
Available online at www.sciencedirect.com

Advances in Mathematics 244 (2013) 663–677
www.elsevier.com/locate/aim

Operator on the space of rapidly decreasing functions
with all non-zero vectors hypercyclic

Michał Goliński
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Abstract

We construct a continuous linear operator T on the Schwartz space S(Rd ) of rapidly decreasing
functions such that each non-zero orbit of T is dense. The construction is inspired by the work of C. Read
on similar operators on the space ℓ1. The construction, due to the structure of a Fréchet space, can be made
significantly simpler than the original construction of Read.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

For a linear operator on a linear topological space T : X → X a vector x ∈ X is called
hypercyclic if {x, T x, T 2x, . . .} is dense in X ; x is called cyclic if span{x, T x, T 2x, . . .} is dense
in X . An operator T which has a hypercyclic vector is called hypercyclic.

Studying hypercyclicity started as a means for better understanding the invariant subspaces
of linear operators, but recently has gained momentum of its own, as evidenced by the recent
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publication of two books on the subject: [2,6]. It is now known that any separable infinite-
dimensional Fréchet space supports a hypercyclic operator, a result due to Ansari [1] and Bonet
and Peris [3].

By a result of Herrero [7] and Bourdon [4] any hypercyclic operator on a Fréchet space
has a dense subspace of hypercyclic vectors. An interesting problem is to find operators with
as many hypercyclic vectors as possible. In [10] Read, building on his construction of an
operator without invariant subspaces, could construct an operator with every non-zero vector
hypercyclic on any Banach space of the form ℓ1 ⊕ W , where W is a separable Banach
space. This construction seems very complicated, even though the idea behind it is quite
simple.

In this paper we will construct a continuous linear operator on the space s of rapidly
decreasing sequences such that every non-zero vector is hypercyclic. In [5] the author has
constructed an operator on s (and other nuclear Fréchet spaces) for which every vector is cyclic
(i.e. the operator has no non-trivial invariant subspaces). That construction was modelled after
the exposition of Read’s result from [9] given in [2]. The present construction is built upon the
previous one and an idea underlying [10] with notation compatible with [5]. The construction,
while still quite technical, is much simpler than that in [10]. Unfortunately it cannot be transferred
back to a Banach space setting.

We will denote the set {0, 1, . . .} by N and by N+ the set {1, 2, . . .}. By K we will denote
either the field of real or complex numbers. We define a sequence space:

s =


x = (x j )

∞

j=0 ∈ KN
: |x |N :=

∞
j=0

|x j |( j + 1)N < ∞, N = 1, 2, . . .



endowed with its natural locally convex topology. It is called the space of rapidly decreasing
sequences. One can show that s is in fact a nuclear Fréchet space (see [8, 29.4.1]).

It is known that many spaces in analysis are in fact isomorphic to s as Fréchet spaces,
including

• the Schwartz space of rapidly decreasing functions S(Rn), where

S(Rn) =


f ∈ C∞(Rn) : sup

x∈Rn


1 + |x |

2
N

| f (x)| < ∞, N = 1, 2, . . .


,

see [8, 31.14];

• the space C∞

2π (R) of periodic smooth functions (see [8, 29.5.(1)]);

• the space C∞
[0, 1]; see [8, 29.5.(4)] for a direct proof;

• the space C∞(K ) for each compact C∞-manifold K (see [12]);

• the space D(K ) of smooth functions with their support contained in a compact set K ⊂ Rn ,
when K has a nonempty interior (see [12]);

• the space of all entire Dirichlet series, i.e. the space of sequences (an) such that the
series

∞
n=1

annz1+···+zd

is convergent for any (z1, . . . , zd) ∈ Cd (see [11, 8.4.1]).
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Our main result is:

Theorem 1. There exists a continuous linear operator T : s → s such that every non-zero vector
is hypercyclic with respect to T , in other words, there are no non-trivial (closed) invariant subsets
of T .

2. Preliminaries

Throughout we will denote by c00 the space of all finite sequences — a linear subspace of KN.
The canonical basis of c00 will be denoted by (e0, e1, e2, . . .) and En = span{e0, e1, . . . , en}. For
M ⊆ N we will write πM for the canonical projection onto span{e j : j ∈ M}. For brevity we
write πm := π[0,m].

