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Abstract

Let f : U ⊂ R
2 → R

3 be a representative of a finitely determined map germ f : (R2,0) → (R3,0).
Consider the curve obtained as the intersection of the image of the mapping f with a sufficiently small
sphere S2

ε centered at the origin in R
3, call this curve the associated doodle of the map germ f . For a

large class of map germs the associated doodle has many transversal self-intersections. The topological
classification of such map germs is considered from the point of view of the associated doodles.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Two map germs f,g : (R2,0) → (R3,0) are topologically equivalent if there are germs of
homeomorphisms φ : (R2,0) → (R2,0) and ψ : (R3,0) → (R3,0) such that g = ψ ◦ f ◦ φ, in
other words f and g are equal up to continuous change of coordinates in the source and target.

This is not an easy equivalence relation to work with, for example, the mappings (x, y) →
(x, xy + y3, xy2 + cy4), where c = 0.4,0.9,1.1, are all topologically distinct. If one looks at the
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image of a neighborhood around the origin in R
2 by these three mappings, one suspects they are

not topologically equivalent (Fig. 1). Indeed, the first one has only one line of self-intersection
while the other two have three. To distinguish the last two, just notice that the removal of one
self-intersection line splits the last one into two components while the other remains connected.

What calls attention in the examples above is that they all have a cone like image and their in-
tersection with a sufficiently small 2-sphere S2

ε around the origin in R
3 is a curve with transversal

self-intersection (crossings). Changes in the topological type of f : (R2,0) → (R3,0) corre-
spond to local transitions on the curve in S2

ε (Fig. 2). In fact, the three transitions are related to
the failure of the finite determinacy condition of f : (i) there is a line of cross-caps, (ii) there
is a line of non-transverse self-intersection and (iii) there is a line of triple points. Here, finite
determinacy means with respect to smooth changes of coordinates in the source and the target.

These curves with transversal intersection on S2 are called doodles and have been systemati-
cally studied since Gauss’ time [10]. The reader can find in Scott Carter’s book [6] an introduction
to the theme. Carter lists the topological types of all such curves with up to four crossings: there
are two curves with two crossings, six with three crossings (Fig. 3) and nineteen with four cross-
ings.

According to a result by Takuo Fukuda, finitely determined map germs f : (Rn,0) → (Rp,0),
n � p, are always topologically conelike [8]. In particular, when n = 2 and p = 3, the link of the
cone is a doodle and we call it the associated doodle of f . Our aim is to describe the beginning of
the topological classification of finitely determined map germs f : (R2,0) → (R3,0) by means
of their associated doodles. For a large class of these mappings our classification is complete
(Sections 4 and 5). In Section 6 we address the realization problem, that is, given a certain doodle
find a finitely determined map germ f : (R2,0) → (R3,0) whose associated doodle is the given
one.

Similar problems have been considered by the second named author and R. Martins in [14] for
finitely determined singularities of ruled surfaces in R

3. There one finds a complete classification
with only eleven possible topological classes of map germs. See also [12].

All map germs considered are real analytic except when otherwise stated. We adopt the nota-
tion and basic definitions that are usual in singularity theory (e.g., A-equivalence, stability, finite
determinacy, etc.), as the reader can find in Wall’s survey paper [21].
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2. Finite determinacy of map germs from (RRR2,0) to (RRR3,0)

We start by recalling Whitney’s results about a stable map from a n-manifold to R
2n−1 (see

[22]). To simplify the notation, we restrict ourselves to the case n = 2. Let f : U ⊂ R2 → R3 be
a smooth map, where U is open. The map f is stable if and only if it is semiregular. This means
there is a discrete subset Σ ⊂ U such that:

(1) f : U \ Σ → R
3 is an immersion with normal crossings.

(2) For each x0 ∈ Σ , f −1(f (x0)) = {x0} and the map germ f : (R2, x0) → (R3, f (x0)) is A-
equivalent to the Whitney umbrella (also called cross-cap or pinch point), which is the map
germ (R2,0) → (R3,0) given by (x, y) �→ (x, y2, xy).

The normal crossings condition means that f either presents transverse double points, which
appear along a smooth curve in U , or triple transverse points, which appear as isolated points.
We denote by D3(f ) ⊂ U the set of triple points and by D2(f ) ⊂ U the closure of the double
point curve (so that it also includes D3(f ) and Σ ).

Finite determinacy is a very desirable property in the study of function and map germs.
However, to test finite determinacy for map germs using the definition, under A-equivalence,
can be quite hard. In the complex analytic case there is a geometrical characterization due
to Mather–Gaffney [21]. Roughly speaking, it says that a map germ f : (Cn,0) → (Cp,0)

is finitely determined if and only if it has an isolated instability at the origin. In the real an-
alytic case, f : (Rn,0) → (Rp,0) is finitely determined if and only if its complexification
f̂ : (Cn,0) → (Cp,0) is also finitely determined. In particular, if n = 2 and p = 3, there is
the following immediate consequence:

Lemma 2.1. Let f : (R2,0) → (R3,0) be a finitely determined map germ. Then there is a repre-
sentative f : U ⊂ R

2 → R
3 such that f −1(0) = {0} and the restriction f |U\{0} is an immersion

with only transverse double points.

It is due to the work of D. Mond [17] on the geometry of map germs from surfaces to 3-space
that finite determinacy of f : (C2,0) → (C3,0) is equivalent to the finiteness of three analytic
invariants, namely C(f ) the number of pinch points, T (f ) the number of triple points and N(f )

that measures, in some sense (sic) the non-transverse self-intersections.
On the other hand, it is also very convenient to give an analytic structure to the double point

curve D2(f ). In fact, if f : (C2,0) → (C3,0) is a finite map, then we consider the scheme
D2(f ) = f −1(V (F1(f ))), where F1(f ) denotes the first Fitting ideal of a presentation matrix
of the induced map f ∗ : O3 → O2. It follows that the underlying set germ coincides with the
double point set as defined previously [18]. We will denote by μ(D2(f )) the Milnor number of
the plane curve D2(f ) and call it the Mond number of f : (C2,0) → (C3,0). The first named
author and Mond show in [13] that f is finitely determined if and only if D2(f ) has isolated
singularity:

Lemma 2.2. Let f : (C2,0) → (C3,0) be a finite map germ. Then it is finitely determined if and
only if its Mond number is finite.

