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d Departamento de Álgebra y Análisis Matemático, Universidad de Almerı́a, 04071 Almerı́a, Spain

Received 13 September 2012; accepted 30 May 2013
Available online 22 June 2013

Communicated by Henning Krause

Abstract

Let (A; E) be an exact category and F ⊆ Ext a subfunctor. A morphism ϕ in A is an F -phantom if the
pullback of an E -conflation along ϕ is a conflation in F . If the exact category (A; E) has enough injective
objects and projective morphisms, it is proved that an ideal I of A is special precovering if and only if
there is a subfunctor F ⊆ Ext with enough injective morphisms such that I is the ideal of F -phantom
morphisms. A crucial step in the proof is a generalization of Salce’s Lemma for ideal cotorsion pairs: if I
is a special precovering ideal, then the ideal cotorsion pair (I,I ⊥) generated by I in (A; E) is complete.
This theorem is used to verify: (1) that the ideal cotorsion pair cogenerated by the pure-injective modules
of R-Mod is complete; (2) that the ideal cotorsion pair cogenerated by the contractible complexes in the
category of complexes Ch(R-Mod) is complete; and, using Auslander and Reiten’s theory of almost split
sequences, (3) that the ideal cotorsion pair cogenerated by the Jacobson radical Jac(Λ-mod) of the category
Λ-mod of finitely generated representations of an Artin algebra is complete.
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1. Introduction

Let (A; E) be an exact category [9,14,22]. Given a subcategory C ⊆ A, define ⊥C ⊆ A
to be the subcategory of objects F such that Ext(F,C) = 0 for every C ∈ C, and define C⊥

dually. A cotorsion pair in (A; E) is a pair (F , C) of subcategories of A satisfying F =
⊥C

and C = F ⊥. The notion of a cotorsion pair was introduced by Salce ([27], but see [17,
Lemma 2.2.6]) in the setting of Ab, the abelian category of abelian groups. In the general
setting of an exact category, this notion provides the proper context for the study of precovers
and preenvelopes (approximation theory). Expositions of approximation theory for categories
of modules may be found in the monographs of Beligiannis and Reiten [4] and Göbel and
Trlifaj [17], but cotorsion pairs have also been used to study approximation theory in sheaf
categories [13], general Grothendieck categories [15,20], and more abstract exact categories
[28].

While the present state of approximation theory tends to stress the importance of objects and
subcategories, the purpose of this article is to give morphisms and ideals of categories equal
status. If J is an ideal of A, define ⊥J to be the ideal of morphisms i such that Ext(i, j) = 0
for every j ∈ J , and define J ⊥ dually. An ideal cotorsion pair in (A; E) is a pair (I,J ) of
ideals of A satisfying I =

⊥J and J = I ⊥. Our aim is to develop approximation theory for
ideal cotorsion pairs in analogy with the approximation theory of cotorsion pairs in an exact
category. In contrast to the references above, no completeness assumptions are made on an exact
category.

Examples of preenvelopes are the injective and pure-injective envelopes of a module. The
existence of flat precovers was conjectured by Enochs [11] and proved in [8]. These are all
examples (cf. [12]) of approximations relative to a subcategory of the category R-Mod of left
R-modules over an associative ring R. But there also exist approximations relative to an ideal.
For example, if Λ is an Artin algebra, and Λ-mod denotes the category of finitely presented left
Λ-modules, the work of Auslander and Reiten [1] shows that every object M ∈ Λ-mod has a
cover (resp., envelope) with respect to the ideal Jac(Λ-mod) given by the Jacobson radical of
Λ-mod. Another example, one that provides the prototype for the present theory, is given by the
ideal of phantom morphisms in a module category R-Mod; the existence of phantom covers was
proved by the third author [19].

Let I ⊆ A be an ideal and A an object of A. An I -precover of A is a morphism i ∈ I ,
i : X → A, such that any other morphism i ′ : X ′

→ A in I factors through i,

X ′♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

i ′

X i ✲ A.

If the category is equipped with an exact structure (A; E), then an I -precover i : X → A of
A in A is special if it is obtained as the pushout of a conflation η along a morphism j : Y → B
in I ⊥:
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η : Y ✲ Z ✲ A

❄

j

❄

B ✲ X i ✲ A.

The condition Ext1(I, j) = 0 implies (Proposition 11) that a special I -precover is an I -precover.
The ideal I is called (special) precovering if every object A ∈ A has an (a special) I -precover
i : X → A. Given an ideal J ⊆ A, a special J -preenvelope is defined in a dual manner and
an ideal cotorsion pair (I,J ) in (A; E) is called complete if every object in A has a special
J -preenvelope and a special I -precover.

The main contribution of this paper is to establish the connection between special precovering
ideals and phantom morphisms in exact categories. Theorem 1 below asserts that every special
precovering ideal can be represented, under suitable hypotheses, as an ideal of phantoms. Given a
subfunctor F of Ext [2,10] a morphism ϕ will be called an F -phantom morphism if the pullback
of any conflation along ϕ is a conflation in F . The F -phantom morphisms form an ideal, denoted
by Φ(F).

The notion of a phantom morphism arises in topology, in the study of maps between CW-
complexes [23]. In the context of triangulated categories [26], phantom morphisms were first
studied by Neeman [25]. In the stable category of a finite group ring, the theory of phantom
morphisms was developed in a series of papers [16,6,7,5] by Benson and Gnacadja; the
triangulated version of this notion of a phantom morphism was studied in [3,24]. Their definition
of a phantom morphism was generalized by the third author [19] to the category of left R-
modules over an associative ring R. It is proved in the sequel (Proposition 36) that a morphism
ϕ : M → N in R-Mod is a phantom morphism if and only if the induced natural transformation

TorR
1 (−, ϕ) : TorR

1 (−,M) → TorR
1 (−, N )

of additive functors from R-Mod to Ab is 0. In the terminology of the present paper, these
phantoms are defined relative to the subfunctor Pext of Ext1R , whose conflations are the pure
exact sequences in R-Mod.

An additive subfunctor F ⊆ Ext has enough injective morphisms if for every object B ∈ A,
there is an F -conflation

ηB : B e ✲ C ✲ A,

where e : B → C is an F -injective morphism. The subfunctor F ⊆ Ext is said to have enough
special injective morphisms if for every object B ∈ A, there is an F -conflation ηB as above that
arises as the pullback along an F -phantom morphism (see Proposition 15).

Theorem 1. Let (A; E) be an exact category with enough injective objects and projective
morphisms. The following statements regarding an ideal I of A are equivalent:

(1) there is an additive subfunctor F ⊆ Ext with enough injective morphisms and I = Φ(F);
(2) the ideal I is special precovering;
(3) the ideal cotorsion pair (I, I ⊥) is complete; and
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(4) the additive subfunctor PB(I) ⊆ Ext, whose conflations are obtained by pulling back
arbitrary conflations along morphisms in I , has enough special injective morphisms and
I = Φ(PB(I)).

