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Abstract

Let P = (p1, p2, . . . , pN ) be a sequence of points in the plane, where pi = (xi , yi ) and x1 <

x2 < · · · < xN . A famous 1935 Erdős–Szekeres theorem asserts that every such P contains a monotone
subsequence S of ⌈

√
N ⌉ points. Another, equally famous theorem from the same paper implies that every

such P contains a convex or concave subsequence of Ω(log N ) points.
Monotonicity is a property determined by pairs of points, and convexity concerns triples of points. We

propose a generalization making both of these theorems members of an infinite family of Ramsey-type
results. First we define a (k + 1)-tuple K ⊆ P to be positive if it lies on the graph of a function whose kth
derivative is everywhere nonnegative, and similarly for a negative (k + 1)-tuple. Then we say that S ⊆ P is
kth-order monotone if its (k + 1)-tuples are all positive or all negative.

We investigate a quantitative bound for the corresponding Ramsey-type result (i.e., how large kth-order
monotone subsequence can be guaranteed in every N -point P). We obtain an Ω(log(k−1) N ) lower bound
((k − 1)-times iterated logarithm). This is based on a quantitative Ramsey-type theorem for transitive
colorings of the complete (k + 1)-uniform hypergraph (these were recently considered by Pach, Fox,
Sudakov, and Suk).

For k = 3, we construct a geometric example providing an O(log log N ) upper bound, tight up to a
multiplicative constant. As a consequence, we obtain similar upper bounds for a Ramsey-type theorem for
order-type homogeneous subsets in R3, as well as for a Ramsey-type theorem for hyperplanes in R4 recently
used by Dujmović and Langerman.
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1. Introduction

In this paper we mainly consider sets P = {p1, p2, . . . , pN } of points in the plane, where
pi = (xi , yi ). We always assume that no two of the x-coordinates coincide, and unless stated
otherwise, we also assume that the pi are numbered so that x1 < x2 < · · · < xN (the same also
applies to subsets of P , which we will enumerate in the order of increasing x-coordinates).

Two theorems of Erdős and Szekeres. Among simple results in combinatorics, only few can
compete with the following one in beauty and usefulness:

Theorem 1.1 (Erdős–Szekeres on Monotone Subsequences [7]). For every positive integer n,
among every N = (n − 1)2 + 1 points p1, . . . , pN ∈ R2 as above, one can always choose
a monotone subset of at least n points, i.e., indices i1 < i2 < · · · < in such that either
yi1 ≤ yi2 ≤ · · · ≤ yin or yi1 ≥ yi2 ≥ · · · ≥ yin .

See, for example, Steele [17] for a collection of six nice proofs and some applications. For
many purposes, it is more natural to view the above theorem as a purely combinatorial result
about permutations, but here we prefer the geometric formulation (which is also similar to the
one in the original Erdős–Szekeres paper).

Another result of the same paper of Erdős and Szekeres is the following well-known gem in
discrete geometry:1

Theorem 1.2 (Erdős–Szekeres on Convex/Concave Configurations [7]). For every positive

integer n, among every N =


2n−4
n−2


+ 1 ≈ 4n/

√
n points p1, . . . , pN ∈ R2 as above, one

can always choose a convex configuration or a concave configuration of n points, i.e., indices
i1 < i2 < · · · < in such that the slopes of the segments pi j pi j+1 , j = 1, 2, . . . , n − 1, are either
monotone nondecreasing or monotone nonincreasing.

See, e.g., [13,11] for proofs and surveys of developments around this result.

k-general position. To simplify our forthcoming discussion, at some places it will be convenient
to assume that the considered point sets are in a “sufficiently general” position. Namely, we define
a set P to be in k-general position if no k + 1 points of P lie on the graph of a polynomial of
degree at most k−1. In particular, 1-general position requires that no two y-coordinates coincide,
and 2-general position means the usual general position, i.e., no three points collinear.

kth-order monotone subsets. Here we propose a view of Theorems 1.1 and 1.2 as the first two
members in an infinite sequence of Ramsey-type results about planar point sets.2

In Theorem 1.1, monotonicity of a subset is a property of pairs of points of the subset, and
actually, it suffices to look at pairs of consecutive points. Similarly, convexity or concavity of a
configuration in Theorem 1.2 is a property of triples, and again it is enough to look at consecutive
triples.

In the former case, we are considering the slope of the segment determined by a pair of
points, which can be thought of as the first derivative. In the latter case, a triple is convex iff its

1 Somewhat unfortunately, the name Erdős–Szekeres theorem refers to Theorem 1.1 in some sources and to
Theorem 1.2 or similar statements in other sources.

2 There is also a (trivial) 0th member, namely, the statement that in every P , at least half of the points either have all
y-coordinates nonnegative or have or all y-coordinates nonpositive.
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points lie on the graph of a smooth convex function, i.e., one with nonnegative second derivative
everywhere.

With this point of view, it is natural to define a (k + 1)-tuple K ⊆ P to be positive if it lies
on the graph of a function whose k-th derivative (exists and) is everywhere nonnegative, and
similarly for a negative (k + 1)-tuple (in Section 2, we will provide several other, equivalent
characterizations of these properties). Then we say that an arbitrary subset S ⊆ P is kth-order
monotone if its (k + 1)-tuples are all positive or all negative.

First-order monotonicity is obviously equivalent to monotonicity as in Theorem 1.1, and
second-order monotonicity is equivalent to convexity/concavity as in Theorem 1.2. We will also
see (Lemma 2.5) that, to certify kth-order monotonicity, it is enough to consider all (k +1)-tuples
of consecutive points.

