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Abstract
0. Lazarev and E.H. Lieb proved that, given fi,..., fu € L ([0, 17; C), there exists a smooth function
& that takes values on the unit circle and annihilates span {fj, ..., f;}. We give an alternative proof of

that fact that also shows the W11 norm of @ can be bounded by Smn + 1. Answering a question raised by
Lazarev and Lieb, we show that if p > 1 then there is no bound for the W1 norm of any such multiplier
in terms of the norms of f1, ..., fu.
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The Hobby—Rice Theorem [1] states

Theorem 1. If fi, ..., fu € L' ([0, 11; R) then there exists ® : [0, 1] — {—1, 1} with at most
n discontinuities such that for each k

1
/ Fo () S(H)dt = 0.
0

The theorem has applications in L' approximation and in combinatorics, particularly necklace
splitting problems [3]. An elegant proof of the Hobby—Rice Theorem was given by Pinkus [4]
using the Borsuk—Ulam Theorem.
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Motivated by a problem in mathematical physics, Lazarev and Lieb [2] extended this result to
obtain a smooth annihilator taking values on the unit circle, i.e.,

Theorem 2. If fi,..., fu € L! ([0, 11; ©) then there exists 0 € C* ([0, 1]; R) such that
1
VK, / fee®Vdr = 0. 0.1)
0

Lazarev and Lieb suggested that there should be a simpler proof, and in this spirit, we offer
the following proof. They also raised the question of calculating the H' = W2 norm of fe'?.
Corollary 4 shows there is such 6 with [/ | wii =< Smn + 1. We also show that for p > 1
there exists a large class of normed spaces N' = {(N, ||~||N)} including L' so that ||ei0(') || wip
cannot be bounded by || filly, .-, Il fully-

Proof of Theorem 2. We may assume f1, ..., f, are linearly independent in L' and thus choose
O=1<t <- - <ty <tyy1 = 1 sothat

fim) - fi(t)
Me=|
fn ) - fn (tn)

is invertible and each ¢; is a Lebesgue point of all f; (Lemma 9).

For each u,v € [—1, 1], let 6,4y : [—1,1] — R be a step function that consecutively

takes the values O, %, T, 37” on intervals of lengths %, %, 1%“, 1%", respectively. Thus

f_ll el Ourivdt =y + jv.
Choose ¥ € C™ (R;R™) supported on [—1, 1] such that [y (1)dt = 1. Let ¥;,(1) =

Y (t/h)/h.
Also let I be the indicator function of S. Define G}f’z =0 I(n—1,1-h) + 27 I}1—h,00) and
0, — 0, ifh =0
T lynx6f, 0 <h <1

Note that if & > 0 then 6, ; (—1) = 0 and 6, - (1) = 27, while 6" (£1) = 0 for allm > 1.
Define D ={z € C: |z] < 1},d = minj¢0..n} (tj_H — tj) /2,and Q : [0,d] x D" — C":

(izj'fk (t,-)) ifh=0

- =1
Qh:=1" . _
<Z/ Sk (th + tj) eleh“’f(t)dt) if0<h<d
Jj=1 - k=1..n
with Z := (z1, ..., z,). Since Q (0;Z) = M (zZ), Lemma 10 shows there is § € (0, d] such that

forall z € D"
> -1 > 1 n
z—M (Q(&z))EED.

Let Ls = [0, 1]\ U;f:l (tj -6, + 8). By applying the Hobby—Rice Theorem! to f; Ip,,
..., falL, and smoothing a finite set of discontinuities, we obtain ¢ € C* ([0, 1]; R) supported

I The Riemann-Lebesgue Lemma also suffices, but the Hobby—Rice Theorem enables us to compute a bound of the
w1 norm in Corollary 4.
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on Lj so that
- i) S (pn
ro= fr(@®)e dt e -M (D )
Ls k=1...n

Since ¢ vanishes together with all its derivatives at all ; £ 8, for all Z € D"