For a linear basis γ = (γ0, γ1, . . . , γn) of En and

En ∋ x =

n
i=k

xiγi , xk ≠ 0

we write valγ (x) = k. If x = 0, then we put valγ (x) = +∞. For a set K ⊆ En we define
valγ (K ) = supy∈K valγ (y).

Remark 2. Observe that if

γ = (γ0, γ1, . . . , γn)

and

µ = (γ0, γ1, . . . , γn, µn+1, . . . , µm)

are bases of En and Em respectively, then for y ∈ En

valγ (y) = valµ(y).

We will call a linear basis γ = (γ0, γ1, . . .) of c00 a perturbed canonical basis if
span{γ0, γ1, . . . , γn} = En for every n. Analogously, a linear operator T : c00 → c00 will be
called a perturbed weighted forward shift if


e0, T e0, T 2e0, . . .


is a perturbed canonical basis.

Further on, for a polynomial P ∈ K[t] we will write |P| for the sum of the modules of the
coefficients of P , obviously | · | is a norm on the space of all polynomials.

Observe that for each N ∈ N+ the sequence


j+1
j

N


j
is decreasing and converges to 1,

therefore there exists an increasing sequence (kN )N∈N+
, k1 = 3, with the property that

sup
j∈N

( j + kN + 1)N

( j + kN )N =
(kN + 1)N

k N
N

≤
3
2
, N = 1, 2, . . . . (1)

Clearly,

( j + kN )N

( j + kN+1)N+1 ≤
1

j + kN+1
<

1
2

(2)

for all j ∈ N, N ∈ N+.
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Further on, we fix

AN , j := ( j + kN )N ,

∥(x j )∥N :=

∞
j=0

|x j |AN , j .

For further reference let us restate condition (1):

AN , j+1

AN , j
≤

3
2
, N = 1, 2, . . . , j = 0, 1, . . . . (3)

One can easily check that each seminorm ∥ · ∥N is equivalent to | · |N , therefore (s, | · |N )

is isomorphic to (s, ∥ · ∥N ). Moreover, the unit balls for seminorms ∥ · ∥N form a base of
neighbourhoods of zero in s by (2).

3. The lemma

The following lemma will allow us to “extend” partially defined finite dimensional operators
to more dimensions and is a basis for an inductive procedure carried out in Section 5. It is an
almost verbatim repetition of a result one finds in the last chapter of [2], only slightly modified
to admit also weighted ℓ1 norms. In [5] a somewhat more complicated version was used, but it
turns out that this simplified one will be sufficient for us. We give a full proof for the convenience
of the reader.

Lemma 3. Assume that for some integers a,∆ > 0 there is given a perturbed canonical basisγ = (γ0, γ1, . . . , γa+∆−1) of Ea+∆−1, with γa = εea + e0 and γ0 = e0, where ε > 0. Let ∥ · ∥

be any weighted ℓ1-norm on c00 and K be any compact set with respect to the topology induced
by ∥ · ∥ satisfying

K ⊆ {y ∈ Ea+∆−1 : valγ (y) ≤ a}.

Then there is a finite family of polynomials P = {Pl}
L
l=1 satisfying deg Pl < a +∆ and a number

C such that for any y ∈ K there is a polynomial P ∈ P such that for each perturbed weighted
forward shift T : c00 → c00 with

T j e0 = γ j , if j = 1, 2, . . . , a + ∆ − 1 (4)

we have that

∥P(T )y − e0∥ ≤ 2ε∥ea∥ + C max
a+∆≤ j≤2(a+∆−1)

T j e0

 .

Proof. Let a linear map T ′
: Ea+∆−1 → Ea+∆−1 be given by:

T ′(γ j ) =


γ j+1, j < a + ∆ − 1;

0, j = a + ∆ − 1.

Take z ∈ K . It is easy to see that

γa = εea + e0 ∈ span{z, T ′z,

T ′
2 z, . . . ,


T ′
a+∆−1 z},
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particularly for every z ∈ K there is a polynomial Pz of degree smaller that a + ∆ such
that Pz(T ′)z − e0

 = ε ∥ea∥ .