If f has corank 1 (which will be always the case in here), we can compute the analytic
structure of D2(f ) by using a simpler method, which is described in [13]. After changes of
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coordinates in the source and target, f assumes the normal form f (x, y) = (x,p(x, y), q(x, y)).
Now consider D̃2(f ) the curve in (R3,0) (or (C3,0) in the complex case) defined by equations

p(x, y) − p(x,u)

y − u
= q(x, y) − q(x,u)

y − u
= 0.

Thus D2(f ) is obtained from D̃2(f ) by taking the projection onto the (x, y)-plane. Therefore,
the corresponding equation for D2(f ) follows by the elimination of the u variable in the above
equations.

We finish this section with the following result due to Mond [16], which gives a partition of
all corank 1 map germs f : (R2,0) → (R3,0) according to its 2-jet. We will denote by J 2(2,3)

the space of 2-jets j2f (0) of map germs f : (R2,0) → (R3,0) and by Σ1J 2(2,3) the subset of
2-jets of corank 1. Moreover, A2 denotes the space of 2-jets of diffeomorphisms in the source
and target.

Proposition 2.3 (Classification of 2-jets). There exist four orbits in Σ1J 2(2,3) under the action
of A2, which are (

x, y2, xy
)
,

(
x, y2,0

)
, (x, xy,0), (x,0,0).

Note that the class (x, y2, xy) corresponds to the Whitney umbrella. Moreover, the first and
second classes can be labeled by the Boardman symbol Σ1,0.

Here we will restrict ourselves to the classes (x, y2, xy), (x, y2,0) or (x, xy,0). We are in-
terested in studying the topological structure of these map germs. We postpone the study of map
germs in the (x,0,0) class and map germs of corank 2. The reader should be warned they can
present very complicated configurations.

3. The doodle of a finitely determined singularity

We use Fukuda’s result [8], which implies that any finitely determined map germ f : (Rn,0) →
(Rp,0), with n � p has a cone structure over its link. This link is obtained by intersecting the
image of a representative of f with a sufficiently small sphere S

p−1
ε centered at the origin in R

p .
The conic structure of the singularities is a classic theme. For isolated complex hypersurface

singularities, it follows from the Milnor fibration theorem [15]. It was generalized by Burghelea
and Verona [5] for arbitrary complex analytic set germs. Fukuda’s technique can be applied to
smooth map germs.

Theorem 3.1. (See [8].) Suppose n � p. Then given a semi-algebraic subset W of J r(n,p),
there exist an integer s, depending only on n, p and r , and a closed semi-algebraic subset ΣW of
(πs

r )−1(W) having codimension � 1 such that for any C∞ mapping f : R
n → R

p with j sf (0)

belonging to (πs
r )−1(W)\ΣW , there exists a positive number ε0 such that for any number ε with

0 < ε � ε0 we have

(1) S̃n−1
ε = f −1(S

p−1
ε ) is a homotopy (n − 1)-sphere which, if n 	= 4,5 is diffeomorphic to the

natural (n − 1)-sphere Sn−1,
(2) the restricted mapping f |S̃n−1

ε : S̃n−1
ε → S

p−1
ε is topologically stable (C∞ stable if (n,p)

is a nice pair),
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(3) letting D̃n−1
ε = f −1(D

p−1
ε ), the restricted mapping f |D̃n−1

ε \{0} : D̃n−1
ε \{0} → D

p−1
ε \{0}

is proper, topologically stable (C∞ stable if (n,p) is nice) and topologically equivalent (C∞
equivalent if (n,p) is nice) to the product mapping

(
f |S̃n−1

ε

) × id(0,ε) : S̃n−1
ε × (0, ε) → Sp−1

ε × (0, ε)

defined by (x, t) �→ (f (x), t), and
(4) consequently, f |D̃n−1

ε : D̃n−1
ε → D

p−1
ε is topologically equivalent to the cone

C
(
f |S̃n−1

ε

) : S̃n−1
ε × [0, ε)/S̃n−1

ε × {0} → Sp−1
ε × [0, ε)/Sp−1

ε × {0}

of the stable mapping f |S̃n−1
ε : S̃n−1

ε → S
p−1
ε defined by C(f |S̃n−1

ε )(x, t) = (f (x), t).

Corollary 3.2. Suppose n � p and let f : (Rn,0) → (Rp,0) be a finitely determined map germ.
Then there is g : (Rn,0) → (Rp,0) A-equivalent to f and there exist a representative g : U ⊂
R

n → R
p and a positive number ε0 such that (1)–(4) of Theorem 3.1 hold, for any ε with 0 <

ε � ε0.

Proof. Assume that f is r-determined for some r and let W = {j rf (0)}. By the above theorem
there is an s, and a closed semi-algebraic subset ΣW of (πs

r )−1(W) having codimension � 1
such that for any C∞ mapping g : R

n → R
p with j sg(0) belonging to (πs

r )−1(W) \ ΣW , there
exists ε0 > 0 such that (1), (2), (3) and (4) of Theorem 3.1 hold, for any ε with 0 < ε � ε0.

Since (πs
r )−1(W)\ΣW 	= ∅, we can take a map g : R

n → R
p with j sg(0) ∈ (πs

r )−1(W)\ΣW .
This implies that j rg(0) = j rf (0) and g is A-equivalent to f . �
Definition 3.3. Suppose n � p and let f : (Rn,0) → (Rp,0) be a finitely determined map germ.
We say that the stable map f |S̃n−1

ε : S̃n−1
ε → S

p−1
ε is the link of f , where f is a representative

such that (1), (2), (3) and (4) of Theorem 3.1 hold, for any ε with 0 < ε � ε0. This is well defined
up to A-equivalence.

From now on we turn our attention to the case (n,p) = (2,3). By the property (4) of The-
orem 3.1, any finitely determined map germ is topologically equivalent to the cone of its link.
In particular, we have the following immediate consequence, which implies that the topological
classification of finitely determined maps germs from (R2,0) into (R3,0) can be reduced to the
topological classification of a certain subset of doodles.

Corollary 3.4. Two finitely determined map germs f,g : (R2,0) → (R3,0) are topologically
equivalent if and only if their associated doodles are topologically equivalent.

Example 3.5. In Table 1 we present some simple examples of images of finitely determined
mappings and their associated doodles.

