psi_{h} * \theta_{h, z}^{\#} & \text { if } 0<h<1\end{cases}
$$

Note that if $h>0$ then $\theta_{h, z}(-1)=0$ and $\theta_{h, z}(1)=2 \pi$, while $\theta_{h, z}^{(m)}(\pm 1)=0$ for all $m \geq 1$.
Define $D=\{z \in \mathbb{C}:|z| \leq 1\}, d=\min _{j \in\{0 \ldots n\}}\left(t_{j+1}-t_{j}\right) / 2$, and $Q:[0, d] \times D^{n} \rightarrow \mathbb{C}^{n}$:

$$
Q(h ; \vec{z})= \begin{cases}\left(\sum_{j=1}^{n} z_{j} \cdot f_{k}\left(t_{j}\right)\right)_{k=1 \ldots n} & \text { if } h=0 \\ \left(\sum_{j=1}^{n} \int_{-1}^{1} f_{k}\left(t h+t_{j}\right) e^{i \theta_{h, z_{j}}(t)} d t\right)_{k=1 \ldots n} & \text { if } 0<h \leq d\end{cases}
$$

with $\vec{z}:=\left(z_{1}, \ldots, z_{n}\right)$. Since $Q(0 ; \vec{z})=M(\vec{z})$, Lemma 10 shows there is $\delta \in(0, d]$ such that for all $\vec{z} \in D^{n}$

$$
\vec{z}-M^{-1}(Q(\delta ; \vec{z})) \in \frac{1}{2} D^{n}
$$

Let $L_{\delta}=[0,1] \backslash \bigcup_{j=1}^{n}\left(t_{j}-\delta, t_{j}+\delta\right)$. By applying the Hobby-Rice Theorem ${ }^{1}$ to $f_{1} I_{L_{\delta}}$, $\ldots, f_{n} I_{L_{\delta}}$ and smoothing a finite set of discontinuities, we obtain $\phi \in C^{\infty}([0,1] ; \mathbb{R})$ supported

[^1]on L_{δ} so that
$$
\vec{r}:=\left(\int_{L_{\delta}} f_{k}(t) e^{i \phi(t)} d t\right)_{k=1 \ldots n} \in \frac{\delta}{2} M\left(D^{n}\right)
$$

Since ϕ vanishes together with all its derivatives at all $t_{j} \pm \delta$, for all $\vec{z} \in D^{n}$

$$
\theta_{\vec{z}}^{*}(t)= \begin{cases}\theta_{\delta, z_{j}}\left(\left(t-t_{j}\right) / \delta\right)+2 \pi(j-1) & \text { if } t \in\left[t_{j}-\delta, t_{j}+\delta\right] \text { and } 1 \leq j \leq n \\ \phi(t) & \text { if } t \in\left[0, t_{1}-\delta\right) \\ \phi(t)+2 \pi j & \text { if } t \in\left(t_{j}+\delta, t_{j+1}-\delta\right) \\ & \text { and } 1 \leq j \leq n-1 \\ \phi(t)+2 \pi n & \text { if } t \in\left(t_{n}+\delta, 1\right]\end{cases}
$$

is in $C^{\infty}([0,1] ; \mathbb{R})$. Lemma 11 establishes the continuity of

$$
T(\vec{z}):=\left(\int_{0}^{1} f_{k}(t) e^{i \theta_{\vec{z}}^{*}(t)} d t\right)_{k=1 \ldots n}=\delta Q(\delta ; \vec{z})+\vec{r}
$$

Since $\vec{z}-M^{-1}(Q(\delta ; \vec{z}))$ and $\frac{1}{\delta} M^{-1}(\vec{r})$ are in $\frac{1}{2} D^{n}$ for all $\vec{z} \in D^{n}$, then $\vec{z}-\frac{1}{\delta} M^{-1}(T(\vec{z})) \in$ D^{n}. By Brouwer's Fixed Point Theorem, there exists $\overrightarrow{z_{0}} \in D^{n}$ such that $\overrightarrow{z_{0}}-\frac{1}{\delta} M^{-1}\left(T\left(\overrightarrow{z_{0}}\right)\right)=\overrightarrow{z_{0}}$, that is to say $T\left(\overrightarrow{z_{0}}\right)=0$.