Now, because of the continuity of T ′, the compactness of K assures us that there is a finite family
of polynomials P such that for every y ∈ K there exists P ∈ P such thatP(T ′)y − e0

 ≤ 2ε∥ea∥. (5)

Let y =
a+∆−1

k=0 λkγk ∈ K and P(t) =
a+∆−1

i=0 pi t i be chosen so that (5) holds. Then we
have by (4) that

P(T )y =

a+∆−1
i=0

a+∆−1
k=0

piλk T i+ke0 =

2(a+∆−1)
j=0

a+∆−1
i=0

a+∆−1
k=0

δ j,i+k piλk T j e0

P(T ′)y =

a+∆−1
j=0

a+∆−1
i=0

a+∆−1
k=0

δ j,i+k piλk T j e0,

where δi, j is the Kronecker delta. Therefore

∥P(T )y − e0∥ ≤ ∥P(T ′)y − e0∥ +


2(a+∆−1)

j=a+∆

a+∆−1
i=0

a+∆−1
k=0

δ j,i+k piλk T j e0


≤ 2ε∥ea∥ + max

a+∆≤ j≤2(a+∆−1)

T j e0

 a+∆−1
i=0

a+∆−1
k=0

|piλk |

≤ 2ε∥ea∥ + C max
a+∆≤ j≤2(a+∆−1)

T j e0

 ,

for some C that depends only on K and γ . �

4. The operator

Assume that a strictly increasing sequence (∆1, a1, c1,∆2, a2, c2, . . .) of positive integers
increases sufficiently rapidly, and let (µn) be a sequence of positive integers so that the
intervals

[a1, a1 + ∆1), [c1, c1 + a1 + ∆1), [c
2
1, c2

1 + a1 + ∆1), . . . , [c
µ1
1 , cµ1

1 + a1 + ∆1),

[a2, a2 + ∆2), [c1, c2 + a2 + ∆2), [c
2
2, c2

2 + a1 + ∆1), . . . , [c
µ2
2 , cµ2

2 + a2 + ∆2),

. . .

are pairwise disjoint—where cµn
n < an+1. Assume that for every n and 1 ≤ k ≤ µn

some polynomials P(n)
l , S(n)

w are given together with some function ρn fixing the mapping

between (l, w) and {1, 2, . . . , µn}. Assume that deg P(n)
l + deg S(n)

w < cn . Moreover, in (6)
below let α j be non-zero real numbers and let Cn be positive real numbers. Let (Nn) =

(1, 2, 1, 2, 3, 1, 2, 3, 4, . . .) be a sequence containing each positive integer infinitely many times.
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We define a sequence of finite vectors inductively by

T j e0 =


1

n2n ANn ,an

e j + T j−an e0, j ∈ [an, an + ∆n),

1
Cn ANn ,ck

n

e j + P(n)
l (T )S(n)

w (T )T j−ck
n e0, j ∈ [ck

n, ck
n + an + ∆n),

α j e j , otherwise,

(6)

where in the second case k = ρn(l, w) ∈ {1, 2, . . . µn}.
One can check that our assumptions on all the parameters imply that Eq. (6) uniquely defines a

linear operator T on the space of finite sequences. In fact after fixing values for all the parameters
in the next section, while proving Proposition 6 we will calculate how T acts on the basic vectors,
but it is not important at this point.

Regardless of the precise values of the parameters we have that

e0, T e0, T 2e0, . . .


is a

perturbed canonical basis of c00, as for any j ∈ N, T j e0 ∈ E j and the coefficient of e j in
T j e0 is always non-zero.

5. The parameters

We will describe in this section an inductive process by which we will find suitable parameters
to plug into (6). As the first step is very similar to the consecutive ones, we only indicate the
necessary adjustments/changes.

Assume that we have already defined all the parameters ∆n−1, an−1, cn−1, µn−1, Cn−1
together with corresponding numbers α j in (6). We will show how to choose suitable
∆n, an, cn, µn, Cn and the corresponding α j .

First, we put ∆n = cµn−1
n−1 + an−1 + ∆n−1 (we take ∆1 = 1).

Let ηn = 21/c
µn−1
n−1


we take η1 =

4
3


.

