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Abstract

A variety of descent and major-index statistics have been defined for symmetric groups, hyperoctahedral
groups, and their generalizations. Typically associated to a pair of such statistics is an Euler–Mahonian
distribution, a bivariate polynomial encoding the statistics; such distributions often appear in rational
bivariate generating-function identities. We use techniques from polyhedral geometry to establish new
multivariate identities generalizing those giving rise to many of the known Euler–Mahonian distributions.
The original bivariate identities are then specializations of these multivariate identities. As a consequence of
these new techniques we obtain bijective proofs of the equivalence of the bivariate distributions for various
pairs of statistics.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The symmetric group Sn is the group of permutations of [n] := {1, 2, . . . , n}, also realized
as the Coxeter group An−1 yielding symmetries of a simplex. For a permutation π ∈ Sn , the
descent set is a classical object of study in combinatorics.

Definition 1.1. For π ∈ Sn , the descent set of π is

Des(π) :=


j ∈ [n − 1] : π( j) > π( j + 1)

.

The descent statistic is des(π) := #Des(π).

The descent statistic is encoded in the Eulerian polynomial


π∈Sn
tdes(π) and the most basic

identity for Eulerian polynomials is


k≥0

(k + 1)n tk
=


π∈Sn

tdes(π)

(1 − t)n+1 . (1)

Euler used this identity to define Eulerian polynomials in [12] which he needed in his study of
what is now called the Riemann ζ -function; it is unlikely that he was aware of the connection
of his polynomials to descent statistics. For more on the interesting history regarding Eulerian
polynomials, descent statistics, and algebraic geometry, see [14] and [26, Chapter 1 Notes].

Eq. (1) has inspired a host of generalizations and extensions. The first such extension is the
following q-analogue of (1), which in this form is due to Carlitz [9], though with some effort
one can derive it from the works of MacMahon [19, Volume 2, Chapter IV, Section 462]. This
extension involves a joint distribution of the descent statistic and the major index, defined as
follows, together with the notation [m]q := 1 + q + q2

+ · · · + qm−1.

Definition 1.2. For π ∈ Sn , the major index of π is

maj(π) :=


j∈Des(π)

j.
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Theorem 1.3 (Carlitz).


k≥0

[k + 1]
n
q tk

=


π∈Sn

tdes(π)qmaj(π)

n
j=0


1 − tq j

 .

Note that (1) follows from Theorem 1.3 by setting q = 1. This identity is called the Carlitz
identity, and the numerator on the right is known as an Euler–Mahonian distribution due to the
relation with Euler’s work and MacMahon’s original introduction of the major index. The search
for further generalizations of this identity has focused on finding new identities of the form


k≥0

[k + 1]
n
q tk

=


g∈Gn

t stat1(g)qstat2(g)

n
j=0

h j (t, q)

(2)

for various families of groups Gn and statistics stat1 and stat2 defined on elements of Gn , together
with naturally occurring families of functions h j (t, q). This search has been successful, also
producing analogous generalizations of the identities (6) and (12) discussed in the next section.
To our knowledge, there are three general approaches to proving such identities:

• via combinatorial/bijective proofs in the theory of partitions and their extensions;
• via connections between permutation statistics and the theory of Coxeter groups, including

connections to invariant theory and the coinvariant algebra of a Weyl group; and
• via the theory of symmetric/quasisymmetric functions.

For more information regarding the first two approaches, see the citations listed throughout this
paper. For examples of the symmetric/quasisymmetric function approach, see [16,20,23].

Our goal is to provide new multivariate generalizations of these identities using polyhedral
geometry and lattice-point enumeration; as a consequence, we obtain new proofs of two-variable
identities in the form of (2). One of the benefits of the geometric approach is that it is relatively
simple, the key ingredients being the triangulation of the unit cube by the braid arrangement
together with careful choices of ray generators for unimodular cones. Another benefit is that
bijective proofs of the equidistribution of various pairs of statistics are obtained as immediate
corollaries.

As we discuss in Remark 4.3, our multivariate identities can be viewed as Hilbert-series
identities for various finely-graded algebras, i.e., algebras equipped with an Nn-grading. A
Hilbert-series approach to multivariate extensions of these identities has previously been
used in [2] and subsequent papers, emphasizing the use of descent bases for coinvariant
algebras. Our algebras and specializations are in some sense more straightforward than the
previously considered ones, because the bivariate identities arise as simple specializations
of our multivariate identities, requiring minimal or no additional substitutions and algebraic
manipulations. The geometric perspective also allows us to avoid the use of straightening laws
and other algebraic techniques regarding coinvariant algebras.

Our paper is structured as follows. In Section 2, we discuss analogues of (1) for
generalizations of permutation groups. In Section 3, we discuss the results we will need from
integer-point enumeration and polyhedral geometry. In Section 4, we use polyhedral geometry
to prove Theorem 4.1; this proof serves as a model for all the proofs in the paper. We also briefly
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discuss connections between our approach, the theory of P-partitions, and the theory of affine
semigroup algebras.

Section 5 contains most of our new results in the general setting of wreath products
of the form Zr ≀ Sn . These results generalize known bivariate identities due to Bagno,
Bagno–Biagioli, and Chow–Mansour, which are themselves generalizations of type-B results
due to Adin–Brenti–Roichman and Chow–Gessel. As these original type-B results have been of
particular interest, we state our multivariate identities in this special case in Section 6. Also in
Section 6 is a type-B extension of an identity due to Chow–Gessel, one which in our approach
relies heavily on the type-B Coxeter arrangement; we do not know of an obvious extension of
this to the wreath product case. We close the paper with Section 7, where we prove new type-D
generating-function identities.

2. Generalized permutation groups and descents

We discuss in this section analogues of (1) for hyperoctahedral groups, type-D Coxeter groups,
and wreath products of cyclic groups with symmetric groups.

The wreath product Zr ≀ Sn of a cyclic group of order r with Sn consists of pairs (π, ϵ) where
π ∈ Sn and ϵ ∈ {ω0, ω1, . . . , ωr−1

}
n for ω := e2π i/r a primitive r th root of unity, see [17].

Thus, ϵ is a sequence of powers of an r th root of unity. Elements of these groups are often called
colored, or indexed, permutations.

Remark 2.1. By convention, for elements of Zr ≀ Sn we define additional values of π and ϵ as
follows: πn+1 := n + 1, ϵn+1 := 1, π0 := 0, and ϵ0 := 1.

We will find it convenient to use window notation for elements of wreath products. If ϵ j =

ωc j , then we will denote (π, ϵ) as the window [π(1)c1 π(2)c2 · · · π(n)cn ]. We use the notation
jc j and (ωc j , j) interchangeably for elements of {ω0, ω1, . . . , ωr−1

} × [n]. It is sometimes
convenient to refer to π( j)c j as π( j) with color c j .

Because we will need to use inverses for these group elements, and for the sake of clarity, we
review the algebraic structure of wreath products. The element (π, ϵ) ∈ Zr ≀ Sn can be identified
with the permutation matrix for π where the 1 in position (π(i), i) is replaced by ϵi . The group
operation in Zr ≀ Sn is then given by matrix multiplication where entry-by-entry multiplication of
non-zero terms is given by the group operation in Zr .

We next consider the special case of the hyperoctahedral group Bn , i.e., the Coxeter group
yielding symmetries of a ±1-cube. The group Bn arises as the wreath product Z2 ≀ Sn and thus
consists of signed permutations (see, e.g., [22]), i.e., pairs (π, ϵ) where π ∈ Sn and ϵ ∈ {±1}

n .
Because of this structure, it is common to associate the elements of Bn to permutations g of
[−n, n] \ {0} satisfying g(−i) = −g(i) via the following map. To the element (π, ϵ) ∈ Bn we
assign the set permutation g(π,ϵ) given by

g(i) = ϵiπ(i).

Thus, we will interchangeably write j1 and − j when using window notation and in definitions.

Example 2.2. In B4 = Z2 ≀ S4, the composition [41 1 21 31
] ◦ [3 11 41 2] is equal to [21 4 3 1],

since this composition maps, for example, 2 → 11 via [3 11 41 2] and 11
→ 4 via [41 1 21 31

],
yielding

2 → 11
→ (41)1

= 4.
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This takes the matrix multiplication form
0 1 0 0
0 0 −1 0
0 0 0 −1

−1 0 0 0




0 −1 0 0
0 0 0 1
1 0 0 0
0 0 −1 0

 =


0 0 0 1

−1 0 0 0
0 0 1 0
0 1 0 0

 .

The element [41 1 21 31
]
−1 is given by [2 31 41 11

], since, for example, [41 1 21 31
] sends 3 → 21,

requiring that the inverse send 2 → 31.

For elements of Bn , there are several definitions of descents in the literature; we provide three
of them here. While the first applies to Bn , the latter two are defined for all Zr ≀ Sn .

Definition 2.3. For an element (π, ϵ) ∈ Bn , the naturally ordered descent set is

NatDes(π, ϵ) :=


j ∈ {0, 1, . . . , n − 1} : ϵ jπ( j) > ϵ j+1π( j + 1)

, (3)

with the convention ϵ0π(0) = 0. The natural descent statistic for Bn is natdes(π, ϵ) :=

#NatDes(π, ϵ).

The reason for calling this the naturally ordered descent set is that it uses the natural order
−n < −n + 1 < · · · < −1 < 1 < 2 < · · · < n on the integers. For example, the permutation

[31 2 11 41
]

in B4 has descents in the zeroth, second, and third positions.
In [27], Steingrı́msson defined the following descent set for elements of Zr ≀ Sn .