The hypothesis that (A; E) have enough projective morphisms is only used in the proof of
(1) ⇒ (2). The implication (2) ⇒ (3) is Salce’s Lemma [17, Lemma 2.2.6] for ideal cotorsion
pairs; it relies only on the hypothesis that there exist enough injective objects. The implication
(4) ⇒ (1) is trivial and (3) ⇒ (4) holds in general. An immediate consequence (Corollary 20) is
that if (A; E) is an exact category with enough injective objects and projective morphisms, and
F ⊆ Ext is an additive subfunctor with enough injective morphisms, then the ideal cotorsion
pair cogenerated by the ideal of F -injective morphisms is complete. There are three well-known
examples of the statement Theorem 1(1).

(1) Let (R-Mod,Ext1R) be the abelian category of left R-modules over an associative ring R with
identity. It has enough injective objects and projective objects and the exact substructure

(R-Mod,Pext1R) ⊆ (R-Mod,Ext1R),

whose conflations are the pure exact sequences, provides an additive subfunctor of Ext with
enough injective objects. The phantom morphisms in this case will be called pure phantom
morphisms.

(2) The abelian category Ch(R-Mod) of complexes of left R-modules has enough injective
objects and projective morphisms. The exact substructure (Ch(R-Mod); E0), whose
conflations are the semisplit sequences, provides an additive subfunctor of Ext with enough
injective objects. The phantom morphisms in this case will be called semisplit phantom
morphisms.

(3) If Λ is an Artin algebra, then the abelian category (Λ-mod,Ext1Λ) of finitely presented
left modules over Λ has enough injective objects and projective objects. By the work of
Auslander and Reiten, the additive subfunctor F ⊆ Ext1Λ generated by the almost split
sequences in Λ-mod has enough injective morphisms. The phantom morphisms in this case
will be called Auslander–Reiten (AR) phantom morphisms.

There is an object version of Theorem 1 that pertains to the first two examples, where the
additive subfunctor F ⊆ Ext satisfies the stronger condition of having enough injective objects.
This means that for every object B ∈ A, there is an F -conflation

ηB : B ✲ E ✲ A,

where E is an F -injective object.

Theorem 2. Let (A; E) be an exact category with enough injective objects and projective
morphisms. The following statements regarding an ideal I of A are equivalent:

(1) there is an additive subfunctor F ⊆ Ext with enough injective objects and I = Φ(F);
(2) for every object A ∈ A, there exists a conflation

B ✲ C i ✲ A,

where i : C → A belongs to I and B is an object in I ⊥
;
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(3) the ideal I is special precovering and I ⊥ is an object ideal, i.e., there exists an additive
category X ⊆ A such that I ⊥

= I(X ) is the ideal of morphisms that factor through an
object in X ; and

(4) the additive subfunctor PB(I) ⊆ Ext has enough special injective objects and I =

Φ(PB(I)).

An example similar to Condition (3) arises in the work of Šaroch and Štoviček [29].
Condition (4) of Theorem 1 establishes a bijective correspondence (Corollary 19) between

special precovering ideals I and subfunctors F = PB(I) that have enough special injective
morphisms. The additive subfunctor PB(I) ⊆ Ext that arises in Condition (4) embodies the
creative aspect of the theorem. Corollary 21 offers an explicit description of the ideal I ⊥, whose
morphisms are the PB(I)-injective morphisms. The latter portion of the article details how
this phenomenon manifests itself in the three examples. In the first example, of the inclusion
(R-Mod; Pext1R) ⊆ (R-Mod; Ext1R) of exact structures, the ideal of I ⊥ consists of the morphisms
that factor through those left R-modules Z that arise in a short exact sequence

0 ✲ M ✲ Z ✲ E ✲ 0,

where M is a pure-injective left R-module and E ∈ R-Mod is injective. In the second example,
of the semisplit exact category (Ch(R-Mod); E0) of the category of complexes Ch(R-Mod), the
objects of I ⊥ can be described similarly as those complexes Z∗ that appear in a short exact
sequence of complexes

0 ✲ C∗ ✲ Z∗ ✲ E∗ ✲ 0,

where C∗ is contractible and E∗ is injective. Using the Frobenius property of (Ch(R-Mod); E0)

these complexes may be alternatively characterized as those complexes M∗ for which the
canonical morphism ξM∗ : ΩΣ (M∗) → M∗ (Definition 43) is null-homotopic (Theorem 44).
In the third example, of the socle subfunctor of ExtΛ, where Λ is an Artin algebra, we call an
almost split sequence left special if it belongs to the subfunctor PB(I), that is, if it arises as the
pullback along an Auslander–Reiten phantom morphism. In the last section of the article, it is
proved (Corollary 49) that if U is an indecomposable Λ-module that is not injective, then there
exists a left special almost split sequence with U as its left term if and only if the canonical
morphism ξU : ΩΣ (U ) → U is not a split epimorphism.

The classical situation of a complete cotorsion pair (F , C) in an exact category (A; E)
yields another example of a complete ideal cotorsion pair, given by the pair (I(F), I(C))
of the corresponding object ideals (Theorem 28). This example shows that the study of
complete ideal cotorsion pairs subsumes that of complete cotorsion pairs, and therefore, that the
approximation theory developed here for ideals generalizes the classical approximation theory
for the subcategories of an exact category.

2. Preliminaries

By an ideal I of an additive category A we mean an additive subfunctor of the additive
bifunctor Hom : Aop

× A → Ab. The ideal I associates to every pair A and B of objects in
A a subgroup I(A, B) ⊆ Hom(A, B) so that if f : X → A and g : B → Y are morphisms
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in A, then the natural transformation Hom( f, g) : Hom(A, B) → Hom(X, Y ) that assigns to
i ∈ Hom(A, B), the composition

Hom( f, g)(i) : X f ✲ A i ✲ B g ✲ Y

respects I . In other words, if i ∈ I(A, B), then gi f = Hom( f, g)(i) ∈ I(X, Y ). If A ∈ A
is an object, we say that A belongs to I if the identity morphism 1A belongs to I(A, A), and
we denote by Ob(I) ⊆ A the full subcategory of objects of I . This is an additive subcategory
of A. In the other direction, every additive subcategory X ⊆ A gives rise to the ideal I(X )
generated by morphisms of the form 1X , where X ∈ X ; this is the ideal of morphisms that factor
through an object in X . An ideal I of A is called an object ideal if it is generated by its objects,
I = I(Ob(I)).
Exact Categories. We rely exclusively on Bühler [9] as the reference for exact categories, but we
use some of the terminology of Keller [14,22]. An exact category (A; E) consists of an additive
category A, together with a distinguished collection E of composable1 pairs of morphisms (i, p)
such that i is the kernel of p and p the cokernel of i . Such a pair is depicted by

η : B i ✲ C p ✲ A

and is called a conflation. The kernel i : B → C that appears in the conflation η is an inflation;
the cokernel p : C → A a deflation. The collection E of conflations is closed under isomorphism
and satisfies closure properties that ensure that, given objects A and B of A, the isomorphism
classes of conflations η as above form an abelian group2 Ext(A, B) with respect to the Baer sum
operation. Furthermore, the rule (A, B) → Ext(A, B) is an additive bifunctor

Ext : Aop
× A → Ab.

