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Abstract

The relation between the spectral decomposition of a self-adjoint operator which is realizable as a
higher order recurrence operator and matrix-valued orthogonal polynomials is investigated. A general
construction of such operators from scalar-valued orthogonal polynomials is presented. Two examples
of matrix-valued orthogonal polynomials with explicit orthogonality relations and three-term recurrence
relation are presented, which both can be considered as 2 x 2-matrix-valued analogues of subfamilies of
Askey—Wilson polynomials.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Matrix-valued orthogonal polynomials date back to the 1950s in the work of M.G. Krein; see
e.g. references in [2,3]. More recently, matrix-valued orthogonal polynomials are studied from an
analytic point of view. In particular, analogues of many classical results in the theory of ordinary
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(scalar-valued) orthogonal polynomials have been generalized to the situation of the matrix-
valued orthogonal polynomials, such as e.g. the three-term recurrence relation, the spectral
theorem (Favard), theorems of Markov, Blumenthal, etc.; see the overviews [2,3] and references
given there. Many examples of the general theory of matrix-valued orthogonal polynomials are
motivated by matrix-valued differential equations; see also [8]. Some of these examples are
motivated from the well-known families of orthogonal polynomials in the Askey scheme [14], so
the matrix-valued weight function is given by the scalar weight function times a suitable matrix-
valued function. So in this case matrix-valued analogues of classical orthogonal polynomials,
such as Jacobi, Laguerre and Hermite polynomials, are obtained. This theory so far gives matrix-
valued analogues of hypergeometric orthogonal polynomials. Very little is known about matrix-
valued analogues of g-orthogonal polynomials.

Another way of obtaining matrix-valued orthogonal polynomials is from group theory using
matrix-valued spherical functions. An important case study has been given by Griinbaum,
Pacharoni and Tirao [7], in which they obtain matrix-valued orthogonal polynomials from the
symmetric pair (SU (3), U (2)) by studying eigenfunctions to invariant matrix-valued differential
operators. Again these matrix-valued orthogonal polynomials are analogues of a subfamily of
Jacobi polynomials. In [15,16] a different approach to such a group-theoretic approach has led
to matrix-valued Chebyshev polynomials including relevant group theoretic interpretations of
the construction, the three-term recurrence relation, weight function, differential equations, etc.,
using the symmetric pair (SU(2) x SU(2), SU(2)). Again, in these cases the weight function
resembles the corresponding scalar weight function times a suitable matrix-valued function.
Again, no g-matrix-valued orthogonal polynomials have yet emerged from this approach.

In this paper, we discuss a new way to obtain matrix-valued orthogonal polynomials with an
explicit three-term recurrence relation as well as explicit orthogonality relations. In the examples
it is clear that the weight function is not of the form of a classical weight function times a
matrix-valued function. The idea is to look for the spectral decomposition of a self-adjoint
operator which can also be realized as a higher order recurrence operator. In order to motivate
the construction, we first note that if we consider an operator which can be realized as a 2N + 1-
recurrence operator, the case N = 0 corresponds to eigenfunctions. The case N = 1 is the
case of the J-matrix (or tridiagonalization) method, which is used in physics to determine the
spectrum of certain physically relevant operators; see [10,12] and references given there. In[11] a
more general method to obtain suitable tridiagonalizable operators is discussed. In this paper, we
restrict ourselves to self-adjoint operators that can be realized as 5-term recurrence operators and
for which we have an explicit spectral decomposition. We show in Theorem 2.1 how this gives
rise to 2 x 2-matrix-valued orthogonal polynomials with an explicit (matrix-valued) three-term
recurrence relation and explicit matrix-valued orthogonality relations. Because of computability
reasons we stick to the 2 x 2-case, but we expect that it is possible to extend to larger size matrices.
In Section 4, we discuss an explicit example with an easy matrix-valued three-term recurrence
relation, but an involved, but explicit, expression for the matrix-valued weight function. In
Section 3, we discuss a general set-up, which is motivated by [11], and we work out a specific
example in Section 3.2 which is related to the example in [11, Section 4]. This motivates us to
view the family of matrix-valued orthogonal polynomials discussed in the example of Section 3.2
as analogues of a subfamily of Askey—Wilson polynomials.

As is well-known, it is very hard in general to obtain explicit expressions for the orthogonality
measures or weights for orthogonal polynomials defined by a three-term recurrence relation.
The cases of associated classical orthogonal polynomials (in the Askey-scheme [14]) amply
demonstrate this point; see e.g. [13] for the case of two families of the associated Askey—Wilson
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polynomials. It is therefore remarkable that we can obtain in this setting an explicit, even
though complicated, expression for both the weight function and the three-term recurrence
relations for the 2 x 2-matrix-valued orthogonal polynomials in the examples considered in this
paper. Moreover, to our best knowledge this is the first instance of matrix-valued orthogonal
polynomials that can be considered as matrix-valued orthogonal polynomials in a yet-unknown
(possible) g-scheme of matrix-valued orthogonal polynomials; see [14] for the scalar case. Note
that we do not have explicit expressions for the 2 x 2-matrix-valued orthogonal polynomials,
and it would be of interest to obtain such expressions for these polynomials in terms of (yet to
be developed) matrix-valued basic hypergeometric series of higher type; see Tirao [19] for the
matrix-valued analogue of the classical hypergeometric function.

