
Available online at www.sciencedirect.com

Advances in Mathematics 244 (2013) 605–625
www.elsevier.com/locate/aim

Enumerative meaning of mirror maps for toric
Calabi–Yau manifolds

Kwokwai Chana, Siu-Cheong Laub, Hsian-Hua Tsengc,∗

a Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
b Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA

c Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA

Received 3 January 2012; accepted 30 May 2013
Available online 15 June 2013

Communicated by Bernd Siebert

Abstract

We prove that the inverse of a mirror map for a toric Calabi–Yau manifold of the form KY , where
Y is a compact toric Fano manifold, can be expressed in terms of generating functions of genus 0 open
Gromov–Witten invariants defined by Fukaya–Oh–Ohta–Ono (2010) [15]. Such a relation between mirror
maps and disk counting invariants was first conjectured by Gross and Siebert (2011) [24, Conjecture 0.2
and Remark 5.1] as part of their program, and was later formulated in terms of Fukaya–Oh–Ohta–Ono’s
invariants in the toric Calabi–Yau case in Chan et al. (2012) [8, Conjecture 1.1].
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1. Introduction

Let X be an n-dimensional toric Calabi–Yau manifold, i.e. a smooth toric variety with trivial
canonical line bundle K X ≃ O X . Such a manifold is necessarily noncompact. Let N = Zn .
Then X = XΣ is defined by a fan Σ in NR = N ⊗Z R = Rn . Let v0, v1, . . . , vm−1 ∈ N be
the primitive generators of the 1-dimensional cones of Σ . Without loss of generality, we assume
that, for i = 0, 1, . . . ,m − 1,

vi = (wi , 1) ∈ N

for some wi ∈ Zn−1 and w0 = 0. Also, following Gross [22], we assume that the fan Σ
has convex support so that X is a crepant resolution of an affine toric variety with Gorenstein
canonical singularities.

The Picard number of X is equal to l := m − n. Let {p1, . . . , pl} be an nef basis of H2(X; Z)
and let {γ1, . . . , γl} ⊂ H2(X; Z) ∼= Zl be the dual basis. Each 2-cycle γa corresponds to an
integral relation

m−1
i=0

Qa
i vi = 0,

where Qa
:= (Qa

0, Qa
1, . . . , Qa

m−1) ∈ Zm . We equip X with a toric symplectic structure ω and
regard (X, ω) as a Kähler manifold. We also complexify the Kähler class by adding a B-field
iB ∈ H2(X, iR) and setting ωC = ω + iB.

An important class of examples of toric Calabi–Yau manifolds is given by the total spaces of
the canonical line bundles KY over compact toric Fano manifolds Y , e.g. KP2 = OP2(−3).

In [8], Leung and the first two authors of this paper study local mirror symmetry for a
toric Calabi–Yau manifold X from the viewpoint of the SYZ conjecture [36]. Starting with
a special Lagrangian torus fibration (the Gross fibration) on X , we construct the SYZ mirror
of X using T -duality modified by instanton corrections and wall-crossing, generalizing the
constructions of Auroux [3,4]. The result is given by the following family of noncompact
Calabi–Yau manifolds [8, Theorem 4.37] (see also [2, Section 7]):

X̌ =


(u, v, z1, . . . , zn−1) ∈ C2

× (C×)n−1
| uv =

m−1
i=0

(1 + δi (q))Ci z
wi


, (1.1)
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where

δi (q) =


α∈H eff

2 (X,Z)\{0}

nβi +αqα

is a generating function of disk open Gromov–Witten invariants. Here, zw denotes the monomial
zw

1

1 . . . zw
n−1

n−1 if w = (w1, . . . , wn−1) ∈ Zn−1; H eff
2 (X,Z) is the cone of effective classes; qα

denotes exp(−

α
ωC) and can be expressed in terms of the complexified Kähler parameters

qa = exp


−


γa

ωC


, a = 1, . . . , l;

the coefficients Ci ∈ C (i = 0, . . . ,m − 1) are related to the complexified Kähler parameters
qa’s by

qa =

m−1
i=0

C
Qa

i
i ;

βi ∈ π2(X, L) are classes of the basic disks bounded by a Lagrangian torus fiber L , and the
coefficients nβi +α = nβi +α(X, L) are 1-pointed genus 0 open Gromov–Witten invariants defined
by Fukaya–Oh–Ohta–Ono [15] (see Section 2.1 for more precise definitions).

Notice that the SYZ mirror family (1.1) is entirely written in terms of symplectic-geometric
data of X . Another striking feature is that (1.1) is expected to be inherently written in canonical
flat coordinates. This was first conjectured by Gross and Siebert [24, Conjecture 0.2 and
Remark 5.1] where they predicted that period integrals of the mirror can be interpreted as
counting of tropical disks (instead of holomorphic disks) in the base of an SYZ fibration
for a compact Calabi–Yau manifold; see also [25, Example 5.2] where Gross and Siebert
observed a relation between the so-called slab functions which appeared in their program and
period computations for KP2 in [21]. In [8], a more precise form of this conjecture for toric
Calabi–Yau manifolds, which we recall and clarify below, is stated in terms of the genus 0 open
Gromov–Witten invariants nβi +α .

Let ∆ ⊂ N ⊗Z R be the convex hull of the finite set Σ (1) = {v0, v1, . . . , vm−1} ⊂ N . Then
∆ is an (n − 1)-dimensional integral polytope, which can also be viewed as the convex hull of
{w0, w1, . . . , wm−1} in Zn−1. Notice that

∆ ∩ Zn−1
= {w0, w1, . . . , wm−1}

since X is smooth. Denote by L(∆) ∼= Cm the space of Laurent polynomials f ∈

C[z±1
1 , . . . , z±1

n−1] of the form
m−1

i=0 Ai zwi (i.e. those with Newton polytope ∆). Also let P∆

be the projective toric variety defined by the normal fan of ∆.
A Laurent polynomial f ∈ L(∆) and hence the associated affine hypersurface Z f :=

{(z1, . . . , zn−1) ∈ (C×)n−1
| f (z1, . . . , zn−1) = 0} in (C×)n−1 is called ∆-regular [5] if the

intersection of the closure Z̄ f ⊂ P∆ with every torus orbit O ⊂ P∆ is a smooth subvariety of
codimension one in O . Denote by Lreg(∆) the space of all ∆-regular Laurent polynomials. The
algebraic torus (C×)n acts on Lreg(∆) by