Because the collection E of conflations is the union of the elements, up to isomorphism, of the
Ext(A, B), with A, B ∈ A, we may refer to the exact structure in terms of the associated functor
Ext, (A; E) = (A; Ext). An abelian category A acquires the structure of an exact category
(A; E), whose collection E of conflations consists of the short exact sequences in A.

If f : X → A is a morphism in A, then the pullback of η along f is a conflation in (A; E).
This operation induces a morphism

Ext( f, B) : Ext(A, B) → Ext(X, B)

of abelian groups. Similarly, if g : B → Y is a morphism in A, then the pushout of η along g is
a conflation in (A, E) and yields the morphism

Ext(A, g) : Ext(A, B) → Ext(A, Y ).

When these operations are applied in succession, the composition – denoted by Ext( f, g) –
is independent of the order. The proof rests on the notion of a pushout–pullback factorization
[9, Prop. 3.1] of a morphism of conflations

1 A pair of morphisms (i, j) is composable if Dom( j), the domain of j , is equal to Codom(i), the codomain of i.
2 To avoid set-theoretic complications, we assume throughout that the class Ext(A, B) is a set.
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η : B i ✲ C p ✲ A

g

❄

h

❄

f

❄

η′
: Y i ′ ✲ Z p′

✲ X.

This morphism factors uniquely through the pushout of η along g as

η : B i ✲ C p ✲ A

g

❄

h1

❄

Y i1 ✲ N j ✲ A

h2

❄

f

❄

η′
: Y i ′ ✲ Z p′

✲ X.

The conflation in the middle row is then the pullback of η′ along f , which yields the equation

Ext(A, g)(η) = Ext( f, Y )(η′).

The following proposition actually follows from the definition of an additive bifunctor Ext :

Aop
× A → Ab, but we give an explicit proof, because it will be invoked often and is

characteristic of the general manner of thinking used in the sequel.

Proposition 3. If f : X → A and g : B → Y are morphisms in an exact category (A; E), then
the diagram

Ext(A, B) Ext( f, B) ✲ Ext(X, B)

❄

Ext(A, g)

❄

Ext(X, g)

Ext(A, Y ) Ext( f, Y ) ✲ Ext(X, Y )

of abelian groups is commutative. Thus Ext( f, g) = Ext(X, g)Ext( f, B) = Ext( f, Y )Ext(A, g).

Proof. Suppose that a conflation η : B → C → A is given. Taking the pullback along f :

X → A and the pushout along g : B → Y yields a morphism of conflations given by the
composition
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B ✲ X ′ ✲ X

f ′

❄

f

❄
η : B ✲ C ✲ A

g

❄

g′

❄

Y i ′ ✲ Y ′ ✲ A.

The pushout–pullback factorization of this morphism yields a commutative square of conflations

B ✲ X ′ ✲ X
�

�
�✠

g �
�

�✠ �
�

�

�
�

�

γ : Y ✲ Z ✲

❄

f ′

X

❄

f

η : B

❄

✲ C

❄

f
✲ A

�
�

�✠
g

�
�

�✠
g′

�
�

�

�
�

�

Y ✲ B ′ ✲ A.

The top front row is the conflation γ , expressible as

Ext(X, g)Ext( f, B)(η) = γ = Ext( f, Y )Ext(A, g)(η). �

Example 4. Let A, B ∈ A and suppose that η and γ belong to Ext(A, B). The Baer sum of η
and γ is obtained by constructing the direct sum η ⊕ γ ∈ Ext(A ⊕ A, B ⊕ B) and applying the
morphism Ext(∆,∇) to η⊕ γ , where ∆ : A → A ⊕ A (resp., ∇ : B ⊕ B → B) is the morphism
induced on the product (resp., coproduct) by the identity morphism 1A (resp., 1B).

Notation. Throughout the article, we assume that (A; E) is an exact category in the sense of [9].
Any mention of Ext refers to the additive bifunctor associated to (A; E).

Subfunctors of Ext ([2,10]). If (A; E) is an exact category, an additive subfunctor of Ext :

Aop
× A → Ab is defined in analogy with the way that an ideal of A was defined to be an

additive subfunctor of Hom. For every pair A and B of objects in A, an additive subfunctor F
of Ext associates a subgroup F(A, B) ⊆ Ext(A, B) so that if f : X → A and g : B → Y are
morphisms in A, then the natural transformation Ext( f, g) : Ext(A, B) → Ext(X, Y ) respects
F . This means that if η ∈ F(A, B), then Ext( f, g)(η) ∈ F(X, Y ). A subfunctor F ⊆ Ext yields
a substructure

(A; F) ⊆ (A; E),
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whose conflations, the F -conflations, are those conflations η : B → C → A that belong to
F(A, B). The subfunctor F ⊆ Ext may thus be considered as a collection of conflations closed
under isomorphism, containing all the trivial conflations – and so satisfying Axioms [E0] and
[E0op] of [9] for an exact category – and satisfying Axioms [E2] and [E2op] of [9]. Furthermore,
the collection of F -conflations satisfies the axiom

E1′: The class of conflations is closed under direct sums.

On the other hand, if F ⊆ E is a collection of conflations satisfying the properties above,
a result of Auslander and Solberg [2, Lemma 1.1] asserts that the F -conflations constitute an
additive subfunctor F ⊆ Ext.

The Axiom [E1′] for an additive subfunctor of Ext follows [9, Prop. 2.16] from the axioms for
an exact category. In particular, an exact substructure (A; E ′) ⊆ (A; E) constitutes a subfunctor
of Ext; an exact substructure of (A; E) is an exact structure E ′ on A such that every E ′-
conflation is a conflation. The chief difference (see [10]) between a subfunctor of Ext and an
exact substructure is that in an exact substructure a composition of inflations (resp., deflations)
is an inflation (resp., a deflation), and if a composition f g is an inflation (resp., a deflation), then
g (resp., f ) is an inflation (resp., a deflation).

Notation. Throughout the article, we assume that F ⊆ E is an additive subfunctor of Ext.

The next lemma is used twice in the sequel; it is a special case of the Obscure Axiom [9, Prop.
2.16].