Let us remark that every (k + 1)-tuple K is positive or negative, and moreover, if K is
in k-general position, it cannot be both positive and negative (Corollary 2.3). We will write
sgn(K ) = +1 if K is positive and sgn(K ) = −1 if K is negative.

Ramsey’s theorem, quantitative bounds, and transitive colorings. Using the just mentioned
facts, one can immediately derive a Ramsey-type theorem for kth-order monotone subsets from
Ramsey’s theorem.

Proposition 1.3. For every k and n there exists N such that every N-point planar set in k-general
position contains an n-point kth-order monotone subset.

Proof. We recall Ramsey’s theorem (for two colors; see, e.g., Graham, Rothschild, and

Spencer [10]): for every ℓ and n there exists N such that for every coloring of the set


X
ℓ


of

all ℓ-element subsets of an N -element set X there exists an n-element homogeneous set Y ⊆ X ,
i.e., a subset in which all ℓ-tuples have the same color. The smallest N for which the claim holds
is usually denoted by Rℓ(n).

In our case, we set X = P and color each (k +1)-tuple K ⊆ P with the color sgn(K ) ∈ {±1}.
Then homogeneous subsets are exactly kth-order monotone subsets. �

Let us denote by ESk(n) the smallest value of N for which the claim in this proposition holds.

We have ES1(n) ≤ (n − 1)2 + 1 and ES2(n) ≤


2n−4
n−2


+ 1 according to Theorems 1.1 and

1.2, respectively; moreover, these inequalities actually hold with equality [7]. Our main goal is
to estimate the order of magnitude of ESk(n) for k ≥ 3.

The above proof gives ESk(n) ≤ Rk+1(n). However, for k = 1, and most likely for all k, the
order of magnitude of Rk+1(n) is much larger than that of ESk(n). Indeed, considering k fixed
and n large, the best known lower and upper bounds on Rk+1(n) are of the form3 R2(n) = 2Θ(n)

and, for k ≥ 2,

twrk(Ω(n2)) ≤ Rk+1(n) ≤ twrk+1(O(n)),

where the tower function twrk(x) is defined by twr1(x) = x and twri+1(x) = 2twri (x). It is widely
believed that the upper bound is essentially the truth. This belief is supported by known bounds
for more than two colors, where the lower bound for (k +1)-tuples is also a tower of height k +1;

3 We employ the usual asymptotic notation for comparing functions: f (n) = O(g(n)) means that | f (n)| ≤ C |g(n)|
for some C and all n, where C may depend on parameters declared as constants (in our case on k); f (n) = Ω(g(n)) is
equivalent to g(n) = O( f (n)); and f (n) = Θ(g(n)) means that both f (n) = O(g(n)) and f (n) = Ω(g(n)).
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see Conlon, Fox, and Sudakov [3] for a recent improvement and more detailed overview of the
known bounds.

The coloring of the (k + 1)-tuples in the above proof of Proposition 1.3 is not arbitrary.
In particular, it has a property we call transitivity (see Lemma 2.5). Transitive colorings were
introduced earlier in the recent preprint Fox et al. [8, Section 6], under the same name.

To define a transitive coloring in general, we need to consider a hypergraph whose vertex set is
linearly ordered; without loss of generality, we can identify it with the set [N ] := {1, 2, . . . , N }.

A coloring c:


[N ]

ℓ


→ [m] is transitive if, for every i1, . . . , iℓ+1 ∈ [N ], i1 < · · · < iℓ+1,

whenever the ℓ-tuples {i1, . . . , iℓ} and {i2, . . . , iℓ+1} have the same color, then all ℓ-element
subsets of {i1, . . . , iℓ+1} have the same color. Let Rtrans

ℓ (n) denote the Ramsey number for
transitive colorings, i.e., the smallest N such that any transitive coloring of the complete ℓ-
uniform hypergraph on [N ] contains an n-element homogeneous subset. We have the following
bound.4

Theorem 1.4. For k = 1, 2, we have Rtrans
k+1 (n) = ESk(n), and for every fixed k ≥ 3,

ESk(n) ≤ Rtrans
k+1 (n) ≤ twrk(O(n)).

We note that Fox et al. [8] proved the slightly weaker upper bound Rtrans
k+1 (n) ≤ twrk

(O(n log n)).
The proof of Theorem 1.4 is given in Section 3. The inequality ESk(n) ≤ Rtrans

k+1 (n) is clear
since every N -point set in k-general position provides a transitive coloring of


[N ]

k+1


. The upper

bounds for Rtrans
2 (n) and Rtrans

3 (n) follow by translating the proofs of Theorems 1.1 and 1.2 to
the setting of transitive colorings almost word by word, and they are contained in [8]. The upper
bound on Rtrans

k+1 (n) is then obtained by induction on k, with k = 3 as the base case, following
one of the usual proofs of Ramsey’s theorem.

A set with no large third-order monotone subsets. For k ≤ 2, the numbers ESk(n) (and thus
Rtrans

k+1 (n)) are known exactly. Our perhaps most interesting result is an asymptotically matching
lower bound for ES3(n).

Theorem 1.5. For all n ≥ 2 we have Rtrans
4 (2n + 1) ≥ ES3(2n + 1) ≥ 22n−1

+ 1. Consequently,

ES3(n) = 22Θ(n)
.

The proof is given in Section 4. A Ramsey function with known doubly exponential growth
seems to be rare in geometric Ramsey-type problems (a notable example is a result of Valtr [18]).