2. Matrix-valued orthogonal polynomials from 5-term operators

In this section, we study the relation between a self-adjoint operator realizable as 5-term
operator and corresponding 2 x 2-matrix-valued orthogonal polynomials. The three-term matrix-
valued recurrence relations for these polynomials follow from this realization of the operator,
whereas the orthogonality relations for these polynomials follow from the spectral decomposition
of the operator. The precise relation is given in Theorem 2.1.

We assume that we have an operator 7' on a Hilbert space H of functions. For T" we typically
consider a second-order difference or differential operator. We assume that 7' has the following
properties;

(a) T is (a possibly unbounded) self-adjoint operator on H (with domain D in case T is
unbounded);

(b) there exists an orthonormal basis { f,,}f;‘;o of H so that f, € D in case T is unbounded and
so that there exist sequences (a,);2 ), (bn);2 ), (cn)oey of numbers with a, > 0, ¢, € R, for
all n € N so that

T fn = anfor2 +bufur1 +cnfu+bnt fuot +an-2fn2. 2.1

In (b) we follow the convention that a_; = a_ = b_; = 0. We can relax in (2.1) to @, # 0
and replace a,_» by a,_2, and the reduction to the form (2.1) follows by changing to a new
orthonormal basis by multiplying by suitable phase factors.

Next we assume that we have a suitable spectral decomposition of 7. We assume that the
spectrum o (T') is simple or at most of multiplicity 2, and we leave it to the reader to extend to
higher order spectra. We assume that the double spectrum is contained in (% C o(T) C R, and
the simple spectrum is contained in {2y = o(T) \ % C R. Consider functions f defined on
o(T) C Rsothat flp:fy — Cand flp,: (b — C2. We let o be a Borel measure on {2y
and V p a 2 x 2-matrix-valued measure on (% as in [2, Section 1.2], so V: (% — M>(C) maps
into the positive semi-definite matrices and p is a positive Borel measure on (2. We assume V
is positive definite p-a.e. Next we consider the weighted Hilbert space L?()) of such functions
for which

f If(k)lzdd()»)+/ FEOVR) fR)dp() < 00
i (23

and we obtain L2(V) by modding out by the functions of norm zero. The inner product is given
by

(f.8) = fg FMg) do(h) + fn gEMV ) fFR)dp ().
1 2
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The final assumption is then
(c) there exists a unitary map U: H — LZ(V) sothat UT = MU, where M is the multiplication
operator by A on L2(V).

Under the assumptions (a)—(c) we link the spectral measure to an orthogonality measure for
matrix-valued orthogonal polynomials. Apply U to the 5-term expression (2.1) for T on the basis
{fu};2 0> so that

AU SR = an(U fu12)(A) + bp (U fuy1) (1)
+en(U L)) + bu—1 (U fu=1) ) + an—2(U fr—2) (A) 2.2

to be interpreted as an identity in LZ(V). Restricted to {21 (2.2) is a scalar identity, and restricted
to {2, the components of Uf (1) = (Uy f (1), Ua f (L))" satisfy (2.2).

In general, a 2N + 1-term recurrence relation can be solved using N x N-matrix-valued
orthogonal polynomials; see Durdn and Van Assche [4]. Working out the details for N = 2, we
see that we have to generate the 2 x 2-matrix-valued polynomials by

APy(A) = Ay Pap1 (W) + Bu Py (M) + Ay Pum1 (M),

n—1

azn 0 C2n boy,
A, = , B, =— 2.3
" <b2n+l azn+1> " (bzn C2n+l> @3
with initial conditions P_j(A) = 0 and Py(X) is a constant non-singular matrix, which we take

to be the identity, so Pop(1) = I. Note that A, is a non-singular matrix and B,, is a Hermitian
matrix for all n € N. Then the C2-valued functions

_{ Ufan(V) 1oy [ Utfoan) 20+ [ Uafon(X)
l”@)‘<Uﬁm4uQ’ ZQO)_(UUﬁ+MM>’ ‘@“)‘<Una+um>

satisfy (2.3) for vectors for A € (2] in the first case and for A € (2 in the last cases. Hence,
Un() = PuOOU(R), Uy ) = PaUg V), U (W) = PaOUG (L), 24)
where the first holds o-a.e. and the last two hold p-a.e. We can now state the orthogonality

relations for the matrix-valued orthogonal polynomials.

Theorem 2.1. With the assumptions (a)—(c) as given above, the 2 x 2-matrix-valued polynomials
P, generated by (2.3) and P_1()) = 0, Py(A) = [ satisfy

_/Q Py() Wi (M) Py (M)* do (2) +/ Py () Wo (1) P (W)* dp(h) = 8um 1

2
where
wﬁ@):(_gggmf UfeWUAMY
UfoMUAG)  1UfIG)
and

Wy(h) = ((Ufo()x), Ufo)vay Ufo),Uf O\))V(A)) . peae

(UHAR), UfoM))vay (Ufitk), Ufit))va
where (x, y)v) = x*V(A)y.