Lemma 5. If an F -inflation i0 : B → C0 factors through an E -inflation i : B → C

B i ✲ C

❅
❅

❅
❅❅❘

i0

❄

g

C0,

then i too is an F -inflation.

Proof. The morphism g : C → C0 induces a morphism of E -conflations

η : B i ✲ C ✲ A

❄

g

❄

h

η0 : B i0 ✲ C0 ✲ A0.

But η0 is an F -conflation, so that the pullback η along h is also an F -conflation. Thus the
morphism i is an F -inflation. �

Definition 6. Given a conflation η : B → C → A and a morphism ϕ : X → A, the pullback
gives rise to a commutative diagram
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η0 : B i ✲ Z ✲ X

❄

ϕ

❄
η : B ✲ C ✲ A

with top row η0 = Ext(ϕ, B)(η). The morphism ϕ : X → A is an F -phantom morphism if the
top row η0 of every such pullback is an F -conflation.

Thus a morphism ϕ : X → A is an F -phantom provided that for every B ∈ A, the morphism

Ext(ϕ, B) : Ext(A, B) → Ext(X, B)

of abelian groups takes values in the subgroup F(X, B). It follows that the collection Φ(F) of
F -phantom morphisms forms an ideal of A.

A morphism f : X → A in A is F -projective if F( f, B) = 0 for every B ∈ A. This
means that the pullback along f of any F -conflation is split. An object A in A is F -projective if
the identity morphism 1A is an F -projective morphism. The ideal of F -projective morphisms is
denoted by F -proj; the subcategory of F -projective objects by F -Proj. An F -injective morphism
(resp., F -injective object) is defined dually. The ideal of F -injective morphisms is denoted by
F -inj; the subcategory of F -injective objects by F -Inj. In case F = E , the prefix is dropped.

If F1 ⊆ F2 ⊆ Ext are subfunctors, then evidently Φ(F1) ⊆ Φ(F2). Given an ideal I of the
exact category (A; E), the next proposition describes the minimum additive subfunctor F of Ext
for which I ⊆ Φ(F).

Proposition 7. Let I be an ideal A. The collection of conflations that arise as pullbacks by
morphisms in I comprise an additive subfunctor PB(I) ⊆ E .

Proof. The task is to verify that the collection PB(I) of conflations that are pullbacks along
I includes the trivial conflations, and is closed under the direct sum, pullback and pushout
operations. If η : B → C → A is a trivial conflation, then the pullback of η along the zero
morphism 0A : A → A is isomorphic to η and so implies that η ∈ PB(I)(A, B). A direct sum
of conflations η1 and η2 that arise as pullbacks of γ1 and γ2 along the morphisms i1 and i2 of I ,

respectively, is the pullback of γ1⊕γ2 along the diagonal morphism


i1 0
0 i2


. If η : B → C → A

is a conflation obtained as the pullback of η′ along the morphism i : A → A′, then the pullback
of η along any morphism f : X → A is a pullback of η′ along the composition i f , which
belongs to I . Finally, to see that the collection PB(I) is closed under pushouts, suppose that
η : B → C → A is a pullback along a morphism i : A → A′ in I of the conflation
η′

: B → C ′
→ A′. By Proposition 3, the pushout of η along the morphism g : B → Y is

given by the conflation

Ext(A, g)(η) = Ext(A, g)Ext(i, B)(η′) = Ext(i, Y )Ext(A′, g)(η′),

which is the pullback along i of the conflation Ext(A′, g)(η′). �

Orthogonality. A pair ( f, g) of morphisms in A with f : X → A and g : B → Y is orthogonal
if the morphism
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Ext( f, g) : Ext(A, B) → Ext(X, Y )

of abelian groups is zero.
For example, if f : A → A is the identity morphism 1A, then Proposition 3 implies

Ext(1A, g) = Ext(A, g)Ext(1A, B) = Ext(A, g),

so that the pair (1A, g) is orthogonal if and only if Ext(A, g) is zero. Similarly, the morphism of
abelian groups

Ext(1A, 1B) : Ext(A, B) → Ext(A, B)

is the identity map, so that the pair (1A, 1B) of morphisms is orthogonal if and only if
Ext(A, B) = 0.

The bifunctor Ext is half-exact in each variable. We will use a very special case of this
property, which we verify for completeness.

Lemma 8. If B
j

→ C
q
→ E is a conflation with E an injective object, then for every A ∈ A, the

morphism of abelian groups

Ext(A, j) : Ext(A, B) → Ext(A,C)

is onto.

Proof. The statement of the lemma asserts that every conflation η : C → Z → A arises as a
pushout of along j : B → C . Let us explain how the given information yields a commutative
diagram

γ : B i ′ ✲ Z ′ ✲ A

❄

j

❄

j ′

η : C i ✲ Z ✲ A

❄

q

❄

p

E E,

all of whose rows and columns are conflations. The morphism p : Z → E exists, because E is
an injective object; it is a deflation, because q = pi is. It induces the conflation in the middle
column, and the morphism i : C → Z induces the morphism i ′ : B → Z ′ on kernels. Now
j ′i ′ = i j is a composition of inflations and therefore itself an inflation. This i ′ : B → Z ′ is an
inflation that induces the conflation γ in the top row. The equality E = E in the bottom row
implies that the commutative square in the top left is a pushout/pullback diagram, and that yields
the equality A = A in the right column. The conflation η is thus attained as the pushout of the
conflation γ along the morphism j : B → C. �

Suppose that a morphism of conflations is given, as in the commutative diagram
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B j ✲ C ✲ A

❄

g

❄

k

❄

f

Y h ✲ Z ✲ X.

Then the morphism k : C → Z is called an extension of g by A.

Proposition 9. If M is a collection of morphisms in A, then

M⊥
:= {g : Ext(m, g) = 0 for all m ∈ M}

is an ideal closed under extension by injective objects.

Proof. Let η : B → C → A be a conflation, and suppose that f : X → A belongs to M. If g1,
g2 : B → Y belong to M⊥, then Proposition 3 implies

Ext( f, g1 + g2) = Ext(X, g1 + g2)Ext( f, B) = [Ext(X, g1)+ Ext(X, g2)]Ext( f, B)

= Ext(X, g1)Ext( f, B)+ Ext(X, g2)Ext( f, B)

= Ext( f, g1)+ Ext( f, g2) = 0.

If h : Y → N is a morphism in A, another application of Proposition 3 yields

Ext( f, hg1) = Ext(X, hg1)Ext( f, B) = Ext(X, h)Ext(X, g1)Ext( f, B)

= Ext(X, h)Ext( f, g1) = 0.