In order to describe the topology of a doodle we use the Gauss word. This concept was in-
troduced by Gauss [10] who studied the problem of “realizability” in the plane of Gauss words,
a problem similar in nature to the “planarity” problem for graphs.
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Table 1

Regular Cross-cap S−
1

Map germ (x, y2, y) (x, y2, yx) (x, y2, y(y2 − x2))

Surface

Doodle

Gauss word ∅ aa−1 ab−1ba−1

Definition 3.6. Let γ : S1 → S2 be a doodle with r crossings. We choose r letters a1, . . . , ar

which label them. We also fix orientations on both S1 and S2 and choose a base point z0 ∈ S1.
We consider a permutation

σ : {1, . . . ,2r} → {
a1, . . . , ar , a

−1
1 , . . . , a−1

r

}
,

constructed as follows: We denote by z1, . . . , z2r ∈ S1 the source double points ordered such
that z0 � z1 < · · · < z2r . Assume that γ (zi) = γ (zj ) = ak with i < j . Then we put σ(i) = ak

and σ(j) = a−1
k if the pair of tangent vectors (γ ′(zi), γ

′(zj )) is positively oriented in S2 or
σ(i) = a−1

k and σ(j) = ak otherwise.
As usual, when working with permutations, in order to simplify the notation, we will identify

the permutation σ with the sequence σ(1) . . . σ (2r). This sequence is called the signed Gauss
word of the doodle γ . The non-signed Gauss word is defined by just forgetting the exponents in
the signed Gauss word. In Section 5 below, this non-signed version will be more appropriate to
describe some topological properties of the doodle. For simplicity, we will use Gauss word for
the signed version, unless otherwise specified.

It is obvious that the Gauss word is not uniquely determined, since it depends on the labels
a1, . . . , ar , the chosen orientations on both S1 and S2 and on the base point z0 ∈ S1. Different
choices will produce the following changes in the Gauss word:

(1) permuting the alphabet set a1, . . . , ar ;
(2) cyclically permuting the sequence which defines the Gauss word;
(3) reversing the sequence;
(4) changing all the exponents from +1 to −1 and vice versa.

We say that two Gauss words are equivalent if they are related by means of these four operations.
Up to this equivalence, the Gauss word is well defined and has the following property: two
doodles are topologically equivalent if and only if their Gauss words are equivalent.

There are known classifications of doodles with a low number of crossings. On the other hand,
given a Gauss word, it is not always possible to immerse the corresponding curve on the 2-sphere.
For instance, aba−1b−1 requires a genus 1 surface to be immersed. We refer to [6] for details
and pictures.
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Fig. 4. The doodle μr .

Example 3.7. Let us consider the curve μr : [0,2π] → R
2 given by μr(t) = (sin(t), sin(rt)), if

r is even, or μr(t) = (sin(t), cos(rt)) if r is odd. This corresponds to a closed immersed plane
curve with r crossings (Fig. 4).

Embedding this plane curve on the sphere S2 (for instance, through the inverse of the stere-
ographic projection), we obtain a doodle which also will be denoted by μr . Its Gauss word is
equal to

{
a1a

−1
2 a3a

−1
4 . . . a−1

r ar . . . a2a
−1
1 , if r is even,

a1a
−1
2 a3a

−1
4 . . . ara

−1
r . . . a2a

−1
1 , if r is odd.

For instance, the three doodles given in Table 1 correspond to μ0, μ1 and μ2, respectively.

Now we can reformulate Corollary 3.4 in terms of the Gauss words.

Corollary 3.8. Two finitely determined map germs f,g : (R2,0) → (R3,0) are topologically
equivalent if and only if the Gauss words of their associated doodles are equivalent.

Remark 3.9. Let f : (R2,0) → (R3,0) be a smooth map germ and assume that there is a repre-
sentative f : U ⊂ R

2 → R
3 such that f −1(0) = {0} and the restriction f |U\{0} is an immersion

with only transverse double points. Then it is possible to associate a Gauss word which coincides
with the Gauss word of the doodle in the case that f is finitely determined (see Lemma 2.1).

In fact, our construction is purely topological. Hence, the assertion is also true if f is just
continuous and f |U\{0} is a topological immersion with only transverse double points.

By shrinking the neighbourhood U if necessary, we can assume that D2(f ) ⊂ U is simply
connected. Then f (D2(f )) has a tree structure with one vertex at the origin of R

3 and r adjacent
edges labeled by r letters a1, . . . , ar . Analogously, D2(f ) also has a tree structure with one
vertex at the origin of R

2 and 2r adjacent edges labeled by X1, . . . ,X2r . We assume that the
components are ordered X1 < · · · < X2r according to the orientation of the plane R2. Of course,
if f (Xi) = f (Xj ) = ak , then we will write the letters ak and a−1

k in positions i and j , but we
have two possibilities.

Assume i < j . We orient all the connected components Xi,Xj , ak from the origin. We choose
points y ∈ ak , xi ∈ Xi and xj ∈ Xj such that f (xi) = f (xj ) = y. Let B a small ball around y in
R

3 such that f −1(B) \ D2(f ) has four connected components: U+
i and U−

i are on the left and
right of xi respectively and U+

j and U−
j are on the left and right of xj , respectively. We look at

the orientation of (f (U+
i ), f (U+

j )) with respect to ak (Fig. 5). If they are positively oriented we

put ak in position i and a−1
k in position j . Otherwise, we take the opposite positions.
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Fig. 5.

4. The doodle of a map germ of type Σ1,0

The aim of this and the next sections is to describe the topology of a large class of finitely de-
termined map germs by means of their associated doodles. As it was mentioned in Section 2, we
are only interested in corank 1 map germs whose 2-jet belong to the orbits (x, y2, xy), (x, y2,0)

or (x, xy,0) (see Proposition 2.3). That is, we will not consider map germs in the orbit (x,0,0)

nor corank 2 map germs.
Here we study the topological classification of all finitely determined map germs in the orbits

(x, y2, xy) or (x, y2,0). Both orbits can be labeled together under the Boardman symbol Σ1,0

and they correspond to corank 1 map germs with no triple points (i.e., T (f ) = 0).
Note that the (x, y2, xy) orbit correspond to a single A-class, namely, the cross-cap. It has

the simplest non-trivial doodle with Gauss word aa−1. In general, if f has type Σ1,0 and its
double point curve D2(f ) has r real branches, its associated doodle is equivalent to μr (see Ex-
ample 3.7). To see this, we need the following lemma, which gives a very convenient prenormal
form for f .

Lemma 4.1. (See [16].) Let f : (R2,0) → (R3,0) be a map germ. Then f has type Σ1,0 if and
only if it has corank 1 and T (f ) = 0. Moreover, if it has type Σ1,0 then f is A-equivalent to a
germ of the form

(x, y) �→ (
x, y2, yp

(
x, y2)),

for some function germ p ∈ E2.

Theorem 4.2. Let f : (R2,0) → (R3,0) be a finitely determined map germ of type Σ1,0. Then
its doodle its equivalent to μr , where r is the number of branches of D2(f ).

Proof. By the above lemma we can assume that f (x, y) = (x, y2, yp(x, y2)), for some function
germ p such that p(0,0) = 0. This implies that the double point curve is given by p(x, y2) = 0.
In particular, such a curve is symmetric with respect to the x axis and the pairs of points sharing
the same image are of the form z = (x, y) and z = (x,−y).

On the other hand, the link of f is f |S̃1
ε : S̃1

ε → S2
ε and the domain S̃1

ε is given in the plane
(x, y) by equation

x2 + y4 + y2p
(
x, y2)2 = ε2.
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Fig. 6.

This determines a simple closed curve which is also symmetric with respect to the x axis and
which meets transversely the double point curve at points z1, . . . , zr and z1, . . . , zr . We assume
that zi = (xi, yi) and zi = (xi,−yi), with x1 � · · · � xk and yi > 0, i = 1, . . . , r . We choose
z0 = (ε,0) as the base point. We deduce that the non-signed Gauss word is equal to

a1a2 . . . arar . . . a2a1,

where each ai is the label of the crossing f (zi) (Fig. 6).
Moreover, we also see that the doodle f (S̃1

ε ) has the following properties:

(1) The doodle is contained in the hemisphere Y � 0 of S2
ε and intersects the equator Y = 0 at

the base point f (z0) and its opposite f (−z0).
(2) It is symmetric with respect to the meridian Z = 0.
(3) The doodle intersects the meridian Z = 0 only at the double points a1, . . . , ar , together with

f (z0) and f (−z0). Moreover, they present the following relative position on the meridian:

f (−z0) < ar < · · · < a1 < f (z0).

The right-hand side of Fig. 6 shows the projection of the doodle into the XZ-plane, so that the
interior of the dashed circle corresponds to the projection of the hemisphere Y � 0 of S2

ε . It is
easy to see that the only doodle which verifies these conditions is the doodle μr of Example 3.7.
This concludes the proof. �
Remark 4.3. Let f : (R2,0) → (R3,0) be a continuous map germ. We assume there is a
representative f : U ⊂ R

2 → R
3 such that f −1(0) = {0} and f |U\{0} : U \ {0} → R

3 is a topo-
logical immersion with only transverse double points. We have seen in Remark 3.9 that f has
a well-defined Gauss word which coincides with that of the doodle if it is smooth and finitely
determined.

We claim that it is possible to extend the above theorem for this class of map germs: Let f be a
map germ defined by f (x, y) = (x, y2,p(x, y)) where p is even in y (i.e., p(x, y) = p(x,−y)).
Then the Gauss word of f coincides with that of the doodle μr .

In fact, the double point curve D2(f ) is given in U \ {0} as the set of points (x, y) such that
p(x, y) = 0 and y 	= 0. Hence, it is symmetric with respect to the x axis. Moreover, if (x, y) is
one of these points, then f (x, y) = f (x,−y).

On the other hand, the image of the double point curve f (D2(f )) also presents the required
symmetries. Note that it is defined outside the origin by equations Z = 0, p(X,

√|Y | ) = 0 and
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Y 	= 0, where (X,Y,Z) denote the coordinates of R
3. Therefore, all the arguments used in the

proof of the theorem are also valid here.

Example 4.4. Let Mr the map germ given by

Mr(x, y) = (
x, y2,(

(x + iy)r+1)),
for r � 0 and where (z) denotes the imaginary part of z ∈ C. In this case, the equation for the
double point curve is given by

p
(
x, y2) = 1

y
(

(x + iy)r+1),
which is a homogeneous polynomial of degree r . It is the product of r linear forms which are
pairwise non-collinear. This implies that p(x, y2) has isolated singularity and hence, the map
germ Mr is finitely determined. Moreover, the double point curve is the union of r distinct lines
through the origin. Therefore, the associated doodle of Mr is μr .

Corollary 4.5. Let f : (R2,0) → (R3,0) be a finitely determined map germ of type Σ1,0. Then
it is topologically equivalent to the map germ Mr , where r is the number of branches of D2(f ).

Remark 4.6. Let f : (R2,0) → (R3,0) be a finitely determined map germ of type Σ1,0 given by
f (x, y) = (x, y2, yp(x, y2)). Then the number r of crossings of the associated doodle is equal
to the number of branches of the plane curve germ p(x, y2) = 0. As a consequence,

r = 1 − ind
(∇p

(
x, y2)),

where ind(∇p(x, y2)) denotes the topological index of the gradient vector field of p(x, y2)

(see [3]).

5. The doodle of a map germ of type (x,xy,0)

In this section, map germs whose 2-jet is in the (x, xy,0) orbit are considered. We will dis-
tinguish two types of finitely determined map germs in this orbit, namely, fold and cusp types.
For the fold type we obtain the complete topological classification. In fact, they are topologically
equivalent to that of type Σ1,0 (see Theorem 4.2). For the map germs of cusp type, we assume
it is non-degenerate in some sense that we will make precise later, in order to obtain a topologi-
cal classification. Moreover, all the results in this section are described by the non-signed Gauss
word.

Definition 5.1. Let f : (R2,0) → (R3,0) be a finitely determined map germ whose 2-jet belongs
to the (x, xy,0) orbit. We can assume that f is written in the form

f (x, y) = (
x, xy + g(x, y),h(x, y)

)
,

for some function germs g,h ∈ m3
2. Since f is finitely determined, it follows that g must have

finite order in y, that is, g(0, y) = aky
k + ak+1y

k+1 + · · · with ak 	= 0, k � 3. We say that f has
fold type if k is even or cusp type if k is odd.
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Lemma 5.2. Let f : (R2,0) → (R3,0) be a finitely determined map germ whose 2-jet be-
longs to the (x, xy,0) orbit. Then f is topologically A-equivalent to a map germ of the form
(x, y2,p(x, y)), if f has fold type, or (x, xy + y3,p(x, y)), if f has cusp type, being p(x, y) a
continuous function germ.

Proof. We consider the map germ from the plane to the plane f̃ : (R2,0) → (R2,0), given by
f̃ (x, y) = (x, xy +g(x, y)), where g has order k in y. We also consider weights (k−1,1) for the
variables (x, y) and denote by f̃0 the initial part of f̃ , that is, f̃0(x, y) = (x, xy + aky

k). Since
f̃0 is finitely determined, we can use a result of Damon [7] which implies that f̃ is topologically
A-equivalent to f̃0.

The singular set of f̃0 is defined by the smooth curve x + kaky
k−1 = 0. Moreover, by an-

alyzing the number of preimages of a generic value one concludes that f̃0 is topologically
A-equivalent to either the fold (x, y2), if k is even, or the cusp (x, xy + y3), if k is odd. Fi-
nally, we extend these topological equivalences to f : (R2,0) → (R3,0) in order to obtain the
desired map germs. �
Theorem 5.3. Let f : (R2,0) → (R3,0) be a finitely determined map germ whose 2-jet belongs
to the (x, xy,0) orbit and has fold type. Then it is topologically A-equivalent to the germ Mr ,
where r is the number of branches of D2(f ).

Proof. By the above lemma, f is topologically A-equivalent to a map germ of the form
f̃ (x, y) = (x, y2,p(x, y)), where p is a continuous function germ. We write p = p1 +p2, where

p1(x, y) = p(x, y) − p(x,−y)

2
, p2(x, y) = p(x, y) + p(x,−y)

2
,

so that p1,p2 are respectively odd and even functions in y. Then we consider the homeomor-
phism ψ : (R3,0) → (R3,0) given by

ψ(X,Y,Z) = (
X,Y,Z − p2

(
X,

√|Y | )),
which give us ψ(f̃ (x, y)) = (x, y2,p1(x, y)). Now, we use the same argument of the proof of
Theorem 4.2 which is also valid in this situation. �

Let f : (R2,0) → (R3,0) be a finitely determined map germ whose 2-jet belongs to the
(x, xy,0) orbit and has cusp type. We can assume without loss of generality that f is written
in the form

f (x, y) = (
x, xy + yk + · · · , h(x, y) + · · ·),

where k � 3 is odd, h ∈ m3
2 is a weighted homogeneous polynomial with weights (k − 1,1) and

the dots denote higher order terms with respect to the weighted grading. We want to find the
defining equations for the double set curves D̃2(f ) and D2(f ). Following [13], we represent a
point of D̃2(f ) as a triple (x, y,u), so that f (x, y) = f (x,u) and the equations of D̃2(f ) have
the initial part given by

x + yk−1 + yk−2u + · · · + uk−1 = 0,
h(x, y) − h(x,u) = 0.
y − u
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Fig. 7.

Eliminating x in the second equation give us a homogeneous equation H(y,u) = 0, which is also
symmetric in (y,u). We decompose this equation in a product of real linear factors to obtain:

x + yk−1 + yk−2u + · · · + uk−1 = 0, (u − λ1y) . . . (u − λry) = 0,

for some λi ∈ R ∪ {∞} (in order to simplify the notation we also include the case λi = ∞ which
corresponds to the factor y). Moreover, for each factor with slope λi there is also its symmetric
factor which has slope λj = 1/λi .

The other double point curve is D2(f ), which is defined as the projection of D̃2(f ) onto the
(x, y)-plane. The equation for D2(f ) is obtained by eliminating the u variable in the equations
of D̃2(f ). Again, the initial part of this equation can be computed easily:

(
x + ν1y

k−1) . . .
(
x + νry

k−1) = 0, (1)

where νi = λk−1
i + λk−2

i + · · · + 1, for any i = 1, . . . , r . Since k is odd, we always have νi > 0
(except the case λi = ∞, which again corresponds to the factor y). Thus, each one of the branches
of D2(f ) has a defining equation with initial part x + νiy

k−1 = 0, that is, a parabola tangent to
the y axis in the left half-plane.

Definition 5.4. Let f : (R2,0) → (R3,0) be a finitely determined map germ whose 2-jet belongs
to the (x, xy,0) orbit and has cusp type. We will say it is non-degenerate if νi 	= νj for any
i 	= j , where ν1, . . . , νr are defined by Eq. (1). This guarantees that all branches of D2(f ) have a
relative position as in Fig. 7. Because of the finite determinacy of f , D2(f ) must have a reduced
structure (see [17]). In particular, if f is weighted homogeneous then it is non-degenerate, since
in this case the equation (x + ν1y

k−1) . . . (x + νry
k−1) = 0 is exactly the defining equation of the

real part of D2(f ). More generally, this is also true if f is semi-weighted homogeneous.

Notice that the non-degeneracy condition (together with the fact that f is in the (x, xy,0)

orbit and of cusp type) restricts on the possible doodles associated to f . In fact, the (non-signed)
Gauss word must verify, up to equivalence, the following compatibility conditions:
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C1: Assume r is odd. There is a unique branch m ∈ {1, . . . , r} with slope λm = −1. This means
that it is its own symmetric. The assigned letter ai to the ith crossing will appear in the
symmetric positions m and 2r − m

. . . ai . . . | . . . ai . . . .

(The vertical bar | in the middle is used here to separate the two halves of the Gauss word.)
C2: Otherwise, assume r is even. Then, for any m ∈ {1, . . . , r} we have λm 	= −1 and we cannot

have the same letter ai in the symmetric positions m and 2r − m.
C3: Let us consider a branch with positive slope 0 < λm < 1, where m ∈ {1, . . . , r}. Its symmet-

ric branch has slope λ� = 1/λm, with � ∈ {1, . . . , r}, � 	= m. So, if ai is in the position m,
it must also be in the position � and if aj is in the position 2r − m it must also be in the
position 2r − �

. . . ai . . . ai . . . | . . . aj . . . aj . . . .

C4: Let us consider two branches with positive slope 0 < λm1 < λm2 < 1 and their symmetric
branches λ�1 > λ�2 > 1, with λ�k

= 1/λmk
, mk, �k ∈ {1, . . . , r}. We denote the correspond-

ing letters in the Gauss word by

ai1 in positions m1, �1,

ai2 in positions m2, �2,

aj1 in positions 2r − m1,2r − �1,

aj2 in positions 2r − m2,2r − �2.

Then, the relative position of these letters in the Gauss word will be as follows:

. . . ai1 . . . ai2 . . . ai2 . . . ai1 . . . | . . . aj1 . . . aj2 . . . aj2 . . . aj1 . . . .

C5: Finally, we consider a branch with negative slope −1 < λm < 0, with m ∈ {1, . . . , r}. Its
symmetric branch has slope λ� = 1/λm, with � ∈ {1, . . . , r}, � 	= m. So, if ai is in the posi-
tion m, it must also be in the position 2r − � and if aj is in the position � it must also be in
the position 2r − m

. . . ai . . . aj . . . | . . . ai . . . aj . . . .

Definition 5.5. Given a doodle we say it has a loop if a letter ai appears in the Gauss word in two
consecutive positions . . . aiai . . . (we also include here the case that ai appears in the first and
last positions). For instance, the doodle μr has exactly 2 loops. The doodles with Gauss word
aabbcc have 3 loops and the trefoil abcabc does not have any loop.

In the next theorem we show that the above conditions C1, . . . ,C5 will imply restrictions on
the maximum number of loops of a doodle associated to a non-degenerate map germ of cusp
type. We also give a classification of all the possible (non-signed) Gauss words with at most 4
crossings.
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Theorem 5.6. Let f : (R2,0) → (R3,0) be a finitely determined map germ in the (x, xy,0) orbit,
of cusp type and non-degenerate. We denote by r the number of branches of D2(f ). Then:

(1) The number of loops in the associated doodle of f is � 3.
(2) If r is even, the number of loops is equal to 0 or 2.
(3) For r � 4, there are only seven possible Gauss words, up to equivalence:

∅, aa, aabb, aabbcc, abcabc, abbacddc, abcdbadc.

Proof. Because of condition C1, we will have at most one loop corresponding to the slope λm =
−1 and appearing either in positions ai . . . | . . . ai or . . . ai | ai . . . . Moreover, this can happens
only if the number of branches of D2(f ) is odd.

Apart from this, the remaining loops will have necessarily positive slope. By condition C3, if
we have one of them, we will have one loop in the first half of the Gauss word and the symmetric
loop in the second half. Finally, condition C4 implies that we cannot have more that one loop in
each half of the Gauss word. This concludes the proof of (1) and (2).

Let us prove (3). If r � 2, our list includes, up to equivalence, all the possibilities. For r = 3,
we have three possibilities, up to equivalence, namely abccba, aabbcc and abcabc. We see that
the first one is not a possible Gauss word, according to the above properties. In fact, in abccba the
three branches are their own symmetric, in contradiction with C1. Moreover, the equivalent forms
of this Gauss word are bccbaa and ccbaab. They also violate C1, since none of the branches is
its own symmetric.

We assume now that r = 4, which give us five possible Gauss words, up to equivalence,

aabbccdd, abbaccdd, abbacddc, abdcbadc, aabcdbcd.

We start with aabbccdd , which is not possible to occur because of (1). The second Gauss
word abbaccdd clearly gives a contradiction with C3. Analogously, the equivalent forms are
again not possible: bbaccdda, baccddab, accddabb, cddabbac, ddabbacc and dabbaccd by
C2 and ccddabba by C3.

Finally, we use a similar analysis for aabcdbcd . This word and its equivalent forms
bcdbcdaa, cdbcdaab, dbcdaabc, bcdaabcd , cdaabcdb, daabcdbc are in contradiction
with C3. There are two more variants of this Gauss word, abcdbcda, bcdaabcd , which are
not possible to occur because of C2. �
Example 5.7. For each one of the seven Gauss words presented in (3) above, we can find a
finitely determined map germ f : (R2,0) → (R3,0) in the (x, xy,0) orbit, of cusp type and non-
degenerate which realizes such a Gauss word, that is, the associated doodle of f has the given
Gauss word. Consider the P3 singularity, from Mond’s classification [16], defined by the map
germ f (x, y) = (x, xy + y3, xy2 + cy4), which is finitely determined if c 	= 0, 1

2 ,1, 3
2 . It is not

difficult to see that f has Gauss word

⎧⎪⎨⎪⎩
aa, if c < 1

2 or c > 3
2 ,

abcabc, if 1
2 < c < 1,

aabbcc, if 1 < c < 3 .
2



W.L. Marar, J.J. Nuño-Ballesteros / Advances in Mathematics 221 (2009) 1281–1301 1295
Analogously, we can also consider the map germ f (x, y) = (x, xy + y3, xy3 + cy5). A sim-
ple computation shows that its Mond number is finite if c 	= 0, 4

5 ,1, 9
5 and hence, f is finitely

determined. Now the Gauss word of f is equal to⎧⎪⎨⎪⎩
∅, if c < 4

5 or c > 9
5 ,

aabb, if 4
5 < c < 1,

abcdbadc, if 1 < c < 9
5 .

Finally, we find the finitely determined map germ

f (x, y) = (
x, xy + y3, y

(
x + 1.1y2)(x + 2y2)(x + 4y2)),

which realizes the Gauss word abbacddc.

The above theorem shows that for a general r , it can be very difficult to find the complete
classification of all the Gauss words of finitely determined map germs f in the (x, xy,0) orbit,
of cusp type and non-degenerate with r branches in D2(f ). However, we will see that if we add
some extra restrictions we can obtain some results. In the next theorem, we will consider the case
that all the slopes λi have the same sign.

Theorem 5.8. Let f : (R2,0) → (R3,0) be a finitely determined map germ in the (x, xy,0) orbit,
of cusp type and non-degenerate. We assume that D2(f ) has r branches and set t = [r/2]. We
also denote by λ1 < · · · < λr the slopes of the corresponding real linear factors of D̃2(f ).

(1) If r is even and λi > 0, ∀i, the Gauss word is equivalent to

a1 . . . atat . . . a1 | b1 . . . btbt . . . b1.

(2) If r is odd, λ1 = −1 and λi > 0, ∀i > 1, the Gauss word is equivalent to

a0a1 . . . atat . . . a1 | b1 . . . btbt . . . b1a0.

(3) If r is even and λi < 0, ∀i, the Gauss word is equivalent to one of the form

a1 . . . atb1 . . . bt | aσ(1) . . . aσ(t)bσ(1) . . . bσ(t),

for some permutation σ ∈ Σt .
(4) If r is odd and λi < 0, ∀i, the Gauss word is equivalent to one of the form

a1 . . . ata0b1 . . . bt | aσ(1) . . . aσ(t)a0bσ(1) . . . bσ(t),

for some permutation σ ∈ Σt .

Proof. In the first case, since λi > 0, ∀i, all the letters in the Gauss word are located according
to condition C4, which gives

a1 . . . atat . . . a1b1 . . . btbt . . . b1.
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In the second case, we must add a letter a0 corresponding to λ1 = −1. By condition C1, this letter
will appear in the symmetric positions. Moreover, since λi > 0, ∀i > 1, we will have νi > ν1 = 1,
∀i > 1. This implies that a0 will appear necessarily in the first and last positions:

a0a1 . . . atat . . . a1 | b1 . . . btbt . . . b1a0.

In the third case, we have that r is even and the slopes are organized as follows:

λ1 < · · · < λt < −1 <
1

λt

< · · · < 1

λ1
< 0.

We will denote the corresponding coefficients of the parabolas by

νi = λk−1
i + λk−2

i + · · · + 1, ν̃i = 1

λk−1
i

+ 1

λk−2
i

+ · · · + 1, i = 1, . . . , t.

Since k is odd, these coefficients will verify

ν1 > · · · > νt > 1 > ν̃σ(1) > · · · > ν̃σ(t),

for some permutation σ ∈ Σt . It follows from this and condition C5 that the Gauss word will
have the form

a1 . . . atb1 . . . bt | aσ(1) . . . aσ(t)bσ(1) . . . bσ(t).

Finally, the case (4) is analogous to (3), just by adding one more letter a0 corresponding to
λt+1 = −1. �

Depending on the number of branches r , we can have more restrictions on the possible Gauss
words and sometimes it is possible to improve parts (3) and (4) of 5.8 above. For instance, if r = 4
and λi < 0, ∀i, by (3) we could have two possibilities: abcdabcd and abcdbadc. However, the
first one cannot be constructed in the sphere, that is, there is no doodle immersed on the sphere
with such Gauss word. Hence, only the second Gauss word is realizable. The same happens with
r = 5. According to (4), we could have again two possibilities, abcdeabcde and abcdebaced ,
but the second one is not realizable.

However, in general we can have more than one possibility for the Gauss word in the case
λi < 0, ∀i. For instance, if we consider r = 7, we find two Gauss words:

a1a2a3a4a5a6a7a1a2a3a4a5a6a7, a1a2a3a4a5a6a7a3a2a1a4a7a6a5.

Both are realizable in the sphere and compatible with conditions C1, . . . ,C5.

6. Doodles from deformations

For a given doodle, is there a finitely determined map germ whose associated doodle is the
given one? In this section we show how to construct such map germs for doodles obtained as
deformation of some plane curve singularities.
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Fig. 8.

6.1. An example

The mapping (x, y) → (x, y2, xy) can be seen as a one-parameter family of parabolas
parametrized by x and degenerated at x = 0 (Fig. 8(a)). This mapping is topologically equiv-
alent to (x, y) → (x, y2, y3 − xy), that is, a one-parameter family of deformations of the plane
curve singularity y → (y2, y3). Here, when x > 0 the curves y → (y2, y3 − xy) are morsifi-
cations (i.e. stabilizations), while for x < 0 it is an embedded curve (with no self-intersection)
(Fig. 8(b)). The doodle of the mapping (x, y) → (x, y2, y3 − xy), that is, the intersection of the
image of f with a small sphere Sε centered at the origin can alternatively be obtained as follows:
firstly we enclose a morsification of the curve y → (y2, y3) in a appropriately small disc Dη (fol-
lowing N. A’Campo [2] we call it a divide of the plane curve singularity) and then we connect by
an arc the two points that the divide meets the boundary of Dη (Fig. 8(c)). This arc connection is
precisely what happens when we intersect the image of the mapping (x, y) → (x, y2, y3 − xy)

with Sε (Fig. 8(d)).
Indeed, the bifurcation set of the unfolding of the curve y → (y2, y3) is just the origin x = 0

and for any x < 0 the real trace of the curve y → (y2, y3 −xy) has no self-intersection (Fig. 8(b)).

6.2. The general case

We consider a real irreducible algebraic plane curve singularity y → (α(y),β(y)), whose
complexification has finite Milnor number, which is the same to say that the defining equation
F(X,Y ) = 0 of the complexified curve has isolated singularity. For this set of curves the work of
N. A’Campo [1] or S. Guseı̆n-Zade [11] applies and hence there exist real morsifications for this
plane curve singularities with μ(F)/2 transverse self-intersections.

The values of y mapped by y → (α(y),β(y)) to the self-intersection points are closely related
to the roots of the equations α(y) = 0 and β(y) = 0. For this reason the bifurcation set of a
versal unfolding of the curve y → (α(y),β(y)) is closely related to the discriminants of algebraic
equations (Fig. 9(a)). We refer to Arnold’s book [4] for an extensive treatment on the topic.

In particular, the space of parameters of a versal unfolding of a simple plane curve singularity
y → (α(y),β(y)) is partitioned by the bifurcation set into path connected components, all of
them being algebraic submanifolds of dimension greater than zero and having the origin in their
adherence.

Another property of the discriminant of an algebraic equation of degree n, say, xn +
an−2x

n−2 + · · · + a1x + a0 = 0 is that it splits the (n − 1)-space of the coefficients into path
connected components, at least one of which corresponding to the coefficients ai of the equa-
tions with n distinct real roots and another component corresponding to the equations with n

non-real roots, the origin being on the adherence of this two components (Fig. 9(a)).
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Fig. 9.

Analogously, the bifurcation set of a versal deformation of y → (α(y),β(y)) splits the pa-
rameter space of the versal unfolding into path connected components, at least one of them (cf.
A’Campo or Guseı̆n-Zade) corresponding to real morsifications (Rcc) and another to non-real
morsifications (Ccc) having the origin on the adherence. Also, the bifurcation set itself is strati-
fied and each stratum has the origin on its adherence.

Thus, we can choose a one-parameter unfolding of y → (α(y),β(y)) with the unfolding pa-
rameter x varying on a curve belonging to one component Rcc, passing through the origin and
into one component Ccc (Fig. 9(b)).

Thus, the corank 1 mapping (x, y) → (x,p(x, y), q(x, y)), where p(x, y) is a deformation
of α(y) with deformation parameter x such that p(0, y) = α(y) and the same for q(x, y) and
β(y), is a one-parameter family of morsifications of the curve y → (α(y),β(y)), when x varies
on a component of type Rcc and embedded curves for x = 0 or x in a component of type Ccc.
A small sphere intersect the image of this mapping in a doodle topologically equivalent to the
one obtained by connecting by an arc the two points that a divide of y → (α(y),β(y)) intersects
the boundary of a sufficiently small disc.

In general, we can consider one-parameter families of deformations of the same curve
y → (α(y),β(y)), having the unfolding parameter x varying on many distinct path connected
components of the complement of the bifurcation set in the parameter space, or on one of the
strata of the bifurcation set itself, so long we choose on one side a connected component that
realizes at least one self-intersection and on the other side x varies on the component Ccc, to
accomplish the arc connection of the boundary points of the divide. So, these choices can give
rise to distinct doodles associated to the same plane curve singularity, in particular its adjacent
singularities.

Lets us see this in two examples. The first one, the singularity A2k has only one component
Rcc, while the other example below, namely the singularity E6 has two.

So let us start with the curve A4, that is, y → (y2, y5). Here the A-versal unfolding is
(y;a, b) → (y2, y5 + by3 + ay;a, b) and the bifurcation set in the parameter space of coor-
dinates (a, b) is composed by the curves a = 0 and b2 − 4a = 0, with a < 0 (Fig. 10(a)). If we
make the deformation parameters vary on a curve within the region Rcc, passing through the
origin and into the region Ccc we obtain the desired mapping whose doodle is the divide of the
plane curve singularity y → (y2, y5) connecting the two boundary points by an arc. For instance,

if we take b = −x and a = x2

5 , that is, if we make the unfolding parameters (a, b) to vary over the

parabola x → ( x2

5 ,−x) (Fig. 10(b)) then the mapping (x, y) → (x, y2, y5 − xy3 + x2

5 y) satisfies
the requirement, that is, the associated doodle has Gauss word aa−1bb−1.

Now, let us make the unfolding parameters (a, b) to travel on another curve in the (a, b)-
plane, going from the third quadrant, through the origin and into the first quadrant. Say, on the



W.L. Marar, J.J. Nuño-Ballesteros / Advances in Mathematics 221 (2009) 1281–1301 1299
Fig. 10.

Fig. 11.

line x → (x, x) (Fig. 10(c)). So, the mapping (x, y) → (x, y2, y5 + xy3 + xy) has doodle whose
Gauss word is aa−1.

More generally, y → (y2, y2k+1) has A-versal unfolding (y;a1, . . . , ak) → (y2, y2k+1 +
a1y

2k−1 + a2y
2k−3 + · · · + aky;a1, . . . , ak). So, if y → (y2, y2k+1 + b1y

2k−1 + b2y
2k−3 +

· · · + bky) is a morsification of the plane curve singularity y → (y2, y2k+1) then making
(a1, a2, . . . , ak) to vary over the curve x → (b1x, b2x

2, . . . , bkx
k), in the k-space of unfolding

parameters then the mapping (x, y) → (x, y2, y2k+1 + b1xy2k−1 + b2x
2y2k−3 + · · · + bkx

ky) is
one whose doodle is μk (see Fig. 4).

Now we consider the plane curve singularity E6, that is, y → (y3, y4). In this case, the
bifurcation set of the A-versal unfolding (y;a, b, c) → (y3 + ay, y4 + by2 + cy;a, b, c) pro-
vides two connected components of type Rcc, that is, there are two distinct real morsifications
(Fig. 11). It should be remarked that the work of A’Campo or Guseı̆n-Zade does not describe
all possible real deformations of a given plane curve singularity. We learn from F. Scalco
Dias [9] that if we make c = 0, a = −1 and b = β − 1 then for sufficiently small abso-
lute values of β we obtain the two morsifications taking β < 0 or β > 0. More precisely,
the mapping (x, y) → (x, y3 − xy, y4 + (β − 1)xy2), or equivalently the mapping (x, y) →
(x, y3 + xy, y4 + (1 − β)xy2) is one whose doodle has Gauss word ab−1ca−1bc−1 when β < 0
while for β > 0 the corresponding Gauss word is aa−1bb−1cc−1.

6.3. Chebyshev doodles

The monomial curves y → (yp, yq), with (p, q) = 1 provide an interesting set of examples.
As A’Campo said [2], the Chebyshev polynomials miraculously are real morsifications of such
curves, up to affine transformations. A’Campo attributes this remark to R. Thom [20] and to
Guseı̆n-Zade [11]. We call this particular type of real morsification a Chebyshev morsification.

Recall the Chebyshev polynomials of the first kind are: T1(y) = y, T2(y) = 2y2 − 1, T3 =
4y3 − 3y, T4(y) = 8y4 − 8y2 + 1, T5(y) = 16y5 − 20y3 + 5y, . . . .

Using this remark and the procedure of the previous section, we obtain finitely A-determined
mappings associated to an ample set of given doodles, among them are the ones obtained from
Chebyshev morsifications connecting the end points of a divide of it.



1300 W.L. Marar, J.J. Nuño-Ballesteros / Advances in Mathematics 221 (2009) 1281–1301
Fig. 12.

Notice that the Chebyshev morsification is a very symmetric real morsification of a given
curve singularity y → (yp, yq), with (p, q) = 1. The reason behind this is the fact that the
Chebyshev polynomials are interpolation polynomials for points in the plane distributed uni-
formly. This implies that the Dynkin diagram of the morsification is the most symmetric one
(cf. [11]).

For instance, the E8 singularity y → (y3, y5), has Chebyshev morsification y → (y3 −
3
4y, y5 − 5

4y3 + 5
16y) (Fig. 12(a)). The other two real morsifications of E8 (Fig. 12(b)) cannot be

obtained using Chebyshev polynomial.
So, the mapping (x, y) → (x, y3 − 3

4xy, y5 − 5
4xy3 + 5

16x2y) is an example of a finitely
A-determined mapping whose doodle has Gauss word abc−1a−1dcb−1d−1 (Fig. 12(a)).

The other two two real morsifications of y → (y3, y5) give rise, by arc connecting the
two end points of the divide, to doodles whose Gauss words are ab−1ba−1cc−1dd−1 and
aa−1b−1cd−1bc−1d , respectively. It seems that map germs with these associated doodles have
2-jet (x,0,0) and shall be studied in another opportunity.
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