Let dn−1 be a number such that

ANn−1, j

ANn−1+1, j
≤ 1/2c

µn−1
n−1 for j ≥ dn−1. (7)

We can assume that dn−1 ≥ ∆n . We just skip this step if n = 1.
Take an to be any number such that the following inequalities are satisfied (skip (8) and (10)

for n = 1):

an ≥ dn−1 + cµn−1
n−1 ; (8)

an ≥ n2n+∆n A1,0; (9)

ANn ,an ≥ C2
n−12an−1+∆n−1


ANn−1,2c

µn−1
n−1

µn−1+1
; (10)

η
an−∆n−1
n

n2n ANn ,an

≥ 1. (11)

We put

α j =
η

j−∆n
n

n2n ANn ,an

for ∆n ≤ j < an . (12)
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Using the already defined parameters and definition (6), we can define a basis

γn =


e0, T e0, T 2e0, . . . , T an+∆n−1e0


of Ean+∆n−1. In terms of this basis we define a projection τn : Ean+∆n−1 → Ean+∆n−1 by

an+∆n−1
j=0

λ j T
j e0

τn
−→

an
j=0

λ j T
j e0 (13)

and a compact set

Kn =


x ∈ Ean+∆n−1 : ∥x∥1 ≤ 1 and ∥τn x∥1 ≥

1
2


. (14)

By Lemma 3, applied with γ = γn, K = Kn, ∥ · ∥ = ∥ · ∥Nn , a = an,∆ = ∆n , we get a

finite family of polynomials P (n)
=


P(n)

l

Ln

l=1
and a number Cn with the stated properties. Let

S (n)
=


S(n)
w

Wn

w=1
be a 1

2n ANn ,0
-net with respect to the norm | · | in the set of all polynomials

with degree at most n and sum of the absolute values of coefficients also at most n. We put
µn = LnWn and fix a bijection ρn between {1, . . . , Ln} × {1, . . . , Wn} and {1, . . . , µn}.

We can assume that
P(n)

l

 ≤ Cn for P(n)
l ∈ P (n) and if

y =

an+∆n−1
j=0

λ j T
j e0 ∈ Kn,

then
an+∆n−1

j=0 |λ j | ≤ Cn . We additionally require Cn ≥ 1.

Let us denote θn,1 = 21/an . We fix cn to be any number greater than 2(an +∆n +n) such that:

θ
cn−an−∆n−1
n,1

nC2
n 2an+∆n+n ANn ,2cµn

n

≥ nCn22(an+∆n)+n
; (15)

2cn−2

nC2
n 2an+∆n+n


ANn ,2cµn

n

µn
≥ nCn22(an+∆n)+n

; (16)

ANn , j

ANn+1, j
≤

1

n2C3
n 23(an+∆n)+2n ANn ,0

for j ≥ cn; (17)

ANn ,2 j

ANn+1, j
≤

1
2

for j ≥ cn; (18)

ANn , j+an+∆n

ANn , j
≤ 2 for j ≥ cn . (19)

Let us denote θn,k = 21/ck−1
n for k = 2, 3, . . . , µn . We put
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α j =
θ

j−an−∆n
n,1

nC2
n 2an+∆n+n ANn ,2cµn

n

for j ∈ [an + ∆n, cn); (20)

α j =
θ

j−ck−1
n −an−∆n

n,k

nC2
n 2an+∆n+n


ANn ,2cµn

n

k for j ∈ [ck−1
n + an + ∆n, ck

n), 2 ≤ k ≤ µn . (21)

These parameters imply the following properties of the numbers α j . The guiding principle is
that at the beginning of each contiguous interval, the numbers α j are very small and are large
towards the end of each such interval.

Corollary 4. If all the parameters are chosen as described in this section, we have that

α∆n

(12)
=

1
n2n ANn ,an

; (22)

αan−1
(11)
≥ 1; (23)

αan+∆n

(20)
=

1

nC2
n 2an+∆n+n ANn ,2cµn

n

; (24)

αck
n+an+∆n

(21)
=

1

nC2
n 2an+∆n+n


ANn ,2cµn

n

k+1 for k = 1, . . . , µn − 1; (25)

αcµn
n +an+∆n

= α∆n+1

(12), (10)
≤

1

nC2
n 2an+∆n+n


ANn ,2cµn

n

µn+1 ; (26)

αcn−1
(20), (15)

≥ nCn22(an+∆n)+n
; (27)

αck
n−1

(21)
≥

2
ck
n−ck−1

n −an−∆n−1

ck−1
n

nC2
n2an+∆n+n


ANn ,2cµn

n

µn

(16)
≥ nCn22(an+∆n)+n for k = 2, . . . , µn . (28)

In the procedure above we have used Lemma 3, in order to emphasise it and for further
reference let us write it as a corollary.