Similarly, if k : M → B, then Proposition 3 implies that Ext( f, g1k) = Ext( f, g1)Ext(A, k) =

0.
Finally let us consult the diagram above, and prove that if g belongs to M⊥, and A is an

injective object, then so does k. The foregoing implies that the composition hg = k j also belongs
to M⊥. If m : W → G belongs to M, then Proposition 3 implies that Ext(m, k)Ext(G, j) =

Ext(m, k j) = 0. By the previous lemma, Ext(G, j) is onto, so that Ext(m, k) = 0. �

The dual of Proposition 9 implies that if M is a collection of morphisms in A, then

⊥M := { f : Ext( f,m) = 0 for all m ∈ M}

is an ideal in A. A pair of ideals (I,J ) is orthogonal if every pair ( f, g) of morphisms, f ∈ I
and g ∈ J , is orthogonal.

Example 10. Let F be a subfunctor of Ext, then the pair of ideals (Φ(F),F -inj) is orthogonal.
If i is an F -phantom and j an F -injective morphism, then Ext(i, j) acts on any conflation η by
pullback along i , which yields an F -conflation, followed by pushout along j , which is necessarily
trivial. Thus Ext(i, j) = 0.

In particular, suppose that I is an ideal of A and F = PB(I). Then F -inj = I ⊥, because a
morphism j is PB(I)-injective if and only if Ext(i, j) = 0 for every i ∈ I if and only if j ∈ I ⊥.

Given an ideal I ⊆ A, the following proposition uses the exact structure E on A to provide a
criterion for a morphism i : C → A in I to be an I -precover of A.
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Proposition 11. Let I be an ideal of A and consider the pushout

η′
: Y ✲ Z ✲ A

j

❄ ❄
η : B ✲ C i ✲ A

of a conflation η′ along a morphism j : Y → B in I ⊥. If i : C → A belongs to I , then it is an
I -precover of A.

Proof. The pushout of η′ along j is the conflation η = Ext(A, j)(η′). If i ′ : C ′
→ A is a

morphism in I , the pullback of η along i ′ is

Ext(i ′, B)(η) = Ext(i ′, B)Ext(A, j)(η′) = Ext(i ′, j)(η′) = 0,

by hypothesis. Whence the factorization

C ′♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

i ′

B ✲ C i ✲ A. �

An I -precover i : C → A that arises from a pushout along a morphism j ∈ I ⊥ as in
Proposition 11 was defined in the introduction to be a special I -precover. Recall that if every
object A ∈ A has a special I -precover, then the ideal I is special precovering.

Definition 12. An orthogonal pair (I,J ) of ideals is an ideal cotorsion pair in (A; E) if I =
⊥J

and J = I ⊥.

Theorem 13. If I is a special precovering ideal of A, then the orthogonal pair of ideals (I, I ⊥)

is an ideal cotorsion pair.

Proof. It must shown that I =
⊥
[I ⊥

]. It is clear that I ⊆
⊥
[I ⊥

], so suppose that i ′ : C ′
→ A

belongs to ⊥
[I ⊥

]. By hypothesis, there is a special I -precover of A, which occurs as the deflation
of a conflation

η : B ✲ C i ✲ A

obtained by pushout along a morphism j : Y → B in I ⊥: η = Ext(A, j)(η′) for some
conflation η′. Since i ′ ∈

⊥
[I ⊥

], the pullback of η along i ′ : C ′
→ A is found to be

Ext(i ′, B)(η) = Ext(i ′, B)Ext(A, j)(η′) = Ext(i ′, j)(η′) = 0. As in the proof of the previous
proposition, one obtains a factorization
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C ′

�
�

�
��✠

g

❄

i ′

η : B ✲ C i ✲ A,

which implies that i ′ = ig ∈ I. �

Corollary 14. If I is a special precovering ideal, then I = Φ(PB(I)) is the ideal of PB(I)-
phantom morphisms.

Proof. By definition of PB(I), every morphism in I is a PB(I)-phantom morphism, so suppose
that i is a PB(I)-phantom. In other words, every pullback of a conflation along i is a PB(I)-
conflation. If j ∈ I ⊥, then j is PB(I)-injective, so that Ext(i, j) = 0. Thus i ∈

⊥
[I ⊥

] = I , by
the theorem. �

If J is an ideal of A, then the notion of a special J -preenvelope is defined as the dual of a
special precover; a special preenveloping ideal as the dual of a special precovering ideal.

Recall from the Introduction what it means for an additive subfunctor F ⊆ Ext to have enough
(special) injective morphisms.

Proposition 15. Let F ⊆ Ext be an additive subfunctor with enough injective morphisms. Then
Φ(F) =

⊥(F -inj).

Proof. By Example 10, Φ(F) ⊆
⊥(F -inj). To show the converse inclusion ⊥(F -inj) ⊆ Φ(F),

suppose that f : X → A belongs to ⊥(F -inj). It must be shown that the pullback of any
conflation η : B → C → A along f is an F -conflation.

By hypothesis, there is an F -injective F -inflation e : B → Y that gives rise to the following
commutative square of conflations

η′
: B i ✲ Z ✲ X
�

�
�✠

e �
�

�✠ �
�

�

�
�

�

γ : Y ✲ Z ′ ✲

❄

X

❄

f

η : B

❄

✲ C

❄

f
✲ A

�
�

�✠
e

�
�

�✠ �
�

�

�
�

�

Y ✲ C ′ ✲ A.

Since Ext( f, e) = 0, the conflation γ is trivial. Thus the F -inflation e factors as e = gi , for some
g : Z → Y . By Lemma 5, the morphism i is an F -inflation and η′ an F -conflation. �

This proposition implies that if an additive subfunctor F ⊆ Ext has enough special injective
morphisms, then the ideal F -inj of F -injective morphisms is a special preenveloping ideal.
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3. The proof of Theorem 1

Let us first dispense with the easy implication (3) ⇒ (4) of Theorem 1; this implication does
not use any of the additional hypotheses on the exact category (A; E). Recall from Example 10
that I ⊥ is the ideal of PB(I)-injective morphisms. If the ideal cotorsion pair (I, I ⊥) is complete,
then I ⊥ is a special preenveloping ideal. Because I =

⊥
[I ⊥

], this implies that PB(I) has enough
special injective morphisms. That (I, I ⊥) is complete also implies that I is a special precovering
ideal, so that Corollary 14 implies that I = Φ(PB(I)).
Proof of (1) ⇒ (2). An additive subfunctor F ⊆ Ext is given. The ambient exact category (A; E)
has enough projective morphisms and there exist enough F -injective morphisms.

Lemma 16. Let A ∈ A and consider a conflation γ : K → P
p

→ A where p : P → A is
a projective morphism. A morphism ϕ : X → A is an F -phantom morphism if and only if the
pullback of γ along ϕ is an F -conflation.