Theorem 2.1 can be phrased more compactly, and then the generalization to self-adjoint
operators T realizable as higher order recurrence relations can be phrased compactly as well.
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Since we stick to the situation with the assumptions (a), (b), (c), the multiplicity of 7" cannot
be higher than 2. Note that the matrices W;(A) and W,(A) are Gram matrices. In particular,
det(W1 (1)) = O for all A. So the weight matrix Wy (1) is semi-definite positive with eigenvalues
0 and tr(W; (1)) = |U fo(AM)|*> + |Uf1(M)]? > 0. Note that

Ufi(h) ) _ (rffom)L
~Ufm) ~\uamw) -

Ufo(2)

ker(Wi(A) —tr(W1 (1)) =C (Ufl (}\)) .
Moreover, det(W (1)) = 0 if and only if U fo(A) and U f1 (1) are multiples of each other.

Denoting the integral in Theorem 2.1 as (P,, Py)w, we see that all the assumptions on the
weights for matrix-valued orthogonal polynomials, as in e.g. [8, Section 2, p.453] are trivially
satisfied, except for (Q, Q)w = 0 implies Q = 0 for a matrix-valued polynomial Q. Instead of
using [8, Prop. 2.2] to conclude this, we can proceed by writing Q = > ), Cy Py for suitable
matrices Cy, since the leading coefficient of Py is non-singular by (2.3). Then by Theorem 2.1
we have (Q, Q)w = Y 1o CkCy, sothat (Q, Q)w = 0 implies C; = 0 for all k, hence Q = 0.

ker(Wy (1)) = C (

Proof. Start using the unitarity

5 (1 o) _ < (fon, fom)rt (o Fomi1)H )
"0 1 (fons1 fom)H (font1s fome1)H

— < (Uf2nv Uf2m>L2(V) <Uf2n» Uf2m+1>L2(V) ) (2 5)
(Uon—H’ Uf2m>L2(V) <Uf2n+lv Uf2m+l>L2(V) ’ '

Split each of the inner products on the right hand side of (2.5) as a sum over two integrals, one
over {21 and the other over (2. First the integral over (2| equals

fg Ufon MU fom(X) do (1) / Ufon MU fom1(X) do (1)
1

2

/;ZUonJrl()L)Ume()\)dO—O\) /QUf2n+1()\)Uf2m+l()\)dU()\)
1 1

U fonst WU fom @) U famst O P m) da(3)

_ Uon ()\) Ume ()\.) *

= /_Ql (Uf2n+1()\,)> (Uf2m+1(k)) do (M)

= Ufo)\ (U e

= /Ql Py (2) (Ufl()»)> <Uf1()»)> P,(W)*do())

= / Py(MW1 (W) Py (W) do (1), (2.6)
i

=/ (Uon()»)Ume()») Ufan MU fomt1(A)
i

where we have used (2.4). For the integral over (2, we write Uf (1) = (U1 f (1), Uz f (1)) and

V(&) = (vij ()”))1‘2, j=1> 0 that the integral over {2 can be written as

2 / ( Uj fan ()i (MU fam (L) Uj fan (M) vi; M U; fam+1 (L)
p))

tJSemAh) LT 7 Vdo(h
Uj fons1 005y 0T Fom O Ujfan(A)vij(A)Uifzw(A)) )

ij=1
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_ 22:/ < Uj fan ) )( Ui fam () >*v--()»)d,0()»)
52 S, \Uj fan100) J \Ui fom1 () Y
-y
i

Ui fo\ (Ui fo\* .
1/02 Py(2) <Ujf1()»)) (Uifl()h)) Py (X) vu()") dp(2)

= fg Py (M) W2 (1) Py (W) dp (1), 2.7
2
where we have used (2.4) again and with

2 *
_ Ujfo)\ (Ui fo)\
Wa) = 3 (Ujfl(m) (Uifl(k)) vij (%)

i,j=1

3 ) (Ujfo()»)Uifo()») U; foTi fih)
=T \UAMT RG) U AG)T: G

_ ((Ufo(k))*V(k)Ufo(?») (Ufl(?»))*V()\)Ufo(k)>
(UGN VUAM)  (UfiGN)*VULFi()

and putting (2.6) and (2.7), (2.8) into (2.5) proves the result. [

2.8)

In case we additionally assume T is bounded, so that the measures ¢ and p have compact
support, the coefficients in (2.1) and (2.3) are bounded. In this case the corresponding moment
problem is determinate, see [2, Theorem 2.11], and Theorem 2.1 gives the explicit expression for
the weight function.

Remark 2.2. Assume that 21 = o (T') or £ = (¥, so that T has simple spectrum. Then

L2(Wido) = {f:R — C?

fR F*WiQ) f(h)do(h) < oo} 2.9)
has the subspace of null-vectors

N = {f € L2(Wdo)

/Rf(?»)*WM?»)f(?») do(h) = 0}

f) =c) <_%> o—a.e.} ,

where c is a scalar-valued function. In this case L2(V) = £*(Wdo)/N. Note that U,: R —
L*(Wido) is completely determined by U fo(X), which is a restatement of 7 having simple
spectrum. From Theorem 2.1 we see that

= {f € L2(Wydo)

(Pn(v1, Pm(')UZ)LZ(WIdo) = 8um V1, v2)

so that { P, (-)e; }ie(1,2},neN 1s linearly independent in Lz(Wlda) for any basis {e1, e>} of C2.
3. A general class of examples

In [11] we have studied a general procedure to obtain self-adjoint tridiagonalizable operators,
and in this section we show how to extend this to obtain self-adjoint operators which can be
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realized as 5-term recurrence. This brings us back to the situation of Section 2, hence leading
to 2 x 2-matrix-valued orthogonal polynomials. Of course, we still need to obtain the spectral
decomposition of such operators as well. We extend [11, Section 2] in Section 3.1 and we present
an example of the construction using little g-Jacobi polynomials in Section 3.2. The analogue of
the Jacobi polynomials is rather involved, in particular the spectral decomposition, and this is
worked out in [6].