Corollary 5. If the parameters are chosen in the way specified in this section, then for each n
and each y ∈ Kn there exists a polynomial P ∈ P (n) with deg P < an + ∆n such that

∥P(T )y − e0∥Nn ≤
3

n2n .

Proof. By Lemma 3, we have that:

∥P(T )y − e0∥Nn ≤
2

n2n + Cn · max
an+∆n≤ j≤2(an+∆n−1)

T j e0


Nn

(6)
=

2
n2n + Cnα2(an+∆n−1) ANn ,2(an+∆n−1)

(20)
≤

2
n2n + 4Cnαan+∆n ANn ,2(an+∆n−1)

(24)
≤

3
n2n . �
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6. Continuity

Proposition 6. When the parameters are chosen as described in Section 5, then the operator
T : c00 → c00 given by (6) satisfies for all N

∥T x∥N ≤ 2∥x∥N .

Proof. Because the norms are weighted ℓ1 norms, we need to show this only for all the basic
vectors e j . The proof consists in checking the possible cases for j and uses induction on j in
some of the cases.

• If j = 0, then by (3)

∥T e0∥N

∥e0∥N
=

∥α1e1∥N

∥e0∥N
=

1
2AN1,a1

AN ,1

AN ,0
≤

3
4
.

• If j ∈ [∆n, an − 1) ∪ [an + ∆n, cn − 1) ∪
µn

k=2[c
k−1
n + an + ∆n, ck

n − 1) for some n, then

∥T e j∥N

∥e j∥N

(6)
=

1
α j

T j+1e0


N

∥e j∥N

(6)
=

α j+1

α j

AN , j+1

AN , j

(12), (20), (21)
≤

4
3

·
3
2

= 2.

• If j ∈ [an, an + ∆n − 1) ∪
µn

k=1[c
k
n, ck

n + an + ∆n − 1) for some n, then one can check that
(6) implies T e j = e j+1, hence

∥T e j∥N

∥e j∥N
=

AN , j+1

AN , j
≤

3
2

< 2.

• If j = an − 1 for some n, then

∥T ean−1∥N

∥ean−1∥N
=

 1
αan−1


1

n2n ANn ,an
ean + e0


N

∥ean−1∥N

=
1

αan−1


1

n2n ANn ,an

AN ,an

AN ,an−1
+

AN ,0

AN ,an−1


(23)
≤

1
2

·
3
2

+ 1 < 2.

• If j = an + ∆n − 1 for some n, then

∥T ean+∆n−1∥N

∥ean+∆n−1∥N
=

n2n ANn ,an


αan+∆n ean+∆n − α∆n e∆n


N

∥ean+∆n−1∥N

(24), (22)
=

ANn ,an

C2
n 2an+∆n ANn ,2cµn

n

AN ,an+∆n

AN ,an+∆n−1
+

AN ,∆n

AN ,an+∆n−1
≤ 2.

• If j = ck
n − 1 for some k ∈ {1, 2, . . . , µn} with k = ρn(l, w), then (6) implies that

T eck
n−1 =

1
αck

n−1


1

Cn ANn ,ck
n

eck
n
+ P(n)

l (T )S(n)
w (T )e0


.

By construction we have that deg P(n)
l < an +∆n,

P(n)
l

 ≤ Cn, deg S(n)
w ≤ n and

S(n)
w

 ≤ n.

Therefore, because an + ∆n + n < cn − 1 ≤ j , we have by induction thatP(n)
l (T )S(n)

w (T )e0


N

≤ nCn2an+∆n+n AN ,0. (29)
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Hence

∥T eck
n−1∥N

∥eck
n−1∥N

≤
1

αck
n−1


1

Cn ANn ,ck
n

AN ,ck
n

AN ,ck
n−1

+ nCn2an+∆n+n AN ,0

AN ,ck
n−1


(27), (28)

≤ 2.