Proof. Let η : B → C → A be a conflation. Because the morphism p : P → A is projective, it
induces a morphism of conflations

γ : K ✲ P p ✲ A

❄

g

❄
η : B ✲ C ✲ A.

The conflation η is the pushout of γ along the morphism g : K → B, η = Ext(A, g)(γ ). This
morphism of conflations is part of a commutative diagram of conflations given by

γ ′
: K i ✲ Z ✲ X
�

�
�✠

g �
�

�✠ �
�

�

�
�

�

η′
: B ✲ Z ′ ✲

❄

X

❄

ϕ

γ : K

❄

✲ P

❄

ϕ
✲ A

�
�

�✠
g

�
�

�✠ �
�

�

�
�

�

η : B ✲ C ✲ A.

By hypothesis, the pullback γ ′ of the conflation γ along ϕ : X → A is an F -conflation.
Consulting the diagram, or Proposition 3, one concludes that the pullback η′ of η along ϕ may
be represented as

η′
= Ext(ϕ, B)(η) = Ext(ϕ, B)Ext(A, g)(γ )

= Ext(X, g)Ext(ϕ, K )(γ ) = Ext(X, g)(γ ′),

the pushout along g of the F -conflation γ ′. It is therefore itself an F -conflation. �
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The following theorem yields the implication (1) ⇒ (2) of Theorem 1, but also gives
additional information that is useful when treating examples.

Theorem 17. Let (A; E) be an exact structure with enough projective morphisms, and suppose
that F ⊆ Ext is a subfunctor with enough injective morphisms. Given an object A, consider a

conflation γ : K → P
p

→ A, where p : P → A is a projective deflation, and take the pushout

γ : K ✲ P p ✲ A

❄

e

❄

C ✲ X ϕ ✲ A

along a morphism e : K → C that is an F -injective F -inflation. The morphism ϕ : X → A is
then a special F -phantom precover of A.

Proof. It suffices, by the lemma, to prove that the pullback of γ along ϕ : X → A is an F -
conflation. For then the morphism ϕ : X → A is an F -phantom morphism obtained by pushout
along a morphism e ∈ Φ(F)⊥. Compose this pullback with the morphism of conflations given
in the statement of the theorem to obtain

γ ′
: K i ✲ Z ✲ X

❄ ❄

ϕ

γ : K ✲ P p ✲ A

❄

e

❄

C ✲ X ϕ ✲ A.

This composition is clearly homotopic to 0,

γ ′
: K i ✲ Z ✲ X

❄

e

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

�
�

�
��✠

1X

❄

ϕ

C ✲ X ϕ ✲ A.

The dotted arrow is given by a morphism g : Z → C that satisfies e = gi . Because e : K → C
is an F -inflation, Lemma 5 implies that i : K → Z is an F -inflation, and therefore that γ ′ is an
F -conflation. �
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Proof of (2) ⇒ (3). For the proof of this implication, the hypothesis that the ambient exact
category (A; E) has enough injective objects is used. A special precovering ideal I is given, and
the task is to prove that the orthogonal ideal I ⊥ is special preenveloping.

Theorem 18 (Salce’s Lemma). Let (A; E) be an exact category with enough injective objects
and suppose that I is a special precovering ideal of A. Given an object A ∈ A, consider a
conflation η : A

e
→ E → X, where E is an injective object, and take the pullback

η′
: A a ✲ J ✲ I

❄ ❄

i

η : A e ✲ E ✲ X

along a special I -precover i : I → X. The morphism a : A → J is then a special I ⊥-
preenvelope of A. Consequently, the orthogonal ideal I ⊥ is a special preenveloping ideal.

Proof. As i ∈ I ⊆
⊥
[I ⊥

], the dual of Proposition 11 implies that it is enough to prove a ∈ I ⊥.
Then a : A → J is a special I ⊥-preenvelope of A. The special I -precover i : I → X arises
from a pushout along a morphism g : Y → W in I ⊥ as in the commutative diagram

Y
�

�
�✠

g

W W

❄

❄ ❄

Z
�

�
�✠

h

η′
: A a ✲ J ✲ I

❄

ih

B

❄

✲ E

❄

i
✲ X

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

η : A e ✲ E ✲ X.

The pullback of η along ih is also the pullback along h of the conflation η′
: A

a
→ J → I . Thus

we obtain the commutative diagram
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Y Y
�

�
�✠

g �
�

�✠

g

W

❄

W

❄

A f ✲

❄

Z ′

❄

✲ Z

�
�

�

�
�

� �
�

�✠
k

�
�

�✠
h

η′
: A a ✲ J ✲

❄

I

❄

ih

A

❄

✲ E

❄

i
✲ X

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

η : A e ✲ E ✲ X

in which every row and column is a conflation. Since g ∈ I ⊥, and k : Z ′
→ J is an extension

of g by the injective object E , Proposition 9 implies that k ∈ I ⊥ and therefore that a = k f
∈ I ⊥. �

Because the implication (4) ⇒ (1) is trivial, this marks the end of the proof of Theorem 1.
The next observation is a direct consequence of Condition (4) of Theorem 1.

Corollary 19. Let (A; E) be an exact category with enough injective objects and projective
morphisms. The rule I → PB(I) is a bijective correspondence between special precovering
ideals of (A; E) and subfunctors F ⊆ Ext that have enough special injective morphisms. The
inverse rule is given by F → Φ(F).

Let us inspect the details of the proof of Salce’s Lemma more closely and glean some
observations.

Corollary 20. Suppose that the exact category (A; E) has enough injective objects and
projective morphisms. If the additive subfunctor F ⊆ Ext has enough injective morphisms, then
the ideal cotorsion pair cogenerated by F -inj is complete.

Proof. By Proposition 15, the ideal ⊥(F -inj) is the ideal Φ = Φ(F) of F -phantom morphisms.
By Theorem 17, this ideal Φ is special precovering. By Theorem 18, the ideal cotorsion pair
(Φ,Φ⊥) is complete. �

Corollary 21. Suppose that the exact category (A; E) has enough injective objects and
projective morphisms, and that the additive subfunctor F ⊆ Ext has enough injective morphisms.
If Φ = Φ(F) is the ideal of F -phantom morphisms, then the ideal Φ⊥ of PB(Φ)-injective
morphisms is the least ideal of A containing F -inj and closed under extension by injective
objects.

Proof. Let J be an ideal of A that contains the ideal F -inj and is closed under extensions by
injective objects. Toward a proof of Φ⊥

⊆ J , let b′
: B → J ′ be a morphism in Φ⊥ and
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consider the last commutative diagram in the proof of Theorem 18. By Theorem 17, we may
take the morphism g : Y → W to belong to the ideal F -inj ⊆ J . Because J is closed under
extensions by injective objects, and the object E in the commutative diagram is injective, the
morphism k : Z ′

→ J also belongs to J . Thus the Φ⊥-preenvelope b = k f : B → J also
belongs to the ideal J . Because b is a Φ⊥-preenvelope of B, the morphism b′

: B → J ′ factors
through b, and so belongs to J . �

The next proposition describes the precise relationship between the additive subfunctors

PB(Φ) ⊆ F ⊆ Ext.