0., (1 —1j) /8) +2n (j—1) ifre[tj—8.tj+68]andl <j<n

¢ (1) ift € [0,1; —§)
Gz*(t)z ¢(t) +2mj ift (tj+8,tj+1—6)
andl1 <j<n-—1
¢(t) +2mn ift € (t, + 8, 1]

isin C* ([0, 1]; R). Lemma 11 establishes the continuity of
1 -
T Q@) = / fiu)e'% Dy =80(8;3) +7.
0
k=1...n

Since 7 — M~ (Q (8:7)) and 1M~! (7) arein 1 D" forall Z € D", then? — M~ (T ) €
D". By Brouwer’s Fixed Point Theorem, there exists g € D" such that zo— %M (T (20)) = 20,
thatistosay T (zp) =0. O

Definition 3. Let

1

1 1 P
”g(')”w”’:</o |g(r)|f’dt+/0 !g/(r)|pdr>

1

1 »
and  Jlg )l o1p = (/ !g’(t)|"’dt) .
w 0

Corollary 4. If f1,..., fn € L! ([0, 17; ©) then there exists 6 € C* ([0, 1]; R) such that for
each k

1
f fe)e®Ddr =0
0

and ||ei9(') ||W1,1 <Smn+1.

Proof. The calculation of the bound follows from a careful selection of ¢ in the preceding proof.
The Hobby—Rice Theorem applied to the n real parts and n imaginary parts of f; Iy, implies that
there exists ¢# : R — {0, 7} with at most 2n discontinuities such that for each k

Since this equation still holds if ¢* is replaced with 7 — ¢*, choose such ¢* that is non-zero on

at most 7 points at the boundary of Ls. Thus ¢*1I 1.; has at most 3n discontinuities. Choose > 0
so that by selecting

6 = (6"11,.,) ¥
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then
oo i(b(t)d 8 M (D"
ry = fr()e t € - ( )
Ls k=1...n

Note that ¢ vanishes together with all its derivatives at all #; & §. Also note that o1 Lsiy

has no more discontinuities than </>#I Ls» Which is at most 3n. Thus there exist m < 3n and
0 <y < <ym<lsuchthatp*I.;, (t) ormw —¢*Ip;, (1) forallz € [0, 1]\ {y1. ..., ym}

is equal to ZTZI (—1)Jt! I[y_/,’oo) (t). Consequently,

J.

(0;)’(t)‘dt =f ¢/ (1)| dt
Ls

1
= / |9 (1)] dt
0
1 :
= [ (¢t 2 ) @
0
m 1 ,
7y /0 (Imm) *1//,,) (t)dt
j=1

3mn.

dt

IA

A

Recall that 65 ; is an increasing function with 65 ; (—1) = 0 and 65 ;(1) = 2x forall z € D.

. / !
Thus ft?j; ‘(92*) (t)' =2x for1 < j < n and so fol ‘(92*) ()| dt < 5mn. Consequently,

eing(‘) em;(‘) < Smn + 1. Since max;¢[o,1]

(01_] < 57n and 9;(;)‘ < @n+ Dy, it

w
follows that

HWH
0 (')ku <n+)r. O

Clearly, if f1, ..., fy are real valued, they may be combined into (%—| complex valued func-
tions and the bounds reduce accordingly.
For p > 1 the situation is different.

Definition 5. Let

1
A(f) = {9 e C®(0,11;:R) : / F)e'Ddr = o} .
0

Definition 6. Let

1
o(f) =inf[/ lo'@)|" dt : 6 € A(f)].
0

Definition 7. Let

(@) ifo<r<2
(Tuf) (1) = {0 otherwise.

Theorem 8. Assume N is a norm for which there exists f € L (o0, 17; C) such that 0 <
1 Vnf (Olly <ooforalln>1and p(f) > 0.
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Then, given any |, K € RY, there exists g € L' ([0, 1]; C) such that ||g Olly =1 and
p(g) > K.
Proof. Choose ¢ > 0 and 6 € A(T,f) such that fol |9’(t)|pdt < p(T,f) + €. Then
(Y-n0) l1o,11 € A(f), and so

1
p@%ﬂ+e>/|mem
0

2—n
/O lo')|" dt
1
= 2—"/ 0" (27"1)|" dt
0
1
— 2n([?—1)/(; ‘(9 (2—nt))’

20D p(f)

proving p (T, f) = 2"~V p(f).
Also, since A(g) = A(cg) for all ¢ # 0 then

2P p(f) < p(Tuf) = p (1T f/ 1T ) Olly) -

Consequently, if 7 is large enough so that 2*P=D p(f) > K then g :== [ T,, f/ | (T f) ()|l y has
the property that p(g) > K and ||[g () ||y =1. O

The W'? norms of fi(1)e’?® fare no better, since if f1(t) = 1, then | fi () €O, =

|80 1., > (maxe p (f))7.

v

P
dt

v

Lemmas

We include the lemmas that were used above, some or all of which may be familiar to the
reader.

Lemma 9 (Infinite Gaussian Elimination). If fi, ..., fu € L' ([0, 1]; C) are linearly indepen-
dent in L', then there exist t,...,t, € (0, 1) so that

fi@) - i)
M=
fn ) - fn (tn)

is invertible and t; is a Lebesgue point of fi for each j, k € 1...n.

Proof. Let P be the set of points in (0, 1) that are Lebesgue points for all f.
The case n = 1 is clear. If n > 1, let us assume inductively that there are 71, ...,t,—1 € P
such that M' = [ fx (tj)](nfl)x(nfl) is invertible. Thus there exist A1, . .., B,—1 € C such that
[Bi.. Buct | M =[fu @) ... futa=1)].

Furthermore, since fi, ..., f, are linearly independent in L', there exists t, € P such that

Yn = fuo @) — B1J1(tn) — -+ — Bu—1fn—1 (tn) # 0.
Thus M = [ Jr (t j)]nxn has a non-zero determinant, namely y, det M’. [
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Lemma 10. If 1y € (0, 1) is a Lebesgue point of f € L' ([0, 1]; C), then, uniformly in z € D,

1
lim f@h +19) - Op - ()dt = f(x) - z.
h—0t J_1

Proof. Given € > 0, let §1 < €/20m (| f (tp)| +1). If 0 < h < 1, then, since 6,(¢) is a step
function, for all values of t+ € (22 — 1, 1 — 2h) that are not within distance % of a discontinuity
of 6;, 0, ;(t) = 6.(¢). Since there are at most three discontinuities of 6, in (22 — 1,1 — 2h) and
On,2 (1), 0-(1) € [0, 27],

1-2h
21 - 6h > f |On,2(t) — 0, ()| dt

h—1
and so
1 . .
f o102 _ 4if(0)
-1

dt < /11 |On,(1) — 0.(1)] dt
<2m-(6+4h
<e€/(f ()l+1).
Choose 8, > 0 so thatif 0 < h < §; then

1
/1 |f (th +10) — f (to)| dt < €/2

and let § = min {§;, 6»}. Then
=f(to)z

1 1
/ f th+19) - & Ddr — / f (1) - %Dz
-1 -1

1 1
< / (f (th +10) = f (1)) &<Vt + / f (o) (=0 — &%)
—1 -1

00 _ 4if:0] g

1 1
< /1 \f (th+10) — f (o)l di + |f<to>|/1
<e. O

Lemmall. If f € L! ([0, 17; C), t9 € (0, 1), and 0 < h < min {1y, 1 — 1o}, then

1
q(2) :/ f(th+ 1) %=Mat
-1
is a continuous function of z € D.

Proof. Since 9# is a step function whose intervals of constancy vary continuously with z, for
€ > 0, there ex1sts 8 > 0O such that if |z; — z2| < § then

[ ot ot 0] < e/ Q1+ ) RO~
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Then
H Oy (O _ Ohzy ()

I (OB RO e

<€/ (Iflp +1)

and so

1 . .
g ) =g (@)l = / |7 @t + 1) (1 ® = 02 |
—1
<e. U
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