(C×)n × Lreg(∆) → Lreg(∆),
(λ0, λ1, . . . , λn−1) · f (z1, . . . , zn−1) = λ0 f (λ1z1, . . . , λn−1zn−1).
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Following Batyrev [5] and Konishi–Minabe [32], we define the complex moduli space
MC(X̌) of the mirror Calabi–Yau manifold X̌ to be the GIT quotient of Lreg(∆) by this
action. Since 0 is inside the interior of ∆, the moduli space MC(X̌) is nonempty and has
(complex) dimension l = m − n [5]. Also, as the integral relations among the lattice points
∆ ∩ Zn−1

= {w0, w1, . . . , wm−1} are generated by
m−1

i=1 Qa
i wi = 0 where

m−1
i=0 Qa

i = 0, in
fact we can write down the local coordinates on MC(X̌) explicitly as

ya =

m−1
i=0

A
Qa

i
i , a = 1, . . . , l.

The moduli space MC(X̌) parametrizes a family of open Calabi–Yau manifolds X̌ → MC(X̌)
defined by

X̌ y =


(u, v, z1, . . . , zn−1) ∈ C2

× (C×)n−1
| uv =

m−1
i=0

Ai z
wi


,

where ya =
m−1

i=0 A
Qa

i
i for a = 1, . . . , l. This was the mirror family originally predicted via

physical arguments [9,26,21].
Classically, a mirror map

ψ : MC(X̌) → MK (X),

y = (y1, . . . , yl) → ψ(y) = (q1(y), . . . , ql(y))

from the complex moduli space MC(X̌) of the mirror to the complexified Kähler moduli

MK (X) := {exp(ω + iB) : ω ∈ K (X), B ∈ H2(X,R)}

(where K (X) denotes the Kähler cone) is defined by period integrals

qa(y) = exp


−


Γa

Ω̌y


, a = 1, . . . , l,

over integral cycles Γ1, . . . ,Γl which constitute part of an integral basis of the middle homology
Hn(X̌ y; Z). Here, Ω̌y is the holomorphic volume form

Ω̌y = Res

 1

uv −

m−1
i=0

Ai zwi

dz1

z1
∧ · · · ∧

dzn−1

zn−1
∧ du ∧ dv


on X̌ y . A mirror map gives a local isomorphism from MC(X̌) to MK (X) near y = 0 and q = 0,
and hence provides canonical flat (local) coordinates on MC(X̌).

Based on our mirror construction, we define a map in the reverse direction.

Definition 1. We define the SYZ map

φ : MK (X) → MC(X̌),

q = (q1, . . . , ql) → φ(q) = (y1(q), . . . , yl(q)),
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by

ya(q) = qa

m−1
i=0

(1 + δi (q))
Qa

i , a = 1, . . . , l.

Then we have the following conjecture.

Conjecture 2 (Conjecture 1.1 in [8]). There exist integral cycles Γ1, . . . ,Γl forming part of an
integral basis of the middle homology Hn(X̌ y; Z) such that

qa = exp


−


Γa

Ω̌φ(q)


for a = 1, . . . , l,

where φ(q) is the SYZ map defined in Definition 1 in terms of generating functions 1 + δi (q) of
the genus 0 open Gromov–Witten invariants nβi +α . In other words, the SYZ map coincides with
the inverse of a mirror map.

Remark 3. In [8, Conjecture 1.1], it was wrongly asserted that the integral cycles Γ1, . . . ,Γl
gave an integral basis of Hn(X̌ y; Z). The correct conjecture should be as stated above. We are
grateful to the referees for pointing this out.

Remark 4. We expect that Conjecture 2 can be generalized to include the bulk-deformed genus
0 open Gromov–Witten invariants defined by Fukaya–Oh–Ohta–Ono in [16]. Namely, we claim
that any period integral


Γ Ω̌y over an integral cycle Γ ∈ Hn(X̌ y; Z) can be written in terms

of certain generating functions of bulk-deformed genus 0 open Gromov–Witten invariants.
Analogous results for P2 were obtained by Gross in his work [23] on tropical geometry and
mirror symmetry.

Conjecture 2 not only provides an enumerative meaning to the inverse mirror map, but
also explains the integrality of the coefficients of its Taylor series expansions which has been
observed earlier (see e.g. Zhou [37]). This also shows that one can write down, using generating
functions of disk open Gromov–Witten invariants, Gross–Siebert’s slab functions which satisfy a
normalization condition that is necessary to run the Gross–Siebert program (see [24, Remark 5.1]
and [25, Example 5.2]). In [8, Section 5.3], evidences of Conjecture 2 were given for the toric
Calabi–Yau surface KP1 and the toric Calabi–Yau 3-folds OP1(−1) ⊕ OP1(−1), KP2 , KP1×P1 .
In the joint work [33] of the second author with Leung and Wu, Conjecture 2 was verified for all
toric Calabi–Yau surfaces.

In this paper, we prove the above conjecture for toric Calabi–Yau manifolds of the form
X = KY in a weaker sense that the n-cycles Γa, a = 1, . . . , l, are allowed to have complex
coefficients instead of being integral. The precise statement is as follows.

Theorem 5. For a toric Calabi–Yau manifold of the form KY where Y is a compact toric Fano
manifold, there exist linearly independent cycles Γ1, . . . ,Γl ∈ Hn(X̌ y; C) such that

qa = exp


−


Γa

Ω̌φ(q)


for a = 1, . . . , l,

where φ(q) is the SYZ map in Definition 1 defined in terms of generating functions of the
genus 0 open Gromov–Witten invariants nβi +α .
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Our proof, which mainly relies on the formula proved in [7] and the toric mirror theorem
[19,34] for compact semi-Fano toric manifolds, can be outlined as follows. First, by the main
result of [7], genus 0 open Gromov–Witten invariants of X = KY involved in Conjecture 2 can
be equated with certain genus 0 closed Gromov–Witten invariants of the P1-bundle

Z := P(KY ⊕ OY )

over Y . We observe that the closed Gromov–Witten invariants needed here occur in a certain
coefficient of the J -function JZ of Z . Since Z is semi-Fano (i.e. the anticanonical bundle K −1

Z is
numerically effective), the toric mirror theorem of Givental [19] and Lian–Liu–Yau [34] can be
applied and it says that JZ is equal to the combinatorially and explicitly defined I -function IZ ,
via a toric mirror map.

Here comes another key observation: the toric mirror map, which is defined as certain
coefficients of the I -function, can be written entirely in terms of a single function which is
precisely the reciprocal of the generating function 1 + δ0(q) of genus 0 open Gromov–Witten
invariants of X . It is known that components of the toric mirror map of Z satisfy certain GKZ-
type differential equations. Combining with the previous observations, it is then easy to deduce
that the inverse of the SYZ map for X gives solutions to the GKZ hypergeometric system
associated to X . Our main result, Theorem 5, then follows by noting that period integrals give a
basis of solutions of the GKZ system.

To prove the stronger version, Conjecture 2, we need to show that, after a suitable
normalization of Ω̌y , there exist integral cycles Γ1, . . . ,Γl ∈ Hn(X̌ y; Z) such that the period
integrals


Γa

Ω̌y have logarithmic terms of the form log ya +· · · . This is closely related to integral
structures coming from the central charge formula [28]. We plan to address this problem in the
future; see the last subsection for more discussions.

The rest of this paper is organized as follows. In Section 2, we recall the formula equating
open and closed Gromov–Witten invariants in [7] and explicitly compute the generating functions
1 + δi (q) for X = KY using J -functions and the toric mirror theorem. In Section 3, we compute
the toric mirror map for Z = P(KY ⊕ OY ) in terms of the functions 1 + δi (q). In Section 4,
we first deduce that components of the inverse of the SYZ map for X are solutions to the GKZ
hypergeometric system associated to X . Then we prove our main result, Theorem 5, by showing
that the period integrals


Γ Ω̌y give a basis of solutions of the GKZ systems attached to X . We

end with some discussions about definitions of mirror maps and ways to enhance Theorem 5 to
Conjecture 2 in Section 5.

2. Computing open GW invariants via J-functions

In this section, we will establish a formula relating the generating functions 1 + δi (q) of
disk open Gromov–Witten invariants of X = KY and the toric mirror map for the P1-bundle
Z = P(KY ⊕ OY ) over Y . The main result is Theorem 9.

2.1. Open Gromov–Witten invariants of KY

In this subsection we recall the formula computing open Gromov–Witten invariants of
KY in terms of closed Gromov–Witten invariants, proved in [7]. To begin with, let us
briefly recall the definition of the genus 0 open Gromov–Witten invariants nβi +α following
Fukaya–Oh–Ohta–Ono [15].
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Let X be a toric manifold of complex dimension n, equipped with a toric Kähler structure ω.
Let

L ⊂ X

be a Lagrangian torus fiber of the moment map associated to the Hamiltonian T n-action on
(X, ω). Let β ∈ π2(X, L) be a relative homotopy class with Maslov index µ(β) = 2. Consider
the moduli space M1(L , β) of holomorphic disks in X with boundaries lying in L and one
boundary marked point representing the class β. A compactification of M1(L , β),

M1(L , β) ⊂ M1(L , β)

is given by the moduli space M1(L , β) of stable maps from genus 0 bordered Riemann surfaces
(Σ , ∂Σ ) to (X, L) with one boundary marked point and class β.

It is shown in [14,15] that M1(L , β) is a Kuranishi space of virtual (real) dimension n. Let
[M1(L , β)]vir be its virtual fundamental cycle. This is an n-cycle instead of a chain because β is
of minimal Maslox index and consequently ∂M1(L , β) = ∅. The pushforward of this cycle by
the evaluation map ev : M1(L , β) → L at the boundary marked point defines a genus 0 open
Gromov–Witten invariant

nβ := ev∗([M1(L , β)]
vir) ∈ Hn(L; Q) ∼= Q.

In [15], it is shown that the number nβ is independent of the choice of perturbations by multi-
sections and hence is indeed an invariant of (X, L , ω).

Remark 6. Since the moment map of X does not contain singular fibers, there is no wall-
crossing; in other words, the invariants nβ remain unchanged when we move the Lagrangian
torus fiber L .

Let v0, v1, . . . , vm−1 be the primitive generators of the fan Σ defining X and let
D0, D1, . . . , Dm−1 ⊂ X be the associated toric prime divisors (i.e. irreducible torus-invariant
hypersurfaces) respectively. Holomorphic disks in X with boundaries in L give an additive basis

β0, β1, . . . , βm−1

of π2(X, L) ∼= Zm such that βi · D j = δi j . In [10], Cho and Oh proved that, for i =

0, 1, . . . ,m − 1, there exists a unique (up to automorphisms of the domain) holomorphic disk
ϕ : (D2, ∂D2) → (X, L) passing through a generic point in L and representing the class βi . We
call such holomorphic disks the basic disks and hence their classes β0, β1, . . . , βm−1 the basic
disk classes.

Suppose that X is semi-Fano, i.e. the anticanonical divisor −K X is nef. Then it follows from
the results of Cho–Oh [10] and Fukaya–Oh–Ohta–Ono [15] that nβ ≠ 0 only when β = βi + α

for some i and some α ∈ H eff
2 (X; Z) with c1(α) = 0 (see e.g. [7, Lemma 5.1]).

In what follows we will focus on the case when X = XΣ is the total space of the canonical
line bundle KY over a compact toric Fano manifold Y . Such an X is a (noncompact) Calabi–Yau
manifold, i.e. K X ∼= O X . By our convention, the primitive generators of the fan Σ are chosen
to be of the form vi = (wi , 1) for i = 0, 1, . . . ,m − 1 and so that w0 = 0. Without loss of
generality, we also require that w1, . . . , wm−1 ∈ N ′

:= Zn−1 form the primitive generators of
the fan in N ′

R = Rn−1 defining Y . The toric prime divisor D0 ⊂ X is then nothing but the zero
section Y ↩→ KY .
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Since D0 is the only compact toric prime divisor in X , the invariant nβ is nonzero only when
either β = βi for some 1 ≤ i ≤ m − 1 or β = β0 + α for some α ∈ H2(X; Z) = H2(Y ; Z). By
the results of Cho–Oh [10] mentioned above, we already know that nβi = 1 for any i . The other
invariants nβ0+α are computed by the following formula.

Theorem 7 (Theorem 1.1 in [7]). Consider the P1-bundle Z = P(KY ⊕ OY ) → Y over Y . Let
h ∈ H2(Z; Z) be the fiber class and [pt] ∈ H2n(Z; C) the Poincaré dual of a point. Denote
by ⟨[pt]⟩Z

0,1,h+α the 1-point genus zero closed Gromov–Witten invariant of Z with insertion the
point class [pt]. Then we have the equality

nβ0+α = ⟨[pt]⟩Z
0,1,h+α

between open and closed Gromov–Witten invariants.

2.2. Computation via J -functions

By Theorem 7, in order to compute the genus 0 open Gromov–Witten invariants appearing in
Conjecture 2 for X = KY , it suffices to compute the genus 0 closed Gromov–Witten invariants:

⟨[pt]⟩Z
0,1,h+α. (2.1)

In this subsection, we explain how to do this using the (small) J -function and the toric mirror
theorem [19,34].

The P1-bundle Z is a toric manifold defined by the fan Σ̄ generated by Σ (1) =

{v0, v1, . . . , vm−1} together with the additional ray spanned by vm := −v0. We have H2(Z; Z) =

Z ⊕ H2(Y ; Z) and H2(Z; Z) = Z ⊕ H2(Y ; Z). Choose a nef basis {p1, . . . , pl , pl+1} (recall
that l = m − n) of H2(Z; Z) so that {p1, . . . , pl} gives a positive basis of H2(Y ; Z) with dual
basis {γ1, . . . , γl} ⊂ H2(Y ; Z) and such that {γ1, . . . , γl , γl+1 = h} gives the dual basis in
H2(Z; Z). As usual, we denote by D0, . . . , Dm−1, Dm ⊂ X the toric prime divisors associated
to the generators v0, . . . , vm−1, vm respectively.

By definition, the small J -function JZ of Z is given by [19]

JZ (q, z) = eτ/z

1 +


α


d∈H eff

2 (Z;Z)\{0}

qd

1,

φα

z − ψ

Z

0,2,d
φα

 , (2.2)

where τ =
l+1

a=1 pa log qa ∈ H2(Z), qd
=
l+1

a=1 q pa ·d
a (here qa’s are regarded as formal

variables), {φα} ⊂ H∗(Z) is a homogeneous additive basis, and {φα} is its dual basis (with
respect to the Poincaré pairing). Expanding (2.2) into a power series in 1/z yields

JZ (q, z) = eτ/z

1 +


α


d∈H eff

2 (Z;Z)\{0}

qd 1
z


k≥0

⟨1, φαψk
⟩

Z
0,2,d

φα

zk


= eτ/z

1 +


α


d∈H eff

2 (Z;Z)\{0}

qd 1
z


k≥1

⟨φαψ
k−1

⟩
Z
0,1,d

φα

zk

 ,
where in the second equality we use the string equation.

We observe that the closed Gromov–Witten invariants (2.1) we need occur in the coefficient of
the 1/z2-term of JZ that takes values in H0(Z). Indeed, since (2.1) has no descendant insertions,
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we look at the terms in the above expansion with k = 1. Furthermore, to get (2.1) we need
φα = [pt] ∈ H2n(Z) and thus φα = 1 ∈ H0(Z).

In order to extract (2.1) from JZ , we use the explicit formula for JZ given by the toric mirror
theorem. Recall that the I -function IZ of Z is given by

IZ (y, z) = et/z


d∈H eff
2 (Z;Z)

yd
m

i=0

0
k=−∞

(Di + kz)

Di ·d
k=−∞

(Di + kz)

, (2.3)

where t =
l+1

a=1 pa log ya ∈ H2(Z), yd
=
l+1

a=1 y pa ·d
a (again we regard the ya’s as formal

variables) and we identify Di with its cohomology class in H2(Z). Here, the product should be
expanded into a 1/z-series by writing Di + mz = mz(1 + Di/mz). Note that both JZ and IZ are
H∗(Z)-valued formal functions. (In fact, by [29, Lemma 4.2], the I -function and hence, via the
mirror theorem stated below, the J -function are convergent power series near y = 0 and q = 0
respectively.)

The I -function has the asymptotics

IZ (y, z) = 1 +
Υ(y)

z
+ higher order terms in z−1,

where Υ(y) is a (multi-valued) function with values in H2(Z). We define the toric mirror map
for Z to be the map y → q(y) := exp Υ(y). The toric mirror theorem applied to the semi-Fano
toric manifold Z then says the following.

Theorem 8 (Toric Mirror Theorem [19,34]). The I -function and the J -function coincides via
the toric mirror map y → q(y), i.e.

J (q(y), z) = I (y, z).

In view of this, in order to extract the invariants (2.1), we should look for the coefficient of the
1/z2-term of IZ that takes values in H0(Z).

Consider the expansion of the factor

0
k=−∞

(Di + kz)

Di ·d
k=−∞

(Di + kz)

(2.4)

into a 1/z-series, achieved by writing Di + kz = kz(1 + Di/kz). Since we want terms with
values in H0(Z), we cannot have Di involved. There are three possibilities.

(1) Di · d > 0: the only term in the expansion of (2.4) that does not contain Di is the leading
term 1

(Di ·d)!
z−Di ·d .

(2) Di · d = 0: the quotient (2.4) is just 1 in this case.
(3) Di · d < 0: in this case the quotient (2.4) is proportional to Di , because of the factor

corresponding to k = 0.

Thus for the terms we need, only cases (1) and (2) can occur.
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Note that −K Z =
m

i=0 Di . Therefore, in the sum


d∈H eff

2 (Z;Z)\{0}

yd
m

i=0

0
k=−∞

(Di + kz)

Di ·d
k=−∞

(Di + kz)

,

the part of the 1/z2-term that takes values in H0(Z) is
d

yd
i
(Di · d)!

, (2.5)

where the sum is over all d ∈ H eff
2 (Z; Z) \ {0} such that c1(d) = −K Z · d = 2 and Di · d ≥ 0

for all i = 0, 1, . . . ,m − 1,m. Note that the term in IZ with d = 0 and the factor et/z do not
contribute. So the coefficient of the 1/z2-term of IZ that takes values in H0(Z) is given exactly
by (2.5).

For d ∈ H eff
2 (Z; Z) \ {0} such that c1(d) = −K Z · d = 2 and Di · d ≥ 0 for all i , there are

two possibilities:

(i) either D j · d = 2 for some j and Di · d = 0 for all i ≠ j , or
(ii) D j1 · d = D j2 · d = 1 and Di · d = 0 for all i ∉ { j1, j2}.

Case (i) is impossible as Z is compact, so we are left with case (ii). Let d ∈ H eff
2 (Z; Z) be as in

case (ii). Note that H eff
2 (Z; Z) = Z≥0 · h ⊕ H eff

2 (Y ; Z), and c1(h) = 2 and c1(α) = 0 for any
α ∈ H2(Y ; Z) ⊂ H2(Z; Z). Hence, d must be of the form d = h + α for some α ∈ H eff

2 (Y ; Z).
Then we have Dm · d = 1 since Dm · α = 0. So d ∈ H2(Z; Z) must be corresponding to an
integral relation of the form v j + vm = 0. The only such class is the fiber class h = γl+1, and
therefore we conclude that the sum (2.5) is simply given by yl+1.

Theorem 9. For the P1-bundle Z = P(KY ⊕ OY ) over a compact toric Fano manifold Y , we
have the following formula:

yl+1(q) = ql+1(1 + δ0(q1, . . . , ql)), (2.6)

where y = y(q) is the inverse of the toric mirror map for Z and

1 + δ0(q1, . . . , ql) =


α∈H eff

2 (Y ;Z)

nβ0+αqα

is the generating function for open Gromov–Witten invariants of X = KY ; here qα =
l

a=1
q pa ·α

a .

Proof. By the above calculation, the sum (2.5) for Z = P(KY ⊕ OY ) is simply given by yl+1. Let
y = y(q) be the inverse of the toric mirror map for Z . By the toric mirror theorem for semi-Fano
toric manifolds (Theorem 8), we have

IZ (y(q), z) = JZ (q, z).

By comparing the coefficients of the 1/z2-terms that takes values in H0(Z) on both sides, we
have

yl+1(q1, . . . , ql+1) =


d∈H eff

2 (Z;Z)\{0}

⟨[pt]⟩Z
0,1,dqd .
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By dimension reasons, the invariant ⟨[pt]⟩Z
0,1,d is nonzero only when c1(d) = 2, and we know

that for d ∈ H eff
2 (Z ,Z), c1(d) = 2 if and only if d = h +α for some α ∈ H eff

2 (Y,Z). Hence, we
have

yl+1(q1, . . . , ql+1) = ql+1


α∈H eff

2 (Y ;Z)

⟨[pt]⟩Z
0,1,h+αqα,

where qα =
l

a=1 q pa ·α
a is a monomial in the variables q1, . . . , ql . Note that H eff

2 (X,Z) =

H eff
2 (Y,Z). The proposition now follows from the formula in Theorem 7. �

3. Toric mirror map and the SYZ map

In this section, we show that the inverse of the toric mirror map for the P1-bundle Z contains
the SYZ map (Definition 1) for the toric Calabi–Yau manifold X = KY . The key observation is
that both maps are completely determined by one and the same function 1 + δ0(q).

Recall that the toric mirror map for Z is given by the coefficient of the 1/z-term of the I -
function IZ (y, z) that takes values in H2(Z). By analyzing the quotient (2.4) as we did in the
previous subsection, it is not hard to see that the term (depending on d ∈ H eff

2 (Z ,Z))

m
i=0

0
k=−∞

(Di + kz)

Di ·d
k=−∞

(Di + kz)

(3.1)

in IZ (y, z) will contribute to H≤2(Z) only when there exists at most one 0 ≤ j ≤ m such that
D j · d < 0. If Di · d ≥ 0 for all i , then (3.1) is of the form

z−c1(d)

m
i=0
(Di · d)!

−
z−c1(d)−1

m
i=0
(Di · d)!


i :Di ·d>0


Di ·d
k=1

1
k


Di + terms in H>2(Z),

which does not contribute to the toric mirror map at all since c1(d) cannot be equal to 1. On the
other hand, if there exists j such that D j · d < 0 and Di · d ≥ 0 for all i ≠ j , then (3.1) is of the
form

z−c1(d)−1 (−1)−D j ·d−1(−D j · d − 1)!
i≠ j
(Di · d)!

D j + terms in H>2(Z)

which contributes to the toric mirror map whenever c1(d) = 0.
This shows that the I -function IZ (y, z) expands as

1 +


l+1
a=1

pa log ya +

m
j=0


d:c1(d)=0,

D j ·d<0,
Di ·d≥0 ∀i≠ j

yd (−1)−D j ·d−1(−D j · d − 1)!
i≠ j
(Di · d)!

D j

 1
z

+ higher order terms in z−1.
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Writing D j =
l+1

a=1 Qa
j pa ( j = 0, 1, . . . ,m), the toric mirror map

y = (y1, . . . , yl , yl+1) → q(y) = (q1(y), . . . , ql(y), ql+1(y))

can then be expressed as

log qa(y) = log ya −

m
j=0

Qa
jΞ j (y), a = 1, . . . , l, l + 1,

where

Ξ j (y) =


d:c1(d)=0,

D j ·d<0,
Di ·d≥0 ∀i≠ j

yd (−1)−D j ·d(−D j · d − 1)!
i≠ j
(Di · d)!

,

j = 0, 1, . . . ,m.
For the P1-bundle Z = P(KY ⊕ OY ) over a toric Fano manifold Y , the function Ξ j (y) is

nonzero only when j = 0. This can be seen by applying [20, Proposition 4.3] which says that
the function Ξ j (y) is nonzero if and only if v j is not a vertex of the fan polytope (recall that the
fan polytope is the convex hull of the primitive generators Σ (1) of the fan Σ ). Moreover, Ξ0(y)
depends only on the variables y1, . . . , yl since Dm · d = 0 for every d with c1(d) = 0. Therefore
we have the following.