Definition 2.4. Totally order the elements of {ω0, ω1, . . . , ωr−1
} × [n] by jc j < kck if c j < ck

or if both c j = ck and j < k hold. For an element (π, ϵ) = [π(1)c1 π(2)c2 · · · π(n)cn ] in Zr ≀ Sn ,
Steingrı́msson’s descent set is

StDes(π, ϵ) :=


j ∈ {1, . . . , n} : π( j)c j > π( j + 1)c j+1

. (4)

Steingrı́msson’s descent statistic is stdes(π, ϵ) := #StDes(π, ϵ).

As an example, observe that with Steingrı́msson’s ordering we have {ω0, ω1, ω2
}×[3] ordered

as

10 < 20 < 30 < 11 < 21 < 31 < 12 < 22 < 32,

and the permutation

[22 32 11
]

has descents in positions 2 and 3.
Finally, we define the following closely-related descent set. This definition differs from

Steingrı́msson’s both in the role played by the order of the roots of unity and in the indices
where descents may occur.

Definition 2.5. Totally order the elements of {ωr−1, ωr−2, . . . , ω0
}×[n] by jc j < kck if c j > ck

or if both c j = ck and j < k hold. For an element (π, ϵ) = [π(1)c1 π(2)c2 · · · π(n)cn ] in Zr ≀ Sn ,
the descent set is

Des(π, ϵ) :=


j ∈ {0, . . . , n − 1} : π( j)c j > π( j + 1)c j+1

. (5)

The descent statistic is des(π, ϵ) := #Des(π, ϵ).
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As an example, observe that with this order we have {ω0, ω1, ω2
} × [3] ordered as

12 < 22 < 32 < 11 < 21 < 31 < 10 < 20 < 30,

and the permutation

[32 20 11
]

has descents in positions 0 and 2.
The Eulerian polynomials for wreath products are


(π,ϵ)∈Zr ≀Sn

tdes(π,ϵ), where one may use
either of the two wreath product descent definitions or, in the case r = 2, the natural descent
statistic. The resulting analogue of (1) is


k≥0

(rk + 1)n tk
=


(π,ϵ)∈Zr ≀Sn

tdes(π,ϵ)

(1 − t)n+1 . (6)

This identity appears to have been found by various authors for different descent statistics; for
more details, see [8,27].

3. A geometric perspective

3.1. Simplices and cones

The forms of Eqs. (1), (6) and (12) suggest that one should look at them geometrically as
stemming from lattice-point enumeration of the cube [0, r ]

n as it is partitioned in various ways;
for example, (1) suggests we consider [0, 1]

n partitioned by the braid arrangement consisting of
the hyperplanes x j = xk for 1 ≤ j < k ≤ n. As a result of such partitions, we will encounter
certain simplices throughout this work, all of which are (after a suitable change of variables) of
the form

∆I :=


x ∈ Rn

:
0 ≤ xn ≤ xn−1 ≤ · · · ≤ x1 ≤ 1,

x j+1 < x j if j ∈ I


,

where I ⊆ [n] is some index set, and we use the convention xn > 0 if n ∈ I .

Remark 3.1. The definition of ∆I we have given is technically that of a simplex with some of
its facets removed. Throughout this work, we will be decomposing cubes into disjoint unions of
such objects; the removal of facets will be needed to ensure that our decompositions are disjoint.
In the following, to simplify nomenclature, we will freely refer to these partially open objects as
simplices. Further, for a polyhedron P with some facets removed, we will use the terms faces
and vertices of P to refer to the faces and vertices of the closure of P .

The vertices of ∆I are 0, e1 + · · · + en, e1 + · · · + en−1, . . . , e1 + e2, e1, where e j is the j’th
unit vector in Rn . Note that ∆I is unimodular, i.e., the n edge directions at any vertex of ∆I
generate Zn . The cone over ∆I is the nonnegative span of


(1, x) ∈ Rn+1

: x ∈ ∆I

, where we

encode the “new” dimension by the variable x0, i.e.,

cone (∆I ) := R≥0 e0 +


j∈I

R>0

e0 + e1 + e2 + · · · + e j


+


j ∉I

R≥0

e0 + e1 + e2 + · · · + e j


,

where the complement of I is taken in [n].
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3.2. Generating functions for cones

Let

σC (z0, z1, . . . , zn) :=


m∈C∩Zn+1

zm

be the multivariate (“full”) generating function encoding the integer lattice points in a subset
C ⊂ Rn+1, where we have used the shorthand zm

:= zm0
0 zm1

1 · · · zmn
n . A standard geometric-series

argument (see, e.g., [5, Theorem 3.5]), together with the unimodularity of cone (∆I ), gives the
following.

Lemma 3.2. Let ∆I be as above. Then

σcone(∆I )(z0, z1, . . . , zn) =


j∈I

z0 z1z2 · · · z j

n
j=0


1 − z0 z1z2 · · · z j

 .
We will not always use the above natural way to write the generating function of a unimodular

cone, in which case we will apply the following more general lemma. The proof is a straightfor-
ward extension of [5, Theorem 3.5 and Corollary 3.6] and [26, Corollary 4.6.8 and its Note]; only
the latter reference discusses the relationship between determinants and monomials stated here.

Lemma 3.3. Let C =
k

j=0 R≥0v j +
n

j=k+1 R>0v j be a half-open simplicial cone in Rn+1

with linearly independent generators v0, v1, . . . , vn ∈ Zn+1. Then

σC (z0, z1, . . . , zn) =
σΠC (z0, z1, . . . , zn)

n
j=0

(1 − zv j )

where ΠC :=
k

j=0[0, 1)v j +
n

j=k+1(0, 1]v j . Furthermore, the number of integer points in
ΠC (and thus the number of monomials in σΠC (z0, z1, . . . , zn)) is given by the determinant of
the matrix with column vectors v0, v1, . . . , vn .

We refer to the set ΠC arising in the lemma as the fundamental parallelepiped of C ; note that
it depends on the choice of generators of C .

3.3. Unimodular cones with scaled ray generators

Throughout this work we will frequently need to compute σΠC (z0, z1, . . . , zn) for a
unimodular cone C of the form given in Lemma 3.3, where the generators chosen for the cone are
not the minimal length ray generators. Using the notation of Lemma 3.3, let v0, . . . , vn denote
the minimal ray generators for a unimodular cone C , so that

σC (z0, z1, . . . , zn) =
1

n
j=0

(1 − zv j )

,

where C denotes the topological closure of C . If we use instead the ray generators
c0v0, c1v1, . . . , cnvn for some positive integer scaling factors c0, c1, . . . , cn , we will desire in
this paper to obtain the integer points in
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ΠC =

k
j=0

[0, 1)c j v j +

n
j=k+1

(0, 1]c j v j

from the integer points in

ΠC =

n
j=0

[0, 1)c j v j .

Since C is unimodular with ray generators given by the v j ’s, the integer points in ΠC are those
integer points of the form

p =

n
j=0

α j v j

where 0 ≤ α j < c j is an integer. Thus, there are


j c j integer points contained in ΠC . Observe
that p lies on the facet of C opposite v j if and only if α j = 0. Thus, each integer point p in the
set ΠC with α j = 0 for some indices j ≥ k + 1 does not lie in the set ΠC . Similarly, each integer
point in ΠC of the form p =

n
j=0 α j v j , such that α j = c j for some j ≥ k + 1, is not in ΠC .

If we fix an index set J ⊆ {k + 1, k + 2, . . . , n}, there is a bijective correspondence between the
points

p1 =

n
j=0

α j v j ∈ ΠC

where α j = 0 if j ∈ J and the points

p2 =

n
j=0

β j v j ∈ ΠC

where β j = c j if j ∈ J . This bijection is obtained by identifying two such points when α j = β j
for all j ∉ J .

In the following, we will use one of the following two techniques to obtain the set Zn
∩ ΠC

from Zn
∩ ΠC .

• Shifting integer points off the boundary: Each integer point p ∈ ΠC \ ΠC is of the form
p =

n
j=0 α j v j where 0 ≤ α j < c j and α j = 0 for all j ∈ Jp ⊂ {k + 1, k + 2, . . . , n} for

some index set Jp. By shifting each such p by


j∈Jp
c jv j , we obtain

Zn
∩ ΠC =


Zn

∩ ΠC ∩ ΠC

∪

p +


j∈Jp

c j v j : p ∈ ΠC \ ΠC

 .

• Shifting the entire parallelepiped: Alternatively, we may observe that ΠC is a parallelepiped
with half of its facets removed, where no two opposite pairs of facets are simultaneously
removed. Similarly, ΠC is a parallelepiped of the same type, but with a different selection of
included facets. Thus, it is immediate that

Zn
∩ ΠC =


Zn

∩ ΠC


+

 
i : the facet opposite
vi is removed in C

vi

 .
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Example 3.4. Let C = {x ∈ R3
: 0 ≤ x3 < x2 < x1}. Thus, C ⊂ R3 is generated by

v1 = (1, 0, 0), v2 = (1, 1, 0), and v3 = (1, 1, 1). Using the ray generators 2v1, 2v2, and 3v3 for
C , there are three integer points in ΠC ∩ ΠC given by

(2, 1, 0), (3, 2, 1), (4, 3, 2).

There are nine integer points in ΠC \ ΠC , namely

(0, 0, 0), (1, 1, 1), (2, 2, 2), (1, 1, 0), (1, 0, 0), (2, 2, 1), (3, 3, 2), (3, 2, 2), (2, 1, 1).

Similarly, there are nine integer points in ΠC \ ΠC , namely

(4, 2, 0), (5, 3, 1), (6, 4, 2), (3, 1, 0), (3, 2, 0), (4, 3, 1), (5, 3, 2), (5, 4, 2), (4, 2, 1).

It is straightforward to check that both of the shifting methods described above produce the
integer points in ΠC from the integer points in ΠC . Shifting off the boundary adds one or both of
(2, 0, 0) and (2, 2, 0) to the points of ΠC \ ΠC , while shifting the parallelepiped adds (2, 1, 0) to
all the points of ΠC .

4. Type A

We begin with a multivariate identity that specializes to Theorem 1.3. The proof of this
identity, though simple, demonstrates the approach used in this paper.

Theorem 4.1.


k≥0

n
j=1

[k + 1]z j zk
0 =


π∈Sn


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)

n
j=0


1 − z0 zπ(1)zπ(2) · · · zπ( j)

 .
Proof. Triangulate the n-cube [0, 1]

n into the disjoint union of simplices

∆π :=


x ∈ Rn

:
0 ≤ xπ(n) ≤ xπ(n−1) ≤ · · · ≤ xπ(1) ≤ 1,

xπ( j+1) < xπ( j) if j ∈ Des(π)


(one for each π ∈ Sn). Lemma 4.5.1 of [26] implies that the strict inequalities determined
by the descent set of π make this triangulation disjoint. For example, if x = (x1, . . . , x9)

= (0.2, 0.1, 0.2, 0.3, 0.1, 0.1, 0.3, 0.3, 0.2) ∈ [0, 1]
9, then x ∈ ∆π where π = [4, 7, 8, 1, 3,

9, 2, 5, 6], since x6 = x5 = x2 < x9 = x3 = x1 < x8 = x7 = x4. By Lemma 3.2,

σcone(∆π )(z0, z1, . . . , zn) =


j∈Des(π)

z0 zπ(1)zπ(2) · · · zπ( j)

n
j=0


1 − z0 zπ(1)zπ(2) · · · zπ( j)

 .
On the other hand,

σcone([0,1]n)(z0, z1, . . . , zn) =


k≥0

n
j=1


1 + z j + z2

j + · · · + zk
j


zk

0,

and the disjoint triangulation gives

σcone([0,1]n)(z0, z1, . . . , zn) =


π∈Sn

σcone(∆π )(z0, z1, . . . , zn). �
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Proof of Theorem 1.3. Setting t := z0 and q := z1 = z2 = · · · = zn in Theorem 4.1 gives


k≥0

[k + 1]
n
q tk

=


π∈Sn


j∈Des(π)

tq j

n
j=0


1 − tq j

 =


π∈Sn

tdes(π)qmaj(π)

n
j=0


1 − tq j

 . �

Remark 4.2. Our approach is related to the theory of P-partitions [24,26]. For a given finite
poset P , one can associate a cone of P-partitions. The standard approach to studying P-
partitions, going back to Stanley’s pioneering work referenced above, is to recognize that each
P-partition cone is a union of closed chambers of the type-A braid arrangement. Thus, each P-
partition cone admits a unimodular triangulation, and these unimodular subcones are indexed by
linear extensions of P .

Our approach is based almost entirely on the triangulation of [0, 1]
n induced by the type-

A braid arrangement; the relationship with P-partitions is then that [0, 1]
n is a truncation of

the P-partition cone in the case where P is an antichain of size n. That the linear extensions
of such an antichain are easily put into bijection with the elements of Sn gives our connection
to symmetric groups and the braid arrangement. Mirroring these similarities, our Theorem 4.1
resembles [24, Theorem 7.1].

Where our techniques diverge from being a minor variant of P-partition theory is that
throughout this work, when we encounter a unimodular triangulation of cone([0, 1]

n), we
often choose non-unimodular generators for the unimodular cones in our triangulation. Also,
several of our generating-function identities require studying non-unimodular triangulations of
cone([0, r ]

n) for r ≥ 2. To our knowledge, this approach has not been used in the study of
P-partitions.

Remark 4.3. There is also a connection between our generating functions and the theory
of affine semigroup algebras. The generating function in Theorem 4.1 is the finely-graded
Hilbert series for the affine semigroup algebra formed from the semigroup of integer points
in cone([0, 1]

n), as discussed in [13,21,25]. Through much of the recent literature on
Euler–Mahonian distributions referenced in this paper, Hilbert-series interpretations for these
bivariate identities have been sought. All of our identities provide such interpretations, as they
arise from the finely-graded Hilbert series of affine semigroup algebras.

Further, the study of semigroup algebras arising from polyhedral cones has been an area of
intense study for combinatorial commutative algebraists over the past several decades. The most
important general result regarding Hilbert series for such cones is Hochster’s theorem, which
states that normal affine semigroup algebras are Cohen–Macaulay [15]. The Cohen–Macaulay
property forces serious constraints on single-variable specializations of the associated finely-
graded Hilbert series for the algebra; these constraints apply to univariate specializations of our
identities.

5. Wreath products

In this section, we prove three new multivariate generating function identities connected with
pairs of statistics on wreath products of the form Zr ≀ Sn . Our proofs of these identities lead to a
bijective proof of the joint equidistribution of the “negative” and “flag” statistics.
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5.1. Identities involving (k + 1)n

We begin by recalling the definition of the negative statistics and flag statistics on Zr ≀ Sn , as
introduced in [3,4]. These are generalizations of the type-B negative and flag statistics introduced
by Adin–Brenti–Roichman, which we discuss in Section 6. Our interest in these statistics comes
from the role they play in the following two identities.

Theorem 5.1 (Bagno, [3]).


k≥0

[k + 1]
n
q tk

=


(π,ϵ)∈Zr ≀Sn

tndes(π,ϵ)qnmajor(π,ϵ)

(1 − t)
n

j=1
(1 − tr qr j )

.

Theorem 5.2 (Bagno–Biagioli, [4]).


k≥0

[k + 1]
n
q tk

=


(π,ϵ)∈Zr ≀Sn

t fdes(π,ϵ)qfmajor(π,ϵ)

(1 − t)
n

j=1
(1 − tr qr j )

.

Remark 5.3. Bagno and Biagioli also prove in [4] a multivariate theorem of this type for a family
of normal subgroups of Zr ≀Sn . Their techniques involve studying colored-descent representations
of these subgroups, which are representations of the groups on the associated coinvariant algebra.

Throughout this subsection, we use the total order from Definition 2.5 on the elements of
{ωr−1, ωr−2, . . . , ω0

} × [n], i.e., jc j < kck if c j > ck or if both c j = ck and j < k hold.

Definition 5.4. For an element (π, ϵ) ∈ Zr ≀ Sn , we define the negative set of (π, ϵ) to be

Neg(π, ϵ) := {i ∈ [n] : ϵi ≠ ω0
= 1},

and we define neg(π, ϵ) := # Neg(π, ϵ). Writing ϵ j = ωc j , we define the color sum statistic to
be

col(π, ϵ) :=


i∈[n]

ci .

The type-A descent set is defined to be

DesA(π, ϵ) := {i ∈ [n − 1] : π
ci
i > π

ci+1
i+1 }

and the type-A descent statistic is

desA(π, ϵ) := #DesA(π, ϵ).

The type-A major index is

majorA(π, ϵ) =


j∈DesA(π,ϵ)

j.

Example 5.5. Let (π, ϵ) = [13 40 21 30 62 51
] ∈ Z4 ≀ S6. Then

Neg(π, ϵ) = {1, 3, 5, 6}
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and col(π, ϵ) = 3 + 1 + 2 + 1 = 7. Further,

DesA(π, ϵ) = {2, 4}

and thus desA(π, ϵ) = 2 and majorA(π, ϵ) = 6.

We next define negative statistics for wreath products, following [3]. Recall first that a multiset
of elements of [n] is a subset S ⊆ [n] together with a function ν : S → Z≥1, where we call ν(i)
is the multiplicity of i in S. Instead of specifying ν for a multiset, we typically write a multiset
as a set of elements with repetition, e.g. M = {1, 1, 1, 2, 4, 4, 4, 4, 7, 7} represents the multiset
with S = {1, 2, 4, 7} where ν(1) = 3, ν(2) = 1, ν(4) = 4, and ν(7) = 2. The cardinality of a
multiset is the sum of the multiplicities of the elements of the underlying set. To form a union
of multisets, we take the union of the underlying sets and sum the multiplicities of the elements.
When forming a sum (or product) indexed by the elements of a multiset (S, ν), we include ν(i)
summands (or factors) for each i ∈ S. For example, with our previous example M , we have

i∈M 2i
= 3 · 21

+ 1 · 22
+ 4 · 24

+ 2 · 27.

Definition 5.6. For an element (π, ϵ) in Zr ≀ Sn , we define the negative inverse multiset as

NNeg(π, ϵ) := {i, i, . . . , i  
ci times

: i ∈ [n]}.

We define the negative descent multiset as

NDes(π, ϵ) := DesA(π, ϵ) ∪ NNeg((π, ϵ)−1).

The negative descent statistic is

ndes(π, ϵ) := # NDes(π, ϵ).

The negative major index is

nmajor(π, ϵ) :=


i∈NDes(π,ϵ)

i.

Observe that NNeg((π, ϵ)−1) contains exactly (r − cπ−1(i)) mod r copies of each i ∈ [n].

Example 5.7. Let (π, ϵ) = [13 40 21 30 62 51
] ∈ Z4 ≀S6. Then (π, ϵ)−1

= [11 33 40 20 63 52
], and

hence NNeg((π, ϵ)−1) = {1, 2, 2, 2, 5, 5, 5, 6, 6}. There are r − cπ−1(5) = 4 − c6 = 4 − 1 = 3
copies of 5 contained in this set, and there are r − cπ−1(3) = 4 − c4 = 4 − 0 ≡ 0 mod 4 copies
of 3. Further,

NDes(π, ϵ) = {2, 4} ∪ {1, 2, 2, 2, 5, 5, 5, 6, 6} = {1, 2, 2, 2, 2, 4, 5, 5, 5, 6, 6}

and thus ndes(π, ϵ) = 11 and nmajor(π, ϵ) = 40.

There are also flag statistics for wreath products, due to Bagno and Biagioli [4].

Definition 5.8 (Bagno–Biagioli). For an element (π, ϵ) in Zr ≀ Sn , we define the flag descent
statistic as

fdes(π, ϵ) := r · desA(π, ϵ) + c1,

where as usual ϵ1 = ωc1 . The flag major index is

fmajor(π, ϵ) := r · majorA(π, ϵ) + col(π, ϵ).
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Example 5.9. Let (π, ϵ) = [13 40 21 30 62 51
] ∈ Z4 ≀ S6. Then fdes(π, ϵ) = 4 · 2 + 3 = 11 and

fmajor(π, ϵ) = 4 · 6 + 7 = 31.

For the statements of our multivariate generalizations of Theorems 5.1 and 5.2, we will need
two more definitions.

Definition 5.10. Define the subset of increasing elements of Zr ≀ Sn , denoted Ir,n , to be those
elements satisfying desA(ρ, ϵ) = 0, i.e., Ir,n contains all permutations (ρ, ϵ) such that ρ( j)c j <

ρ( j + 1)c j+1 for all j ∈ [n − 1].

It is straightforward that every element of Zr ≀ Sn can be represented uniquely as

(ρ, ϵ) ◦ (π, (1, 1, . . . , 1))

for some π ∈ Sn and (ρ, ϵ) ∈ Ir,n , since applying (π, (1, 1, . . . , 1)) on the right permutes the
entries of the window notation for (ρ, ϵ), and the window for (ρ, ϵ) yields the unique increasing
list of these entries. For example, in B6 = Z2 ≀ S6,

[41 11 5 31 6 2] = [11 31 41 2 5 6][3 1 5 2 6 4].

Thus,

Zr ≀ Sn =


π∈Sn

Ir,nπ,

where we write π for (π, (1, 1, . . . , 1)) to simplify notation.

Proposition 5.11. For (ρ, ϵ) ∈ Ir,n and π ∈ Sn ,

NNeg([(ρ, ϵ)π]
−1) = NNeg((ρ, ϵ)−1).

Further, each permutation (ρ, ϵ) ∈ Ir,n is uniquely determined by NNeg((ρ, ϵ)−1).

Proof. If (τ, ϵ) = [τ
c1
1 · · · τ

cn
n ] is any element of Zr ≀ Sn , then

NNeg((τ, ϵ)−1) = {τi , . . . , τi  
(r−ci ) mod r

times

: ci ≠ 0}.

Since the window for (ρ, ϵ)π consists of a permutation of the window elements for (ρ, ϵ), and
each ρ

ci
i is permuted as a unit by π from the window of (ρ, ϵ) to the window for (ρ, ϵ)π , it

follows that the labels ρ
ci
i in the window are identical for both these permutations. The first

claim follows.
To verify the uniqueness statement, it is enough to observe that NNeg((ρ, ϵ)−1) determines

the exponent on each i ∈ [n] in the window notation for (ρ, ϵ). Since being an element in Ir,n
ensures that the entries of the window for (ρ, ϵ) are in increasing order, this determines the
permutation. �

Definition 5.12. For an element ϵ = (ωc j )n
j=1 ∈ {1, ω1, ω2, . . . , ωr−1

}
n with ϵn+1 := 1 = ω0,

for j ∈ [n] define

aϵ
j := (c j − c j+1) mod r,

which we call the j th color change for ϵ. Define ch(ϵ) :=


j aϵ
j to be the total color change

in ϵ.
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Example 5.13. Let (π, ϵ) = [13 40 21 30 62 51
] ∈ Z4 ≀ S6, so that ϵ = (ω3, ω0, ω1, ω0, ω2, ω1).

Then

aϵ
= (3, 3, 1, 2, 1, 1)

and ch(ϵ) = 3 + 3 + 1 + 2 + 1 + 1 = 11.

5.2. Multivariate identities

Our multivariate extension of Theorem 5.1 is the following.

Theorem 5.14.
k≥0

n
j=1

[k + 1]z j zk
0

=


π∈Sn


(ρ,ϵ)∈Ir,n


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)


j∈NNeg((ρ,ϵ)−1)

z0zπ(1)zπ(2) · · · zπ( j)

(1 − z0)
n

j=1


1 − zr

0zr
π(1) · · · zr

π( j)

 .

Proof. We begin with the triangulation of cone([0, 1]
n) into the set of cones {cone(∆π ) : π ∈ Sn}

found in the proof of Theorem 4.1. While cone(∆π ) is unimodular for each π , for this proof we
use the non-unimodular ray generators

e0, r(e0 + eπ(1)), r(e0 + eπ(1) + eπ(2)), . . . , r(e0 + eπ(1) + · · · + eπ(n)),

together with the technique of shifting the entire fundamental parallelepiped described in
Section 3.3. There are rn integer points in the fundamental parallelepiped for cone(∆π ) using
these ray generators. Thus, every integer point p in the fundamental parallelepiped for cone(∆π )

can be uniquely expressed as

p =


j∈Des(π)

(e0 + eπ(1) + · · · + eπ( j)) +

n
j=1

α j (e0 + eπ(1) + · · · + eπ( j))

with α j ∈ {0, 1, . . . , r − 1}.
Associate to the point p the element (ρ, ϵ)π ∈ Zr ≀ Sn , where α j = k if and only if j has

multiplicity k in NNeg((ρ, ϵ)−1) = NNeg([(ρ, ϵ)π]
−1). Thus, for example, let r = 4 and n = 6,

and consider π = [1 6 3 5 2 4] and α1 = 1, α2 = 3, α3 = α4 = 0, α5 = 3, and α6 = 2. The
element of Z4 ≀ S6 associated to this point is [13 40 21 30 62 51

], since it is contained in I4,6π and
has the NNeg set of its inverse equal to {1, 2, 2, 2, 5, 5, 5, 6, 6}.

This correspondence creates a bijection between the elements of Zr ≀ Sn and the (appropriately
shifted) integer points in the fundamental parallelepipeds for the cones over the ∆π . Note that
this bijection encodes Ir,n as the integer points in the fundamental parallelepiped for cone(∆Id),
where Id denotes the identity element in Sn . Thus

σcone(∆π )(z0, . . . , zn)

=


(ρ,ϵ)∈Ir,n


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)


j∈NNeg((ρ,ϵ)−1)

z0zπ(1)zπ(2) · · · zπ( j)

(1 − z0)
n

j=1


1 − zr

0zr
π(1) · · · zr

π( j)

 .
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This completes our proof, since from our triangulation it follows that

σcone([0,1]n)(z0, . . . , zn) =


π∈Sn

σcone(∆π )(z0, . . . , zn). �

Proof of Theorem 5.1. Setting t := z0 and q := z1 = · · · = zn in Theorem 5.14 yields our
desired form on the left-hand side of our identity, while the denominator of the right-hand side
uniformly becomes

(1 − t)
n

j=1


1 − tr q jr


.

Each element (ρ, ϵ)π ∈


π∈Sn
Ir,nπ contributes to the numerator on the right-hand side of our

identity a summand of
j∈Des(π)

tq j


j∈NNeg([(ρ,ϵ)π ]−1)

tq j .

Because Des(π) = DesA((ρ, ϵ)π), it follows that
j∈Des(π)

tq j


j∈NNeg([(ρ,ϵ)π ]−1)

tq j
= tndes((ρ,ϵ)π)qnmajor((ρ,ϵ)π),

hence our proof is complete. �

The following is our multivariate extension of Theorem 5.2.

Theorem 5.15.


k≥0

n
j=1

[k + 1]z j zk
0 =


(π,ϵ)∈Zr ≀Sn


j∈Des(π)

aϵ
j =0

zr
0zr

π(1)z
r
π(2) · · · zr

π( j)

n
j=1

z
aϵ

j
0 z

aϵ
j

π(1)z
aϵ

j
π(2) · · · z

aϵ
j

π( j)

(1 − z0)
n

j=1


1 − zr

0 zr
π(1)z

r
π(2) · · · zr

π( j)

 .

Proof. We begin again with the triangulation of cone([0, 1]
n) by the set of cones


cone(∆π ) :

π ∈ Sn


found in the proof of Theorem 4.1. As in our previous proof, for cone(∆π ) we use the
non-unimodular ray generators

e0, r(e0 + eπ(1)), r(e0 + eπ(1) + eπ(2)), . . . , r(e0 + eπ(1) + · · · + eπ(n)).

However, in this proof we use the technique of shifting integer points off of the boundary,
discussed in Section 3.3. Hence we represent every integer point p in the fundamental
parallelepiped for cone(∆π ) uniquely using a coefficient vector α ∈ {0, 1, 2, . . . , r − 1}

n in
the sum

p =

n
j=1

α j (e0 + eπ(1) + · · · + eπ( j)) +


j∈Des(π)

α j =0

r(e0 + eπ(1) + · · · + eπ( j)).

We may then associate to the point p the element (π, ϵ) ∈ Zr ≀ Sn where π is the same as the
index on cone(∆π ) and ϵ is defined by aϵ

j = α j . This bijectively relates Zr ≀ Sn to the (possibly
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shifted) integer points in the fundamental parallelepipeds of the cones over the ∆π ’s. Thus

σcone(∆π )(z0, . . . , zn)

=


(π,ϵ)∈Zr ≀Sn


j∈Des(π)

aϵ
j =0

zr
0zr

π(1)z
r
π(2) · · · zr

π( j)

n
j=1

z
aϵ

j
0 z

aϵ
j

π(1)z
aϵ

j
π(2) · · · z

aϵ
j

π( j)

(1 − z0)
n

j=1


1 − zr

0zr
π(1) · · · zr

π( j)

 .

(Note that in the summand on the right-hand side, π is fixed while ϵ varies.)
This completes our proof, since from our triangulation it follows that

σcone([0,1]n)(z0, . . . , zn) =


π∈Sn

σcone(∆π )(z0, . . . , zn). �

Remark 5.16. For the proof of Theorem 5.2, we need to understand the causes of descents in
elements of wreath products. Let (π, ϵ) ∈ Zr ≀ Sn . A descent in position j of (π, ϵ) can arise for
one of three reasons:

• color change: c j < c j+1, or
• standard descent: ϵ j = ϵ j+1 and j ∈ Des(π), or
• zero descent: j = 1 and c1 ≠ 0.

For example, in [11 23 50 30 41 60
], there are color-change descents in positions 1 and 4, a

standard descent in position 3, and a zero descent in position 0. Descents in position 0 are
precisely those called zero descents, and hence type-A descents arise only from color change
and standard descents.

Regarding color-change descents, consider the partial sums Ak =
n

j=k aϵ
j of color changes.

We have that aϵ
j ≤ r − 1 and that for all j , we obtain one descent for each k such that Ak ≥ lr

and Ak+1 < lr for some fixed multiple of r . In less formal terms, as we read in window notation
from right to left, each time the partial sum of color changes accrues an additional r , that forces
another color-change descent. If A1 = ch(ϵ) is a multiple of r , then c1 = 0, and hence there is
no zero descent. On the other hand, if A1 = ch(ϵ) is not a multiple of r , then this implies c1 ≠ 0,
which creates a zero descent. Standard descents arise when aϵ

j = 0, in which case a descent in
position j is controlled completely by the descent structure of π .

Proof of Theorem 5.2. Setting t := z0 and q := z1 = · · · = zn in Theorem 5.15 yields our
desired form on the left-hand side of our identity, while the denominator of the right-hand side
uniformly becomes

(1 − t)
n

j=1


1 − tr qr j


.

Each element (π, ϵ) ∈ Zr ≀ Sn contributes to the numerator on the right-hand side of our identity
a summand of

j∈Des(π)

aϵ
j =0

tr qr j
n

j=1

taϵ
j q jaϵ

j .
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Therefore, our proof will be complete once we prove that

fdes(π, ϵ) =


j∈Des(π)

aϵ
j =0

r +

n
j=1

aϵ
j (7)

and

fmajor(π, ϵ) =


j∈Des(π)

aϵ
j =0

r j +

n
j=1

jaϵ
j . (8)

As an example, consider the element [11 23 50 30 41 60
] ∈ Z4 ≀ S6, for which DesA(π, ϵ) =

{1, 3, 4}, Des(π) = {3}, and aϵ
= (2, 3, 0, 3, 1, 0). Then we see that fdes(π, ϵ) is obtained as

4 · desA(π, ϵ) + c1 = 4 · 3 + 1 = 13 = 4 + 9 =


j∈Des(π)

aϵ
j =0

4 +

6
j=1

aϵ
j ,

while fmajor(π, ϵ) is obtained as both

4 · majorA(π, ϵ) + col(π, ϵ) = 4 · 8 + 5 = 37

and

37 = 4 · 3 + 2 + 3 · 2 + 3 · 4 + 5 =


j∈Des(π)

aϵ
j =0

4 j +

6
j=1

aϵ
j j.

To prove (7), we build upon Remark 5.16 to investigate the relationship between the values
aϵ

j and type-A descents. We must show that

r · desA(π, ϵ) + c1 =


j∈Des(π)

aϵ
j =0

r +

n
j=1

aϵ
j .

Following Remark 5.16, we observe that ⌊
ch(ϵ)

r ⌋ is equal to the number of color-change descents
in (π, ϵ), which are all type-A descents. Thus

n
j=1

aϵ
j


− c1 = r ·


ch(ϵ)

r


is equal to the number of color-change descents multiplied by r . Similarly, Remark 5.16 im-
plies that the number of standard descents multiplied by r (also type-A descents) is given by

j∈Des(π)

aϵ
j =0

r . The equality in (7) follows immediately. To prove (8), we must show that

r · majorA(π, ϵ) + col(π, ϵ) =


j∈Des(π)

aϵ
j =0

r j +

n
j=1

aϵ
j j.

It follows from Remark 5.16 that


j∈Des(π)

aϵ
j =0

r j is equal to the contribution given by standard

descents to the type-A major index. We are left to consider the contribution of color-change
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descents, hence what remains to be shown is that

n
j=1

aϵ
j j = col(π, ϵ) +


j∈Des(π,ϵ)

aϵ
j ≠0

r j, (9)

which we prove as follows.
n

j=1

jaϵ
j =

n
i=1

n
j=i

aϵ
j

=

n
i=1


ci + r · # { j ≥ i : j ∈ Des(π, ϵ) arising from a color change}


=

n
i=1

ci +

n
i=1

r · # { j ≥ i : j ∈ Des(π, ϵ) arising from a color change}

= col(π, ϵ) +


j∈Des(π,ϵ)

aϵ
j ≠0

jr.

The key observation in the above sequence of equalities is that
n

j=i

aϵ
j = ci + r · # { j ≥ i : j ∈ Des(π, ϵ) arises from a color change} ,

which follows from the discussion in Remark 5.16. �

Example 5.17. To illustrate the key observation at the end of the proof above, consider an
arbitrary (π, ϵ) ∈ Z5 ≀ S9 with the color vector c = (4, 1, 2, 3, 0, 1, 1, 3, 1). Note that there
are four type-A descents in (π, ϵ) caused by color changes, with color-change descent positions
7, 5, 3, and 2. The color-change vector for c is a = (3, 4, 4, 3, 4, 0, 3, 2, 1), where the right-hand
1 accounts for c9 − c10 where c10 is by definition 0. When i = 4, we see that

n
j=4

aϵ
j = 3 + 4 + 0 + 3 + 2 + 1

= 13

= 3 + 5 · 2

= c4 + r · # { j ≥ 4 : j ∈ Des(π, ϵ) arises from a color change} .

The proofs of Theorems 5.14 and 5.15 together yield a bijective proof of the equidistribution
of the pairs of statistics (ndes, nmajor) and (fdes, fmajor) for Zr ≀ Sn . As far as we know, this
bijection is new.

Corollary 5.18.
(π,ϵ)∈Zr ≀Sn

tndes(π,ϵ)qnmajor(π,ϵ)
=


(π,ϵ)∈Zr ≀Sn

t fdes(π,ϵ)qfmajor(π,ϵ).

Proof. Our proof relies on the indexing of integer points in fundamental parallelepipeds for
cone(∆π ) found in the proofs of Theorems 5.14 and 5.15. To the element (ρ, ϵ)π ∈


π∈Sn

Ir,nπ
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we associated the integer point

p =


j∈Des(π)

(e0 + eπ(1) + · · · + eπ( j)) +

n
j=1

α j (e0 + eπ(1) + · · · + eπ( j))

where α j = k if and only if j has multiplicity k in NNeg((ρ, ϵ)−1) = NNeg([(ρ, ϵ)π]
−1).

Rewriting p as

p =

n
j=1

β j (e0 + eπ(1) + · · · + eπ( j)) +


j∈Des(π)

β j =0

r(e0 + eπ(1) + · · · + eπ( j))

we associated to p the element (π, ϵ) ∈ Zr ≀ Sn where π is the same as the index on cone(∆π )

and ϵ is defined by aϵ
j = β j . This yields an explicit bijection from Zr ≀ Sn to itself that preserves

the pairs of statistics (ndes, nmajor) and (fdes, fmajor). �

Example 5.19. Let r = 4 and n = 6, and consider the element [13 40 21 30 62 51
] with the NNeg

set of its inverse equal to {1, 2, 2, 2, 5, 5, 5, 6, 6}. Our goal is to find the element in Z4 ≀ S6 paired
with this element under our bijection. We first encode the element as an integer point, which
requires using π = [1 6 3 5 2 4] and α1 = 1, α2 = 3, α3 = α4 = 0, α5 = 3, and α6 = 2; note
that Des(π) = {2, 4}. Thus, writing the two summands arising from the descent positions in π

first in the first sum, we have that the element is encoded by

p = e0 + e1 + e6 + e0 + e1 + e6 + e3 + e5 + e0 + e1 + 3(e0 + e1 + e6)

+ 3(e0 + e1 + e6 + e3 + e5 + e2) + 2(e0 + e1 + e6 + e3 + e5 + e2 + e4)

= e0 + e1 + e0 + e1 + e6 + e3 + e5 + 3(e0 + e1 + e6 + e3 + e5 + e2)

× 2(e0 + e1 + e6 + e3 + e5 + e2 + e4)4(e0 + e1 + e6).

Note that in the final sum above, we have merged our summands arising from Des(π) in the
first sum into the others to obtain a representation of p where the last of our summands has a
coefficient of 4. This 4 arises in one of the descent positions for π , corresponding to β2 = 0.
Hence, our second encoding vector is β = (1, 0, 0, 1, 3, 2). Thus, we recover our new element
of Z4 ≀ S6 by setting aϵ

= β, obtaining

(π, ϵ) = [13 62 32 52 21 42
].

Finally, observe that for our original element [13 40 21 30 62 51
], we have that

(ndes, nmajor) = (11, 40),

while for the element [13 62 32 52 21 42
], we have that

(fdes, fmajor) = (11, 40),

as desired.

5.3. Identities involving (rk + 1)n

In [11, Theorem 9], Chow and Mansour provide an Euler–Mahonian distribution for wreath
products using Steingrı́msson’s descent statistics and a new flag major index. Their identity is a
generalization of a result due to Chow–Gessel which we discuss in Section 6. In this section, we
state a similar Euler–Mahonian distribution for the descent statistic and flag major index given
in Definitions 2.5 and 5.8. By combining Theorem 5.20 below and [11, Theorem 9], we see that
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the pairs

(Steingrı́msson’s descent statistic, Chow–Mansour’s flag major index)

and

(des, fmajor)

are equidistributed over Zr ≀ Sn .

Theorem 5.20.


k≥0

[rk + 1]
n
q tk

=


(π,ϵ)∈Zr ≀Sn

tdes(π,ϵ)qfmajor(π,ϵ)

n
j=0


1 − tqr j

 .

We obtain in Theorem 5.23 below a multivariate generalization of this bivariate identity.

Remark 5.21. At the end of [11], Chow and Mansour indicate that having a Hilbert-series
interpretation of [11, Theorem 9] is an open problem. The proof of Theorem 5.23 provides such
an interpretation, after taking into account Remark 4.3.

Remark 5.22. In [7, Eq. (8.1)], Biagioli–Zeng obtain a wreath product version of Theorem 6.5,
a result due to Chow–Gessel. The authors do not at this time know of a way to obtain this identity
using polyhedral geometry.

5.4. Multivariate identities

Our multivariate generalization of Theorem 5.20 is the following.

Theorem 5.23.
k≥0

n
j=1

[rk + 1]z j zk
0

=


(π,ϵ)∈Zr ≀Sn

z⌈ch(ϵ)/r⌉

0

n
j=1

z
aϵ

j
π(1)z

aϵ
j

π(2) · · · z
aϵ

j
π( j)


j∈Des(π)

aϵ
j =0

z0zr
π(1)z

r
π(2) · · · zr

π( j)

n
j=0


1 − z0 zr

π(1)z
r
π(2) · · · zr

π( j)

 .

Proof. As in our previous proofs, this proof proceeds in two stages. We first triangulate the cube
[0, r ]

n into a disjoint union of simplices, then set up an indexing system for the integer points
in the fundamental parallelepipeds for the cones over these simplices. Second, we bijectively
associate the elements of Zr ≀ Sn with these integer points in a way that allows us to recover,
in our subsequent proof of Theorem 5.20, the descent and flag major index statistics from these
integer points.

We begin by triangulating [0, r ]
n into the disjoint simplices

∆π :=


x ∈ Rn

:
0 ≤ xπ(n) ≤ xπ(n−1) ≤ · · · ≤ xπ(1) ≤ r,
xπ( j+1) < xπ( j) if j ∈ Des(π)
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(one for each π ∈ Sn). As before, the strict inequalities determined by the descent set of π

ensures that this triangulation is disjoint.
Unlike the cones produced by coning over the simplices in our triangulation of [0, 1]

n , the
cones arising from this triangulation of [0, r ]

n are not unimodular. By Lemma 3.3, the integer-
point transform of cone(∆π ) can be expressed as a rational function where the denominator has
the form

n
j=0


1 − z0 zr

π(1)z
r
π(2) · · · zr

π( j)


,

i.e., where the displayed exponent vectors are the ray generators for this cone. As the determinant
of the matrix formed by the ray generators of cone(∆π ) is rn , there are rn integer points in the
fundamental parallelepiped of cone(∆π ). It is a straightforward observation that there are rn

such integer points formed by taking linear combinations of the ray generators for the cone with

coefficients from the set


0, 1
r , . . . , r−1

r


. We will use the following notation to denote such an

integer point; for α j ∈


0, 1

r , . . . , r−1
r


where j = 0, . . . , n,

p = α0e0 +

n
j=1

α j

e0 + reπ(1) + reπ(2) + · · · + reπ( j)


.

Observe that because p is an integer point, the value of α0 is determined by the condition that the
coefficient of e0,

n
j=0 α j , be an integer.

To determine the numerator of σcone(∆π )(z0, . . . , zn), as in our earlier situations dealing
with unimodular cones, we must shift some integer points off of the boundary of Πcone(∆π )

,
specifically those that are not contained in Πcone(∆π ). When p is contained in a given facet
indexed by j ∈ Des(π), then we must shift p by the minimal ray generator opposite that facet,
namely (e0 + reπ(1) + reπ(2) + · · · + reπ( j)). Such a point p, when written in the form displayed
above, is contained in such a facet precisely when α j = 0. Thus, each such p must be shifted
from Πcone(∆π )

to Πcone(∆π ) by the vector
j∈Des(π)

α j =0

(e0 + reπ(1) + reπ(2) + · · · + reπ( j)),

yielding the point

α0e0 +

n
j=1

α j

e0 + reπ(1) + reπ(2) + · · · + reπ( j)


+


j∈Des(π)

α j =0

(e0 + reπ(1) + reπ(2) + · · · + reπ( j))

in Πcone(∆π )
. Hence

σcone(∆π )(z0, z1, . . . , zn)

=


α∈


0, 1

r ,..., r−1
r

n

z
n

j=0 α j

0

n
j=1

z
rα j
π(1)z

rα j
π(2) · · · z

rα j
π( j)


j∈Des(π)

α j =0

z0zr
π(1)z

r
π(2) · · · zr

π( j)

n
j=0


1 − z0 zr

π(1)z
r
π(2) · · · zr

π( j)

 .
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We now associate to the element (π, ϵ) ∈ Zr ≀ Sn the integer point in Πcone(∆π ) with α j :=
aϵ

j
r

for j = 1, . . . , n, i.e. the point

α0e0 +

n
j=1

aϵ
j

r
(e0 + reπ(1) + reπ(2) + · · · + reπ( j))

+


j∈Des(π)

aϵ
j =0

(e0 + reπ(1) + reπ(2) + · · · + reπ( j)),

where α0 is determined by the condition that α0 +
n

j=1
aϵ

j
r be an integer. Through this

association, the set of “color” vectors {1, ω, ω2, . . . , ωr−1
}
n parametrizes the integer points in the

fundamental parallelepiped for cone(∆π ). This parametrization is bijective, and the coefficient
of e0 in the first two terms of the sum above is equal to both ⌈

ch(ϵ)
r ⌉ and

n
j=0 α j . Thus, our

proof is complete following the observation that

σcone([0,r ]n)(z0, . . . , zn) =


π∈Sn

σcone(∆π )(z0, . . . , zn). �

Proof of Theorem 5.20. Setting t := z0 and q := z1 = · · · = zn in Theorem 5.23 yields
our desired form on the left-hand side, while the denominator of the right-hand side uniformly
becomes

n
j=0


1 − tqr j


. Each element (π, ϵ) ∈ Zr ≀ Sn contributes a summand of

t⌈ch(ϵ)/r⌉


j :aϵ
j ≠0

qaϵ
j j


j∈Des(π)

aϵ
j =0

tqr j

to the numerator of the right-hand side. Hence, we need to prove

des(π, ϵ) =


ch(ϵ)

r


+ #{ j ∈ Des(π) : aϵ

j = 0} (10)

and

fmajor(π, ϵ) =

n
j=1

aϵ
j j +


j∈Des(π)

aϵ
j =0

r j. (11)

Observe that (11) is identical to (8), which was proved earlier.
As discussed in Remark 5.16, a descent in position j of (π, ϵ) can be a color-change descent,

a standard descent, or a zero descent. If ch(ϵ)
r is an integer, then there is no zero descent, and there

are ch(ϵ)
r color-change descents. If ch(ϵ)

r is not an integer, there are ⌊
ch(ϵ)

r ⌋ color-change descents

and a zero descent, which contribute a total of ⌈
ch(ϵ)

r ⌉ descents. Further, the standard descents
are counted by #{ j ∈ Des(π) : aϵ

j = 0}. The equality in (10) follows immediately from these
observations. �

6. Type B

In this section we state our main results from Section 5 in the special case of hyperoctahedral
groups. We also prove a new multivariate identity given in Theorem 6.9.
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6.1. Identities involving (k + 1)n

In [1], Adin, Brenti, and Roichman introduced several pairs of statistics on Bn ; these were
the inspiration for the statistics considered in Section 5. For the interested reader, we state the
original identities of Adin–Brenti–Roichman and our multivariate identities generalizing them.
The statistics arising here are special cases of those defined in Section 5.

Theorem 6.1 (Adin–Brenti–Roichman).


k≥0

[k + 1]
n
q tk

=


(π,ϵ)∈Bn

tndes(π,ϵ)qnmajor(π,ϵ)

(1 − t)
n

j=1
(1 − t2q2 j )

.

Theorem 6.2 (Adin–Brenti–Roichman).


k≥0

[k + 1]
n
q tk

=


(π,ϵ)∈Bn

t fdes(π,ϵ)qfmajor(π,ϵ)

(1 − t)
n

j=1
(1 − t2q2 j )

.