Definition 3. Let

$$
\begin{aligned}
& \|g(\cdot)\|_{W^{1, p}}=\left(\int_{0}^{1}|g(t)|^{p} d t+\int_{0}^{1}\left|g^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}} \\
& \text { and }\|g(\cdot)\|_{W^{1}, p}=\left(\int_{0}^{1}\left|g^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}
\end{aligned}
$$

Corollary 4. If $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$ then there exists $\theta \in C^{\infty}([0,1] ; \mathbb{R})$ such that for each k

$$
\begin{gathered}
\int_{0}^{1} f_{k}(t) e^{i \theta(t)} d t=0 \\
\text { and }\left\|e^{i \theta(\cdot)}\right\|_{W^{1,1}} \leq 5 \pi n+1 .
\end{gathered}
$$

Proof. The calculation of the bound follows from a careful selection of ϕ in the preceding proof. The Hobby-Rice Theorem applied to the n real parts and n imaginary parts of $f_{k} I_{L_{\delta}}$ implies that there exists $\phi^{\#}: \mathbb{R} \rightarrow\{0, \pi\}$ with at most $2 n$ discontinuities such that for each k

$$
\int f_{k}(t) I_{L_{\delta}} e^{i \phi^{\#}(t)} d t=0
$$

Since this equation still holds if $\phi^{\#}$ is replaced with $\pi-\phi^{\#}$, choose such $\phi^{\#}$ that is non-zero on at most n points at the boundary of L_{δ}. Thus $\phi^{\#} I_{L_{\delta}}$ has at most $3 n$ discontinuities. Choose $\eta>0$ so that by selecting

$$
\phi=\left(\phi^{\#} I_{L_{\delta+\eta}}\right) * \psi_{\eta}
$$

then

$$
\overrightarrow{r_{\eta}}:=\left[\int_{L_{\delta}} f_{k}(t) e^{i \phi(t)} d t\right]_{k=1 \ldots n} \in \frac{\delta}{2} M\left(D^{n}\right) .
$$

Note that ϕ vanishes together with all its derivatives at all $t_{j} \pm \delta$. Also note that $\phi^{\#} I_{L_{\delta+\eta}}$ has no more discontinuities than $\phi^{\#} I_{L_{\delta}}$, which is at most $3 n$. Thus there exist $m \leq 3 n$ and $0<y_{1}<\cdots<y_{m}<1$ such that $\phi^{\#} I_{L_{\delta+\eta}}(t)$ or $\pi-\phi^{\#} I_{L_{\delta+\eta}}(t)$ for all $t \in[0,1] \backslash\left\{y_{1}, \ldots, y_{m}\right\}$ is equal to $\pi \sum_{j=1}^{m}(-1)^{j+1} I_{\left[y_{j}, \infty\right)}(t)$. Consequently,

$$
\begin{aligned}
& \int_{L_{\delta}} \mid\left(\theta_{\underset{z}{*})^{\prime}(t) \mid d t}=\int_{L_{\delta}}\left|\phi^{\prime}(t)\right| d t\right. \\
&=\int_{0}^{1}\left|\phi^{\prime}(t)\right| d t \\
&=\int_{0}^{1}\left|\left(\phi^{\#} I_{L_{\delta+\eta}} * \psi_{\eta}\right)^{\prime}(t)\right| d t \\
& \leq \pi \sum_{j=1}^{m} \int_{0}^{1}\left(I_{\left[y_{j}, \infty\right)} * \psi_{\eta}\right)^{\prime}(t) d t \\
& \leq 3 \pi n .
\end{aligned}
$$