Order types. Here we change the setting from the plane to Rd and we consider an ordered
sequence P = (p1, p2, . . . , pN ) in Rd . This time we do not assume the first coordinates to
be increasing. For simplicity, we assume P to be in general position, which now means that no
d + 1 points of P lie on a common hyperplane.

We recall that order type of P specifies the orientation of every (d + 1)-tuple of points of
P , and it this way, it describes purely combinatorially many of the geometric properties of P .

More formally, the order type of P is the mapping χ :


[N ]

d+1


→ {−1,+1}, where for a (d + 1)-

tuple I = {i1, . . . , id+1}, i1 < i2 < · · · < id+1, χ(I ) := sgn det M(pi1 , pi2 , . . . , pid+1), where

4 By inspecting the proof of the next theorem, it is easy to verify that the transitivity condition is not used in full
strength—it suffices to assume only that the subsets obtained by omitting one of i2, i3 have the same color.
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M(q1, . . . , qd+1) is the (d + 1) × (d + 1) matrix whose j th column is (1, q j ), i.e., 1 followed
by the vector of the d coordinates of q j . See, e.g., Goodman and Pollack [9] or [11] for more
background about order types.

From Ramsey’s theorem for (d + 1)-tuples, we can immediately derive a Ramsey-type result
for order types: for every d and n there exists N such that every N -point sequence contains an
n-point subsequence in which all the (d + 1)-tuples have the same orientation (we call such a
subsequence order-type homogeneous). Let us write OTd(n) for the smallest such N .

In Section 5 we first observe that, by simple and probably well known considerations,
OT1(n) = (n − 1)2 + 1 and OT2(n) = 2Θ(n). For d ≥ 3, the upper bound for OTd(n) from
the Ramsey argument above is OTd(n) ≤ Rd+1(n) ≤ twrd+1(O(n)). In particular, for OT3(n)
this upper bound is triply exponential; in Section 5 we prove a doubly exponential lower bound.
A recent paper by Conlon et al. [2] provides a doubly exponential upper bound for OT3(n); see
below.

Proposition 1.6. For all d and n,OTd(n) ≥ ESd(n). In particular, OT3(n) = 22Ω(n)
.

A Ramsey-type result for hyperplanes. Let us consider a finite set H of hyperplanes in Rd in
general position (every d intersecting at a single point). Let us say that H is one-sided if V (H),
the vertex set of the arrangement of H , lies completely on one side of the coordinate hyperplane
xd = 0.

Let OSHd(n) be the smallest N such that every set H of N hyperplanes in Rd in
general position contains a one-sided subset of n hyperplanes. Ramsey’s theorem for d-tuples
immediately gives OSHd(n) ≤ Rd(n) (a d-tuple gets color +1 if its intersection has a positive
last coordinate, and color −1 otherwise).

Matoušek and Welzl [12] observed that, actually, OSH2(n) = ES1(n) = (n − 1)2 + 1, and
applied this in a range-searching algorithm. Recently Dujmović and Langerman [4] used the
existence of OSHd(n) (essentially Lemma 9 in the arXiv version of their paper) to prove several
interesting results, such as a ham-sandwich and centerpoint theorems for hyperplanes.

In Section 5 we show that lower bounds for kth-order monotone subsets in the plane can be
translated into lower bounds for OSHd .

Proposition 1.7. We have OSHd(n) ≥ ESd−1(n), and in particular, OSH3(n) = 2Ω(n) and5

OSH4(n) = 22Ω(n)
.

The lower bounds for OSHd(n) can also be translated into lower bounds in the theorems of
Dujmović and Langerman. For example, in their ham-sandwich theorem, we have d collections
H1, . . . , Hd of hyperplanes in Rd , each of size N , and we want a hyperplane g such that in each
Hi , we can find disjoint subsets Ai , Bi of n hyperplanes each such V (Ai ) lies on one side of g
and V (Bi ) on the other side.

To derive a lower bound for the smallest necessary N , we fix d affinely independent points
p1, . . . , pd in the xd = 0 hyperplane, and a set H of N hyperplanes in general position with
no one-sided subset of size n. We let Hi be an affinely transformed copy of H such that all of
V (Hi ) lies very close to pi . Then every potential ham-sandwich hyperplane g for these Hi has
to be almost parallel to the xd = 0 hyperplane, and thus there cannot be Ai , Bi of size n for all i .

5 An exponential lower bound for OSH3 was known to the authors of [12], and perhaps to others as well, but as far as
we know, it has not appeared in print.
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The work of Fox et al. While preparing a draft of the present paper, we learned about a recent
preprint of Fox, Pach, Sudakov, and Suk [8]. They investigated various combinatorial and
geometric problems inspired by Theorems 1.1 and 1.2, and as was mentioned above, among
others, they introduced transitive colorings,6 but mainly they studied a related but different
Ramsey-type quantity: let Nℓ(q, n) be the smallest integer N such that, for every coloring

of


[N ]

ℓ


with q colors, there exists an n-element I = {i1, . . . , in} ⊆ [N ], i1 < · · · <

in , inducing a monochromatic monotone path, i.e., such that all the ℓ-tuples of the form
{i j , i j+1, . . . , i j+ℓ−1}, j = 1, 2, . . . , n − ℓ+ 1, have the same color.

They note that Rtrans
ℓ (n) ≤ Nℓ(2, n), and they obtained the following bounds for Nℓ(2, n):

N2(2, n) = ES1(n), N3(2, n) = ES2(n), and for every fixed k ≥ 3,

twrk(Ω(n)) ≤ Nk+1(2, n) ≤ twrk(O(n log n)).