3.1. Self-adjoint penta-diagonalizable operators

Let 1 and v be positive Borel measures with finite moments on the real line R so that p is
absolutely continuous with respectto v. Letr = fl—‘: be the Radon—Nikodym derivative, so r > 0.
We assume that we have a (possibly unbounded) self-adjoint operator L on L?(u) preserving the
space of polynomials in LZ(M) and the existence of an orthonormal basis { ?, },en of LZ(M) of
polynomial eigenfunctions of L, so L®, = A, P,, A, € R. Moreover, we assume the existence

of an orthonormal basis {¢,},° , of polynomials of L?(v) such that for all n € N
=0 O+ By 1 +vu P2, o, B, v €R (3.D

(with the convention By = yp = y; = 0). We assume that the polynomials are dense in L2(/,L)
and L?(v). Finally we assume that the Radon—Nikodym derivative r is a polynomial, necessarily
at most of degree 2 by (3.1). We denote by M (r) and M (x) the multiplication operator by » and
by x. From (3.1) we find M (r) &, = ondn + Bn+10n+1 + Yn+20n+2, so that the coefficients can
also be calculated from Christoffel’s formula; see [9, Theorem 2.7.1].

Lemma 3.1. 7° = M(r) (L + p), p € R, is a symmetric five-diagonal operator on L*(v) with
respect to the orthonormal basis {¢pn}5°
T? On = anPpi2 + 5n¢n+l + Cntp + 5nfl‘l"nfl + an—2¢n—2

where

an = dpYut+2(Ay + 0), by = apfpi1(hn + 0) + Bu(An—1 + P)Vnt1,
En =y + p) + BrOnt + p) + V2 Onz + p).

Proof. This is completely analogous to [11, Section 2.1]. Indeed,

(T, dm) 2wy = (M )L + PYbn, Pn) 120y = (L + P)Pns Pm) 12()
and next apply (3.1) and @, being eigenfunctions of L. [

]

Since the orthonormal basis {¢,};2 , of L?(v) consists of polynomials, we have

Xp(x) = OpPpr1(x) + Enn(x) + Op—10n—1(x), (3.2)
for 6, &, € R, 8, # 0 for all n € N and the convention 6_; = 0.

Corollary 3.2. 7" = M(r) (L + p)+TtM(x), p, T € R, is a symmetric five-diagonal operator
on L*(v) with respect to the orthonormal basis {¢n}zozoi

Thr On = an®pi2 +bpPuy1 + cudp +bp_ 11 + an—20n—2
where b,, = l;n + t6,, ¢y = ¢, + T&,, and the notation as in Lemma 3.1.

Note that in case L is a second-order differential or difference operator, then so is 7. However,
the coefficients of 7 get more complicated and in order to carry through the programme of
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Section 2 we need to be able to calculate the spectral decomposition of 777 for suitable p, T as
well in another way.

Remark 3.3. It is clear that we can extend this to higher order recurrences. So if we assume r
to be a polynomial of degree N and the recursion (3.1) to have N + 1 terms, we end with a
2N + l-recursion for the operator in Lemma 3.1 and Corollary 3.2.

3.2. Example: case of little q-Jacobi polynomials

We work out the details of the general programme of Section 3.1 for the case of the little
g-Jacobi polynomials; cf. [11, Section 4]. Let, as usual, 0 < ¢ < 1, and we follow standard
notation for basic hypergeometric series as in [5]; see also [9,14].

The little g-Jacobi polynomials are

q—n’ abqn+1
Pn(x) = pn(x;a,b; q) =201 ( ag 14, qx (3.3)
with leading coefficient

1) (@bg" 5 q)p

1
I,(a,b) = (-1)"'q™2
(@.b)=(=1\g"= (ag; g)n

(3.4)

and for0 < a < g~ ', b < g~ ! the little g-Jacobi polynomials satisfy the orthogonality relations

> pn(@)pm(q") wila, b) = Sumhn(a. b),

k=0
(bq; Dk (aq; @)oo
b = (g ’ (3.5)
kD) = ) O (aba®: q)os
hy(a,b) = 1 —abq (q.bq; q)n aq)n

1 — abg?+1 (aq, abq; q),
normalizing hg(a, b) = 1. The little g-Jacobi polynomials satisfy

LY p.(a,b; q) = Ay pa(- a, b; q),
An =A@, b) = q¢7"(1 — ¢")(1 — abg"™")

bgx — 1 -1
(L9 7) 0 = “PE=D (g - pon + 2 <f (;—C) - f(x))

X

(3.6)

In the context of Section 3.1 we take L% (1), respectively L2(v), to be the weighted L?-space
corresponding to the case (aq, bq), respectively (a, b). Note that

wi(aq, bqg) = r(g“Ywi(a, b),  r(x) =K"'x(1—bgx),
(I —aq)(1 —bgq) (3.7
= >
(1 —abg?)(1 — abg?)
In the context of Section 3.1 we see that we can give a five-term recursion formula for the
operator T°* defined by

(TP f) (x) = %(1 — bgx)(bg®x — 1) (f(gx) — f(x))
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1
+ E(l —bgx)(x = 1) (f(x/q) — f(x))
0
X (?(1 — bgx) + r) Fx). (3.8)

In order to apply the link to 2 x 2-matrix-valued orthogonal polynomials we need to give the
spectral decomposition of 7°°% on L?(v) in another way.