Recall that $\theta_{\delta, z}$ is an increasing function with $\theta_{\delta, z}(-1)=0$ and $\theta_{\delta, z}(1)=2 \pi$ for all $z \in D$. Thus $\int_{t_{j}-\delta}^{t_{j}+\delta}\left|\left(\theta_{\vec{z}}^{*}\right)^{\prime}(t)\right|=2 \pi$ for $1 \leq j \leq n$ and so $\int_{0}^{1}\left|\left(\theta_{\vec{z}}^{*}\right)^{\prime}(t)\right| d t \leq 5 \pi n$. Consequently, $\left\|e^{i \theta_{z}^{*}(\cdot)}\right\|_{W^{1,1}} \leq 5 \pi n$ and $\left\|e^{i \theta_{\underset{z}{*}}^{*}(\cdot)}\right\|_{W^{1,1}} \leq 5 \pi n+1$. Since $\max _{t \in[0,1]}\left|\theta_{\underset{z}{*}}(t)\right| \leq(2 n+1) \pi$, it follows that $\left\|\theta_{\vec{z}}^{*}(\cdot)\right\|_{W^{1,1}} \leq(7 n+1) \pi$.

Clearly, if f_{1}, \ldots, f_{n} are real valued, they may be combined into $\left\lceil\frac{n}{2}\right\rceil$ complex valued functions and the bounds reduce accordingly.

For $p>1$ the situation is different.
Definition 5. Let

$$
A(f)=\left\{\theta \in C^{\infty}([0,1] ; \mathbb{R}): \int_{0}^{1} f(t) e^{i \theta(t)} d t=0\right\}
$$

Definition 6. Let

$$
\rho(f)=\inf \left\{\int_{0}^{1}\left|\theta^{\prime}(t)\right|^{p} d t: \theta \in A(f)\right\} .
$$

Definition 7. Let

$$
\left(\Upsilon_{n} f\right)(t)= \begin{cases}f\left(2^{n} t\right) & \text { if } 0 \leq t \leq 2^{-n} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 8. Assume N is a norm for which there exists $f \in L^{1}([0,1] ; \mathbb{C})$ such that $0<$ $\left\|\Upsilon_{n} f(\cdot)\right\|_{N}<\infty$ for all $n \geq 1$ and $\rho(f)>0$.

Then, given any $l, K \in \mathbb{R}^{+}$, there exists $g \in L^{1}([0,1] ; \mathbb{C})$ such that $\|g(\cdot)\|_{N}=l$ and $\rho(g)>K$.
Proof. Choose $\epsilon>0$ and $\theta \in A\left(\Upsilon_{n} f\right)$ such that $\int_{0}^{1}\left|\theta^{\prime}(t)\right|^{p} d t<\rho\left(\Upsilon_{n} f\right)+\epsilon$. Then $\left.\left(\Upsilon_{-n} \theta\right)\right|_{[0,1]} \in A(f)$, and so

$$
\begin{aligned}
\rho\left(\Upsilon_{n} f\right)+\epsilon & >\int_{0}^{1}\left|\theta^{\prime}(t)\right|^{p} d t \\
& \geq \int_{0}^{2^{-n}}\left|\theta^{\prime}(t)\right|^{p} d t \\
& =2^{-n} \int_{0}^{1}\left|\theta^{\prime}\left(2^{-n} t\right)\right|^{p} d t \\
& =2^{n(p-1)} \int_{0}^{1}\left|\left(\theta\left(2^{-n} t\right)\right)^{\prime}\right|^{p} d t \\
& \geq 2^{n(p-1)} \rho(f)
\end{aligned}
$$

proving $\rho\left(\Upsilon_{n} f\right) \geq 2^{n(p-1)} \rho(f)$.
Also, since $A(g)=A(c g)$ for all $c \neq 0$ then

$$
2^{n(p-1)} \rho(f) \leq \rho\left(\Upsilon_{n} f\right)=\rho\left(l \Upsilon_{n} f /\left\|\left(\Upsilon_{n} f\right)(\cdot)\right\|_{N}\right)
$$

Consequently, if n is large enough so that $2^{n(p-1)} \rho(f)>K$ then $g:=l \Upsilon_{n} f /\left\|\left(\Upsilon_{n} f\right)(\cdot)\right\|_{N}$ has the property that $\rho(g)>K$ and $\|g(\cdot)\|_{N}=l$.