As we mentioned after Theorem 1.4, this also yields an upper bound for Rtrans
k+1 (n) only slightly

weaker than the one in that theorem.
After publication of a conference version of this paper [5], closely related works on

semialgebraic predicates of Bukh and Matoušek [1] and Conlon et al. [2] appeared. Conlon et al.
prove that the bounds from the Ramsey theorem can be improved by one exponential for every
semialgebraic predicate, including nontransitive ones, and that in a sufficiently large dimension
this is the best possible.

Open problems.

1. We have obtained reasonably tight bounds for ES3(n), but the gaps are much more significant
for ESk(n) with k ≥ 4. According to the cases k = 1, 2, 3, one may guess that ESk(n) is
of order twrk(Θ(n)), and thus that stronger lower bounds are needed. On the other hand,
a surprising result of Bukh and Matoušek [1] says that a Ramsey function for any k-ary
semialgebraic predicate in R1 is at most 22Cn

. A similar result for R2 would imply that ESk(n)
can be bounded from above by a tower function of a constant height independent of k. This
question looks both interesting and challenging.

2. A perhaps more manageable task might be a better lower bound for Rtrans
k (n), k ≥ 4. A natural

approach would be to imitate the Stepping-Up Lemma used for lower bounds for the Ramsey
numbers Rk(n) (see, e.g., [3]). But so far we have not succeeded in this, since even if we start
with a transitive coloring of k-tuples, we could not guarantee transitivity for the coloring of
(k + 1)-tuples.

3. As for order-type homogeneous sequences and one-sided subsets of hyperplanes, recent
results of Conlon et al. [2] imply nearly tight upper bounds for OT3(n) and OSH4(n). They
also give upper bounds for larger dimensions, namely OTd(n) ≤ twrd(nc) and OSHd(n) ≤

twrd−1(cn2 log n), but a question of exact magnitude of these functions is still open.
4. In an earlier version of this paper we asked whether n log n can be replaced by n in the upper

bound for the quantity Nℓ(2, n) considered by Fox et al. [8]. This question was answered
positively in a recent paper of Moshkovitz and Shapira [14].

5. In our definition of kth-order positivity, every (k + 1)-tuple of points should lie on the graph
of a function with a nonnegative kth derivative, and different functions can be used for
different (k + 1)-tuples. In an earlier version of this paper, we conjectured that, assuming

6 With still another geometric source of such colorings besides the Erdős–Szekeres theorems, namely, noncrossing
convex bodies in the plane.
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k-general position, a single function should suffice for all (k + 1)-tuples; in other words,
that every kth-order monotone finite set in k-general position lies on a graph of a k-
times differentiable function f : R → R whose kth derivative is everywhere nonnegative or
everywhere nonpositive.

However, Rote [16] disproved this for k = 3 (while the cases k = 1, 2 do hold, as is not
hard to check). With his kind permission, we reproduce his example at the end of Section 2.

Naturally, this opens up interesting new questions: How can one characterize point sets
lying on the graph of a function whose kth derivative is positive everywhere? Is there a
Ramsey-type theorem for such sets, and if yes, how large is the corresponding Ramsey
function?

2. On the definition of kth-order monotonicity

Here we provide several equivalent characterizations of kth-order monotonicity of planar
point sets and some of their properties. First we recall several known results.

Divided differences and Newton’s interpolation. Let p1, p2, . . . , pk+1 be points in the plane,
pi = (xi , yi ), where the xi are all distinct (but not necessarily increasing). We recall that the kth
divided difference k(p1, p2, . . . , pk+1) is defined recursively as follows:

0(p1) := y1

k(p1, p2, . . . , pk+1) :=
k−1(p2, p3, . . . , pk+1)− k−1(p1, p2, . . . , pk)

xk+1 − x1
.

For example, 1(p1, p2) equals the slope of the line p1 p2. In general, the kth divided difference
is related to the kth derivative as follows (see, e.g., [15, Eq. 1.33]; note that the case k = 1 is the
Mean Value Theorem):

Lemma 2.1 (Cauchy). Let the points p1, . . . , pk+1, a := x1 < x2 < · · · < b := xk+1, lie on the
graph of a function f such that the kth derivative f (k) exists everywhere on the interval (a, b).
Then there exists ξ ∈ (a, b) such that

k(p1, . . . , pk+1) =
f (k)(ξ)

k!
.

We will also need the following result (see, e.g., [15, Eqs. 1.11–1.19]).

Lemma 2.2 (Newton’s Interpolation). Let p1, . . . , pk+1 ∈ R2 be points with distinct x-
coordinates (here we need not assume that the x-coordinates are increasing). Then the unique
polynomial f of degree at most k whose graph contains p1, . . . , pk+1 is given by

f (x) =

k+1
i=1


(p1, . . . , pi )

i−1
j=1

(x − x j )



In particular, the coefficient of xk is (p1, . . . , pk+1), and it equals f (k)(x)/k! (which is a
constant function).

We recall that a (k + 1)-tuple K = {p1, . . . , pk+1} was defined to be positive if it is
contained in the graph of a function having a nonnegative kth derivative everywhere. We obtain
the following equivalent characterization:
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Corollary 2.3. A (k + 1)-tuple K = {p1, . . . , pk+1} is positive iff k(p1, . . . , pk+1) ≥ 0
(and similarly for a negative (k + 1)-tuple). If K is in k-general position, we have sgnK =

sgn k(p1, . . . , pk+1).