Proposition 22. Suppose, as above, that the exact category (A; E) has enough injective objects
and projective morphisms, and that the additive subfunctor F ⊆ Ext has enough injective
objects. The additive subfunctor PB(Φ) ⊆ Ext is the maximum additive subfunctor of F with
enough special injective morphisms.

Proof. Let F ′
⊆ F be an additive subfunctor with enough special injective morphisms. Our task

is to prove that every F ′-conflation η : B → C → A is a PB(Φ)-conflation, i.e., η is obtained as
the pullback of some conflation along a morphism in Φ.

Let e : B → Z be a special F ′-injective F ′-inflation. The injective property of e induces a
morphism

η : B ✲ C ✲ A

❄ ❄

f

γ : B e ✲ Z ✲ X,

of F ′-conflations. In addition, e is special, so that the F ′-conflation γ arises as the pullback along
a morphism i : X → A′ in ⊥(F ′-inj),

γ : B e ✲ Z ✲ X,

❄ ❄

i

η′
: B ✲ C ′ ✲ A′.

Composing these morphisms of conflations shows that η arises as the pullback along i f of the
conflation η′. By Proposition 15, ⊥(F ′-inj) = Φ(F ′) ⊆ Φ(F) = Φ. Since i ∈ Φ so does i f. �

This proposition allows us to characterize the situation when F = PB(Φ) in Theorem 1.

Corollary 23. Let (A; E) be an exact category with enough injective objects and projective
morphisms and suppose that F ⊆ Ext is a subfunctor with enough injective morphisms. If
Φ = Φ(F), then the following conditions are equivalent:
(1) the subfunctor F ⊆ Ext has enough special injective morphisms;
(2) F = PB(Φ); and
(3) Φ⊥

= F -inj.
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Proof. Proposition 22 yields (1) ⇒ (2). The implication (2) ⇒ (3) was verified in Example 10.
The implication (3) ⇒ (1) follows from Condition (3) of Theorem 1, which implies that F ⊥ is
special preenveloping. �

4. Object-orthogonal ideals

An ideal I of (A; E) is called object-orthogonal if the orthogonal ideal I ⊥ is an object ideal.
This section is devoted to a proof of Theorem 2, which is a version of Theorem 1 for the case
when the ideal I is object-orthogonal. The strategy is to first prove the implication (1) ⇒ (2), and
then establish the equivalence of (2), (3), and (4). Because the implication (4) ⇒ (1) is trivial,
this will complete the proof of Theorem 2.

The following theorem is the object version of Theorem 17. It yields the implication (1) ⇒

(2) of Theorem 2.

Theorem 24. Let F ⊆ Ext be an additive subfunctor. If (A; E) has enough projective morphisms
and there exist enough F -injective objects, then for every object A of A there is an F -phantom
morphism ϕ : X → A that occurs as part of a conflation

E ✲ X ϕ ✲ A,

where E is an F -injective object.

Proof. This proof is the same as that of Theorem 17. In this case, we may take the F -inflation
e : K → C with C an F -injective object. Now let E = C to obtain the statement of the
theorem. �

To see that the implication (4) ⇒ (3) of Theorem 2 holds, recall from Example 10 that I ⊥ is
the ideal of PB(I)-injective morphisms. The hypothesis that there exist enough PB(I)-injective
objects implies that every object A ∈ A admits a PB(I)-inflation eA : A → E(A) with E(A) a
PB(I)-injective object. It follows that any morphism e : A → B in I ⊥ factors through the object
E(A), and that I ⊥ is an object ideal.

The next proposition yields a proof of (3) ⇒ (2). Call a morphism i : C → A in I an
object-special I -precover of A, if it is the deflation of a conflation

η : B ✲ C i ✲ A,

where B ∈ I ⊥. An object-special I -precover is obviously a special I -precover, because η is the
pushout of itself by the identity morphism 1B ∈ I ⊥.

Proposition 25. If a special precovering ideal I of (A; E) is object-orthogonal, then every
object A ∈ A has an object-special I -precover.

Proof. Suppose that the ideal I is an object-orthogonal special precovering ideal. Every A ∈ A
has a special I -precover i ′ : C ′

→ A that arises as the pushout,
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η′
: Y ✲ Z ✲ A

g

❄ ❄

B ′ ✲ C ′ i ′ ✲ A,

of a conflation η′, along a morphism g : Y → B ′ in I ⊥. By hypothesis, the ideal I ⊥ is
an object ideal, so that the morphism g : Y → B ′ factors through an object B ∈ I ⊥ as
g = g1g0 : Y → B → B ′. The pushout of η′ along g then factors as a composition of pushouts

η′
: Y ✲ Z ✲ A

g0

❄ ❄
η : B ✲ C i ✲ A

g1

❄ ❄

k

B ′ ✲ C ′ i ′ ✲ A.

The pushout of η′ along g0 is a conflation η whose deflation i = i ′k : C → A belongs to I . The
morphism i : C → A is therefore an object-special I -precover of A. �

All that remains is to verify (2) ⇒ (4). We shall need to cite the following special case of
Proposition 9.

Lemma 26. If I is an ideal of (A; E), then the subcategory Ob(I ⊥) is closed under extension
by injective objects. This means that if there exists a conflation

B ✲ C e ✲ E

with B ∈ I ⊥ and E is an injective object, then C ∈ I ⊥.

Proof. The identity morphism 1C is an extension of 1B by the injective object E , so that
Proposition 9 applies. �

Theorem 27. Suppose that the exact category (A; E) has enough injective objects and I is a
special precovering ideal of A. Assume, furthermore, that J ⊆ I ⊥ is an object ideal of A with
the property that every object A ∈ A has an I -precover i : C → A that is the deflation of a
conflation

J ✲ C i ✲ A,

where J belongs to J . Then I is object-orthogonal; the ideal I ⊥ is generated by those objects
Z that appear in some conflation
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J ✲ Z ✲ E,

where J belongs to J and E is an injective object.