The $W^{1, p}$ norms of $f_{k}(t) e^{i \theta(t)}$ fare no better, since if $f_{1}(t)=1$, then $\left\|f_{1}(\cdot) e^{i \theta(\cdot)}\right\|_{W^{1, p}}=$ $\left\|e^{i \theta(\cdot)}\right\|_{W^{1, p}} \geq\left(\max _{k} \rho\left(f_{k}\right)\right)^{\frac{1}{p}}$.

Lemmas

We include the lemmas that were used above, some or all of which may be familiar to the reader.

Lemma 9 (Infinite Gaussian Elimination). If $f_{1}, \ldots, f_{n} \in L^{1}([0,1] ; \mathbb{C})$ are linearly independent in L^{1}, then there exist $t_{1}, \ldots, t_{n} \in(0,1)$ so that

$$
M:=\left[\begin{array}{ccc}
f_{1}\left(t_{1}\right) & \cdots & f_{1}\left(t_{n}\right) \\
\vdots & \ddots & \vdots \\
f_{n}\left(t_{1}\right) & \cdots & f_{n}\left(t_{n}\right)
\end{array}\right]
$$

is invertible and t_{j} is a Lebesgue point of f_{k} for each $j, k \in 1 \ldots n$.
Proof. Let P be the set of points in $(0,1)$ that are Lebesgue points for all f_{k}.
The case $n=1$ is clear. If $n>1$, let us assume inductively that there are $t_{1}, \ldots, t_{n-1} \in P$ such that $M^{\prime}:=\left[f_{k}\left(t_{j}\right)\right]_{(n-1) \times(n-1)}$ is invertible. Thus there exist $\beta_{1}, \ldots, \beta_{n-1} \in \mathbb{C}$ such that

$$
\left[\beta_{1} \ldots \beta_{n-1}\right] M^{\prime}=\left[f_{n}\left(t_{1}\right) \ldots f_{n}\left(t_{n-1}\right)\right] .
$$

Furthermore, since f_{1}, \ldots, f_{n} are linearly independent in L^{1}, there exists $t_{n} \in P$ such that

$$
y_{n}:=f_{n}\left(t_{n}\right)-\beta_{1} f_{1}\left(t_{n}\right)-\cdots-\beta_{n-1} f_{n-1}\left(t_{n}\right) \neq 0 .
$$

Thus $M:=\left[f_{k}\left(t_{j}\right)\right]_{n \times n}$ has a non-zero determinant, namely $y_{n} \operatorname{det} M^{\prime}$.

Lemma 10. If $t_{0} \in(0,1)$ is a Lebesgue point of $f \in L^{1}([0,1] ; \mathbb{C})$, then, uniformly in $z \in D$,

$$
\lim _{h \rightarrow 0^{+}} \int_{-1}^{1} f\left(t h+t_{0}\right) \cdot \theta_{h, z}(t) d t=f(x) \cdot z
$$

Proof. Given $\epsilon>0$, let $\delta_{1}<\epsilon / 20 \pi\left(\left|f\left(t_{0}\right)\right|+1\right)$. If $0<h<\delta_{1}$, then, since $\theta_{z}(t)$ is a step function, for all values of $t \in(2 h-1,1-2 h)$ that are not within distance h of a discontinuity of $\theta_{z}, \theta_{h, z}(t)=\theta_{z}(t)$. Since there are at most three discontinuities of θ_{z} in $(2 h-1,1-2 h)$ and $\theta_{h, z}(t), \theta_{z}(t) \in[0,2 \pi]$,

$$
2 \pi \cdot 6 h \geq \int_{2 h-1}^{1-2 h}\left|\theta_{h, z}(t)-\theta_{z}(t)\right| d t
$$

and so

$$
\begin{aligned}
\int_{-1}^{1}\left|e^{i \theta_{h, z}(t)}-e^{i \theta_{z}(t)}\right| d t & \leq \int_{-1}^{1}\left|\theta_{h, z}(t)-\theta_{z}(t)\right| d t \\
& \leq 2 \pi \cdot(6+4) h \\
& <\epsilon /\left(\left|f\left(t_{0}\right)\right|+1\right)
\end{aligned}
$$