• If j = ck
n + an + ∆n − 1 for some k ∈ {1, 2, . . . , µn} with k = ρn(l, w), then with a similar

reasoning to (29) we get that

∥T eck
n+an+∆n−1∥N

∥eck
n+an+∆n−1∥N

(6)
=

Cn ANn ,ck
n


T ck

n+an+∆n e0 − P(n)
l (T )S(n)

w (T )T an+∆n e0


N

∥eck
n+an+∆n−1∥N

(6)
≤ Cn ANn ,ck

n


αck

n+an+∆n

AN ,ck
n+an+∆n

AN ,ck
n+an+∆n−1

+ nCn2an+∆n+nαan+∆n

AN ,an+∆n

AN ,ck
n+an+∆n−1



≤ nC2
n 2an+∆n+n ANn ,cµn

n


3
2
αck

n+an+∆n
+ αan+∆n


(24), (25), (26)

≤ nC2
n 2an+∆n+n ANn ,cµn

n
αan+∆n


3

2ANn ,2cµn
n

+ 1


(24)
≤ 2. �

Corollary 7. When all the parameters in definition (6) are chosen as indicated in Section 5, the
operator T can be uniquely extended to a continuous operator acting on the space s. We will still
call this extension T . Moreover e0 is a cyclic vector for T .

7. Tails

Lemma 8. If all the parameters are chosen as described in Section 5, then for the linear operator
T defined by (6), for each n ∈ N+ and any x ∈ s we have for any 1 ≤ k ≤ µnT ck

n π[an+∆n ,+∞)x


Nn
≤ 3∥x∥Nn+1.

Proof. Because our norms are weighted ℓ1 norms, we need only to show thatT ck
n π[an+∆n ,+∞)e j


Nn

∥e j∥Nn+1
≤ 3

for all the basic vectors e j . It is trivially true for j < an + ∆n . We will now check all the
remaining cases for j , using Proposition 6 where necessary. Let k = ρn(l, w), we have that:

• If j ∈ [cp
n , cp

n + an + ∆n), where 1 ≤ p ≤ µn and p = ρn(l ′, w′), then ck
n + j falls into the

“otherwise” case in (6), because it is at least cmax(k,p)
n +an +∆n , but smaller than cmax(k,p)+1

n .
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Hence

T ck
n e j

(6)
= T ck

n Cn ANn ,cp
n


T j e0 − P(n)

l ′ (T )S(n)

w′ (T )T j−cp
n e0


= Cn ANn ,cp

n
T j+ck

n e0 − Cn ANn ,cp
n

P(n)

l ′ (T )S(n)

w′ (T )T j−cp
n +ck

n e0

(6)
= Cn ANn ,cp

n
α j+ck

n
e j+ck

n
−

Cn ANn ,cp
n

Cn ANn ,ck
n

P(n)

l ′ (T )S(n)

w′ (T )e j−cp
n +ck

n

− Cn ANn ,cp
n

P(n)

l ′ (T )S(n)

w′ (T )P(n)
l (T )S(n)

w (T )T j−cp
n e0.

Therefore using Proposition 6 and an estimate similar to (29), we get thatT ck
n e j


Nne j


Nn+1

≤
Cn ANn ,cp

n
α j+ck

n
ANn , j+ck

n

ANn+1,cp
n

+
ANn ,cp

n

ANn ,ck
n

nCn2an+∆n+n
ANn , j+ck

n−cp
n

ANn+1,cp
n

+ Cn ANn ,cp
n


nCn2an+∆n+n

2
2an+∆n

ANn ,0

ANn+1,cp
n

. (30)

Now we estimate the three terms. For the first one we have that

Cn ANn ,cp
n
α j+ck

n
ANn , j+ck

n

ANn+1,cp
n

(19), (21)
≤ 4Cnαmax(cp

n ,ck
n)+an+∆n

ANn ,cp
n +ck

n

(25), (26)
≤

ANn ,cp
n +ck

n

ANn ,2cµn
n

≤ 1.

As for the second term in (30), we have that

ANn , j+ck
n−cp

n

ANn ,ck
n

nCn2an+∆n+n
ANn ,cp

n

ANn+1,cp
n

(19)
≤ nCn2an+∆n+n+1

ANn ,cp
n

ANn+1,cp
n

(17)
≤ 1.

And the third term:

Cn


nCn2an+∆n+n

2
2an+∆n ANn ,0

ANn ,cp
n

ANn+1,cp
n

(17)
≤ 1.