Proof. Suppose that B ∈ A is given, and let us show that there exists an I ⊥-preenvelope of B
of the form Z as prescribed. There is a conflation η : B → E → A, with E an injective object.
Consider the pullback of η along the morphism i : C → A given by the hypotheses,

J J

❄ ❄

η′
: B b ✲ Z ✲ C

❄ ❄

i

η : B ✲ E ✲ A,

where the object J belongs to J . The lemma implies that Z belongs to I ⊥, and, as in the proof of
Theorem 18, the morphism b : B → Z is a special I ⊥-preenvelope. Because it factors through
an object Z as described in the statement of the theorem, the ideal I ⊥ is generated by such
objects. �

Complete Cotorsion Pairs. Recall from the introduction the definition of a cotorsion pair (F , C).
If (F , C) is a cotorsion pair and F ∈ F , C ∈ C, then Ext(1F , 1C ) = 0, so that the associated pair
(I(F), I(C)) of object ideals is orthogonal. A cotorsion pair (F , C) is special precovering if for
every object A ∈ A, there is a conflation

C ✲ F ✲ A,

with F ∈ F and C ∈ C; a special preenveloping cotorsion pair is defined dually. A cotorsion
pair is complete if it is both special preenveloping and special precovering.

Theorem 28. If (F , C) is a complete cotorsion pair, then the pair (I(F), I(C)) of object ideals
is a complete ideal cotorsion pair.

Proof. All that needs to be shown is that I(C) = I(F)⊥ and I(F) =
⊥I(C). For then the

definition of a complete cotorsion pair implies that every object in A has an object-special I(C)-
preenvelope and an object-special I(F)-precover. Let us at least verify the equality ⊥(I(C)) =

I(F); the dual is proved similarly.
Suppose that f : X → A belongs to ⊥(I(C)). By hypothesis, there is a conflation

C → F
i

→ A such that F ∈ F and C ∈ C. Since Ext( f,C) = 0, the morphism f lifts to F
as in the diagram
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X♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

f

C ✲ F i ✲ A.

Thus f factors through F and so belongs to I(F). �

Question 29. Suppose that (I,J ) is a complete ideal cotorsion pair such that both of the ideals
I and J are object ideals. Is the cotorsion pair (Ob(I),Ob(J )) complete?

5. Introduction to examples

The next three sections of the paper are devoted to three examples: pure phantom
morphisms of modules over an associative ring, semisplit phantom morphisms of complexes, and
Auslander–Reiten phantoms in the category Λ-mod of finitely presented representations of an
Artin algebra Λ. In all three cases, the ambient exact structure (A; E) is an abelian category with
enough projective objects and injective objects. In the first two cases the associated subfunctor
F ⊆ Ext also has enough injective objects and projective objects, while in the third case,
there exist enough F -injective morphisms and F -projective morphisms. We may therefore apply
Theorem 1 in all three cases, and even Theorem 2 in the first two. Moreover, all three examples
satisfy properties that are dual to the hypotheses of these theorems. We may therefore invoke
the dual theory of cophantom morphisms, which is introduced in this section. The next two
observations are useful when treating examples.

Proposition 30. Let (A; E) be an exact category and suppose that F ⊆ Ext is a subfunctor with
enough projective morphisms. A morphism ϕ : X → A is a phantom morphism if for every
F -projective morphism p : P → X, the composition ϕp : P → X → A is projective.

Proof. The condition is necessary, for if ϕ : X → A is a phantom morphism and a conflation

η : B → C
g

→ A is given, then the pullback of η along ϕ is an F -conflation η′. If p : P → X is
an F -projective morphism, then it lifts to the middle term Z of η′ as indicated by the dotted arrow:

P♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

p

η′
: B ✲ Z ✲ X

❄ ❄

ϕ

η : B ✲ C g ✲ A.

Thus ϕp factors through g as needed.
To prove that the condition is sufficient, assume that ϕ satisfies the condition, and let η be

a conflation as above. We must prove that the pullback η′ of η along ϕ is an F -conflation. Let
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p : P → X be an F -projective F -deflation. Since ϕp factors through g : C → A, the hypothesis
on F and the universal property of the pullback Z imply that there is morphism of conflations
given by

γ ′
: K ✲ P p ✲ X

❄

f

♣♣♣♣♣♣♣♣♣♣♣
❄

η′
: B ✲ Z ✲ X.

But then η′ is the pushout of γ ′ along f , and is therefore itself an F -conflation. �

The following criterion is a kind of dual to Lemma 16.

Lemma 31. Suppose that (A; E) has enough injective morphisms and let I be an ideal of A.
Given an object B ∈ A, consider a conflation

ηB : B e ✲ E ✲ Σ ,

where e : B → E is an injective morphism. Then B ∈ I ⊥ if and only if Ext(i, B) = 0 for every
i : X → Σ in I.

Proof. The condition is clearly necessary. To see that it is sufficient, let i ′ : X ′
→ A be an

arbitrary morphism in I , and consider a conflation

X ′♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

i ′

γ : B m ✲ C ✲ A.

We must verify that the morphism i ′ : X ′
→ A factors through C as indicated by the dotted

arrow. Because the morphism e : B → E is injective, it extends to C along m to provide a
morphism of conflations

X ′

❄

i ′

γ : B m ✲ C ✲ A

❄ ❄

s

B e ✲ E ✲ Σ .
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Now i = si ′ : X ′
→ Σ belongs to I , so the condition implies that this morphism factors through

E . The right commutative square is a pullback diagram, which implies that i ′ : X ′
→ A factors

through C as desired. �

Cophantom Morphisms. If (A; E) is an exact category and F ⊆ Ext an additive subfunctor,
then a morphism ψ : Y → B in A is an F -cophantom morphism if the pushout along ψ of
any conflation belongs to the subfunctor F . The ideal of F -cophantom morphisms is denoted
by Ψ = Ψ(F). The main results of this article may be dualized as follows so that they apply to
cophantom morphisms.

Theorem 32. Let (A; E) be an exact category with enough projective objects and injective
morphisms. The following statements regarding an ideal J of A are equivalent:

(1) there is an additive subfunctor F ⊆ Ext with enough projective morphisms and J = Ψ(F);
(2) the ideal J is special preenveloping;
(3) the ideal cotorsion pair (⊥J ,J ) is complete; and
(4) the additive subfunctor PO(J ) ⊆ Ext, whose conflations are obtained by pushout along

morphisms in J , has enough special projective morphisms and J = Ψ(PO(J )).

Theorem 33. Let (A; E) be an exact category with enough projective objects and injective
morphisms. The following statements regarding an ideal J of A are equivalent:

(1) there is an additive subfunctor F ⊆ Ext with enough projective objects and J = Ψ(F);
(2) for every object B ∈ A, there exists a conflation

B j ✲ C ✲ A,

where j : B → C belongs to J and A is an object in ⊥J ;

(3) the ideal J is special preenveloping and ⊥J is an object ideal; and
(4) the additive subfunctor PO(J ) ⊆ Ext has enough special projective objects and J =

Ψ(PO(J )).

Hereditary Ideal Cotorsion Pairs. In this section, we assume that the exact category (A; E) has
enough projective objects: given an object A ∈ A, there is a conflation

Ω(A) ✲ P ