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Abstract

The entropic discriminant is a non-negative polynomial associated to a matrix. It arises in contexts rang-
ing from statistics and linear programming to singularity theory and algebraic geometry. It describes the
complex branch locus of the polar map of a real hyperplane arrangement, and it vanishes when the equa-
tions defining the analytic center of a linear program have a complex double root. We study the geometry
of the entropic discriminant, and we express its degree in terms of the characteristic polynomial of the
underlying matroid. Singularities of reciprocal linear spaces play a key role. In the corank-one case, the en-
tropic discriminant admits a sum of squares representation derived from the discriminant of a characteristic
polynomial of a symmetric matrix.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Entropy maximization for log-linear models in statistics leads to the optimization problem

maximize |x1x2 · · · xn| subject to Ax = b. (1)

Here A is a fixed real d × n-matrix of rank d none of whose columns are zero. The right hand
side vector b ∈ Rd is a parameter that is allowed to vary. The problem (1) has a unique local so-
lution in the interior of each bounded region of the hyperplane arrangement {xi = 0}i∈[n] inside
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the (n − d)-dimensional affine space {x ∈ Rn
: Ax = b}. The bounded regions are (n − d)-

dimensional convex polytopes. The number of bounded regions in this arrangement is constant
for an open, dense set of vectors b. This number, µ(A), is a quantity known in matroid theory as
the Möbius invariant. The local optima of (1) are the analytic centers of these µ(A) polytopes.
They are characterized by

A · x = b and


1
x1

,
1
x2

, . . . ,
1
xn


lies in the row space of A. (2)

This translates into a system of polynomial equations in the variables x1, . . . , xn . It is known
[23,27] that all complex solutions of this system actually lie in Rn . Thus µ(A) is the algebraic
degree of (2).

The aim of this article is to address the following question: Under what condition on the
right hand side b do two of the µ(A) solutions of polynomial equations represented by (2) come
together? The set of all complex right hand side vectors b ∈ Cd for which this happens is an al-
gebraic variety HA in Cd , called the entropic discriminant. Under mild hypotheses on the matrix
A, the entropic discriminant HA is a hypersurface and we identify it with its defining polyno-
mial, denoted by HA(b). This is a non-negative polynomial whose real zeros lie in certain linear
subspaces of codimension 2.

Example 1. Let d = 3 and n = 5. The following 3 × 5-matrix has Möbius invariant µ(A) = 4:

A =

1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 .

The entropic discriminant of A is a homogeneous polynomial HA(b1, b2, b3) of degree 8. It
equals
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where s1 = b1 − b2, s2 = b1 − b3, and s3 = b1 − b2 − b3. Thus HA(b) is a sum of squares of
quartics.

It coincides with the discriminant of the following system of equations in three unknowns:

1/z1 + 1/(z1 + z2) + 1/(z1 + z3) = b1,

1/z2 + 1/(z1 + z2) = b2,

1/z3 + 1/(z1 + z3) = b3.

These equations are equivalent to (2) if we take (z1, z2, z3) to be coordinates for the row space
of A. There are four solutions for any b = (b1, b2, b3) ∈ C3. They are distinct if and only if
HA(b) ≠ 0. The entropic discriminant HA(b) is a non-negative polynomial having precisely
four real zeros:

VR(HA) =

(0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1)


⊂ P2. (3)
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The complex variety VC(HA) is a curve of degree 8 in the projective plane with coordinates
(b1 : b2 : b3). That curve is singular at its four real points. In addition, it has 16 isolated complex
singularities. �

We shall study the systems (2) for arbitrary d, n, and A. The following is our main result.

Theorem 2. Let A be a real d × n-matrix of rank d whose columns span ≥ d + 1 distinct lines.
The entropic discriminant is a hypersurface, defined by a homogeneous polynomial HA(b) of
degree

deg HA(b) = 2(−1)d
· (dχ(0) + χ ′(0)), (4)

where χ(t) is the characteristic polynomial of the rank d matroid of A. For generic matrices A,

this degree equals 2(n − d)


n−1
d−2


. The polynomial HA(b) is non-negative for all arguments

in Rd .

The generic degree 2(n − d)


n−1
d−2


is always an upper bound on the degree of the entropic

discriminant, and the equality holds when the matroid of A is uniform; cf. Proposition 33. For
example, for generic matrices A of size 3 × 5, the degree of HA(b) equals 16, and not 8 as in
Example 1.

This article is organized as follows. In Section 2 we examine the polar map of a product of
linear forms. The entropic discriminant is shown to coincide with the branch locus of that polar
map. For example, consider the polar map of the binary form f (z1, z2) = z1(z1 + 2z2)(z1 +

3z2)(z1 + az2):

∇ f : P1
→ P1, (z1 : z2) →


∂ f

∂z1
(z1, z2) :

∂ f

∂z2
(z1, z2)


.

The branch locus of this map consists of the four zeros of the binary quartic HA(b1, b2) in Ex-
ample 3. This connects our study of HA(b) to the topological theory of hyperplane arrangements
[4,5], and to topics in classical algebraic geometry that are found in Chapter 1 of Dolgachev’s
book [6].

Section 3 is concerned with the important special case n = d + 1. Here the entropic dis-
criminant has expected degree d(d − 1) and we can write it explicitly as a sum of squares. This
expression is derived from known results on the discriminant of the characteristic polynomial
of a symmetric matrix [2,14,15,18]. We then apply this to resolve two problems left open in the
literature, namely the Sottile–Mukhin Conjecture [1] on the discriminant of the derivative of a
univariate polynomial, and Conjecture 7.9 in [25] concerning real critical double eigenvalues of
a net of symmetric matrices.

For any linear subspace L of Cn , its reciprocal L−1 is defined as the Zariski closure of the set
1
u1

,
1
u2

, . . . ,
1

un


∈ Cn

: (u1, u2, . . . , un) ∈ L ∩ (C∗)n


. (5)

In Section 5 we study the geometry of the reciprocal plane L−1, further extending the line of
work from Proudfoot–Speyer [20] to Huh–Katz [13]. We identify a minimal system of defining
equations for L−1, we characterize the singular locus of L−1, and we determine all tangent cones.
The relationship between that singular locus, the ramification locus of the map A : L−1

→ Pd−1,
and the entropic discriminant HA(b) is studied in detail in Section 7. In Corollary 37 we show
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that the real variety defined by the polynomial HA(b) is a union of linear spaces of codimension
2 in Pd−1. We saw this already for one instance in Example 1, where d = 3 and the real variety
is finite.

Theorem 2 is proved in Section 6. However, one subtle but essential point needs to be taken
care of before that proof. In order for (4) to be the correct degree, a more refined notion of
entropic discriminant is required. Namely, we shall define HA(b) as the polynomial defining the
cycle-theoretic branch locus of the restriction to L−1 of the linear map A : Cn

→ Cd , where L
is the row space of A. The following example justifies this “fine print” in Definition 28.

Example 3. Let d = 2, n = 4 and A =


1 1 1 1
0 2 3 a


where a is a real parameter. For general

values of a, the entropic discriminant is irreducible and has degree 4, as predicted by Theorem 2:

HA(b1, b2) = (2268a4
− 9720a3

+ 11664a2)b4
1 − (3000a4

− 12528a3

+ 12960a2
+ 5184a)b3

1b2 + (1744a4
− 7980a3

+ 10584a2

− 2160a + 5184)b2
1b2

2 − (500a4
− 2612a3

+ 4680a2

− 3888a + 4320)b1b3
2 + (63a4

− 400a3
+ 999a2

− 1350a + 1188)b4
2.

For special values of the parameter a, this expression factors over Q. For a = 6, it is the
square 972(36b2

1 − 24b1b2 + 5b2
2)

2. Thus, here the four points of VC(HA) in P1 are two double
points. �

Our initial motivation for embarking on this project was a model in theoretical neuroscience
proposed by Hillar and Wibisono [11]. These authors investigate the retina equations which
characterize the maximum entropy distribution for a graphical model G with n edges having
continuous random variables on d nodes that represent the firing pattern of d neurons. Their
equations are


j∈N (i)

1
zi + z j

= bi for i = 1, 2, . . . , d, (6)

where N (i) is the set of all nodes that are adjacent to the node i . The real numbers b1, b2, . . . , bd
are parameters that serve as the sufficient statistics of the desired maximum entropy distribution.

To fit the system (6) into our framework, we introduce new unknowns xi j = 1/(zi + z j ) for
all edges {i, j} ∈ E(G). This translates (6) into the linear system A · x = b, where A is the
node-edge incidence matrix of G and x =


xi j : {i, j} ∈ E(G)


is a column vector of unknowns.

Of course, these unknowns obey the additional constraints that x must lie in the reciprocal plane
L−1, where L is the row space of A. Thus the retina equations of Hillar and Wibisono fit our
format (2):

A · x = b and x ∈ L−1. (7)

The entropic discriminant HA(b) characterizes measurements b for which the retina equations

(6) or (7) have multiple roots. Of particular interest is the case n =


d
2


, when G = Kd is the

complete graph, and the sum in (6) is over j ∈ {1, . . . , n} \ {i}. The characteristic polynomial
χd(t) of the corresponding matroid was computed by Zaslavsky [30], in his work of colorings of
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signed graphs:

χd(t) =

d
k=0


d

k


+ d


d − 1

k


(t − 1)

(2)
k . (8)

Here


d
k


is the Stirling number of the second kind and (x)

(2)
k+1 = x(x −2) · · · (x −2k) is the gen-

eralized falling factorial. One can also compute χd(t) with the exponential generating function


d≥0

χd(t) ·
xd

d!
= (1 + x) ·


2 · exp(x) − 1

(t−1)/2
, (9)

found in [24, Exercise 5.25]. Using these formulas, one obtains the first few values of the degree
of HA(b) and of the number of solutions of the retina equations on the complete graph G = Kd :

d = 4 5 6 7 8 9 10
deg(HA(b)) = 22 270 3148 38990 524858 7705572 123087958

µ(A) = 7 51 431 4208 46824 586141 8161237
. (10)

The requisite combinatorics is developed in Section 4. It covers material from matroid theory,
focusing on geometric interpretations of the characteristic polynomial and the Möbius invariant.
For instance, the third row in (10) is computed from the series in (9) for t = 0, using formula (28).

2. The polar map of a product of linear forms

The d × n-matrix A = (ai j ) determines a product of linear forms in d unknowns z =

(z1, . . . , zd):

f (z) =

n
j=1


d

i=1

ai j zi


. (11)

The hypersurface VC( f ) is an arrangement of n hyperplanes in the complex projective space
Pd−1. The polar map of this hypersurface is the rational map

∇ f : Pd−1 99K Pd−1, z →


∂ f

∂z1
(z) :

∂ f

∂z2
(z) : · · · :

∂ f

∂zd
(z)


.

The base locus of ∇ f is the singular locus of VC( f ), and this is the union of all codimension-2
strata in the hyperplane arrangement. If the columns of A are linearly independent then ∇ f is
the Cremona transformation of classical algebraic geometry, and, in general, the polar map ∇ f is
also known as the polar Cremona transformation [5]. The Jacobian of ∇ f is the Hessian of the
polynomial f , that is, the symmetric matrix of second derivatives. We consider its determinant

Hess( f ) = det


∂2 f

∂zi∂z j


1≤i, j≤d

.

This is a homogeneous polynomial of degree d(n − 2). Its zero set in Pd−1, denoted by
VC(Hess( f )), is also referred to as the Hessian of f . We are interested in the image of that
hypersurface under ∇ f .
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Proposition 4. The entropic discriminant equals the image of the Hessian under the polar map:

VC(HA) = closure of ∇ f


VC(Hess( f )) \ VC( f )

. (12)

Proof. Let L−1 denote the reciprocal of the subspace L spanned by the rows of A, regarded as
a subvariety of Pn−1. The variety L−1 is the closure of the image of the map Pd−1 99K Pn−1

that takes a general point z = (z1 : · · · : zd) in Pd−1 to (zA)−1
=

(
d

i=1 ai1zi )
−1

: · · · :

(
d

i=1 ainzi )
−1


in Pn−1. The polar map is the composition of this map with the linear projection
Pn−1 99K Pd−1, x → Ax. In symbols, we have ∇ f (z) = A


(zA)−1


. This observation shows

that the fiber of ∇ f over a general real point b ∈ Im(∇ f ) consists of µ(A) real points in
Pd−1, namely, the points represented by the analytic centers in the arrangement defined by the
coordinate hyperplanes in the affine space {x ∈ Rn

: Ax = b}. This result was also obtained in
dual form by Dimca and Papadima in [4, Corollary 4 (1)].

For special complex points b ∈ Pd−1, two of its µ(A) preimages under ∇ f may coincide.
At such a preimage z of multiplicity ≥ 2, the Jacobian of ∇ f drops rank, and the Hessian of f
vanishes at z. Conversely, points z outside the hyperplane arrangement VC( f ) at which the poly-
nomial Hess( f ) vanishes must be double roots of the system of equations ∇ f (z) = b. Since the
parametrization z → x = (zA)−1 maps Pd−1 birationally onto the reciprocal plane L−1, such
double roots appear if and only if the intersection L−1

∩ {x ∈ Pn−1
: Ax = b, x1x2 · · · xn ≠ 0}

has a point of multiplicity ≥ 2. This condition on b is the geometric definition of the entropic
discriminant HA. �

We have not yet addressed the question whether the entropic discriminant actually has codi-
mension 1, and this may in fact not be the case. For instance, if A is the identity matrix and
f = z1z2 · · · zd then ∇ f is the classical Cremona transformation on Pd−1 and Hess( f ) =

(−1)d−1(d − 1) f d−2. Here, the Hessian coincides with the hyperplane arrangement, and the
entropic discriminant is not a hypersurface. We shall see that this is essentially the only excep-
tional case.

The matrix A = (ai j ) is called basic if its column rays lie on d distinct lines in Rd . Since A
has rank d and no zero columns, this means that the distinct column directions form a basis of Rd .

Corollary 5. If A is not basic then the entropic discriminant is a hypersurface in Pd−1.

Proof. A classical formula [16, p. 660, Example 10] for the Hessian determinant of f states that

Hess( f ) = (−1)d−1(n − 1) f d−2
·


I∈


[n]

d

 det(AI )
2


k∈[n]\I

(a1k z1 + a2k z2 + · · · + adk zd)2

(13)

where AI denotes the d ×d-submatrix of A with column indices I . If A is not basic, then at least
two summands are not scalar multiples of each other. This implies that the Hessian hypersurface
is not contained in the hyperplane arrangement VC( f ). The polar map ∇ f is a finite-to-one
morphism on the open set Pd−1

\ VC( f ), and hence it maps the Hessian to a hypersurface in
Pd−1, namely HA. �

Corollary 6. For any non-basic A, the polynomial HA(b) is homogeneous and nonnegative
on Rd .
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Proof. It suffices to prove this for the square-free polynomial H̃A(b) that vanishes on VC(HA).
Indeed, if H̃A(b) is homogeneous and nonnegative then so is any real product of its factors.

Homogeneity is straightforward since the geometric definition ensures that b ∈ VC(HA)

implies λb ∈ VC(HA). To show non-negativity, let K denote the subfield of R which is generated
by the entries of A. We regard the entries of b = (b1, . . . , bd) as indeterminates over K . Let L be
the algebraic closure of the rational function field K (b1, . . . , bd). Then the equation ∇ f (z) = b
has µ(A) distinct solutions with coordinates in L . We substitute these solutions into the sum
in (13) and we take their product in the field L . The result is a sum of squares in L that is
a symmetric polynomial in the roots. It is invariant under the action of the Galois group of L
over K (b1, . . . , bd) and thus lies in K (b1, . . . , bd). The sum of squares representation over L
ensures that this rational function is non-negative under all specializations of b to R at which
it does not have a pole. The numerator of this rational function is a product of the factors of
H̃A(b). We conclude that H̃A(b) does not change signs on Rd . Hence, either H̃A(b) or −H̃A(b)

is non-negative on Rd . �

The above argument shows that HA(b) is non-negative but it does not furnish a representation
of HA(b) as a sum of squares of polynomials. We also note that the computation of HA(b) from
Hess( f ) is a task of elimination theory that is quite non-trivial even for moderate values of d
and n.

One case where the elimination problem can be solved more easily is d = 2. Here f (z1, z2)

is a binary form of degree n enjoying the property that all its zeros on the line P1 are defined over
R. The polar map ∇ f takes the complex projective line P1 to itself. This map has degree n − 1,
i.e. the fiber over a general point b ∈ P1 consists of n−1 points. We are interested in those points
b on the line P1 for which two or more of the points in its fiber collide. The Hessian of f equals

det


∂2 f

∂z2
1

∂2 f

∂z1∂z2

∂2 f

∂z1∂z2

∂2 f

∂z2
2


= (1 − n) ·


1≤i< j≤n

(a1i a2 j − a1 j a2i )
2

·


k∈[n]\{i, j}

(a1k z1 + a2k z2)
2.

This is a binary form of degree 2n − 4, so it defines a configuration of 2n − 4 points in P1. All
points have non-real coordinates. The entropic discriminant of f is the image of these 2n − 4
points under the polar map ∇ f . Proposition 4 gives the following rule for computing the entropic
discriminant:

HA(b1, b2) = Resultantz


Hess( f (z)), b2

∂ f

∂z1
(z) − b1

∂ f

∂z2
(z)


. (14)

This formula can be rewritten as the discriminant of a binary form:

HA(b1, b2) = Discriminantz


b2

∂ f

∂z1
(z) − b1

∂ f

∂z2
(z)


. (15)

The binary form HA(b1, b2) has degree 2n − 4 provided no two columns of A are parallel.
Being nonnegative, the entropic discriminant is a sum of squares of binary forms of degree n − 2
over R.
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Example 7. Let n = 3 and consider a general binary cubic with real zeros:

f = (a11z1 + a21z2)(a12z1 + a22z2)(a13z1 + a23z2).

The sum of squares representation in (13) tells us that the Hessian of f equals

(a11a22 − a21a12)
2(a13z1 + a23z2)

2
+ (a11a23 − a21a13)

2(a12z1 + a22z2)
2

+ (a12a23 − a22a13)
2(a11z1 + a21z2)

2.

For any invertible matrix U , the entropic discriminant satisfies HU A(Ub) = HA(b). This implies
that HA(b) can be written in the 2 × 2 minors pi j of the matrix 2 × 4-matrix (A, b). We have

HA(b) = (p12 · p34)
2
+ (p13 · p24)

2
+ (p23 · p14)

2. (16)

For n = 4, an expression for HA(b) in terms of the 2 × 2 minors of the 2 × 5-matrix (A, b) is

(p2
12 p34 p35 p45)

2
+ (p2

13 p24 p25 p45)
2
+ (p2

14 p23 p25 p35)
2
+ (p14 p2

23 p15 p45)
2

+ (p13 p2
24 p15 p35)

2
+ (p12 p2

34 p15 p25)
2
+

7
2
(p23 p24 p34 p2

15)
2

+
7
2
(p13 p14 p34 p2

25)
2
+

7
2
(p12 p14 p24 p2

35)
2
+

7
2
(p12 p13 p23 p2

45)
2. (17)

At present we do not know how to extend the formulas (16) and (17) to n ≥ 5. �

It is natural to ask how the formulas (14) and (15) would generalize to d ≥ 3, and the answer
is given by the projective duality between the entropic discriminant and the Steinerian hyper-
surface [6, Section 1.1.6]. If f is any homogeneous polynomial of degree n in z = (z1, . . . ,

zd) then its Steinerian is

St f (c1, c2, . . . , cd) = Discriminantz


c1

∂ f

∂z1
(z) + c2

∂ f

∂z2
(z) + · · · + cd

∂ f

∂zd
(z)


. (18)

In this formula, we are taking the discriminant of a form of degree n − 1, namely, the polar of f
with respect to a generic point c. Corollary 1.2.2 in [6] tells us that the hypersurface defined by
St f (c) is dual to the image of the hypersurface defined by Hess( f (z)) under the polar map ∇ f .

In our situation, the given form f is a product of linear forms as in (11), and some care needs to
be taken in removing contributions from singularities. Indeed, the Steinerian St f of a hyperplane
arrangement is supported on that same hyperplane arrangement plus an extra component. It is
this extra component we are interested in. We call this hypersurface the residual Steinerian of f .

Corollary 8. The entropic discriminant of a d × n-matrix A is the hypersurface in Pd−1

projectively dual to the residual Steinerian of the arrangement of n hyperplanes given by the
columns of A.

Let us briefly revisit the case d = 2 from this point of view. We saw that the entropic discrim-
inant consists of 2n − 4 points on a projective line with coordinates (b1 : b2). The Steinerian
consists of 2n − 4 points on the dual projective line with coordinates (c1 : c2). In our formulas
(14) and (15) we tacitly identified these two lines and their point configurations via (c1 : c2) =

(−b2 : b1).
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For d ≥ 3, the formula (18) is less useful for the purpose of computing HA(b) because
dualizing the residual Steinerian in a computer algebra system is hard. Instead, we find it
preferable to use

⟨HA(b)⟩=

⟨ Hess( f (z)) ⟩+⟨ 2 × 2− minors of the 2 × d− matrix ( b, ∇ f ) ⟩


: ⟨ ∇ f ⟩

∞.

(19)

This ideal-theoretic reformulation of (12) is the direct generalization of (14) to d ≥ 3.
Nevertheless, the (residual) Steinerian of a hyperplane arrangement remains a beautiful topic

in geometry, and its interplay with the combinatorics of the entropic discriminant certainly
deserves further study. We close this section with an illustration of this for lines in the plane P2.

Example 9. This example was worked out with help from Igor Dolgachev. Let d = 3 and sup-
pose the matroid of A is uniform. Thus VC( f ) is an arrangement of n lines in general posi-
tion in P2. By Theorem 2, the entropic discriminant HA is a curve of degree 2(n − 1)(n − 3).
Its singular locus consists of the n columns of A. By dualizing, we obtain the Steinerian
St f , a curve of degree 3(n − 2)2. Each of the n lines occurs with multiplicity n − 2 in the
Steinerian. Removing these lines, we find that the residual Steinerian H∨

A is a curve of degree
3(n − 2)2

− n(n − 2) = 2(n − 2)(n − 3). �

3. The codimension-1 case

The discriminant of the characteristic polynomial of a symmetric matrix is non-negative be-
cause real symmetric matrices have only real eigenvalues. The study of this discriminant is a
classical subject in mathematics, going back to an 1846 paper by Borchardt [2]. Explicit rep-
resentations of this discriminant as a sum of squares were also presented in work of Newell
[18], Ilyushechkin [14], and Lax [15]. See [25, Section 7.5] for an exposition, and work of
Domokos [7] for the state of the art.

In this section we establish a relationship between this subject and the entropic discriminant.
We focus on the case n = d + 1, and we express HA(b) as a specialization of the discriminant
of the characteristic polynomial of a symmetric matrix. We shall use this to derive the following
result.

Theorem 10. Let A be a non-basic matrix with d rows and n = d+1 columns. Then the entropic
discriminant HA(b) is a sum of squares of polynomials. Moreover, if the entries of A are rational
numbers then HA(b) is a sum of squares in Q[b1, . . . , bd ].

Example 11. If d = 3, n = 4 and A =


1 0 0 −1
0 1 0 −1
0 0 1 −1


then HA(b1, b2, b3) is the sum of 10

squares

7
4

b4
1(b2 − b3)

2
+

56
27

(b1 − b2)
2b2

1b2
2 +

1
108

(5b1b2 − 9b1b3 − 14b2
2 + 18b2b3)

2b2
1

+
1
27

(5b1b2 − 3b1b3 − 8b2
2 + 6b2b3)

2b2
1 +

1
9
(b1b2 + b1b3 − 2b2b3)

2(b1 − 2b2)
2

+
7

108
(5b1b2 + 3b1b3 − 2b2

2 − 6b2b3)
2b2

1 +
1

216
(13b1b2 − 21b1b3

− 7b2
2 − 12b2b3 + 27b2

3)
2b2

1 +
1

36
(5b2

1b2 − 7b2
1b3 − 7b1b2

2 + 4b1b2b3
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+ 9b1b2
3 + 14b2

2b3 − 18b2b2
3)

2
+

1
216

(5b1b2 − 21b1b3 + b2
2 − 12b2b3 + 27b2

3)
2b2

1

+
1

36
(5b2

1b2 − b2
1b3 − 4b1b2

2 − 8b1b2b3 + 8b2
2b3)

2.

This expression is derived from the sum of 10 squares found at the top of p. 97 in [25]. �

Proof of Theorem 10. Let A be a non-basic d ×(d +1)-matrix and let v ∈ Rd+1 span the kernel
of A. If v has a zero coordinate, say vd+1 = 0, then we can reduce our analysis to a smaller case,
namely, a (d −1)×d-matrix obtained by taking the columns of A modulo the last column. Hence
we may assume that all coordinates of v are non-zero.

Next, we claim that it suffices to prove our assertions for the special case where

A =


1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

 and v = (1, 1, 1, . . . , 1)T . (20)

That this suffices is ensured by the following transformation rule for the entropic discriminant:

HU AD(b) = HA(U−1b). (21)

This identity holds for any invertible d ×d-matrix U and any invertible diagonal n ×n-matrix D,
and its validity is easily seen from the geometric definition of HA. We here use this for n = d +1.

We now fix A and v as in (20). Then L = rowspace(A) is the hyperplane x1+x2+· · ·+xn = 0.
Its reciprocal L−1 is the hypersurface of degree d in Pd that is defined by the polynomial

n
i=1


j≠i

x j = det


x1 + xn xn · · · xn

xn x2 + xn
. . .

...
...

. . .
. . . xn

xn · · · xn xn−1 + xn

 . (22)

This symmetric determinantal representation of the (n − 1)st elementary symmetric polynomial
is taken from [21]. The linear system Ax = b is equivalent to

xi = bi + xn for i = 1, 2, . . . , n − 1. (23)

Thus the points satisfying (2) can be computed by substituting (23) into (22) and equating the
resulting univariate polynomial to zero. Setting t = xn , the solutions to (2) correspond to zeros of

pb(t) = det


t E + diag(b1, b2, . . . , bd)


where E =


2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
...

...
...

. . .
...

1 1 1 · · · 2

 . (24)

In particular, HA(b) equals the discriminant of the univariate polynomial pb(t). The following
proposition applied to E and X = −diag(b1, . . . , bd) completes the proof of the theorem. �
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Proposition 12. Let E ∈ Rm×m be a symmetric positive definite matrix and X a symmetric
matrix of indeterminates. Then the discriminant of the generalized characteristic polynomial
det(t E − X) with respect to t is a sum of squares in Q(Ei j : 1 ≤ i, j ≤ m)[X i j : 1 ≤ i, j ≤ m].

Proof. Since E has a Cholesky factorization E = M MT , it follows that

det(t E − X) = det(E) · det(t I − M−1 X M−T ). (25)

We get a sum of squares formula from the known representations of the discriminant of
the characteristic polynomial of a real symmetric matrix. However, our emphasis lies on the
rationality of the desired formula. Following [25, Section 7.5], let X̂ = M−1 X M−T and consider
the linear map

∧2 Rm
→ Sym2Rm, Z → [X̂ , Z ] = X̂ Z − Z X̂

that takes a skew-symmetric matrix to the commutator with X̂ .
Let {Wi j = ei ∧ e j : 1 ≤ i < j ≤ m} be the standard basis for the space of skew-symmetric

matrices and likewise {Si j = ei · e j : 1 ≤ i ≤ j ≤ m} the standard basis for the space of

symmetric matrices. Let Φ be the


m+1
2


×
m

2


-matrix representing the linear map in the chosen

bases. By choosing suitable bases, it can be seen that the eigenvalues of ΦT Φ are the squared
pairwise differences of the eigenvalues of X̂ . Hence the determinant of ΦT Φ is the discriminant
of det(t I − X̂). The sum of squares representation can be obtained by applying the Binet–Cauchy
theorem.

To get a rational representation we apply the above reasoning to the slightly altered map

Z → [Z , X ]E := E−1 X Z − Z X E−1.

It is clear that a representation in the standard basis is over Q(Ei j ) and hence yields an
appropriate sum of squares. To see that this actually yields the discriminant for the generalized
characteristic polynomial, choose bases W ′

i j = M−T Wi j M−1 and S′

i j = M−T Si j M−1 and
verify

[X, W ′

i j ]E = M−T
[X̂ , Wi j ] M−1.

Hence, a representation in the new bases is given by Φ above. �

Evaluating the discriminant of pb(t) in (24) leads to the following data concerning the mono-
mial expansion of the entropic discriminant HA(b) of the particular matrix A in (20):

d 2 3 4 5 6
degree of HA(b) 2 6 12 20 30

number of monomials 3 19 201 3081 62683
leading (lex) monomial b2

1 b4
1b2

2 b6
1b4

2b2
3 b8

1b6
2b4

3b2
4 b10

1 b8
2b6

3b4
4b2

5.

(26)

Remark 13. The entropic discriminant HA(b) is a symmetric polynomial in b1, . . . , bd since the
set of rows of the matrix A is invariant under permutations. It thus admits a unique representation
as a polynomial in the elementary symmetric polynomials

ek =


1≤i1<···<ik≤n

bi1 bi2 · · · bik for k = 1, 2, . . . , d.
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For example, if d = 4 then the 201 terms in b1, b2, b3, b4 translate into only 16 terms in
e1, e2, e3, e4:

HA(b) = 432e4
1e2

4 − 432e3
1e2e3e4 + 128e3

1e3
3 + 108e2

1e3
2e4 − 36e2

1e2
2e2

3 − 2160e2
1e2e2

4

+ 1800e1e2
2e3e4 + 120e2

1e2
3e4 − 540e1e2e3

3 − 405e4
2e4 + 135e3

2e2
3

+ 2400e1e3e2
4 + 1800e2

2e2
4 − 2700e2e2

3e4 + 675e4
3 − 2000e3

4.

As an application of our theory, we are now able to answer two questions from the literature.
The first deals with the discriminant of the derivative of a univariate polynomial. According to
Alexandersson and Shapiro [1, Theorem 1.4], Frank Sottile and Eugene Mukhin formulated this
conjecture at the AIM meeting “Algebraic systems with only real solutions” in October 2010.

Corollary 14. The discriminant of the derivative of a univariate polynomial f (t) of degree n is
a sum of squares of polynomials in the differences of the roots of f (t).

Proof. Let Dn = discrt


f ′(t)

. We shall write Dn as a specialization of the entropic discriminant

and use the sum of squares decomposition given in Theorem 10. Consider the univariate
polynomial f (t) =

n
i=1(t − ai ). Notice that xi = t − ai provides a parametrization for the

one-dimensional affine space {Ax = b}, where we take A as in (20) and bi = an − ai for
i = 1, . . . , n − 1. We plug this parametrization into the polynomial (22) that defines L−1. This
yields the derivative f ′(t) =

n
j=1


i≠ j (t −ai ). Thus f ′(t) equals the polynomial pb(t) of (24)

whose discriminant (with respect to t) equals HA(b). We conclude that Dn equals the entropic
discriminant HA((an − ai )i∈[n−1]). Using Theorem 10, we conclude that Dn is a sum of squares
in Q[b] = Q[(an − ai ) : i ∈ [n − 1]]. �

Our techniques can also be applied to answer a question that was left open in [25, Section
7.5]. Namely, we conclude this section by proving Conjecture 7.9 of [25].

Corollary 15. There exist three real symmetric d × d-matrices C0, C1, C2 such that all


d+1
3


pairs of complex numbers (x, y) for which C0 + xC1 + yC2 has a critical double eigenvalue
are real.

Proof. Consider the symmetric matrix X̂ = M−1 X M−T with X = diag(b1, . . . , bd) in the proof
of Proposition 12. Its entries are linear forms in b = (b1, b2, . . . , bd). We replace the unknowns
bi by generic real affine-linear forms in two variables x and y, say bi = wi + ui x + vi y for
i = 1, . . . , d. The symmetric matrix resulting from this substitution is a net of real symmetric
d × d-matrices:

X̂ = C0 + x C1 + y C2.

The real values of (x, y) for which this matrix has a critical double eigenvalue corresponds to the
intersections of this affine plane with the real variety of HA(b), with A given in (20).

We claim that the real radical of the entropic discriminant is the codimension-2 ideal

R


⟨HA(b)⟩ =


1≤i< j≤d

⟨bi , b j ⟩ ∩


1≤i< j<k≤d

⟨bi − b j , b j − bk⟩. (27)

This identity follows from the geometric description of HA(b) in terms of colliding analytic
centers. Indeed, the hyperplane arrangement defined by {xi = 0} in {x : Ax = b} consists of
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n = d + 1 points on a line. They form d bounded segments. The analytic centers of two seg-

ments collide if and only if three of the d +1 points coincide. There are such


d+1
3


triples, each

imposing a condition of codimension 2. They are expressed by the


d+1
3


prime ideals in the

intersection (27).

Since the real variety of HA(b) is a union of


d+1
3


real linear spaces, each of its intersection

points with the plane b = w + ux + vy is also defined over the reals. Therefore all


d+1
3


sym-

metric matrices with a critical double eigenvalue in the net C0+xC1+yC2 have real entries. �

Remark 16. In general, the issue of determining R√
⟨HA(b)⟩ is very subtle. The validity of the

identity (27) above rests formally on the prime decomposition of the real radical ideal R√
⟨HA(b)⟩

described in Corollary 37. See also Example 32 for the particular matrix A in (20).

4. Matroids and graphs

In this section we discuss the notions from matroid theory which are needed for the statement
and proof of Theorem 2. We also discuss various matroids arising from graphs, including those
representing the Hillar–Wibisono model (6). Matroid theory is a classical subject in combina-
torics with many (axiomatic) paths leading to it. For us, matroids come in the form of matrices
and hence we take the concrete approach via realizable matroids. For more on this subject see
[19,24].

Our given matrix A = (A1, A2, . . . , An) ∈ Rd×n is identified with an ordered collection of n
vectors that span d-space. The corresponding matroid M = M(A) records all linear dependen-
cies among these vectors. A subset I ⊆ [n] = {1, 2, . . . , n} is called (in)dependent whenever
AI = (Ai : i ∈ I ) is linearly (in)dependent. The rank rk(I ) of I is the rank of AI . The rank
of the matroid M is the rank of A. A circuit is an inclusion-minimal dependent subset, and I
is independent if it does not contain a circuit. A subset F ⊆ [n] is a flat if F equals {i ∈ [n] :

Ai ∈ span(AF )}, that is, if F precisely indexes a collection of vectors contained in some linear
subspace. Equivalently, F is a flat if and only if it meets every circuit in at least 2 elements or
not at all. Flats will play an important role in Sections 5 and 6. The lattice of flats L(M) is the
collection of all flats, ordered by inclusion, with minimal element 0̂ = {i : Ai = 0} and maximal
element 1̂ = [n]. The lattice of flats represents combinatorial information about the containment
relations of the various subspaces spanned by subsets of columns of A. It is one of the central
objects in the enumerative theory of matroids.

A different but equivalent perspective on M(A) and L(M) is by means of the hyperplane
arrangements alluded to in Section 2. The n columns of A are normal to n linear (not necessarily
distinct) hyperplanes h1, h2, . . . , hn ⊆ Rd . In this context, a subset I ⊆ [n] is independent if and
only if the intersection of {hi : i ∈ I } has codimension |I |. The collection of linear subspaces
obtained by intersections of these hyperplanes is isomorphic to the lattice of flats L(M) when
partially ordered by reverse inclusion. For a generic vector b, the matroid associated to (A, b)

is called the free extension of M(A). The hyperplane arrangement corresponding to the free
extension is obtained by adding a hyperplane such that intersections with flats are transverse.

At the beginning of Section 1, we considered a different arrangement of affine hyperplanes
associated to A. To relate this to M(A), observe that the n coordinate hyperplanes {xi = 0} in
Rn induce a hyperplane arrangement in ker(A) ∼= Rn−d . This arrangement corresponds to the
dual matroid to A, namely M(B), where B is an (n − d) × n matrix whose rows form a basis
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for ker(A). The hyperplane arrangement {g1, g2, . . . , gn} in Rn−d associated to the columns of
B is linearly isomorphic to the arrangement of the n coordinate hyperplanes in ker A. Dually, the
hyperplane arrangement {h1, h2, . . . , hn} given by the columns of A yields a linearly isomorphic
representation of the arrangement of coordinate hyperplanes inside ker(B).

The matroid dual to the free extension by b is called the free co-extension, which corresponds
to the linear arrangement of the n +1 coordinate hyperplanes in ker((A, b)). Here we distinguish
the last hyperplane g∞ as the hyperplane “at infinity”. Restricting the arrangement to g∞ recovers
the original arrangement in ker(A). The arrangement that will be central to our cause is the
arrangement of n affine hyperplanes given by the intersection of coordinate hyperplanes in
{x : Ax = b}, for generic b. This is the restriction of the gi to some parallel displacement
g∞ + t (for some generic t ∉ g∞). Alternatively, this is the affine arrangement {ĝi = gi + ti ⊂

Rn−d
: i = 1, . . . , n} where the displacements ti ∈ Rn−d are generic. Thus, the arrangement of

coordinate hyperplanes in {Ax = b} can be obtained by a generic, parallel perturbation of the
hyperplanes g1, g2, . . . , gn .

Associated to L = L(M) is its Möbius function µL : L × L → Z, which is defined by
µL(F, F) = 1,

µL(F, H) = −


F⊆G⊂H

µL(F, G)

if F ⊆ H , and µL(F, H) = 0 otherwise. The characteristic polynomial of M is defined by

χM (t) =


F∈L(M)

µL(M)(0̂, F) trk(M)−rk(F).

The (unsigned) Möbius invariant of M , or of the matrix A, is the positive integer

µ(A) = µ(M(A)) = |µL(0̂, 1̂)| = (−1)dχM (0). (28)

Here the last equality comes from Rota’s Sign Theorem.
Evaluations of the characteristic polynomial have nice combinatorial interpretations in terms

of hyperplane arrangements [10,24]. The Möbius invariant µ(A) equals the number of bounded
regions of the restriction of the n coordinate hyperplanes to {Ax = b}, for generic b. This fact
played an important role in [3, Section 3]. The proof is a straightforward deletion–contraction
argument, using that µ(A) and the number of bounded regions in {Ax = b} adhere to the same
recurrence relations. This number is related to the beta invariant of the free extension (A, b),

β(A, b) := (−1)rk(A,b)


I⊆[n+1]

(−1)|I |rk(A, b)I = (−1)rk(A)

F∈L

µL(0̂, F) = µ(A)

where the middle equality is taken from [28, Proposition 7.3.1]. The geometric content of this
statement was proved by Greene and Zaslavsky [10, Eq. (3.1)] and, in a more algebro-geometric
context, in [4]. The beta invariant is unchanged under duality of matroids and thus β(A, b) =

µ(A) is the number of bounded regions for the coordinate arrangement in {Ax = b} when b is
generic.

The proof of the following observation illustrates the typical line of arguments in matroid
theory.

Proposition 17. The Möbius invariant µ(A) equals 1 if and only if the matrix A is basic (defined
in Corollary 5) if and only if its geometric lattice L(M) is the Boolean lattice of all subsets
of [d].
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Proof. An equivalent statement appears in [4, Corollary 4 (2) (b1)]. For completeness, we here
include a combinatorial proof. By the definition of the lattice of flats, we can assume that A
has no zero columns and that no two columns are proportional. Hence, the matrix A is basic
if and only if M(A) is isomorphic to the uniform matroid Ud,d whose lattice of flats is the
Boolean lattice of all subsets of [d]. The Möbius invariant of the matroid Ud,d is µ(A) = 1;
see Example 18. Conversely, if A is non-basic, there is a column e ∈ [n] that is not an isthmus,
that is, not contained in every basis. For such an element e, the Möbius invariant satisfies the
deletion–contraction identity

µ(A) = µ(A \ e) + µ(A/e).

By Rota’s Sign Theorem, the Möbius invariant is always a positive integer and hence
µ(A) ≥ 2. �

We have now defined the combinatorial ingredients for the degree (4) of the entropic dis-
criminant. With this in place, we derive the value of that degree for generic matrices A stated in
Theorem 2.

Example 18 (Uniform Matroids). A generic d ×n-matrix A with d ≤ n gives rise to the uniform
matroid M = Ud,n in which every subset of cardinality ≤ d is independent. The corresponding
lattice of flats is a truncated Boolean lattice in which a subset F ⊆ [n] is a flat if and only if
|F | < d or F = [n]. The Möbius function on the Boolean lattice is µ(F, G) = (−1)|G\F | for
F ⊆ G. Hence

χUd,n (t) = td
− ntd−1

+ · · · + (−1)d−1


n

d − 1


t + (−1)d


n − 1
d − 1


.

Note that t = 1 is always a zero of the characteristic polynomial. The number of solutions of

Eqs. (2) for generic A equals µ(A) =


n−1
d−1


. The degree (4) of the entropic discriminant equals

2(−1)d
· (dχUd,n (0) + χ ′

Ud,n
(0)) = 2


d


n − 1
d − 1


−


n

d − 1


= 2(n − d)


n − 1
d − 2


.

As we will see in Proposition 33, this quantity is an upper bound for fixed n and d . �

Graphical matroids are an important class of examples. Let G be a graph on d nodes with
n edges and c connected components. For an arbitrary but fixed orientation of the edges, let
AG be the d × n incidence matrix of node-edge pairs, with entries +1, −1, 0 if the node is in-
coming, out-going, or non-incident for the edge. Reorienting an edge of G results in scaling the
corresponding column of AG by −1 and hence leaves the matroid MG = M(AG) invariant. Note
that AG has rank d−c and a matrix representation of full rank can be obtained by selecting a node
in every connected component of G and deleting the corresponding rows. The matroid concepts
above have natural interpretations in graph-theoretic terms: circuits correspond to cycles and
independent sets to forests. The characteristic polynomial χG(t) = χMG (t) in this context is also
called the tension polynomial and tcχG(t) counts the number of proper t-colorings of G where
t ∈ Z+. Returning to the setting of Section 2, the hyperplane arrangement given by the columns
of AG is the graphic arrangement associated with G, which has the defining polynomial

fG(z) =


(i, j)∈E(G)

(zi − z j ).

The entropic discriminant HG(b) is the equation of the branch locus of the gradient map ∇ fG .
As AG does not have full rank, we assume zi = 0 for the rows i that were deleted when
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passing from AG to a rank d − c matrix with d − c rows. The gradient map ∇ fG is discussed in
[12, Remark 8].

Example 19 (Cycles). Let G = Cd+1 be the cycle with n = d + 1 edges. Every collection of
d or fewer edges is independent and MG has a unique circuit. The truncated matrix ACd+1 has
corank 1 and MG is the uniform matroid Ud,d+1. The reciprocal plane L−1

AG
is a hypersurface of

degree d, and the entropic discriminant HCd+1(b) is the polynomial of degree d(d − 1) seen in
Section 3. �

Example 20 (Complete Graphs). As the name says, the complete graph G = Kd+1 has all pos-
sible edges on d + 1 nodes. The characteristic polynomial is the chromatic polynomial divided
by t :

χKd+1(t) = (t − 1)(t − 2) · · · (t − d).

The reciprocal plane L−1
Kd+1

is a projective variety of degree (−1)dχKd+1(0) = d!. We find that

deg HKd+1(b) = 2 ·


d − 1 −

1
2

−
1
3

−
1
4

· · · −
1
d


· d !

is the value of the matroid invariant (4) for the incidence matrix AKn of the complete graph Kn .
For example, for d = 3 we get the complete graph on 4 nodes, with node-edge incidence

matrix

AK4 =


1 1 1 0 0 0

−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 .

The reciprocal plane L−1
K4

is a surface of degree 6 in P5. Its homogeneous prime ideal is generated
by four quadrics, one for each of the 3-cycles in K4. The entropic discriminant HAK4

defines a

curve in the projective plane P2. That curve has degree 14 and it has precisely six real points. �

The matroids associated with the retina equations (6) are different from the matroids MG
above. Their matroids correspond to all-negative graphs in Zaslavsky’s theory of signed
graphs [31]. Here, an all-negative graph −G is an ordinary graph with all edges marked by
−1. The incidence matrix A−G of −G has entries in {0, 1} where a 1 signifies an incident node-
edge pair. The corresponding matroid M(−G) = M(A−G) is the unoriented cycle matroid. The
matroid-theoretic notions for M(−G) translate to (signed) graph concepts but the transitions are
more involved. For all-negative graphs, the circuits correspond to even primitive walks, that is,
even cycles or pairs of odd cycles connected by a simple path (of length possibly 0); cf. [31,
Corollary 7D.3(e)]. For the state of the art on algebraic properties of the circuits of A−G see
the recent work of Tatakis and Thoma [26]. Evaluations of the characteristic polynomial have
interpretations in terms of signed colorings [30].

For example, the all-negative complete graph −K4 on four nodes has the incidence matrix

A−K4 =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 . (29)
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Note that this matrix has rank 4. Its matroid has the characteristic polynomial

χ−K4(t) = t4
− 6 t3

+ 15 t2
− 17 t + 7.

The characteristic polynomials for the all-negative complete graphs on any number of nodes
were computed by Zaslavsky [30, Eq. (5.8)]. We presented his formula in the introduction in (8).
An equivalent formula in terms of generating functions due to Stanley [24, Example 5.25] was
shown in (9).

For the matrix (29), the reciprocal variety L−1
−K4

is defined by the three cubic equations

x12x13x24 − x12x13x34 − x12x24x34 + x13x24x34 = 0,

x13x14x23 − x13x14x24 − x13x23x24 + x14x23x24 = 0,

x12x14x23 − x12x14x34 − x12x23x34 + x14x23x34 = 0.

The task in (6) is to solve these cubic equations together with linear equations A−K4 · x = b for
the six unknowns x12, . . . , x34. The number of solutions to this system is µ(M−K4) = 7, and all
seven solutions are real when the bi are real. One of the solutions has only positive coordinates
if and only if the column vector (b1, b2, b3, b4) of parameters lies in the convex polyhedral cone
spanned by the columns of A−K4 . The entropic discriminant H−K4(b1, b2, b3, b4) characterizes
parameter values for which the number of solutions is less than 7. It is a surface in P3 of degree
2(4 · 7 − 17) = 22. The Möbius invariant µ(M−Kd ) and the degree of H−Kd for larger values of
d are displayed in (10).

We close this section with the remark that the study of characteristic polynomials of matroids
is an active area of current research in combinatorics. The coefficients of χ(t) have interpretations
as face numbers of broken circuit complexes and form a log-concave sequence. This log-
concavity was a longstanding conjecture recently resolved by Huh [12] for graphs and in its full
generality by Huh–Katz [13]. Their methods of proof are based on the geometry of reciprocal
planes, our topic in the next section. Specifically, a key player in [13] is the tropicalization of the
graph of L 99K L−1.

5. Geometry of reciprocal planes

Entropic discriminants arise as branch loci from projecting reciprocal planes. This was already
hinted at in the proof of Proposition 4. We shall make this precise in Section 6, where it will be
our main ingredient in the proof of Theorem 2. In this section we build up to this proof by
deriving some results on reciprocal planes. We believe that these results are of interest in their
own right.

We fix a d × n-matrix A of rank d with no zero columns. Its rows span a (d − 1)-dimensional
subspace L in the projective space Pn−1. Let T denote the dense torus in Pn−1, i.e. the
complement of the n coordinate hyperplanes {xi = 0}. The reciprocal plane L−1 is the Zariski
closure of the coordinate-wise inverse of L ∩ T , as in (5). It is an irreducible projective variety
of dimension d − 1. The inversion map from L to L−1 is birational and it is an isomorphism on
L ∩T . The coordinate ring of the reciprocal plane C[x]/I (L−1) is isomorphic to the Orlik–Terao
algebra, studied in [22].

Proudfoot and Speyer [20] showed that L−1 is stratified by the flats of the matroid M(A).
Recall that J ⊆ [n] is a flat of M(A) if and only if rk(AJ ) < rk(AJ ′) for all J ′ ) J . Here
AJ denotes the column-induced submatrix of A. For a flat J ⊆ [n], the corresponding stratum
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L−1
∩ PJ

= {p ∈ L−1
: supp(p) ⊆ J } is isomorphic to L−1

J , the reciprocal plane associated to
the restriction AJ . We shall investigate these boundary strata and the singular locus Sing(L−1)

of L−1.
We can identify each circuit C of the matroid M(A) with a vector v ∈ Rn in the kernel of A

with support supp(v) = C . Let C(A) ⊆ Rn denote the set of representative vectors for all circuits
of M(A). To each v ∈ C(A) we associate a polynomial

hv(x) =


i∈supp(v)

vi


j≠i

x j = xsupp(v)


i∈supp(v)

vi

xi
. (30)

These circuit polynomials cut out the variety L−1. In fact, Proudfoot and Speyer proved the much
stronger result that {hv : v ∈ C(A)} is a universal Gröbner basis for the prime ideal of L−1.

As the set of all circuits is typically rather large, one might be interested in a smaller set of
polynomials to cut out L−1. The following characterizes subsets of the set of circuit polynomials
that cut out L−1 set-theoretically. As we saw above, the boundary of L−1

\ T in L−1 is described
by flats of M(A). Recall that J ⊆ [n] is a flat if and only if |J c

∩ supp(v)| ≠ 1 for every circuit
v ∈ C(A). We say that a non-flat J ⊂ [n] is exposed by a circuit v ∈ C(A) if |J c

∩ supp(v)| = 1.

Proposition 21. Let B ⊆ C(A) be a subset of the set of circuits. The corresponding set of circuit
polynomials {hv : v ∈ B} cuts out L−1 set-theoretically if and only if B exposes every non-flat.

Proof. Suppose that J is a non-flat that is not exposed by any v ∈ B. Then, for each v ∈ B,
either |J c

∩ supp(v)| ≥ 2, in which case hv is identically zero on PJ , or J c
∩ supp(v) = ∅, in

which case v is a circuit of AJ and hv vanishes on L−1
J . This shows that the subvariety of Pn−1

cut out by {hv : v ∈ B} contains L−1
J and hence is strictly larger than L−1.

Conversely, assume that B exposes every non-flat. Let p be any zero of {hv : v ∈ B}, and
let J = supp(p). Suppose that J is a non-flat of M(A). Then there exists v ∈ B that exposes
J . This means that exactly one of the terms of hv is non-zero at p, and hence hv(p) ≠ 0. We
conclude that J is a flat of M(A). Since L−1

J is a boundary stratum of L−1, it is sufficient to
prove that p−1

J ∈ rowspanAJ . For this, we shall prove that the kernel of AJ is spanned by
{vJ : v ∈ B and supp(v) ⊆ J }. Let J0 ⊆ J be a basis of M(AJ ). If J0 is not a flat, then there is
a circuit v1 ∈ B supported on J such that supp(v1) \ J0 = { j1}. Set J1 = J0 ∪{ j1} and repeat the
procedure. This process terminates after k = |J |− rk(AJ ) = dim ker AJ many steps. The matrix
of the resulting circuits v1, . . . , vk is lower-triangular and hence gives a basis for ker(AJ ). �

This previous result highlights the connection of our study to tropical geometry.

Remark 22. Combining Proposition 21 with the results of [29], we infer that a collection of
circuits cuts out the reciprocal plane L−1 set-theoretically if and only if it constitutes a tropical
basis for the tropicalization of the linear space L. Yu and Yuster [29, Section 2.2] showed that
different inclusion-minimal tropical bases for L need not have the same cardinality. Specifically,
the uniform matroid U2,5 has inclusion-minimal tropical bases of sizes 5 and 6. From this we can
infer that Proposition 21 holds only set-theoretically and not in the ideal-theoretic or scheme-
theoretic sense.

Example 23. If the matroid M(A) is uniform, then the prime ideal of the reciprocal plane L−1 is

minimally generated by


n−1
d


polynomials of degree d . This can be seen as follows. The initial
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ideal of L−1 with respect to the reverse lexicographic term order is generated by the square-
free monomials representing broken circuits. These are xi1 xi2 · · · xid where 1 ≤ i1 < · · · <

id ≤ n − 1, so their number is


n−1
d


. By [29, Lemma 5], the basic circuits obtained by adding

the last element n form an inclusion-minimal tropical basis for L−1. Hence, by Remark 22, the
corresponding hv minimally cut out L−1. It follows that they form a minimal generating set for
the ideal of L−1. �

We now come to the main result in this section, namely, the characterization of the tangent
cone of the reciprocal plane L−1 at any point. For the sake of convenience, we here identify the
(d − 1)-dimensional projective variety L−1 with the corresponding d-dimensional affine variety
in Cn .

The tangent cone TCp X of a variety X ⊂ Cn at a point p is a scheme that describes the local
behavior of X around p. For a polynomial f ∈ C[x], the initial form in−1( f ) is the non-zero
homogeneous component of f of minimal degree. The tangent cone TCp X is defined by the
ideal

I (TCp X) = ⟨in−1( f (x + p)) : f ∈ I (X)⟩. (31)

The following result shows that the tangent cone of L−1 at any point is reduced and irreducible.
Here we use L A/J to denote the (d − rank(J ))-dimensional linear space L/L J in Cn/L J ≃

Cn−|J |.

Theorem 24. Let A ∈ Rd×n be a matrix of full row rank d and let L−1 be its reciprocal plane in
Cn . For any point p ∈ L−1 with support J , the tangent cone is isomorphic to the direct product

TCp L−1 ∼= L J × L−1
A/J , (32)

where “∼=” denotes the equality of affine schemes after a linear transformation in Cn .

Proof. We inspect the initial forms of the circuit polynomials that define L−1. Let v ∈ C(A) be
a circuit with support C = supp(v) and circuit polynomial hv(x) as in (30). First suppose that
C ⊄ J . We write v = v′

+ v′′ where supp(v′) = C ∩ J and supp(v′′) = C \ J . Then v′′ is a
circuit of the matroid M(A/J ) obtained from M(A) by contraction at J . The following identity
holds:

hv(x + p) = xC\J
· hv′(x + p) + (x + p)C∩J

· hv′′(x).

Every term of xC\J hv′(x + p) has degree at least |C \ J | while

in−1

(x + p)C∩J hv′′(x)


= pC∩J

· hv′′(x)

has degree |C \ J | − 1. This means that hv′′(x) is the initial form of hv(x + p). As every circuit
w of the contraction M(A/J ) is the restriction v′′ of some circuit v of M(A), we conclude that
the tangent cone ideal at p contains the prime ideal ⟨hw(x) : w ∈ C(A/J )⟩ that defines L−1

A/J .
Next suppose that C ⊆ J . Then p is a regular point on the hypersurface {hv = 0}, and the

initial form in−1(hv(x + p)) is the differential Dphv . The differential of hv at the point p is

Dphv(x) =

n
i=1

∂hv

∂xi
(p) xi = pC


i∈C

xi

pi

 
j∈C\i

v j

p j


= −


i∈C

vi

p2
i

xi .
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The second equality holds because p−1 lies in rowspan(AJ ) ∩ (C∗)J , and the third equality
follows from the fact that −vi/pi =


j≠i v j/p j , since v is a circuit for AJ . Thus, Dphv

vanishes on the rowspan of AJ diag(pJ )2, denoted by L J (p), and all circuits vanishing on this
row span arise this way.

We have shown that the prime ideal of the irreducible variety L J (p)×L−1
A/J is contained in the

ideal of the tangent cone of L−1 at p. Since both ideals have the same height, and the former is
prime, it follows that they are equal. This proves the equality of schemes that was claimed. �

A closer inspection of the proof reveals that the initial forms of hv(x + p) for v ∈ C(A)

furnish a universal Gröbner basis for the tangent cone of L−1 at p. In particular, we obtain a
simple description of the tangent space of L−1 at a point p by taking those initial forms that are
linear.

Corollary 25. For a point p ∈ L−1 with support J , the tangent space is orthogonal to the space
spanned by the circuits of the d × |J |-matrix AJ diag(pJ )2 and the circuits of A/J of size 2.

Proof. The tangent space is cut out by the linear forms in the ideal of the tangent cone. From
the initial forms in the proof of Theorem 24, we see that in−1(hv) is linear whenever |supp(v)

∩ J c
| ≤ 2. If C ⊆ J , then in−1(hv) corresponds to a circuit of AJ diag(pJ )2. Otherwise, the two

elements of C \ J are parallel in the contraction A/J and the corresponding circuit polynomial
is linear. �

This is closely related to [22, Theorem 2.3], which investigates the quadratic component of the
ideal I (L−1). Our discussion shows that the dimension of the tangent space is constant on each
stratum of L−1. We obtain the following characterization of the singular locus of the reciprocal
plane L−1.

Corollary 26. The singular locus of the reciprocal plane L−1 is pure of codimension 2. It is the
union of all boundary strata L−1

J such that the contraction M(A/J ) is a non-basic matroid.

Proof. A point p ∈ L−1 is smooth if and only if the codimension of the tangent space equals
codim(L−1) = n − d . The description of the tangent space in terms of the matroids M(AJ )

and M(A/J ) in Corollary 25 shows that its codimension is |J | − rkAJ + Par(A/J ) where
Par(A/J ) is the dimension of the space of 2-circuits of A/J . Suppose M(A/J ) has r distinct
1-flats (or lines), and let λ1, . . . , λr be the sizes of these parallelism classes. The circuits of each
parallelism class span a linear space of dimension λi − 1. As these circuits are disjoint, we have
Par(A/J ) =

r
i=1(λi − 1) = |J c

| − r . The number of parallelism classes of M(A/J ) is at least
rk(A/J ). Thus the codimension of the tangent space is ≤ n − d, and equality holds if and only
if M(A/J ) is basic (cf. Proposition 17).

Finally, to see that the singular locus is pure of codimension 2, we note that if M is any non-
basic matroid of rank r ≥ 3, then there is an element e such that M/e is non-basic. To show
this, we can assume that M is non-basic on r + 1 elements, each representing a different line. If
M = M1 ⊕ M2 is not connected and M1 is non-basic then any e ∈ M2 will work. Otherwise,
M is a uniform matroid and the contraction is uniform of rank r − 1 ≥ 2 on r elements. By
Example 18, the uniform matroid Un,d is non-basic if and only if n > d > 1. Therefore, if J is
a flat of M(A) such that M(A/J ) is non-basic of rank ≥ 3, then there is a flat J ′

⊃ J such that
M(A/J ′) is non-basic. �
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6. Ramification locus

The entropic discriminant describes the locus of points b ∈ Pd−1 such that the zero-
dimensional scheme defined by the constraints x ∈ L−1 and Ax = b is not reduced. Equivalently,
the entropic discriminant is the defining polynomial of the branch locus of the map A : L−1

→

Pd−1. We begin with the observation that this map has no base points and is hence a projective
morphism.

Lemma 27. The variety L−1 is disjoint from the center of the projection A : Pn−1 99K Pd−1.

Proof. Our claim states that L−1
∩ ker(A) = {0} holds in Cn . Let p be a vector in L−1

∩ ker(A)

and J = supp(p). Then p−1
J = z AJ for some z ∈ Cd , and p ∈ ker(A) implies 0 = z (A p) =

(z A) p =


j∈J p j
−1 p j = |J |. It follows that J = ∅ and p = 0. �

We now focus on the ramification locus of the dominant projective morphism
A : L−1

→ Pd−1. By definition, this is the Zariski closure of the set of regular points p ∈ L−1

for which

L + rowspan Jac(L−1)(p) ≠ Cn . (33)

Here Jac(L−1) is the Jacobian matrix of L−1, whose row vectors are ∇hv(x) for v ∈ C(A), as
in (30). This condition states that the intersection of L−1 and {x : Ax = Ap} is not transverse
at p.

The ramification scheme R A = Proj(C[x]/JA) is defined by the following ideal in
C[x1, . . . , xn]:

JA =


I (L−1) +


n × n minors of


A

Jac(L−1)


:

(n − d) × (n − d) minors of Jac (L−1)

∞
. (34)

By the Zariski–Nagata Purity Theorem [17], the ramification locus is pure of codimension 1 in
L−1. Hence the ramification scheme R A is either empty or has codimension 1 in L−1. The former
happens when A is basic, and the latter happens when A is non-basic. We prove in Section 7 that
R A contains the singular locus of L−1 and hence that the saturation step in (34) is redundant.

Definition 28. Let A ∈ Rd×n be a non-basic matrix of rank d . The ramification cycle is the
algebraic cycle of dimension d − 2 in Pn−1 defined by the ramification scheme R A. By Corol-
lary 5, the push-forward of the ramification cycle under the morphism A : L−1

→ Pd−1 is a
cycle of codimension 1. We define the entropic discriminant of A to be the homogeneous poly-
nomial HA(b) that represents this cycle in Pd−1. It is unique up to multiplication by a non-zero
constant.

The following example shows that the ramification cycle may not be reduced.

Example 29. Let A be the matrix in Example 3. For a ≠ 0, 2, 3, the prime ideal of L−1 equals

I (L−1) = ⟨2x1x2 − 3x1x3 + x2x3, 2x1x2 − ax1x4 + (a − 2)x2x4,

3x1x3 − ax1x4 + (a − 3)x3x4⟩.
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The ramification ideal JA is the sum of I (L−1) and the ideal of 4 × 4 minors of the matrix


A

Jac(L−1)


=


1 1 1 1
0 2 3 a

2x2 − 3x3 2x1 + x3 −3x1 + x2 0
2x2 − ax4 2x1 − (a − 2)x4 0 −ax1 + (a − 2)x2
3x3 − ax4 0 3x1 + (a − 3)x4 −ax1 + (a − 3)x3

0 x3 − (a − 2)x4 x2 + (a − 3)x4 −(a − 2)x2 + (a − 3)x3

 .

The ramification cycle is a zero-dimensional cycle of degree 4 in P3. For the special value a = 6,
it is twice the reduced cycle of degree 2 defined by ⟨2x2 − 3x3 + 6x4, 2x1 − x3 + 4x4, x2

3 −

4x3x4 + 8x2
4⟩. The push-forward of this cycle under P3 99K P1 is defined by the binary quartic

in Example 3. �

Since the projection A : Pn−1 99K Pd−1 has no base points on the subscheme R A (by
Lemma 27), the push-forward by A preserves the degree of the ramification cycle. Thus, in order
to establish the degree formula in Theorem 2, it suffices to show that the degree of R A equals
2(−1)d(dχ(0) + χ ′(0)). In order to compute its degree, we use a slightly different description
of R A. Let T denote the dense torus {x1x2 · · · xn ≠ 0} in the projective space Pn−1. Inside
T , the variety L−1 is a complete intersection. Namely, it is defined by B · x−1

= 0, where
B = (B1, . . . , Bn) is a Gale transform for A, that is, an (n − d) × n-matrix whose rows span the
kernel of A. Consider the polynomial

gA(x) = det


A
B1x−2

1 · · · Bn x−2
n


·

n
i=1

x2
i = det


A1x2

1 · · · An x2
n

B


.

The n × n-matrix above now plays the same role as the Jacobian matrix did in (34). Thus the
hypersurface defined by gA(x) = 0 inside L−1

∩ T is the restricted ramification locus R A ∩ T .
If gA is zero at a point p ∈ T then the intersection ker(Adiag(p)2) ∩ ker(B) contains a non-

zero vector. The kernel of B is spanned by the rows of A, so the d × d-matrix Adiag(p)2 AT also
drops rank. Hence gA(x) divides det(Adiag(x)2 AT ). Both polynomials have the same degree 2d ,
and hence they are equal (up to a scalar, which we ignore). Using the Cauchy–Binet Formula,
this gives

gA(x) = det(Adiag(x)2 AT ) =


I∈


[n]

d

 det(AI )
2

i∈I

x2
i . (35)

We next define similar polynomials that cut out R A on the non-singular boundary strata of L−1.
Let J ⊂ [n] be any proper flat of rank r in M(A) and set xJ = (x j : j ∈ J ). Let ÂJ now denote
any r × |J | submatrix of AJ = (A j : j ∈ J ) whose rows are linearly independent. We define

gAJ (xJ ) = det( ÂJ diag(xJ )2 ÂT
J ) =


I∈


J
r

 det( ÂI )
2

i∈I

x2
i . (36)

Here ÂI denotes the square submatrix of ÂJ induced on the r columns indexed by I ⊂ J .

Lemma 30. Let p be a smooth point on the reciprocal plane L−1 with supp(p) = J . Then the
ramification locus R A contains the point p if and only if gAJ (pJ ) = 0.

Proof. Since p is smooth, the condition (33) reduces to ker(AJ ) ∩ ker(Jac(L−1
J )) ≠ {0}. From

the argument prior to (35) we see that, for pJ ∈ (C∗)J , this is equivalent to gAJ (pJ ) = 0. �
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Remark 31. This characterization shows that the ramification locus R A equals the closure of
its intersection with the torus, R A ∩ T . To see this, suppose that R A has some component Z
contained in the boundary of the torus {x1 · · · xn = 0}. Then Z is contained in L−1

J for some
proper flat J , where dim(L−1

J ) = rank(AJ ) − 1. Since R A is pure of codimension one in L−1,
we see that dim(Z) = d −2. It follows that rank(AJ ) = d −1 and Z = L−1

J . However, M(A/J )

has rank 1 and is therefore basic. Lemma 30 then tells us that L−1
J is not contained in R A. This

shows that to define the ideal JA in (34), we could instead saturate with respect to the ideal
⟨x1x2 · · · xn⟩.

We shall now use the polynomial gA(x) to compute the degree of the ramification cycle.

Proof of Theorem 2. Let A be a non-basic real d×n-matrix of rank d and χ(t) the characteristic
polynomial of the matroid M(A). We shall prove that the degree of the algebraic cycle underlying
the (d −2)-dimensional subscheme R A of Pn−1 equals the matroid invariant (4). Lemma 27 then
implies that HA(b) has the same degree, and this will complete the proof of Theorem 2.

From above, we know that the scheme R A is contained in the hypersurface {gA = 0} of Pn−1.
Let R A denote the scheme-theoretic intersection of the reciprocal plane with this hypersurface:R A = Proj


C[x]/(I (L−1) + ⟨gA⟩)


. (37)

The (d − 2)-dimensional scheme R A is the intersection of the (d − 1)-dimensional irreducible
variety L−1 and the hypersurface gA. By Bézout’s Theorem [9, Theorem 1.4.4], its degree equals

deg
R A


= deg(gA) · deg(L−1). (38)

We claim that R A decomposes into #Hyp(A)+1 components of dimension d−2, one of which
is R A. Here Hyp(A) denotes the set of hyperplane flats, that is, flats J such that rk(AJ ) = d −1.
We see that R A and R A agree in the torus T , so their difference must lie in the coordinate
hyperplanes. Recall from Section 5 that the reciprocal plane intersects the dense torus T J of PJ

if and only if J is a flat, and if so, the closure of that intersection is the reciprocal plane L−1
J . Such

a stratum has dimension d − 2 in Pn−1 if and only if J is a hyperplane flat. Since J ∈ Hyp(A)

does not contain a basis of M(A), each summand in the formula (35) for gA vanishes on T J .
To be precise, gA vanishes to order exactly 2 on the torus T J , since J is only one element away
from containing a basis.

Furthermore, the strata L−1
J are not contained in R A for J ∈ Hyp(A). This follows from

Lemma 30. Indeed, by Corollary 26, the points in L−1
∩ T J are non-singular in L−1, and hence

the polynomial gAJ (xJ ) is not identically zero on L−1
J . We conclude that the irreducible varieties

L−1
J , for J ∈ Hyp(A), are components of dimension d − 2 and multiplicity 2 in the scheme R A.
We have derived the following equidimensional decomposition of the cycle defined in (37):

R A = R A ∪

 
J∈Hyp(A)

2 · L−1
J

 . (39)

Since the degree is additive on equidimensional cycles, we can use (38) to conclude that

deg(R A) = deg(gA) · deg(L−1) − 2


J∈Hyp(A)

deg(L−1
J )

= 2d · µ(A) − 2


J∈Hyp(A)

µ(AJ ). (40)
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The coefficient of t i in the characteristic polynomial χ(t) equals (−1)d−i times the sum of
the Möbius invariants µ(AJ ) where J runs over all flats of rank d − i . For i = 0 this gives
µ(A) = (−1)dχ(0), and for i = 1 we get


J∈Hyp(A) µ(AJ ) = (−1)d−1χ ′(0). Hence the

right hand side of (40) equals the desired matroid invariant (4). This completes the proof of
Theorem 2. �

The decomposition (39) can be used to compute the ideal of the ramification scheme. Namely,
since all hyperplane strata L−1

J lie in complement of the torus T , we have the algebraic identity

JA =

I (L−1) + ⟨ gA ⟩


: ⟨x1x2 · · · xn⟩

∞. (41)

We illustrate the identity (41) and our proof of Theorem 2 for the codimension 1 case.

Example 32. Let A be the matrix in Eq. (20) of Section 3. The reciprocal plane L−1 is the hyper-
surface defined by the elementary symmetric polynomial en−1(x1, x2, . . . , xn). Eq. (35) defining
the ramification locus in the torus is gA = en−1(x2

1 , x2
2 , . . . , x2

n). The scheme R A in (37) is the
complete intersection of these two hypersurfaces. Its ideal has the primary decomposition

en−1(x1, x2, . . . , xn), en−1(x2
1 , x2

2 , . . . , x2
n)


= ⟨en−1(x1, x2, . . . , xn), en−2(x1, x2, . . . , xn)⟩ ∩


1≤i< j≤n

⟨ x2
i , xi + x j ⟩. (42)

This is the decomposition discussed after (38), with the first intersectand being the ideal JA that
defines R A. This ideal is contained in the Jacobian ideal of the reciprocal plane L−1 because

en−2 =
1
2

n
i=1

∂en−1

∂xi
.

This identity proves the ideal-theoretical inclusion JA ⊂ I (Sing(L−1)). We conclude that
R A contains Sing(L−1) when n = d + 1. As we shall see in Theorem 35, the inclusion
Sing(L−1) ⊂ R A is always true, even if n > d + 1. This inclusion implies, as argued in
Corollary 37, that the real variety of HA(b) is indeed the union of codimension 2 planes given
in (27). �

We close this section with a combinatorial proof of the assertion, stated informally immedi-
ately after Theorem 2, that generic matrices maximize the degree of the entropic discriminant.

Proposition 33. As A ranges over all non-basic d × n-matrices of rank d, the degree of the

entropic discriminant HA(b) attains its maximal value 2(n − d)


n−1
d−2


when the matroid M(A)

is uniform.

Proof. It follows from Theorem 2 and Example 18 that 2(n − d)


n−1
d−2


is the degree of the

entropic discriminant when M = M(A) is uniform. We must show that this number is a strict
upper bound otherwise. The claim is an entirely matroid-theoretic statement, and so let us define
δ(M) = 2(−1)rk(M)(rk(M)χM (0) + χ ′

M (0)) for all matroids M . The characteristic polynomial
satisfies a deletion–contraction recurrence, namely, χM (t) = χM\e(t) − χM/e(t) for e ∈ M not
an isthmus. It follows that the entropic degree satisfies a deletion–contraction recurrence plus a
correction term:

δ(M) = δ(M \ e) + δ(M/e) + µ(M/e).
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All three terms on the right hand side are non-negative. The desired inequality follows by
induction on the rank d and corank n − d . In rank 1 all simple matroids are uniform. Corank

1 is dealt with in Section 3. The same argument shows that µ(M) ≤


n−1
d−1


with equality if and

only if M = Ud,n . �

7. Real issues

Our point of departure for this paper was the observation that, for real b, Eqs. (2) have only
real solutions, namely, the µ(A) analytic centers of the bounded regions in the arrangement of
n coordinate hyperplanes in {Ax = b} ≃ Rn−d . It is thus natural to ask what it means for two
such analytic centers to collide, and how this relates to the real points in the ramification locus
and in the entropic discriminant. We shall prove that the real loci of these two complex varieties
are both pure of codimension one. Our first step in this direction is the following lemma.

Lemma 34. All real points in the ramification scheme are singular in the reciprocal plane:

(R A)R ⊆ Sing(L−1)R. (43)

Proof. The sum of squares formula in (35) reveals that gA(x) = 0 has no real solutions in the
torus T . In symbols, (R A ∩ T )R = ∅. Likewise, for any flat J with L−1

J nonsingular in L−1, the
polynomial gAJ is a similar sum of squares, and hence (R A ∩ T J )R = ∅. Lemma 30 ensures
that no regular point of L−1 with real coordinates lies in the ramification locus of the morphism
A : L−1

→ Pd−1. �

The following is our main result in this section. We find that the reverse inclusion holds in (43).

Theorem 35. The ramification scheme R A contains the singular locus of L−1, and we have

(R A)R = Sing(L−1)R. (44)

This theorem implies that the saturation in the formula (34) for the ramification ideal JA
was unnecessary. Before presenting the proof, we shall derive two corollaries and discuss one
example.

Corollary 36. The Zariski closure of (R A)R is pure of codimension 2 in L−1.

Proof. Theorem 35 implies that the Zariski closure of the set (R A)R of real ramification
points equals the singular locus Sing(L−1) of the reciprocal plane L−1. Corollary 26 represents
Sing(L−1) as a union of reciprocal linear spaces all of which are defined over R and have
codimension 2 in L−1. �

We now obtain the following characterization of the real locus of the entropic discriminant.

Corollary 37. The Zariski closure of the set of real points in the hypersurface defined by the
entropic discriminant HA(b) is pure of codimension 2 in Pd−1. Its irreducible components are
the linear spaces span(A j : j ∈ J ), where J runs over all corank 2 flats of M(A) for which the
contraction M(A/J ) is a non-basic matroid.
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Proof. The real variety of HA is the image of the real points in R A under the µ(A)-to-one
morphism A : L−1

→ Pd−1. Hence the Zariski closure of the real variety of HA is pure of
codimension 2 in Pd−1 as well. The description of its irreducible components now follows from
that given in Corollary 26. �

We now revisit our very first example to illustrate the previous corollary.

Example 38. For d = 3, the codimension-2 strata of L−1 are the n coordinate points ei in
Pn−1. Their images under the map A are the columns A1, . . . , An . For generic A, the points
e1, . . . , en comprise Sing(L−1). Lemma 34 implies that VR(HA) is contained in {A1, . . . , An},
and Theorem 35 reveals that equality holds. For special 3 × n-matrices A, the matroid M(A/ i)
may be basic for some i . If this happens then ei is a non-singular point in L−1 and its image Ai
does not belong to VR(HA). Looking back at Example 1, we notice that the matroid M(A/ i) is
basic for i = 1 and it is non-basic for i = 2, 3, 4, 5. This explains our finding in (3) that the
real variety VR(HA) consists of precisely the four points A2, A3, A4 and A5 in the projective
plane P2. �

We are now ready to present the proof of our main result in this section.

Proof of Theorem 35. We first note that the identity (44) follows immediately from Lemma 34
and the inclusion R A ⊇ Sing(L−1) in the first assertion. Hence it suffices to prove that inclusion.

By Corollary 26, the singular locus of L−1 is a reducible variety whose irreducible
components are the boundary strata L−1

J where M(A/J ) is a non-basic matroid of rank 2. We
consider one such component L−1

J , regarded as a subvariety of CJ
×{0} inside of Cn

= CJ
×CJ c

.
A generic point of L−1

J has the form (p, 0) where p ∈ (C∗)J . Our goal is to show that this point
lies in the ramification locus R A by producing a sequence of points in R A that converges to
(p, 0).

We may assume that J = {1, . . . , k} is a flat of rank d − 2 and our matrix A has the block
form

A =


Â ∗

0 B


where Â ∈ R(d−2)×k and B ∈ R2×(n−k) are both of full row-rank. In these coordinates, we get
M(AJ ) = M( Â) and M(A/J ) = M(B).

Now, let us return to our generic point (p, 0) ∈ L−1
J . The partial specialization gA(p, xJ c ) is a

polynomial in C[xk+1, xk+2, . . . , xn]. It is non-homogeneous and its terms of lowest total degree
come from those bases I of M(A) for which |I ∩ J | = d − 2. For any such I , we have

det(AI ) = det( ÂI∩J ) · det(BI∩J c ).

From this we see that the initial form of gA(p, xJ c ) of lowest degree terms can be written as

in−1(gA(p, xJ c )) = g Â(p) · gB(xJ c ). (45)

From the results of Section 6 we know that {g Â = 0} ∩ L−1
J has codimension 1 in L−1

J . This
implies g Â(p) ≠ 0 because the point (p, 0) was chosen to be generic in L−1

J .
In order to proceed, we need to represent the ramification locus around p by a single

polynomial, rather than as a subvariety of L−1. To do this, we rationally parametrize the points
xJ c for which (p, xJ c ) lies in L−1 using the matrix B. First, note that the intersection of the
linear space L with {p}×CJ c

gives an affine linear space in CJ c
of the form v + rowspan(B) for
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some vector v in CJ c
. We can parametrize this space by v + zB where z = (z1, z2). This gives

the rational parametrization (p, (v + zB)−1) of the intersection of L−1 with {p} × CJ c
.

Now we plug this parametrization into gA(p, xJ c ) and clear denominators to get a polynomial
in C[z1, z2]. Define g(z) ∈ C[z1, z2] to be this polynomial,

g(z) = gA(p, (v + zB)−1)

i∈J c

(vi + zBi )
2

=


I∈


[n]

d

 det(AI )
2


i∈I∩J

p2
i


j∈J c\I

(v j + zB j )
2. (46)

If z is a solution to g(z) = 0 for which each coordinate of v + zB is non-zero, then the point
(p, (v + zB)−1) lies in the ramification locus R A.

Since J is a flat, the n − k linear forms zBi are non-zero for all indices i . This implies that
xi = 1/(vi + zBi ) has degree −1. Thus the terms of highest degree in g(z) correspond exactly
to the terms of lowest degree in gA(p, xJ c ). From (45), we see that the leading form of g(z) is

in1(g(z)) = g Â(p) · gB((zB)−1) ·


i∈J c

(zBi )
2.

Our next step is to find a solution to the initial equation in1g(z) = 0 and to then extend it to the
desired sequence of points in R A. As the matroid M(A/J ) = M(B) is non-basic, it follows from
Corollary 5 that the ramification R A/J is nonempty. Hence there is a point q ∈ L A/J ∩ (C∗)n−k

such that gA/J (q−1) = gB(q−1) = 0. Let z be the unique vector such that zB = q . We may
assume that B has the form ( Id2 B ′ ). Thus implying that zi = qi ≠ 0 for i = 1, 2.

By Lemma 40, we can extend this solution z ∈ (C∗)2 to a solution Z = Z(ϵ) of g(z), where
the coordinates of Z = (Z1, Z2) lie in the field C{{ϵ}} of Puiseux series:

Zi = zi
1
ϵ

+ higher order terms ∈ C{{ϵ}} for i = 1, 2.

Moreover, by Lemmas 39 and 40, these series converge in a neighborhood of zero in R>0.
Now consider the point Q = Q(ϵ) = v + Z B with coordinates Qi = qi

1
ϵ

+ · · · in C{{ϵ}}.
We can invert Qi in the field of Puiseux series to get

Q−1
i = q−1

i ϵ + higher order terms ∈ C{{ϵ}} for i = 1, . . . , n − k,

and these series converge for real ϵ in an open segment (0, ϵ0) near zero (see Lemma 39).
Then, by (46), the point (p, Q−1) in L−1

⊗C C{{ϵ}} is a zero of the polynomial gA(x).
Specializing to sufficiently small ϵ ∈ R>0, gives a point (p, Q(ϵ)−1) ∈ (C∗)n that belongs
to the ramification locus R A. Furthermore, as ϵ approaches 0, the limit of the points (p, Q−1(ϵ))

is (p, 0) in L−1
J × {0}. This shows L−1

J ⊆ R A and consequently Sing(L−1) ⊆ R A. �

Before Lemma 40, we need a short lemma on the convergence of reciprocals of Puiseux series.

Lemma 39. If x(ϵ) is a nonzero Puiseux series that converges for ϵ > 0 in a neighborhood of 0,
then its inverse x(ϵ)−1 in C{{ϵ}} also converges for real ϵ in an open segment (0, ϵ0).

Proof. Suppose x(ϵ) = uϵk
+ higher order terms. We can write the field of Puiseux series as

the union of C((ϵ1/m)) over m ∈ Z+. Thus for some m ∈ Z+, replacing ϵ with ϵm yields a
Laurent series x(ϵm), which also converges in a neighborhood of 0. In particular, ϵ−mk x(ϵm) is
a convergent power series with constant term u and has an inverse y(ϵ) in the ring of convergent
power series (see [8, Section 6.4]). Then y(ϵ) = 1/u + · · · satisfies ϵ−mk x(ϵm)y(ϵ) = 1.
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Replacing ϵ with ϵ1/m , we see that ϵ−k y(ϵ1/m) is an inverse for x(ϵ). Furthermore, since y(ϵ)

and y(ϵ1/m) converge in a neighborhood of zero, x(ϵ)−1
= ϵ−k y(ϵ1/m) also converges for ϵ > 0

in a neighborhood of zero. �

Now all that remains is to lift roots of initial forms to solutions over C{{ϵ}}.

Lemma 40. Let g(z1, z2) be a polynomial with complex coefficients and initial form in1(g),
consisting of the highest terms with respect to total degree. Let u = (u1, u2) ∈ (C∗)2 be
any solution to the equation in1(g)(u1, u2) = 0. Then there exists a vector v(ϵ) that satisfies
g(v(ϵ)) = 0 and whose coordinates are Puiseux series of the form

vi (ϵ) = ui
1
ϵ

+ higher order terms in ϵ, for i = 1, 2,

that converge for ϵ in some neighborhood (0, ϵ0) of zero.

Proof. We invert the variables zi and work with the polynomial

g(z) = zdeg(g)

1 · zdeg(g)

2 · g(z−1
1 , z−1

2 ).

The highest-degree terms of g then correspond to the lowest-degree terms of g. Furthermore, the
point u−1

= (1/u1, 1/u2) is a solution of in−1(g).

Our hypothesis states that the Newton polygon of g(z1, z2) has an edge of slope −1, and
(1/u1, 1/u2) is a root of the corresponding binary form in−1(g)(z1, z2). Using the classical
Newton–Puiseux algorithm, we can construct a power series expansion of z2 in terms of
z1 =

1
u1

ϵ, having the form z2 =
1

u2
ϵ + · · ·. The resulting series in ϵ converges by the arguments

in [8, Section 7.11].

This solution has an inverse in the field of Puiseux series, and this inverse will be our desired
solution (v1(ϵ), v2(ϵ)) of g(z1, z2) = 0. Namely, if w(ϵ) = (w1(ϵ), w2(ϵ)) ∈ C{{ϵ}}2 is
the solution to g(z1, z2) found in the paragraph above, then vi (ϵ) = wi (ϵ)

−1 is a solution to
g(z1, z2). By Lemma 39, the Puiseux series vi (ϵ) converge in a neighborhood (0, ϵ0) of the
origin in R>0. �

This concludes our study of the entropic discriminant. In spite of the progress that has been
achieved, there are still many unresolved problems concerning HA(b). We list five open ques-
tions:

Open Questions:

(1) Is the entropic discriminant HA(b) always a sum of squares?

We know that the answer is yes for n = d +1 and for d = 2, but even the case d = 3 of plane
curves is open. It would be especially nice to write HA(b) as sum of squares in the maximal
minors of the matrix (A, b), as we did in (16) and (17) for (d, n) = (2, 3), (2, 4).

(2) What is the Newton polytope of the entropic discriminant HA(b)?

For instance, when A is the matrix in (20) then the table (26) suggests that the Newton
polytope of HA(b) is the standard permutohedron, scaled by a factor of two.
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(3) Find ideal generators for the ramification scheme.
Here is a concrete conjecture about minimal generators of the ideal JA in (41). Fix n ≥ d +2
and a d × n-matrix A whose matroid is uniform. We know from Example 23 that I (L−1) is

minimally generated by


n−1
d


polynomials of degree d. We conjecture that JA has precisely

d+1
2


additional minimal generators of degree 2d −2, namely, the restrictions to L−1 of the

rational functions gA(x)/xi x j for some i, j ∈ [n]. We can show that these rational functions
are polynomials on L−1 and that they vanish on Sing(L−1). Do they generate our ideal?

(4) How is the entropic discriminant related to the Gauss curve of the central curve?
The degree formula for the Gauss curve in [3, Section 5] is essentially the same as the degree
formula we derived for HA(b). What is the most natural geometric explanation for this?

(5) How does the entropic discriminant depend on the choice of monomial to be maximized?
In light of Varchenko’s work [27], it is natural to replace x1x2 · · · xn in (1) by a monomial
xu

= xu1
1 xu2

2 · · · xun
n with indeterminate exponents. This would lead to a refined discriminant

that is a bihomogeneous polynomial in (b, u). What is the bidegree of that polynomial?
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