Proof. If K is contained in the graph of f with f (k) ≥ 0 everywhere, then k(p1, . . . , pk+1) ≥ 0
by Lemma 2.1.

Conversely, if k(p1, . . . , pk+1) ≥ 0, then by Lemma 2.2, the unique polynomial of degree
at most k whose graph contains K is the required function with nonnegative kth derivative.

If, moreover, K is in k-general position, then k(p1, . . . , pk+1) ≠ 0, and so K cannot be both
kth-order positive and kth-order negative by Lemma 2.1. �

We will also need the following criterion for the sign of a (k + 1)-tuple.

Lemma 2.4. Let K = {p1, p2, . . . , pk+1} be a (k + 1)-tuple of points in k-general position,
x1 < · · · < xk+1, let i ∈ [k + 1], and let fi be the (unique) polynomial of degree at most k − 1
whose graph passes through the points of K \ {pi }. Then sgnK = (−1)k−i if pi lies below the
graph of fi , and sgnK = (−1)k+1−i if pi lies above the graph.

Let f be the polynomial of degree at most k passing through all of K . We use Newton’s
interpolation (Lemma 2.2), but with the points reordered so that pi comes last, and we get that

f (x) = fi (x)+ k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi )


j∈[k+1]\{i}

(x − x j ).

Using this with x = xi , we get

sgn(yi − fi (xi )) = sgn( f (xi )− fi (xi ))

= sgn k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi ) · sgn


j∈[k+1]\{i}

(xi − x j ).

Divided differences are invariant under permutations of the points (as can be seen, e.g., from
Lemma 2.2, since the interpolating polynomial does not depend on the order of the points), and
so sgn k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi ) = sgnK . Finally, the product

j∈[k+1]\{i}

(xi − x j )

has k + 1 − i negative factors, thus its sign is (−1)k+1−i , and the lemma follows. �
It remains to prove transitivity.

Lemma 2.5. Let P = {p1, . . . , pN } be a point set in k-general position. Then the 2-coloring of

(k + 1)-tuples K ∈


P

k+1


by their sign is transitive.

Proof. We consider a (k + 2)-tuple L = {p1, . . . , pk+2} with

sgn{p1, . . . , pk+1} = sgn{p2, . . . , pk+2} = +1

and we fix i ∈ {2, . . . , k + 1}. Let fi,k+2 be the polynomial of degree at most k − 1 passing
through L \ {pi , pk+2}, and similarly for f1,k+2. Our goal is to show that fi,k+2(xk+2) < yk+2,
since this gives sgn(L \ {pi }) = +1 by Lemma 2.4.

Since sgn(L \ {p1}) = +1, we have f1,k+2(xk+2) < yk+2 (Lemma 2.4 again), and so it
suffices to prove fi,k+2(xk+2) < f1,k+2(xk+2).
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Fig. 1. Rote’s example: a 6-point 3rd-order positive set in 3-general position that does not lie on the graph of any function
with nonnegative 3rd derivative.

Let us consider the polynomial g := f1,k+2 − fi,k+2; as explained above, our goal is
proving sgng(xk+2) = +1. To this end, we first determine sgng(x1): We have fi,k+2(x1) = y1
and sgn(y1 − f1,k+2(x1)) = (−1)k (using sgn(L \ {p1}) = +1 and Lemma 2.4). Hence
sgng(x1) = (−1)k−1.

Next, we observe that g is a polynomial of degree at most k − 1, and it vanishes at
x2, . . . , xi−1, xi+1, . . . , xk+1. These are k − 1 distinct values; thus, they include all roots of
g, and each of them is a simple root. Consequently, g changes sign (k − 1)-times between x1
and xk+2. Hence, finally, sgng(xk+2) = (−1)k−1sgng(x1) = +1 as claimed. �

Rote’s example. Fig. 1 shows a 6-point set P = {p1, . . . , p6} in 3-general position (no four
points on a parabola). It is easy to check 3rd-order positivity using Lemma 2.4: By transitivity,
it suffices to look at 4-tuples of consecutive points. For p1, . . . , p4 we use the parabola through
p1, p2, p3 (which actually degenerates to the x-axis); for p2, . . . , p5 we use the dashed parabola
through p2, p3, p4 (which is very close to the x-axis in the relevant region); and for p3, . . . , p6,
the parabola through p4, p5, p6 (drawn full).

It remains to check that P does not lie on the graph of a function f with f (3) ≥ 0 everywhere.
Assuming for contradiction that there is such an f , we consider the point q := (x0, f (x0)), where
x0 is such that the full parabola is below the x-axis at x0. For the 4-tuple {p1, p2, p3, q} to be
positive, q has to lie above the x-axis, but the 4-tuple {q, p4, p5, p6} is positive only if q lies
below the parabola through p4, p5, p6—a contradiction.

3. Upper bounds on the Ramsey numbers for transitive colorings

In this section we prove Theorem 1.4. As we mentioned in the remark following that theorem,
it suffices to establish the case k ≥ 3.

Thus, we want to prove that Rtrans
k+1 (n) ≤ twrk(Ckn) for all n and for every k ≥ 3, with suitable

constants Ck depending on k. As the base of the induction we use Rtrans
3 (n) ≤ 4n , which, as was

remarked earlier, follows by imitating the proof of Theorem 1.2.
Thus, let k ≥ 3 be fixed, let n be given, and let us set M := Rtrans

k (n). We will prove that

Rtrans
k+1 (n) ≤ N := 2Mk

. (1)

Theorem 1.4 then follows from this recurrence and from the fact that 2twrk−1(n)k ≤ twrk(kn) for
k ≥ 3, which is easy to check.