Note that in the original work of Adin–Brenti–Roichman, the flag and negative statistics were
defined using the natural order; in that context, the flag major index was denoted by fmaj rather
than fmajor. However, Adin–Brenti–Roichman point out in [1, p. 218] that either order can be
used to obtain Theorems 6.1 and 6.2. Our generalizations in type B are the following corollaries
of Theorems 5.14 and 5.15, again using notation from Section 5.

Corollary 6.3.
k≥0

n
j=1

[k + 1]z j z
k
0

=


π∈Sn


(ρ,ϵ)∈I2,n


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)


j∈NNeg((ρ,ϵ)−1)

z0zπ(1)zπ(2) · · · zπ( j)

(1 − z0)
n

j=1


1 − z2

0z2
π(1) · · · z2

π( j)

 .

Corollary 6.4.


k≥0

n
j=1

[k + 1]z j z
k
0 =


(π,ϵ)∈Bn


j∈Des(π)

aϵ
j =0

z2
0z2

π(1)z
2
π(2) · · · z2

π( j)


j :aϵ

j =1
z0zπ(1)zπ(2) · · · zπ( j)

(1 − z0)
n

j=1


1 − z2

0 z2
π(1)z

2
π(2) · · · z2

π( j)

 .

In the original work of Adin, Brenti, and Roichman [1], it was left as an open question to give
a bijective proof in type B of the equidistribution of the pairs of statistics (ndes, nmajor) and
(fdes, fmajor); a combinatorial proof in type B leading to an implicit bijection was given by Lai
and Petersen in [18]. When restricted to type B, the proof of Corollary 5.18 also produces such a
bijection.
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6.2. Identities involving (2k + 1)n

Recall Definition 2.3 which introduced NatDes(π, ϵ) and natdes(π, ϵ). For an element
(π, ϵ) ∈ Bn , the naturally ordered major index is

natmaj(π, ϵ) :=


i∈NatDes(π,ϵ)

i.

Further, for an element (π, ϵ) ∈ Bn , we write neg(π, ϵ) := col(π, ϵ), where col(π, ϵ) is given in
Definition 5.4, to emphasize that this statistic counts the number of negative signs in the window
for (π, ϵ). Chow and Gessel [10, Eq. (26)] proved the following hyperoctahedral analogue of
Theorem 1.3:

Theorem 6.5 (Chow–Gessel).


k≥0


[k + 1]q + s [k]q

n tk
=


π∈Sn , ϵ∈{±1}

n
sneg(π,ϵ)tnatdes(π,ϵ)qnatmaj(π,ϵ)

n
j=0


1 − tq j

 .

The special case q = 1 is due to Brenti [8, Theorem 3.4]. Chow and Gessel also showed
in [10] how Theorem 6.5 implies other versions of “q-Eulerian polynomials” of type B involving
a flag major index statistic using the natural order, such as the following.

Theorem 6.6 (Chow–Gessel).


k≥0

[2k + 1]
n
q tk

=


(π,ϵ)∈Bn

tnatdes(π,ϵ)qnatfmaj(π,ϵ)

n
j=0


1 − tq2 j

 .

The statistic natfmaj used above is defined as follows.

Definition 6.7. Use the order −n < · · · < −1 < 1 < · · · < n on [−n, n] \ {0}. We define the
natural type-A descent set as

NatDesA(π, ϵ) := {i ∈ [n − 1] : ϵiπi > ϵi+1πi+1}

while the natural type-A descent statistic is natdesA(π, ϵ) := #NatDesA(π, ϵ). The natural type-
A major index is defined as

natmajorA(π, ϵ) :=


i∈NatDesA(π,ϵ)

i.

The natural flag major index is

natfmaj(π, ϵ) := 2 · natmajorA(π, ϵ) + neg(π, ϵ).

Remark 6.8. Through this work, natdes will always refer to the statistic introduced in
Definition 2.3 while natdesA will be used to indicate the definition given above.

While it is observed by Chow–Gessel in [10] that Theorems 6.5 and 6.6 are equivalent via
a change of variables, the geometric perspective illustrates how these two theorems arise as
specializations of two distinct multivariate generating-function identities.
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6.3. Multivariate identities

For the type-B generalization of Theorem 6.5, we introduce the variables z± j to keep track of
the positive/negative j th component of a lattice point, respectively, and the variable s to indicate
the presence in each coordinate of our point of a negative sign.

Theorem 6.9.
k≥0

n
j=1


[k + 1]z j + s z−1

− j [k]z−1
− j


zk

0

=


(π,ϵ)∈Bn

sneg(ϵ)


j∈NatDes(π,ϵ)

z0z
ϵ j+1
ϵ j+1π( j+1)z

ϵ j+2
ϵ j+2π( j+2) · · · zϵn

ϵnπ(n)

n
j=0


1 − z0 z

ϵ j+1
ϵ j+1π( j+1)z

ϵ j+2
ϵ j+2π( j+2) · · · zϵn

ϵnπ(n)

 .

Proof. Recall that we use the order

−n < −n + 1 < · · · < −1 < 1 < 2 < · · · < n.

As in Definition 5.10, create the set of increasing elements, denoted I nat
2,n , using the natural order

above. It is straightforward from the discussion following Definition 5.10 to show that

Bn =


π∈Sn

I nat
2,nπ.

For each (ρ, γ ) ∈ I nat
2,n , the first neg(γ ) elements of the permutation are negated, with labels

ρ1, . . . , ρneg(γ ).
For each (ρ, γ ) ∈ I nat

2,n , define

�(ρ,γ ) :=


x ∈ Rn

:
0 ≤ xρ( j) ≤ 1 if j ≥ neg(γ ) + 1,

0 < −xρ( j) ≤ 1 if j ≤ neg(γ )


.

It is straightforward to show that

[−1, 1]
n

=


(ρ,γ )∈I nat

2,n

�(ρ,γ ),

where this union is disjoint; any point in [−1, 1]
n with negative entries in positions i1 > · · · > ik

is an element of �(ρ,γ ) where ρ j = i j and γ has −1 in precisely the first k entries.
Fix (ρ, γ ) ∈ I nat

2,n , and for each τ ∈ Sn consider the element (π, ϵ) = (ρ, γ )τ . For each such
(π, ϵ), set

∆(π,ϵ) :=


x ∈ �(ρ,γ ) :

0 ≤ ϵ1xπ(1) ≤ · · · ≤ ϵn xπ(n) ≤ 1
ϵ j xπ( j) < ϵ j+1xπ( j+1) if j ∈ NatDes(π, ϵ)


,

where ϵ0xπ(0) = 0. Thus, the left-most inequality might be strict, while the right-most inequality
is never strict. It follows that

�(ρ,γ ) =


(π,ϵ)=(ρ,γ )τ

τ∈Sn

∆(π,ϵ),
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where our union is again disjoint. Observe that this triangulation of �(ρ,γ ) is induced by
xi = x j : i, j ≤ neg(γ ) or i, j ≥ neg(γ ) + 1


∪


xi = −x j : i ≥ neg(γ ) + 1 and j ≤ neg(γ )

,

a sub-arrangement of the type B braid arrangement that intersects �(ρ,γ ) in the same manner as
the type A braid arrangement intersects [0, 1]

n .
For example, given [21 11 30

] = (ρ, γ ) ∈ I nat
2,n , the six elements of [21 11 30

]S3 are

[21 11 30
] ◦ [1 2 3] = [21 11 30

]

[21 11 30
] ◦ [2 1 3] = [11 21 30

]

[21 11 30
] ◦ [1 3 2] = [21 30 11

]

[21 11 30
] ◦ [3 2 1] = [30 11 21

]

[21 11 30
] ◦ [2 3 1] = [11 30 21

]

[21 11 30
] ◦ [3 1 2] = [30 21 11

],

giving rise to �[21 11 30] being a union of the six corresponding ∆(π,ϵ)’s shown below:

∆[21 11 30] = {x ∈ �[21 11 30] : 0 < −x2 ≤ −x1 ≤ x3 ≤ 1}

∆[11 21 30] = {x ∈ �[21 11 30] : 0 < −x1 < −x2 ≤ x3 ≤ 1}

∆[21 30 11] = {x ∈ �[21 11 30] : 0 < −x2 ≤ x3 < −x1 ≤ 1}

∆[30 11 21] = {x ∈ �[21 11 30] : 0 ≤ x3 < −x1 < −x2 ≤ 1}

∆[11 30 21] = {x ∈ �[21 11 30] : 0 < −x1 ≤ x3 < −x2 ≤ 1}

∆[30 21 11] = {x ∈ �[21 11 30] : 0 ≤ x3 < −x2 ≤ −x1 ≤ 1}.

A lattice point m ∈ cone(�(ρ,γ )) gets encoded by the monomial

zm0
0


ϵ j =−1

s z
−m j
− j


ϵ j =1

z
m j
j .

Because of the definition of ∆(π,ϵ), we can use our shifting techniques from Section 3.3 (either
technique will suffice in this case) to conclude

σcone(∆(π,ϵ))(z0, z±1
±1, . . . , z±1

±n, s)

=

sneg(π,ϵ)


j∈NatDes(π,ϵ)

z0 z
ϵ j+1
ϵ j+1π( j+1)z

ϵ j+2
ϵ j+2π( j+2) · · · zϵn

ϵnπ(n)

n
j=0


1 − z0 z

ϵ j+1
ϵ j+1π( j+1)z

ϵ j+2
ϵ j+2π( j+2) · · · zϵn

ϵnπ(n)

 .