Proposition 10. The toric mirror map for the P1-bundle Z = P(KY ⊕ OY ) over a compact toric
Fano manifold Y is given by

qa = yaG(y)−Qa
0 , a = 1, . . . , l,

ql+1 = yl+1G(y)−1,
(3.2)

where G(y) = exp Ξ0(y) is a function of the variables y1, . . . , yl .

Proof. Note that Qa
m = 0 for a = 1, . . . , l, and Ql+1

0 = Ql+1
m = 1, Ql+1

j = 0 for
j = 1, . . . ,m − 1. So the toric mirror map is of the form as stated. �

Combining Proposition 10 with Theorem 9, we arrive at the following.

Theorem 11. The inverse of the toric mirror map for the P1-bundle Z = P(KY ⊕ OY ) over a
compact toric Fano manifold Y is given by

ya = qa(1 + δ0(q))
Qa

0 , a = 1, . . . , l,
yl+1 = ql+1(1 + δ0(q)),

(3.3)

where

1 + δ0(q) =


α∈H eff

2 (Y ;Z)

nβ0+αqα

is the generating function for open Gromov–Witten invariants of X = KY , and qα =
l

a=1
q pa ·α

a .
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In particular, the first l components of the inverse (3.3) of the toric mirror map for Z coincide
with the SYZ map (Definition 1) for X = KY .

As an immediate application, we have the equality

1 + δ0(q) = G(y(q)) = exp Ξ0(y(q)),

where y(q) = (y1(q), . . . , yl(q)) is part of the inverse mirror map of Z . This gives an effective
method to compute the genus 0 open Gromov–Witten invariants nβ0+α .

4. GKZ systems and period integrals

In this section, we prove that components of the inverse of the SYZ map for the toric
Calabi–Yau manifold X = KY are solutions to the Gel’fand–Kapranov–Zelevinsky (GKZ)
hypergeometric system [17,18] associated to X . Then by showing that the period integrals


Γ Ω̌y

give a basis of solutions of the GKZ system, we complete the proof of Theorem 5.

4.1. GKZ hypergeometric systems

Consider the following exact sequence (the “fan sequence”) from toric geometry of Z :

0 → H2(Z; Z) → Zm+1
→ N → 0

where Zm+1
→ N is mapping the standard basis {ei }

m
i=0 to {vi }

m
i=0. For each d ∈ H2(Z; Z),

define a differential operator

Pd :=


i :⟨Di ,d⟩>0

⟨Di ,d⟩−1
k=0

(Di − k)− yd


i :⟨Di ,d⟩<0

−⟨Di ,d⟩−1
k=0

(Di − k), (4.1)

where Di :=
l+1

a=1 Qa
i ya

∂
∂ya
, i = 0, 1, . . . ,m. Givental [19] observes that coefficients of the

I -function IZ (y, z) give solutions to the following system of GKZ-type differential equations:

PdΨ = 0, d ∈ H2(Z; Z);

see also [29, Lemma 4.6]. In particular, components of the toric mirror map (3.2) for Z are
solutions of the above system.

On the other hand, the Gel’fand–Kapranov–Zelevinsky (GKZ) system [17,18] of differential
equations (also called the A-hypergeometric system) associated to X (or to Σ (1) =

{v0, v1, . . . , vm−1} with parameter β = 0) is the following system of differential equations on
functions Φ(A) of A = (A0, A1, . . . , Am−1) ∈ Cm :

m−1
i=0

vi Ai
∂

∂Ai
Φ = 0, (4.2)

 
i :⟨Di ,α⟩>0


∂

∂Ai

⟨Di ,α⟩

−


i :⟨Di ,α⟩<0


∂

∂Ai

−⟨Di ,α⟩


Φ = 0, α ∈ H2(X; Z). (4.3)

Note that (4.2) consists of n equations.
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Theorem 12. By writing ya =
m−1

i=0 A
Qa

i
i for a = 1, . . . , l, the components

qa = qa(y1, . . . , yl), a = 1, . . . , l

of the inverse of the SYZ map for X = KY give solutions to the GKZ hypergeometric sys-
tem (4.2), (4.3).

Proof. As ya =
m−1

i=0 A
Qa

i
i , we have

Ai
∂

∂Ai
=

l+1
a=1

Qa
i ya

∂

∂ya
= Di .

So
m−1
i=0

vi Ai
∂

∂Ai
=

l+1
a=1


m−1
i=0

Qa
i vi


ya

∂

∂ya
.

Since
m

i=0 Qa
i = 0 and Qa

m = 0 for a = 1, . . . , l, the equations (4.2) are satisfied.
By induction, we compute that

∂

∂Ai

Q

Φ = A−Q
i

Q−1
k=0

(Di − k)Φ

for Q ∈ Z>0. So, for α ∈ H2(X; Z), the differential operator on the left-hand-side of (4.3) can
be written as

i :⟨Di ,α⟩>0

A−⟨Di ,α⟩

i

⟨Di ,α⟩−1
k=0

(Di − k)−


i :⟨Di ,α⟩<0

A⟨Di ,α⟩

i

−⟨Di ,α⟩−1
k=0

(Di − k)

=

 
i :⟨Di ,α⟩>0

A−⟨Di ,α⟩

i

 
i :⟨Di ,α⟩>0

⟨Di ,α⟩−1
k=0

(Di − k)

− ya


i :⟨Di ,α⟩<0

−⟨Di ,α⟩−1
k=0

(Di − k)



=

 
i :⟨Di ,α⟩>0

A−⟨Di ,α⟩

i


Pα,

where we have used the fact that ⟨Dm, α⟩ = 0 for α ∈ H2(X; Z) ⊂ H2(Z; Z) in the last equality.
Now Theorem 11 together with results of Givental [19] and Iritani [29, Lemma 4.6] imply that
the equations in (4.3) are also satisfied.

It follows that the inverse of the SYZ map give solutions to the GKZ system (4.2), (4.3). �

4.2. Period integrals

By [18], the number of linearly independent solutions of the GKZ hypergeometric system
(4.2), (4.3) is equal to the normalized volume Vol(∆) of the polytope ∆ (recall that it is the
convex hull of Σ (1) = {v0, v1, . . . , vm−1}). Here, “normalized” means that the volume of a
standard (n − 1)-simplex is 1. We would like to show that the period integrals


Γ Ω̌y provide

exactly this number of solutions to the GKZ system.
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Recall that the family of mirror Calabi–Yau manifolds X̌ → MC(X̌) is defined by

X̌ y = {(u, v, z1, . . . , zn−1) ∈ C2
× (C×)n−1

| uv = fy(z1, . . . , zn−1)},

where

fy(z1, . . . , zn−1) =

m−1
i=0

Ai z
wi ∈ C[z±1

1 , . . . , z±1
n−1]

is a ∆-regular Laurent polynomial, and ya =
m−1

i=0 A
Qa

i
i for a = 1, . . . , l.

We equip the hypersurface X̌ y with the Kähler structure pull-back from the ambient space:

ω̌y = −
i
2


n−1
k=1

dzk

zk
∧

dz̄k

z̄k
+ du ∧ dū + dv ∧ d v̄

 
X̌ y

.

Consider the Hamiltonian S1-action on (X̌ y, ω̌y)

eiθ
· (u, v, z1, . . . , zn−1) → (eiθu, e−iθv, z1, . . . , zn−1),

with moment map given by

µ : X̌ y → R, (u, v, z1, . . . , zn−1) →
1
2
(|u|

2
− |v|2).

On the other hand, we view X̌ y as a conic fibration via the map

π : X̌ y → (C×)n−1, (u, v, z1, . . . , zn−1) → (z1, . . . , zn−1). (4.4)

The discriminant locus of π is the affine hypersurface Z y := {(z1, . . . , zn−1) ∈ (C×)n−1
|

fy(z1, . . . , zn−1) = 0} in (C×)n−1 defined by fy . We restrict π to the level set µ−1(0) of the
moment map, which, by abuse of notation, we still call

π : µ−1(0) → (C×)n−1.

This map is a circle fibration where the fiber {|u| = |v|} ⊂ C2 degenerates to a point over the
hypersurface Z y . Notice that π : µ−1(0) → (C×)n−1 is also the quotient map since µ−1(0)/S1

is canonically isomorphic to (C×)n−1.
Now choose a generic y ∈ MC(X̌) so that the function fy : (C×)n−1

→ C is Morse–Smale
and convenient in the sense of Kouchnirenko (see [29, Subsections 3.2 and 3.3] for more details
on how to choose such y). Then fy has precisely Vol(∆) critical points on (C×)n−1. We also
choose y so that all the critical values are distinct. Using Morse-theoretic arguments, Iritani
[29,30] shows that the relative homology group Hn−1((C×)n−1, Z y; Z) is isomorphic to ZVol(∆)

and, moreover, an integral basis is given by the Lefschetz thimbles which are families of vanishing
cycles over paths in C connecting 0 to the critical values of fy . (These cycles are in fact
Lagrangian and were used by Abouzaid [1] to study Homological Mirror Symmetry for toric
manifolds.)

Let Λ ⊂ (C×)n−1 be a Lefschetz thimble representing an integral cycle in
Hn−1((C×)n−1, Z y; Z). Topologically, Λ is an (n − 1)-dimensional ball Dn−1 with boundary
∂Dn−1

⊂ Z y = f −1
y (0). We define Γ ⊂ X̌ y by

Γ = π−1(Λ),
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i.e. Γ is the inverse image of Λ under the circle fibration π : µ−1(0) → (C×)n−1. Topologically
Γ is an n-sphere Sn and hence defines an integral n-cycle in Hn(X̌ y; Z). This construction gives
a map Hn−1((C×)n−1, Z y; Z) → Hn(X̌ y; Z) which, as we will see below, is an isomorphism.
We remark that a similar construction was suggested by Gross in [22, Section 4].

Consider the standard holomorphic (n − 1)-form

Ω0 =
dz1

z1
∧ · · · ∧

dzn−1

zn−1

on (C×)n−1. Following Konishi–Minabe [32], we regard this as defining the relative cohomology
class

[(Ω0, 0)] ∈ Hn−1((C×)n−1, Z y).

Lemma 13. We have the equality between period integrals:
Γ

Ω̌y =


Λ

Ω0,

where Ω̌y is the holomorphic volume form

Ω̌y = Res


1

uv − fy(z1, . . . , zn−1)

dz1

z1
∧ · · · ∧

dzn−1

zn−1
∧ du ∧ dv


on X̌ y .

Proof. On X̌ y ∩ (C×)n+1, the form Ω̌y is given by

dz1

z1
∧ · · · ∧

dzn−1

zn−1
∧ du;

see e.g. [8, Subsection 4.6.4]. The reduced form

(Ω̌y)red = ι(∂/∂θ)♯Ω̌y =
dz1

z1
∧ · · · ∧

dzn−1

zn−1

descends to the quotient µ−1(0)/S1 ∼= (C×)n−1. The equality now follows from integration
along fibers of the map π : µ−1(0) → (C×)n−1. �

Proposition 14 (Cf. [28] and Corollary A.16 in [32]). The period integrals
Γ

Ω̌y, Γ ∈ Hn(X̌ y; Z),

provide a C-basis of solutions to the GKZ hypergeometric system (4.2), (4.3).

Proof. Batyrev [5] shows that the period integrals

Λ Ω0 are solutions to the GKZ system

(4.2), (4.3). This gives a map from Hn−1((C×)n−1, Z y; C) to the space of solutions of the
GKZ system. Dually, there is a map from the GKZ D-module to Hn−1((C×)n−1, Z y; C)
defined by sending the generator 1 of the D-module to [Ω0]. It was proven in [35, Section
6] that [Ω0] and its covariant derivatives (with respect to the Gauss–Manin connection) span
Hn−1((C×)n−1, Z y; C), and hence the dual map is surjective. Since Hn−1((C×)n−1, Z y; Z) has
rank Vol(∆) [29,30], which is precisely the number of linearly independent solutions of the GKZ
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system [18], the above map is indeed an isomorphism. Thus the period integrals

Λ Ω0 form a

basis of solutions of the GKZ system (this is in fact [32, Corollary 4.4 (3)]), and now the result
follows from Lemma 13. �

Remark 15. Proposition 14 shows that the above construction of n-cycles in X̌ y from Lefschetz
thimbles in ((C×)n−1, Z y) defines an isomorphism (cf. [22])

Hn−1((C×)n−1, Z y; Q)
∼=
−→ Hn(X̌ y; Q).

Also notice that this proposition holds for any toric Calabi–Yau manifold.

Remark 16. For toric Calabi–Yau 3-folds, Proposition 14 was proved by Konishi–Minabe
in [32, Corollary A.16] (see also [28]). To generalize their proof to higher dimensions,
one just need to generalize [32, Proposition A.1] (which gives an isomorphism Hn(X̌ y) ∼=

Hn−1((C×)n−1, Z y) sending Ω̌y to Ω0), the proof of which should work mutatis mutandis.

Our main result, Theorem 5, now follows from Theorem 12 and Proposition 14.

5. Discussions

5.1. B-models and mirror maps

In this paper, the mirror B-model for a toric Calabi–Yau n-fold X is given by the family of
n-dimensional noncompact Calabi–Yau manifolds X̌ → MC(X̌) defined by

X̌ y =


(u, v, z1, . . . , zn−1) ∈ C2

× (C×)n−1
| uv =

m−1
i=0

Ai z
wi


,

where the parameters (A0, A1, . . . , Am−1) ∈ Cm are subject to the constraints

ya =

m−1
i=0

A
Qa

i
i , a = 1, . . . , l,

and zw denotes the monomial zw
1

1 . . . zw
n−1

n−1 if w = (w1, . . . , wn−1) ∈ Zn−1. We take this
geometry as the mirror B-model because it is the most natural one from the viewpoint of the
SYZ conjecture [36], as have been shown in [8]. For this model, a mirror map is defined in terms
of period integrals

Γ
Ω̌y (5.1)

of a holomorphic volume form Ω̌y ∈ Hn(X̌ y) over integral cycles Γ ∈ Hn(X̌ y; Z).
Another geometry that is usually taken as the mirror B-model in the literature is the family of

(n − 2)-dimensional affine hypersurfaces Z → MC(X̌) defined by

Z y =


(z1, . . . , zn−1) ∈ (C×)n−1

|

m−1
i=0

Ai z
wi = 0


,
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where the parameters (A0, A1, . . . , Am−1) ∈ Cm are subject to the same constraints as above.
For this model, a mirror map is defined in terms of period integrals

Λ
Ω0 (5.2)

of the standard (relative) holomorphic form Ω0 =
dz1
z1

∧ · · · ∧
dzn−1
zn−1

∈ Hn−1((C×)n−1, Z y) over

integral relative cycles Λ ∈ Hn−1((C×)n−1, Z y; Z).
Both models are commonly used in the Physics literature [9,26,21,28]. In [26, Section 8],

yet another model was introduced, namely, the family of Landau–Ginzburg models Wy : C ×

(C×)n−1
→ C defined by

Wy(z0, z1, . . . , zn−1) = z0

m−1
i=0

Ai z
wi

for z0 ∈ C and (z1, . . . , zn−1) ∈ (C×)n−1. Notice that z0 is a C-valued (instead of C×-valued)
variable. In general, we expect that all these models are equivalent in a suitable sense; see [26,
Section 8] for a physical argument.

The period integrals (5.1), (5.2) are solutions to the same GKZ hypergeometric system (4.2),
(4.3) associated to X . In practice, GKZ hypergeometric solutions are often used directly to define
the mirror maps. But in fact it is not obvious that this definition coincides with the previous ones,
which is precisely why extending Theorem 5 to Conjecture 2 is nontrivial; see the subsection
below.

Alternatively, one may use coefficients of the equivariant I -function to define the toric mirror
map for a toric Calabi–Yau manifold X . This leads to an alternative approach to Theorem 5 which
we sketch as follows. First note that a toric mirror theorem can be established for the noncompact
toric Calabi–Yau manifold X = KY . In this noncompact setting, closed Gromov–Witten
invariants of X are defined by the virtual localization formula. Such a definition coincides with
closed Gromov–Witten invariants of Y twisted by the line bundle KY and the inverse equivariant
Euler class, in the sense of [12]. An equivariant mirror theorem for X can then be proved in a
number of ways, for example, by using the main theorem of [11] or by following the arguments
in [19].

Theorem 9 in this paper relates the generating function of genus 0 open Gromov–Witten
invariants of X to the inverse toric mirror map for Z = P(KY ⊕ OY ). One can then try to deduce
Theorem 12 by comparing the inverse of the toric mirror map for X , as given in the equivariant
toric mirror theorem, with the inverse of the toric mirror map for Z and use the fact that the
equivariant I -function for X satisfies the GKZ hypergeometric system (4.2), (4.3) associated to
X to conclude Theorem 12.

5.2. Integral structures and Conjecture 2

Our main result, Theorem 5, is weaker than Conjecture 2 in that the cycles Γ1, . . . ,Γl may not
be integral cycles in Hn(X̌ y; Z); instead, we have only proved that they are C-linear combinations
of integral cycles.

To strengthen our result to a proof of Conjecture 2, we need to show that, after normalizing
the holomorphic volume form Ω̌y so that


Γ0

Ω̌y = 1 where Γ0 ∈ Hn(X̌ y; Z) is a monodromy-

invariant cycle, there are integral cycles Γ1, . . . ,Γl ∈ Hn(X̌ y; Z) forming part of an integral
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basis such that the period integrals

Γa

Ω̌y are linear in logarithms and of the form

log ya + · · · ,

i.e. the logarithmic terms all have coefficients equal to 1.
Evidences for this claim have been found by Hosono in [28, Appendix A] using explicit

calculations and constructions of the integral cycles and explicit. In general, the problem is
rather subtle and should be closely related to the integral and rational structures in the mirror
B-model; see the works by Horja [27], Hosono [28], Borisov–Horja [6], Iritani [29,30] and
Katzarkov–Kontsevich–Pantev [31] on these issues and, in particular, see [28, Conjectures
2.2 and 6.3] where Hosono relates this claim to the central charge formula and Kontsevich’s
Homological Mirror Symmetry conjecture.

To prove the claim in our setting, one may try either to compute the monodromy matrix around
the limit point y = 0 in X̌C (presumably this should be a large complex structure limit point in the
Hodge-theoretic sense [13, Chapter 5]), or to construct the integral cycles Γ1, . . . ,Γl explicitly
and then directly evaluate the period integrals


Γa

Ω̌y and study the leading terms of their power
series expansions. We plan to tackle these issues in a future work.
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