To prove (1), we follow an inductive proofs of Ramsey’s theorem going back to Erdős

and Rado [6]. Let χ :


[N ]

k+1


→ {1, 2} be an arbitrary transitive 2-coloring. We set Ak−1 :=

{1, 2, . . . , k −1} and Xk−1 := [N ]\ Ak−1. For i = k, k +1, . . . ,M we will inductively construct
sets Ai , X i ⊆ [N ] such that
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(i) Ai < X i (i.e., all elements of Ai precede all elements of X i );
(ii) |Ai | = i and |X i | ≥ |X i−1|/2Mk−1

; and
(iii) the color of a (k + 1)-tuple whose first k elements all belong to Ai does not depend on its

last element; in other words, for K ∈


Ai
k


and x, y ∈ Ai ∪ X i with K < {x, y}, we have

χ(K ∪ {x}) = χ(K ∪ {y}).

For the inductive step, suppose that Ai and X i have already been constructed. We let xi be the
smallest element of X i , we set Ai+1 := Ai ∪ {xi }, and we write X ′

i := X i \ {xi }.

Let us call two elements x, y ∈ X ′

i equivalent if we have, for every K ∈


Ai−1
k−1


, χ(K ∪

{xi , x}) = χ(K ∪ {xi , y}). There are


i
k−1


possible choices of K , and hence there are at most

2


i

k−1


< 2Mk−1

equivalence classes. We choose X i+1 ⊆ X ′

i as the largest equivalence class.
Then (i), (iii) obviously hold for Ai+1 and X i+1, and we have

|X i+1| ≥ (|X i | − 1)/(2Mk−1
− 1) ≥ |X i |/2Mk−1

(since i ≤ M and thus we have |X i | ≥ N/(2Mk
−1)i−1

= 2Mk
−(i−1)Mk−1

≥ 2Mk−1
). This finishes

the inductive construction of Ai and X i .
In this way, we construct the sets A := AM and X M (note that |X M | ≥ 1 by (ii)). Let x be

the first element of X M , and let us define a 2-coloring χ∗:


A
k


→ {1, 2} of the k-tuples of A by

χ∗(K ) := χ(K ∪ {x}).
We claim that, crucially, χ∗ is transitive (which is not entirely obvious). So we consider

elements a1 < a2 < · · · < ak+1 of A, and we suppose that

χ∗({a1, . . . , ak}) = χ∗({a2, . . . , ak+1}) =: c

We want to show that χ∗({a1, . . . , ak+1} \ {ai }) = c for every i = 2, 3, . . . , k. We have
c = χ∗({a1, . . . , ak}) = χ({a1, . . . , ak, x}) = χ({a1, . . . , ak+1}) (by definition and by the
independence of χ of the last element), and c = χ∗({a2, . . . , ak+1}) = χ({a2, . . . , ak+1, x}).
Next we use the transitivity of χ on the (k + 2)-tuple (a1, . . . , ak+1, x), obtaining

χ({a1, . . . , ak+1, x} \ {ai }) = c = χ∗({a1, . . . , ak+1} \ {ai })

as needed.
Now we can apply the inductive hypothesis to A, which yields an n-element subset of A

homogeneous with respect to χ∗, and this subset is homogeneous with respect to χ as well,
finishing the proof of Theorem 1.4. �

4. A lower bound for ES3

Here we prove Theorem 1.5, a lower bound for ES3(2n + 1). We proceed by induction on n;
the goal is to construct a set Pn of N := 22n−1

points with no (2n+1)-point third-order monotone
subset. The induction starts for n = 2 with an arbitrary P2 of size 221

= 4.
In the inductive step, given Pn , we will construct Pn+1 so that |Pn+1| = |Pn|

2; then the bound
on the size of Pn clearly holds.

We may assume that P = Pn is in 3-general position (this can always be achieved by a small
perturbation). By an affine transformation we also make sure that P ⊂ [1, 2]×[0, 1]; or actually,
P ⊂ [1, 1.9] × [0, 1] so that there is some room for perturbation. Moreover, there is a small
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Fig. 2. A schematic illustration of the construction of Pn+1.

δ > 0 such that if P ′ is obtained from P by moving each point arbitrarily by at most δ, then P ′

is still in 3-general position, the order of the points of P ′ along the x-axis is the same as that for
P , and the sign of every 4-tuple in P ′ is the same as the sign of the corresponding 4-tuple in P .

The construction. The construction of Pn+1 from P = Pn as above proceeds in the following
steps.

1. We choose a sufficiently large number A = A(P) (the requirements on it will be specified
later), and we set ε := 1/A2.

2. For every point p ∈ P , let Q p be the image of P under the affine map that sends the square
[1, 2]×[0, 1] to the axis-parallel rectangle of width ε, height ε2, and with the lower left corner
at p; see Fig. 2.

3. Let ψp(x) = Ax2
+ C p be a quadratic function, where A is as above and C p is chosen so

that ψp(x(p)) = 0 (where x(p) is the x-coordinate of p). Let Q̆ p be the set obtained by
“adding ψp to Q p”, i.e., by shifting each point (x, y) ∈ Q p vertically upwards by ψp(x). We
set Pn+1 :=


p∈P Q̆ p. We call the Q̆ p the clusters of Pn+1.

First we check that each cluster Q̆ p lies close to p.

Lemma 4.1. Each Q̆ p is contained in an O
√
ε

-neighborhood of p.

Proof. Writing p = (x0, y0), the set Q p obviously lies in the 2ε-neighborhood of p, and the
maximum amount by which a point of Q p was translated upwards is at most

ψp(x0 + ε) = A

(x0 + ε)2 − x2

0


= A(2x0ε + ε2) = O

√
ε

. �

Here is a key property of the construction.

Lemma 4.2 (Slope Lemma). Let λ be a parabola passing through three points of Pn+1 that
belong to three different clusters, or a line passing through two points of different clusters. Let µ
be a parabola passing through three points of a single cluster Q̆ p, or a line passing through two
such points. Then the maximum slope (first derivative) of λ on the interval [1, 2] is smaller than
the minimum slope of µ on [1, 2], provided that A was chosen sufficiently large.
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Proof. Clearly, the maximum slope of any such λ can be bounded from above by some finite
number depending only on P but not on A. Thus, it suffices to show that, with A large, for every
µ as in the lemma, the minimum slope is bounded from below by A.

First let us assume that µ is a parabola passing through three points of Q̆ p, where p =

(x0, y0), let µ̃ be the parabola passing through the corresponding three points of P , and let the
equation of µ̃ be y = ax2

+ bx + c.
By the construction of Q̆ p, the affine map transforming P to Q p sends a point with

coordinates (x, y) to the point (ε(x − 1) + x0, ε
2 y + y0). Calculation shows that the image

of µ̃ under this affine map has the equation y = ax2
+ (2aε+ bε− 2ax0)x + c′, where the value

of the absolute term c′ need not be calculated since it does not matter. Hence the minimum slope
of this curve on [1, 2] is bounded from below by −(8|a| + 4|a|ε + 2|b|ε + 8|a|). Finally, µ is
obtained by adding ψp(x) = Ax2

+ C p to this curve, and the minimum slope of ψp on [1, 2] is
at least 2A.

Next, let µ be a line passing through two points q, r ∈ Q̆ p. Let us choose another point
s ∈ Q̆ p and consider the parabola µ′ through q, r, s. By the Mean Value Theorem, the slope of
µ equals the slope of µ′ at some point between q and r , and the latter is at least A by the above.
The lemma is proved. �

Let K = {p1, p2, p3, p4} ⊆ Pn+1 be a 4-tuple, pi = (xi , yi ), x1 < · · · < x4. We assign a
type to K , which is an ordered partition of 4 given by the distribution of K among the clusters;
for example, K has type 1+1+2 if the first point p1 lies in some Q̆ p, p2 lies in Q̆ p′ for p′

≠ p,
and p3, p4 ∈ Q̆ p′′ , p′′

≠ p, p′.
The next lemma shows that the sign K is determined by its type. We provide a complete

classification, although we will not use all of the types in the subsequent proof.

Lemma 4.3. Let K = {p1, p2, p3, p4} ⊆ Pn+1 be a 4-tuple. If K is of type 1 + 1 + 1 + 1 or 4,
then the sign of K is the same as that of the corresponding 4-tuple in P. Otherwise, the sign of
K is determined by its type as follows:

• for types 3 + 1 and 1 + 3 it is −1;
• for types 1 + 1 + 2 and 2 + 1 + 1 it is +1;
• for type 1 + 2 + 1 it is −1; and
• for type 2 + 2 it is +1.

Proof. Since the transformation that converts P into Q̆ p preserves the types of 4-tuples, the
statement for type 4 is clear. The statement for type 1 + 1 + 1 + 1 follows since, by Lemma 4.1,
K is obtained by a sufficiently small perturbation of the corresponding 4-tuple in P (this gives
one of the lower bounds on A, since we need the bound in Lemma 4.1 to be smaller than the δ
considered at the beginning of our description of the construction).

The statements for the remaining types are obtained by simple application of the slope lemma
(Lemma 4.2) together with Lemma 2.4. Namely, for type 3 + 1, we get that the parabola through
p1, p2, p3 lies above p4 (by comparing its slope to the slope of the line p3 p4); see Fig. 3. For
type 1 + 3 we similarly get that p1 lies above the parabola through p2, p3, p4, and so the sign is
−1 in both of these cases.

For type 1 + 1 + 2, the segment p3 p4 is steeper than the parabola through p1 p2 p3, and so the
sign is +1. Similarly for type 2+1+1 we get that p1 lies below the parabola through p2, p3, p4,
which again gives sign +1. For type 1 + 2 + 1, p3 lies above the parabola through p1, p2, p4,
giving sign −1. Finally, for type 2 + 2, the segment p1 p2 is steeper than p2 p3, thus the parabola
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Fig. 3. Determining the signs of 4-tuples by type.

through p1, p2, p3 is concave, and hence its slope at p3 and after it is no larger than the slope of
the segment p2 p3. Thus, p4 lies above this parabola and the sign is +1 as claimed. �

Finishing the proof of Theorem 1.5. It remains to show that Pn+1 contains no (2n + 3)-point
third-order monotone subset.

For contradiction, suppose that M ⊆ Pn+1 is such a (2n + 3)-point subset. Let 2n + 3 =

n1 + n2 + · · · + ns be the type of M (i.e., M has ni ≥ 1 points in the i th leftmost cluster it
intersects). By the inductive assumption we have s ≤ 2n and ni ≤ 2n for all i .

Let na = maxi ni and nb = maxi≠a ni be the two largest among the ni . For convenience, let
us assume a < b; the case a > b is handled symmetrically. We distinguish three cases.

First, if na ≥ 3 and nb ≥ 2, then we can select 4-tuples of types 3 + 1 and 2 + 2 from the
corresponding two clusters, which have different signs, and so M is not homogeneous.

Second, if na ≥ 3 and nb = 1, then we have at least three ni equal to 1 (since na ≤ 2n), and
at least two of them lie on the same side of the cluster corresponding to na , say to the right of it.
Then we can select 4-tuples of types 3 + 1 and 2 + 1 + 1, again of opposite signs.

Third, if na = 2, then there are at least two other clusters of size 2. From these three 2-element
clusters, we can select 4-tuples of types 2 + 2 and 1 + 2 + 1, again of opposite signs.

This exhausts all possibilities (na = 1 cannot happen, because s ≤ 2n), and Theorem 1.5 is
proved. �

5. Order types and one-sided sets of hyperplanes

First we substantiate the two claims made above Proposition 1.6, concerning OT1 and OT2.
For d = 1, an order-type homogeneous sequence in R1 is just a monotone sequence of real
numbers, so OT1(n) = (n − 1)2 + 1 by Theorem 1.1.

In a similar spirit, it is easy to check that a planar order-type homogeneous sequence
corresponds to the vertices of a convex n-gon, enumerated in a clockwise or counterclockwise
order. Thus, OT2(n) ≥ ES2(⌈n/2⌉) = 2Ω(n). On the other hand, given any N -point sequence,

we can first select a subsequence of
√

N


points with increasing or decreasing x-coordinates,

and then we select a convex or concave configuration from it. Thus, by Theorem 1.2, we have
OT2(n) = 2O(n).

Proof of Proposition 1.6. For a point p = (x, y) ∈ R2, we define the point p̃ := (x, x2,

. . . , xd−1, y) ∈ Rd .

To prove that ESd(n) ≤ OTd(n), we consider a set P = {p1, . . . , pN } ⊂ R2 in d-general
position, pi = (xi , yi ), where N = ESd(n)− 1 and x1 < · · · < xN , with no dth-order monotone
subset of n points. It suffices to prove that the sequence P̃ := ( p̃1, p̃2, . . . , p̃N ) has no n-point
order-type homogeneous subsequence. This follows from the next lemma.

Lemma 5.1. For every (d + 1)-tuple (p1, . . . , pd+1) of points in R2, x1 < · · · < xd+1, we have
sgn({p1, . . . , pd+1}) = sgn det M( p̃1, p̃2, . . . , p̃d+1), where M(q1, . . . , qd+1) is the matrix from
the definition of order type above Proposition 1.6.
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Proof. By Lemma 2.2 and Corollary 2.3, the sign of {p1, . . . , pd+1} equals the sign of the
coefficient ad of the unique polynomial f (x) =

d
j=0 a j x j of degree at most d whose graph

passes through the points p1, . . . , pd+1.
The vector a = (a0, . . . , ad) can be expressed as the solution of the linear system V a = y,

where y = (y1, . . . , yd+1) and V is the Vandermonde matrix with vi j = x j−1
i , i, j = 1, 2, . . . ,

d + 1. By Cramer’s rule, we obtain

ad =
det W

det V
,

where W stands for the matrix V with the last column replaced with the vector y. As is well
known, det V =


1≤i< j≤d+1(x j − xi ), and since x1 < · · · < xd+1, we have det V > 0. Thus,

sgnad = sgn det W . Finally, we have

W =

1 x1 x2
1 . . . xd−1

1 y1
...

...
...

...
...

...

1 xd+1 x2
d+1 . . . xd−1

d+1 yd+1

 = M( p̃1, p̃2, . . . , p̃d+1)
T .

The lemma follows, and Proposition 1.6 is proved. �

Proof of Proposition 1.7. The proof is very similar to the previous one. This time we start with a
set P = {p1, . . . , pN } ⊂ R2 in (d −1)-general position, pi = (xi , yi ), where N = ESd−1(n)−1
and x1 < · · · < xN , with no (d − 1)th-order monotone subset of n points. We define a collection
H = {h1, . . . , hN } of N hyperplanes in Rd , where hi is given by

hi =


(ξ1, . . . , ξd) ∈ Rd

:

d
j=1

x j−1
i ξ j = yi


.

The intersection point ξ = (ξ1, . . . , ξd) of, say, h1, . . . , hd is the solution of the linear system
V ξ = y, where V is the d × d Vandermonde matrix this time, vi j = x j−1

i . Cramer’s rule then
gives that the dth coordinate ξd , whose sign we are interested in, equals (det W )/(det V ), where
W is obtained from V by replacing the last column with y.

As we saw in the proof of Proposition 1.6, (det W )/(det V ) also expresses the leading
coefficient in the polynomial of degree d −1 passing through p1, . . . , pd , and thus its sign equals
sgn d−1(p1, . . . , pd). It follows that one-sided subsets of H precisely correspond to (d − 1)st-
order monotone subsets in P , and the proposition is proved. �
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Discrete Probability and Algorithms, in: IMA Volumes in Mathematics and its Applications, vol. 72, Springer,
Berlin etc., 1995, pp. 111–131.

[18] P. Valtr, Open caps and cups in planar point sets, Discrete Comput. Geom. 37 (2004) 365–567.

http://arxiv.org/1012.0548
http://arxiv.org/1206.4001

	Higher-order Erdős--Szekeres theorems
	Introduction
	On the definition of  k th-order monotonicity
	Upper bounds on the Ramsey numbers for transitive colorings
	A lower bound for  ES3 
	Order types and one-sided sets of hyperplanes
	Acknowledgments
	References