Proposition 3.4. Assume q~' > b > 0. The operator T*"* for p = (1 + g/ab)(1 4+ g*></ab),
T = % (q\/ab(3 +2g + bg?) —bg(1 + aq)) is a bounded self-adjoint operator with explicit
spectral decomposition given by U: L>(v) — L?*(0) and UT = MU, where M is multiplication
by 2x/ ( fag + (1 —K)/, /aq) and o is the normalized orthogonality measure for the
continuous dual q-Hahn polynomials [14] with parameters (A, B, C) = («/qb, Jqb, q./qb),
and U is given by

S,k
. q .
U: D) — P ( 3V ab,\/qb, g\/qb | q)

using the orthonormal polynomials on the right hand side.

Remark 3.5. Recall that in [11] we can introduce an additional degree of freedom, which is
not possible in Proposition 3.4. On the other hand, considering more generally second-order
difference operators on L?(v) we can introduce an additional degree of freedom in the parameters
of the continuous dual Hahn polynomials, but then we have no longer a nice explicit expression
for the 5-term recurrence as in Section 2.

Proof. Let V: 2(N) — L2(v), ex — qu /~/wk(a, b), be the unitary operator identifying the
Hilbert space £2(N) with standard orthonormal basis {ex }xen With the weighted L2(v) space for
the little g-Jacobi polynomials. Let J#T = V*TP TV, then

—K ~
< F «/_> JP T er = arek+1 + Brex + Gk—1€k—1
& = (1 = bg* 1),/ (1 — g1 — bghtD),
- Kt
B (bqa/ (1+q)+—(1+bq) )
¢ Jaq J_ Jaq

+q° (—(p — - b%%@)
Vaq

Comparing this Jacobi operator to the three-term recurrence relation for the orthonormal
continuous dual g-Hahn polynomials with parameters (A, B, C) as in [14, Section 3.3], we see
that we need {AB, AC, BC} = {bq, bq?, bq*} to get the right expression for . Since b # 0 we
get A= B, C = ¢B, and because of symmetry we obtain (A, B, C) = (v/bq, v/bq., 4+/bq).

In order to match the value of g to the orthonormal continuous g-Hahn polynomials with
these parameters we require

Kt

1
bgJag(l +q) + ——(1+bg) — -+ =5 — A4+ B+C+ ABC,
Vaq Vvaq - Jaq

bq 23 —1
24 (p—1) - b>q> Jag = ABC(1 + ¢ 1)
Jaq
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which determines thc? ch(?ice for p and 7. Then <‘/ + — f f) J#°T has continuous
spectrum [—2, 2], which gives the statementon U. [

Now that we have determined for which values of (p, ) we have an explicit spectral
decomposition in Proposition 3.4, we have to work out the coefficients in Corollary 3.2 in this
case. We start with (3.1) in this case, or equivalently

Pn(x;a,b;q) = annpn(x;aq,bq; q) + ann—1pn—1(x; aq, bg; q)
+apn—2pn—2(x;aq, bq; q). (3.9

By comparing leading coefficients in (3.9) we obtain

(1 _ aqn—H)(l _ abqn—H)(l _ abq"”)
(1 —ag)(1 — abg®+1)(1 — abg?'+2)

(3.10)

an.n =

Using the orthogonality and (3.7) we obtain

o
n—2.nhn—2(aq.bq) =Y pa(q*: a.b: @) pn—2(g*; aq. bq: ¢)r(g")wi(a, b)
k=0
ln—2(aq, bq)
=1 hn(a,b

c(r) @b n(a, b)
using the expansion of p,_2(-; aq, bq; q)r(-) in terms of little g-Jacobi polynomials with
parameters (a, b). This gives

—bg"+? (1 —¢g"H(1 —g"H —bg)(1 — bg")

K (1 —abg?® (1 —abg3)(1 —abg?=1)(1 — abq?®")’ (3.11)

ap.n-2 =

Note that (3.11) is not clear from the general connection coefficient formula for little g-Jacobi
polynomials due to Andrews and Askey; see [5, Ex. 1.33]. The coefficient a, ,—; can be obtained
by comparing coefficients of x”~! on both sides. This gives, after a straightforward calculation,

(3.12)

ap.pn—1 =

lfn(l —q")(l —abq”“) ( 1 _aqn B 1 _aanrl )
(1—-¢g)1—aq)

1 —abg® 1 —abg?+?
Using the orthonormal version we find that in this example the coefficients in (3.1) are

_ 42" (1 — abg"*2) /(1 — abg?)(1 — abg®)(1 — abg™ )(1 — ag" 1)(1 — bg" 1)
(1 — abg?+1)(1 — abg?+2)\/(1 — abg"+t*)(1 — aq)(1 — bq)
1 V(1 —abg?)(1 — abg3)(1 — g")(1 — abg"*1)(1 — abg"+2)
(1 — v/ (1 — abg"+3)(1 — ag)(1 — bq) 3.13)

N 1 —aq" 1— aq"'H
I —abg? 1 — abg?"+2
_ —qun VA =g (1 —g") (1 —ag)(1 —ag™)(1 — bg)(1 — bqn)
akK (1 — abg?=1)(1 — abg?")