Choose $\delta_{2}>0$ so that if $0<h<\delta_{2}$ then

$$
\int_{-1}^{1}\left|f\left(t h+t_{0}\right)-f\left(t_{0}\right)\right| d t<\epsilon / 2
$$

and let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then

$$
\begin{aligned}
& |\int_{-1}^{1} f\left(t h+t_{0}\right) \cdot e^{i \theta_{h, z}(t)} d t-\overbrace{\int_{-1}^{1} f\left(t_{0}\right) \cdot e^{i \theta_{z}(t)} d t}^{=f\left(t_{0}\right) \cdot z}| \\
& \quad \leq\left|\int_{-1}^{1}\left(f\left(t h+t_{0}\right)-f\left(t_{0}\right)\right) e^{i \theta_{h, z}(t)} d t\right|+\left|\int_{-1}^{1} f\left(t_{0}\right)\left(e^{i \theta_{h, z}(t)}-e^{i \theta_{z}(t)}\right) d t\right| \\
& \quad \leq \int_{-1}^{1}\left|f\left(t h+t_{0}\right)-f\left(t_{0}\right)\right| d t+\left|f\left(t_{0}\right)\right| \int_{-1}^{1}\left|e^{i \theta_{h, z}(t)}-e^{i \theta_{z}(t)}\right| d t \\
& \quad<\epsilon .
\end{aligned}
$$

Lemma 11. If $f \in L^{1}([0,1] ; \mathbb{C}), t_{0} \in(0,1)$, and $0<h<\min \left\{t_{0}, 1-t_{0}\right\}$, then

$$
q(z):=\int_{-1}^{1} f\left(t h+t_{0}\right) e^{i \theta_{h, z}(t)} d t
$$

is a continuous function of $z \in D$.
Proof. Since $\theta_{h, z}^{\#}$ is a step function whose intervals of constancy vary continuously with z, for $\epsilon>0$, there exists $\delta>0$ such that if $\left|z_{1}-z_{2}\right|<\delta$ then

$$
\int_{-1}^{1}\left|\theta_{h, z_{1}}^{\#}(t)-\theta_{h, z_{2}}^{\#}(t)\right| d t<\epsilon /\left(\|f\|_{L^{1}}+1\right) h\|\psi(t)\|_{L^{\infty}}
$$

Then

$$
\begin{aligned}
\left\|e^{\theta_{h, z_{1}}(t)}-e^{\theta_{h, z_{2}}(t)}\right\|_{L^{\infty}} & \leq\left\|\theta_{h, z_{1}}(t)-\theta_{h, z_{2}}(t)\right\|_{L^{\infty}} \\
& <\epsilon /\left(\|f\|_{L^{1}}+1\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|q\left(z_{1}\right)-q\left(z_{2}\right)\right| & \leq \int_{-1}^{1}\left|f\left(t h+t_{0}\right)\left(e^{i \theta_{h, z_{1}}(t)}-e^{i \theta_{h, z_{2}}(t)}\right)\right| d t \\
& <\epsilon
\end{aligned}
$$

References

[1] C.R. Hobby, J.R. Rice, A moment problem in L_{1} approximation, Proc. Amer. Math. Soc. 16 (1965) 665-670. MR0178292 (31 \#2550).
[2] O. Lazarev, E.H. Lieb, A smooth, complex generalization of the Hobby-Rice theorem, Indiana Univ. Math. J. (2013). http://arxiv.org/abs/1205.5059v1 [math.FA] (in press).
[3] N. Alon, Splitting necklaces, Adv. Math. 63 (3) (1987) 247-253. http://dx.doi.org/10.1016/0001-8708(87)90055-7. MR877785 (88f:05010).
[4] A. Pinkus, A simple proof of the Hobby-Rice theorem, Proc. Amer. Math. Soc. 60 (1976) 82-84. MR0425470 (54 \#13425).

[^0]: E-mail addresses: vermont.rutherfoord@gmail.com, vruther1 @fau.edu.

 0001-8708/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.aim.2013.04.019

[^1]: ${ }^{1}$ The Riemann-Lebesgue Lemma also suffices, but the Hobby-Rice Theorem enables us to compute a bound of the $W^{1,1}$ norm in Corollary 4.