• If j ∈ [an + ∆n, cn) ∪ [cn + an + ∆n, c2
n) ∪ · · · ∪ [ck−1

n + an + ∆n, ck
n), thenT ck

n e j


Nne j


Nn+1

(6)
=

1
α j

T ck
n+ j e0


Nne j


Nn+1

(6)
=

αck
n+ j

α j

ANn ,ck
n+ j

ANn+1, j
.

From (20), (21) and (12) it follows that αck
n+ j ≤ α2ck

n
and α j ≥ αck−1

n +an+∆n
, soT ck

n e j


Nne j


Nn+1

(21)
≤

2αck
n+an+∆n

αck−1
n +an+∆n

ANn ,2ck
n

(25), (26)
≤

2ANn ,2ck
n

ANn ,2cµn
n

≤ 2.

• If j ∈ [cp−1
n + an + ∆n, cp

n − ck
n) for some k < p ≤ µn , thenT ck

n e j


Nne j


Nn+1

(6)
=

αck
n+ j

α j

ANn ,ck
n+ j

ANn+1, j

(21)
≤ 2

ANn ,2 j

ANn+1, j

(18)
≤ 1.
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• If j ∈ [cp
n − ck

n, cp
n − ck

n + an + ∆n) for some k < p ≤ µn with p = ρn(l ′, w′), thenT ck
n e j


Nne j


Nn+1

(6)
=

1
α j

T j+ck
n e0


Nne j


Nn+1

(6)
≤

1
α j

 1
Cn ANn ,cp

n

ANn , j+ck
n

ANn+1, j
+

P(n)

l ′ (T )S(n)

w′ (T )T j+ck
n−cp

n e0


Nn

ANn+1, j


(21)
≤

2
αcp

n −1


1

Cn ANn ,cp
n

ANn ,2 j

ANn+1, j
+

nCn2an+∆n+n2an+∆n ANn ,0

ANn+1, j


(28), (18)

≤ 3.

• If j ∈ [cp
n − ck

n + an + ∆n, cp
n ) for some k < p ≤ µn , thenT ck

n e j


Nne j


Nn+1

(6)
=

α j+ck
n

α j

ANn , j+ck
n

ANn+1, j

(12), (21)
≤

4αcp
n +an+∆n

αcp
n −1

ANn ,2 j

ANn+1, j

(28), (25), (18)
≤ 2.

• If j ∈ [cµn
n + an + ∆n, dn) = [∆n+1, dn), then by (8) we are sure that j + ck

n < an+1, so we
have thatT ck

n e j


Nne j


Nn+1

(6)
=

α j+ck
n

α j

ANn , j+ck
n

ANn+1, j

(12)
≤ 2

ANn ,2 j

ANn+1, j

(18)
≤ 1.

• If j ∈ [dn, ∞), then by Proposition 6:T ck
n e j


Nne j


Nn+1

≤ 2cµn
n

ANn , j

ANn+1, j

(7)
≤ 1. �

8. Hypercyclicity

In this section we will show that for T : s → s defined by (6) every non-zero vector is
hypercyclic. To do this we will need a fact about the projections τn : Ean+∆n−1 → Ean+∆n−1
and the sets Kn defined in (13) and (14) respectively.

From Eq. (6) we get that if j ≤ an , then for suitable coefficients e j =
 j

i=0 λi T i e0, and if
j ∈ (an, an + ∆n), then

e j = n2n ANn ,an


T j e0 − T j−an e0


.

Therefore (13) implies that

τne j =


e j , 0 ≤ j ≤ an;

−n2n ANn ,an T j−an e0, an < j ≤ an + ∆n − 1.
(31)

Proposition 9. For any n the projection τn : Ean+∆n−1 → Ean+∆n−1 satisfies

∥τn x∥1 ≤ ∥x∥Nn+1 . (32)
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Proof. We need to check (32) only for the basic vectors as the norms are weighted ℓ1
norms. Because of the monotonicity of norms, in view of (31) we get the required inequality
automatically for j ≤ an and we only need to check the other case. But for j > an we get by
Proposition 6:τne j


1e j


Nn+1

=
n2n ANn ,an

T j−an e0


1

ANn+1,an

≤ n2n+∆n A1,0
ANn ,an

ANn+1,an

= n2n+∆n A1,0


an + kNn

Nn
an + kNn+1

Nn+1 ≤
n2n+∆n A1,0

an

(9)
≤ 1. �

Proposition 10. Let N ∈ N+ and take a sequence (nk) such that Nnk = N. Take x ∈ s such that
∥x∥1 = 1. Then for all but finitely many k

πank +∆nk −1x ∈ Knk .