Bn = ¢q zna
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Finally, we need the three-term recurrence relation for the orthonormal little g-Jacobi
polynomials, which corresponds to (3.2) with explicit values

g Vag(l —ag" (1 — bg")(1 — g"+1)(1 — abg"+1)(1 — abg"+?)

6,

" a1- abq2"+1)(1 — abq2”+2) /1 — abq”+3 (3.14)
g =40 —aq"" )1 —abg"™)  ag" (1 —q")(1 —bq")

n

- (1— aqu”H)(l _ abq2n+2) (1— aqun)(l _ aqunH) :

We next want to use Theorem 2.1 with the spectral decomposition U given by Proposition 3.4,
so that we assume the situation of Proposition 3.4. The spectrum is simple, so that 2, = @. It
remains to calculate U¢g and U ¢;. Keeping track of normalization we have

salaq,bq, q; q)o
V(abg?; 9)oo

2 g2k pa(q; a, b; q)
x Y Pr (cost; Vab. \/qb.q\/qb | q)

2.
= @.bq7 @k

(Ugn)(cost) = (4% @)oo

where we have used the standard notation, see [14], for the continuous dual g-Hahn polynomials.

Using one of the standard generating functions, see [14, (3.3.15)], and pi(¢*;a,b;q) =

1— qk —((lliaabqq)) we find

Fo(cost) = (Ugp)(cost)

Jatag baa i ba% D (0Via)
@b 0w (@Tia),

Vabe', q/qbe' it
X 201 bg? 14, /qe

valaq,bq,q; @)oo ,, »
bq*; @)oo (3.15)
V(abg?; 4) o

(‘]\/R q)oo ( /_qbeit, q /_qbe” i —it)
29! 14, /qe
(¢ 4) be?

2 . . .
(1 — abg) (q & q)oo Vabe'', g /qbe"! 3 p-it
- - 1 q, e

(1 —agq) (e”qﬁ; q)oo 201 bq2 q,9

Fi(cost) = (Ugr)(cost) =

We summarize this situation in the following Proposition 3.6, using the explicit expression for
the orthogonality measure do of the continuous dual g-Hahn polynomials; see [14, Section 3.3].

Proposition 3.6. Define the coefficients a,, b, and c,, as in Corollary 3.2 with the explicit values
for ay, B, vn as in (3.13), A, as (3.6), 6,, &, as in (3.14) and p and T as in Proposition 3.4.
The 2 x 2-matrix-valued orthogonal polynomials generated by the three-term recurrence
relation (2.3) with initial conditions P_1(A) = 0, Py(L) = I satisfy the orthogonality relations
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T . (e:I:Zit; q)oo J
P, (cost)Wi(cost) P, (cost - - - t
/0 ) ( YWi( ) Py ( ) (\/q_beilt,«/q_beilt,CI\/q_beilt;Q)oo
_ 27 8um 1
(9.9b.9°b,q%b: )
with
| Fo(cos 1)|? Fo(cost)Fj(cost)
w 1) =
1(cost) (Fo(cos t)Fi(cost) | F1(cos t)I2

In view of [11, Section 4] we view the 2 x 2-matrix-valued polynomials of Proposition 3.6
as matrix-valued analogue of (a subfamily) Askey—Wilson polynomials. The case b < 0 can be
dealt with similarly, where the case b = 0 allows for additional degrees of freedom.

4. Example: spectral decomposition of an operator arising from quantum groups

In an influential paper [18] Koornwinder has introduced a special element p » in the quantum
SU(2) group. In this context it is important to have the action of this element in an infinite
dimensional representation as an explicit 5-term recurrence relation. On the other hand, the
spectral decomposition of the corresponding operator has been solved in [17] exploiting the
special case 0 — 00 as an intermediate step. So the spectral decomposition of the 5-term
recurrence is completely known, and by the set-up of Theorem 2.1 we obtain orthogonality
relations for 2 x 2-matrix-valued orthogonal polynomials with explicit coefficients for the three-
term recurrence relation. The resulting Proposition 4.1 describes the weight function explicitly
in terms of ,¢1-series.

Throughout this section we assume o, 7 € R. In this case the Hilbert space is H = ¢>(N)
with standard orthonormal basis { f;, 3":0. The operator T corresponds to the operator 7y (0,0 )
of [17, Section 6]; explicitly in the notation of (2.1) we have in this case

1
I _ 2n+2 _ 42n+4
an—z\/(l q*" ) (1 — g2,
1 . .
_ —aon+l 1 op42 b(,—0 _ =i, —T _
bn—zlq" VI1—gt (e’ (@ =q°)+e % q " q’)) 4.1)
| _
e =q' " (cos<2¢> ~5@ =4 - q,)> .