On the other hand,

σcone([−1,1]n)(z0, z±1
±1, . . . , z±1

±n, s)

=


k≥0

n
j=1


s z−k

− j + s z−(k−1)
− j + · · · + s z−1

− j + 1 + z j + z2
j + · · · + zk

j


zk

0,

and the disjoint triangulations discussed above yield

σcone([−1,1]n)(z0, z±1
±1, . . . , z±1

±n, s) =


(π,ϵ)∈Bn

σcone(∆π,ϵ)(z0, z±1
±1, . . . , z±1

±n, s). �
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Proof of Theorem 6.5. Setting t := z0 and q := z1 = · · · = zn = z−1
−1 = · · · = z−n

−n in
Theorem 6.9 gives


k≥0


[k + 1]q + s q[k]q

n tk
=


(π,ϵ)∈Bn

sneg(ϵ)


j∈NatDes(π,ϵ)

tqn− j

n
j=0


1 − tqn− j

 .

Applying the change of variables q →
1
q and t → tqn finishes the proof. �

Our multivariate generalization of Theorem 6.6 is the following, which is a special case of
Theorem 5.23. Recall from Definition 5.12 the notation ch(ϵ) for the number of color changes in
ϵ and the notation aϵ

j to keep track of where color changes occur.

Theorem 6.10.
k≥0

n
j=1

[2k + 1]z j z
k
0

=


(π,ϵ)∈Bn

z⌈ch(ϵ)/2⌉

0


j :aϵ

j =1
zπ(1)zπ(2) · · · zπ( j)


j∈Des(π)

aϵ
j =0

z0z2
π(1)z

2
π(2) · · · z2

π( j)

n
j=0


1 − z0 z2

π(1)z
2
π(2) · · · z2

π( j)

 .

Remark 6.11. Observe that by specializing Theorem 6.10 using t := z0 and q := z1 =

· · · = zn , we obtain a bivariate generating function identity involving the joint distribution
for (des, fmajor). Theorem 6.6 follows from this, as the pairs of statistics (natdes, natfmaj) and
(des, fmajor) are equidistributed in Bn ; this is a consequence of the bijection mapping every
permutation (π, ϵ) ∈ Bn to the permutation where the π( j) for ϵ j = −1 are reversed in order in
the window for (π, ϵ), while the ϵ-vector remains the same.

As an example, consider [21 41 50 11 31
] ∈ B5. The entries 2, 4, 1, and 3 correspond to

the positions where ϵ j = −1. Hence, by reversing the order of these entries, we obtain
a new permutation [31 11 50 41 21

], and it is immediate that the descent positions for the
new permutation using the natural order are the same as those in the first permutation
using our standard order for wreath products. Observe that for the first permutation we have
(des, fmajor) = (2, 10), and for the second we also have (natdes, natfmaj) = (2, 10).

Hence, we may conclude that Theorem 6.6 follows from the special case of r = 2 in
Theorem 5.23.

7. Type D

In this section we prove a multivariate identity related to negative statistics on Coxeter
groups of type D. One may consider type-D Eulerian polynomials stemming from the signed
permutations in Bn with an even number of −1’s. Let

Dn := {(π, ϵ) ∈ Bn : ϵ1 · · · ϵn = 1} .

The definition of DNatDes(π, ϵ) and dnatdes(π, ϵ) in type D is analogous to (3), except that we
now use the convention ϵ0π(0) := −ϵ2π(2). Brenti [8, Theorem 4.10] proved that
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k≥0


(2k + 1)n

− 2n−1 (Bn(k + 1) − Bn(0))


tk
=


(π,ϵ)∈Dn

tdnatdes(π,ϵ)

(1 − t)n+1 , (12)

where Bn(x) is the n’th Bernoulli polynomial. We focus on the following identity due to Biagioli
in [6], involving negative statistics in type D.

Theorem 7.1 (Biagioli).


k≥0

[k + 1]
n
q tk

=


(π,ϵ)∈Dn

tdndes(π,ϵ)qdnmajor(π,ϵ)

(1 − t)(1 − tqn)
n−1
j=1

(1 − t2q2 j )

.

Definition 7.2. Using the order −1 < · · · < −n < 1 < · · · < n on [−n, n] \ {0}, for an element
(π, ϵ) ∈ Dn , we define DesA(π, ϵ), neg(π, ϵ), and desA(π, ϵ) as for the group Bn . Further, we
set Neg(π, ϵ) := NNeg(π, ϵ). We define the type-D negative descent multiset as

DNDes(π, ϵ) := DesA(π, ϵ) ∪ {π(i) − 1 : ϵi = −1} \ {0}

= DesA(π, ϵ) ∪ { j − 1 : j ∈ Neg((π, ϵ)−1) \ {1}}.

The type-D negative descent statistic is

dndes(π, ϵ) := #DNDes(π, ϵ).

The type-D negative major index is

dnmajor(π, ϵ) :=


i∈DNDes(π,ϵ)

i.

Example 7.3. Let (π, ϵ) = [21 41 50 11 31
] ∈ D5. Then DesA(π, ϵ) = {3} and Neg((π, ϵ)−1) =

{1, 2, 3, 4}, hence DNDes(π, ϵ) = {3} ∪ {1, 2, 3} and dnmajor(π, ϵ) = 9.

Remark 7.4. Biagioli originally defined dnmajor and dndes in [6] using the natural order, but
the Theorem 7.1 holds for either definition.

Our multivariate generalization of Theorem 7.1 is as follows. Let I ∗

2,n ⊆ I2,n denote the
elements (ρ, ϵ) ∈ I2,n satisfying ϵ1ϵ2 · · · ϵn = 1. It is straightforward from our discussion
regarding Ir,n that

Dn =


π∈Sn

I ∗

2,nπ.

Theorem 7.5.


k≥0

n
j=1

[k + 1]z j zk
0 =


π∈Sn


(ρ,ϵ)∈I ∗

2,n


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)


j∈Neg((ρ,ϵ)−1)\{1}

z0zπ(1)zπ(2) · · · zπ( j−1)

(1 − z0)(1 − z0zπ(1) · · · zπ(n))
n−1
j=1


1 − z2

0z2
π(1) · · · z2

π( j)

 .

Proof. We begin with the triangulation of cone([0, 1]
n) into the set of cones {cone(∆π ) : π ∈ Sn}

found in the proof of Theorem 4.1. For cone(∆π ) we use the non-unimodular ray generators

e0, 2(e0 + eπ(1)), . . . , 2(e0 + eπ(1) + · · · + eπ(n−1)), e0 + eπ(1) + · · · + eπ(n).
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There are 2n−1 integer points in the fundamental parallelepiped for cone(∆π ) using these ray
generators. Each such point can be expressed as a linear combination of the middle n − 1
generators with coefficients α j ∈ {0, 1

2 }, plus a sum of shifting vectors for those integer points
that need to be shifted away from the boundary of the cone. As in our proof of Theorem 5.14, we
will use the technique of shifting the entire parallelepiped.

Thus, every integer point p in the (shifted) fundamental parallelepiped for cone(∆π ) can be
uniquely expressed as

p =


j∈Des(π)

(e0 + eπ(1) + · · · + eπ( j)) +

n−1
j=1

α j (e0 + eπ(1) + · · · + eπ( j))

with α j ∈ {0, 1}. Associate to the point p the element (ρ, ϵ)π ∈ Dn , where α j = 1 if and only if
j + 1 ∈ Neg((ρ, ϵ)−1) = Neg([(ρ, ϵ)π]

−1).
As in the proof of Theorem 5.14, this correspondence creates a bijection between the elements

of Dn and the (appropriately shifted) integer points in the fundamental parallelepipeds for the
cones over the ∆π . Our choice of (ρ, ϵ)π associated to p is unique because the condition α j = 1
if and only if j + 1 ∈ Neg((ρ, ϵ)−1) = Neg([(ρ, ϵ)π]

−1) determines the signs placed on the
letters {2, 3, . . . , n} when (ρ, ϵ)π is written in window notation. Hence, ϵ1 is determined from
these n − 1 signs and the fact that ϵ1 · · · ϵn = 1. This bijection encodes I ∗

2,n as the integer points
in the fundamental parallelepiped for cone(∆Id).

Thus

σcone(∆π )(z0, . . . , zn)

=


(ρ,ϵ)∈I ∗

2,n


j∈Des(π)

z0zπ(1)zπ(2) · · · zπ( j)


j∈Neg((ρ,ϵ)−1)\{1}

z0zπ(1)zπ(2) · · · zπ( j−1)

(1 − z0)(1 − z0zπ(1) · · · zπ(n))
n−1
j=1


1 − z2

0z2
π(1) · · · z2

π( j)

 .

This completes our proof, since from our triangulation it follows that

σcone([0,1]n)(z0, . . . , zn) =


π∈Sn

σcone(∆π )(z0, . . . , zn). �

Proof of Theorem 7.1. Setting t := z0 and q := z1 = · · · = zn in Theorem 7.5 yields our
desired form on the left-hand side of our identity, while the denominator of the right-hand side
uniformly becomes

(1 − t)(1 − tqn)

n−1
j=1


1 − t2q2 j


.

Each element (ρ, ϵ)π ∈


π∈Sn
I ∗

2,nπ contributes to the numerator on the right-hand side of our
identity a summand of

j∈Des(π)

tq j


j∈Neg([(ρ,ϵ)π ]−1)

tq j−1.

Because Des(π) = DesA((ρ, ϵ)π), it follows that
j∈Des(π)

tq j


j∈Neg([(ρ,ϵ)π ]−1)

tq j−1
= tdndes((ρ,ϵ)π)qdnmajor((ρ,ϵ)π),

hence our proof is complete. �
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