Proof. In view of (14) we need only to show that
τnk πank +∆nk −1x


1

≥
1
2 holds for all but

finitely many k, but with the help of (31) and (32) we have that:τnk πank +∆nk −1x


1
≥

τnk πank
x


1
−

τnk π(ank ,ank +∆nk −1]x


1
≥

πank
x


1
−

π(ank ,ank +∆nk −1]x


N+1
−−−→
k→∞

1. �

Theorem 11. Let x ∈ s satisfy ∥x∥1 = 1. Then for any N and z ∈ s there exist numbers n and
k such thatT ck

n x − z


N
≤ 10.

Proof. By Corollary 7, e0 is cyclic for T , so we can find a polynomial S such that

∥S(T )e0 − z∥N ≤ 1.

Let n be any number such that

• n ≥ deg S;
• n ≥ |S|;
• Nn = N ;
• y := πan+∆n−1x ∈ Kn ;
• ∥x − y∥N+1 = ∥π[an+∆n ,∞)x∥N+1 ≤ 1.

This is possible by Proposition 10.
By definition of S (n), there is a polynomial S(n)

w ∈ S (n) with deg S(n)
w ≤ n and

S(n)
w

 ≤ n such

that S − S(n)
w

 ≤
1

n2n AN ,0
,

in particular ∥S(T )e0 − S(n)
w (T )e0∥N ≤ 1 by an argument as for (29). Now, by Corollary 5, there

is a polynomial P(n)
l ∈ P (n) such that:P(n)

l (T )y − e0


N

≤
3

n2n .
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For suitable coefficients λ j we have y =
an+∆n−1

j=0 λ j T j e0. As y ∈ Kn , we have thatan+∆n−1
j=0 |λ j | ≤ Cn .
Now, for k = ρn(l, w) we get, using Lemma 8:T ck

n x − z


N
≤

T ck
n (x − y)


N

+

T ck
n y − P(n)

l (T )S(n)
w (T )y


N

+

S(n)
w (T )(P(n)

l (T )y − e0)


N

+

S(n)
w (T )e0 − S(T )e0


N

+ ∥S(T )e0 − z∥N
≤ 3 ∥x − y∥N+1

+

an+∆n−1
j=0

λ j T
ck

n+ j e0 −

an+∆n−1
j=0

λ j P(n)
l (T )S(n)

w (T )T j e0


N

+ n2n
P(n)

l (T )y − e0


N

+ 2

(6)
≤

an+∆n−1
j=0

|λ j |

 1
Cn ANn ,ck

n

eck
n+ j


N

+ 8

≤
AN ,ck

n+an+∆n

AN ,ck
n

+ 8
(19)
≤ 10. �

Corollary 12. Every non-zero vector x ∈ s is hypercyclic for T .

Proof. Obviously we can assume that ∥x∥1 = 1, so we get the conclusion from Theorem 11
because the norms were chosen so that their unit balls constitute a basis of neighbourhoods of
zero in s. �
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Poland

References

[1] S.I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (2) (1997) 384–390.
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M. Goliński / Advances in Mathematics 244 (2013) 663–677 677

[10] C.J. Read, The invariant subspace problem for a class of Banach spaces, II, hypercyclic operators, Israel J. Math.
63 (1) (1988) 1–40.

[11] S. Rolewicz, Metric Linear Spaces, second ed., PWN—Polish Scientific Publishers, Warsaw, 1984.
[12] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis,

Holomorphy, and Approximation Theory (Rio de Janeiro, 1979), in: Lecture Notes in Pure and Appl. Math.,
vol. 83, Dekker, New York, 1983, pp. 405–443.

http://refhub.elsevier.com/S0001-8708(13)00200-4/sbref10
http://refhub.elsevier.com/S0001-8708(13)00200-4/sbref11
http://refhub.elsevier.com/S0001-8708(13)00200-4/sbref12

	Operator on the space of rapidly decreasing functions with all non-zero vectors hypercyclic
	Introduction
	Preliminaries
	The lemma
	The operator
	The parameters
	Continuity
	Tails
	Hypercyclicity
	Acknowledgments
	References