Note that a_1 = a_» = b_; = 0. Moreover, we have a symmetry (o, T, ¢) < (7,0, —¢) and
(o,1,¢9) < (—0,—1,¢ + m). So we can assume o > T and ¢ > —t. From [17, Section 6] we
deduce that T has absolutely continuous spectrum [—1, 1] of multiplicity 2 and discrete spectrum
(possibly empty) of multiplicity 1 at J_ U X, where, using the notation u(x) = %(x +x7h,

Yy = {M(_qlfo‘ff+2k) | k e N, q170*T+2k > 1} (4 2)
E+ — {M(q1—0+f+2k) | k c N, q1—0'+‘[+2k > 1} '
From [17, Section 6] we can read off LZ(V). Assume that 0 + 7 < 1,0 — t < 1, so that
there is no discrete spectrum. Then V is a diagonal matrix with the orthonormal measure

for the Al-Salam—Chihara polynomials with parameters (¢!7~7, —¢!=°~7), respectively
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(q'=%7, —q't°F7), on the (1, 1)-entry, respectively the (2, 2)-entry. Explicitly, f:[—1, 1] —
CZ%isin L*(V) if
T
/ | fi(cost)[*vi1(cost) + | fa(cos ) [*vm(cost) di < oo 4.3)
0
with
vii(cost) = vii(cost; ¢, q° | ¢%)
_ @ =4> "1 4% (€ 4*)oo 44)
- 271(—6]2"', 2)oo(q1+o re:i:it’ _qlf(rfrezl:it; QZ)OO :

v2(cost) = viy(cost; g7, g% | ¢*)

and so viz(cost) = 0 = vry(cost).

In order to write down the orthogonality measure for the 2 x 2-matrix-valued orthogonal
polynomials from Theorem 2.1 we need to calculate Ufy for k = 0 and £k = 1. Expanding
the standard orthonormal basis into the basis {wm, um}°° o asin [17, p. 410], and applying U,
which is given by (A;, A7) as in [17, p. 411], we get after a straightforward calculation that
Ufi(A) = (U1 fx (W), U fir (L))" with

>\ ike "“”pk( m
Uiy =Y. =) im0 4747 1 )
m=0 ” U 2)71 ” (4 5)
o kg 1k¢pk(q2r+2m) B :
UrfiG) =Y M by (s g7 g7 147
m=0 ” U 2m+2r ”

where we have used the notation as in [17, Prop. 5.2, p. 410] for the length of the vector, the
Al-Salam—Carlitz polynomials pi(-) and the Al-Salam—Chihara polynomials %, (-).
For k = 0 we can use the generating function, see e.g. [14, (3.8.14)], directly to find

Fio(cost; g7, q° | ¢%) = (Ui fo)(cost)

1 ql—i-a—reit’ _ql—a—reit o
— ] 201 ( \ o ;qz,qe’(2¢ 1) (4.6)
(—4°%: D)3 (qe!t+29); ¢2) 1

and (U fo)(cost) = Fyo(cost; g7, q7 7 | qz) is obtained from (U fp)(cost) by replacing
(o,7) by (—0, —7).

For k = 1 we have to take a linear combination. First, note, in the notation of [17, Prop. 5.2],
Px) =g (1 — ¢ 2(x + 1 — ¢%%), so that p1(—g>™) = —p1(g>"+27). In particular, we
obtain, also using [17, Prop. 5.2], that (U3 f1)(cos t) is obtained from (U f1)(cos t) by switching
(o, 1) to (—o, —7) and multiplying by —1. Using the same generating function for the Al-
Salam—Chihara polynomials twice we obtain

Fi1(cost; 47, q% | ¢*) = (U fi)(cost)
—ie g
VI =547 4P

y -1 o ql-i-o—reit’ _ql—a—reit q . e[(2¢ 5
(qSei(t+2¢); qz)oo _q2—21 ’




104 W. Groenevelt et al. / Advances in Mathematics 244 (2013) 91-105

1 — 2t I+o—1 it’ _ g l—o—1 it .
+ —( 97) 201 (7 e “ q*.qe'®*7" 4.7
(qe 129 g?) o0 —q>"

and (Ua f1)(cost) = —Fy 1(cost; ¢~ %, ¢~ | ¢%).

Proposition 4.1. Consider the matrix-valued polynomials P, generated by (2.3) with initial
conditions P_1(A) = 0, Py(X) = I and where the entries of the matrices A,, and B, are given
by (4.1) witho > t,0 > —1. Assume moreover ¢ + 1t < 1,0 — © < 1, then the matrix-valued
polynomials P, satisfy the orthogonality relations

T
/ P, (cos ) Wa(cost) Py (cost)* dt = 81,
0

Wa(cost)11 = |Fio(cost; ¢7, % | g*)Pvii(cost; 7, ¢%) + (0, T) <> (—0, —1))
Wa(cost)21 = Wa(cost)i

= Fro(cost; q%,q° | g¢Hvii(cost; g7, %) Fi.1(cost; g, q° | ¢°)
— ((0, 1) < (=0, —1))

Wa(cost) = |Fi1(cost; ¢, g% | ¢P)Pvii(cost; ¢, ¢%) + (0, T) < (=0, —1))

where the functions on the right hand side are defined by (4.6), (4.7) and the notation
(0, 1) < (—0, —71)) means that we have to add the same term but with parameters (o, T)
replaced by (—o, —1).

Note that W3 (cost);; is explicit as a sum of i + j terms, each term being a product of two
21 -series.

In case the assumption 0 +t < 1,0 — 7 < 1 is dropped we obtain a finite discrete set of mass
points in the orthogonality relations of Proposition 4.1, and the weight W at these points can be
calculated in the same way from Theorem 2.1. Alternatively, they can be obtained from writing
the integral of Proposition 4.1 as a contour integral, and then shifting contours which leads to
discrete masses at the poles with weights given in terms of residues analogous to the case of the
Askey—Wilson polynomials; see [1].

Acknowledgments

The research of Mourad E.H. Ismail is supported by the DSFP program and the NPST
Program of King Saud University, project number 10-MAT1293-02.

This work was partially supported by a grant from the ‘Collaboration Hong Kong — Joint
Research Scheme’ sponsored by the Netherlands Organisation of Scientific Research and the
Research Grants Council fo Hong Kong (Reference number: 600.649.000.10N007).

We thank the referee for useful suggestions.

References

[1] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem.
Amer. Math. Soc. 54 (319) (1985).

[2] D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory
4 (2008) 1-85.

[3] A.J. Durén, P. Lépez-Rodriguez, Orthogonal matrix polynomials, in: R. Alvarez-Nodarse, F. Marcelldn, W. Van
Assche (Eds.), Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Sci. Publ., 2004,
pp. 13-44.


http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref1
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref2
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref3

W. Groenevelt et al. / Advances in Mathematics 244 (2013) 91-105 105

[4] A.J. Durdn, W. Van Assche, Orthogonal matrix polynomials and higher-order recurrence relations, Linear Algebra
Appl. 219 (1995) 261-280.
[5] G. Gasper, M. Rahman, Basic Hypergeometric Series, second ed., Cambridge Univ. Press, 2004.
[6] W. Groenevelt, E. Koelink, A hypergeometric function transform and matrix-valued orthogonal polynomials,
Constructive Approximation, in press (arXiv:1210.3958).
[71 F.A. Griinbaum, I. Pacharoni, J. Tirao, Matrix valued spherical functions associated to the complex projective plane,
J. Funct. Anal. 188 (2002) 350—441.
[8] F.A. Griinbaum, J. Tirao, The algebra of differential operators associated to a weight matrix, Integral Equations
Operator Theory 58 (2007) 449-475.
[9] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, paperback ed., Cambridge Univ.
Press, 2009.
[10] M.E.H. Ismail, E. Koelink, The J-matrix method, Adv. Appl. Math. 46 (2011) 379-395.
[11] M.E.H. Ismail, E. Koelink, Spectral properties of operators using tridiagonalisation, Anal. Appl. (Singap.) 10 (2012)

327-343.
[12] M.E.H. Ismail, E. Koelink, Spectral analysis of certain Schrodinger operators, SIGMA Symmetry Integrability

Geom. Methods Appl. 8 (2012). Paper 061, p. 19.
[13] M.E.H. Ismail, M. Rahman, The associated Askey—Wilson polynomials, Trans. Amer. Math. Soc. 328 (1991)

201-237.
[14] R. Koekoek, R.F. Swarttouw, The Askey-scheme of Hypergeometric Orthogonal Polynomials and its g-analogue,

Report 98-17, Technical University Delft, 1998, http://aw.twi.tudelft.nl/"koekoek/askey.html.

[15] E. Koelink, M. van Pruijssen, P. Roman, Matrix valued orthogonal polynomials related to (SU (2) x SU(2), diag),
Int. Math. Res. Not. IMRN (24) (2012) 5673-5730.

[16] E. Koelink, M. van Pruijssen, P. Roman, Matrix valued orthogonal polynomials related to (SU (2) x SU(2), diag),
11, Publ. Res. Inst. Math. Sci. 49 (2013) 271-312.

[17] H.T. Koelink, J. Verding, Spectral analysis and the Haar functional on the quantum SU (2) group, Comm. Math.
Phys. 177 (1996) 399-415.

[18] T.H. Koornwinder, Askey—Wilson polynomials as zonal spherical functions on the SU (2) quantum group, SIAM J.
Math. Anal. 24 (1993) 795-813.

[19] J. Tirao, The matrix-valued hypergeometric equation, Proc. Natl. Acad. Sci. USA 100 (2003) 8138-8141.


http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref4
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref5
http://arxiv.org/1210.3958
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref7
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref8
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref9
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref10
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref11
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref12
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref13
http://aw.twi.tudelft.nl/~koekoek/askey.html
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref15
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref16
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref17
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref18
http://refhub.elsevier.com/S0001-8708(13)00181-3/sbref19

	Spectral decomposition and matrix-valued orthogonal polynomials
	Introduction
	Matrix-valued orthogonal polynomials from 5-term operators
	A general class of examples
	Self-adjoint penta-diagonalizable operators
	Example: case of little  q -Jacobi polynomials

	Example: spectral decomposition of an operator arising from quantum groups
	Acknowledgments
	References


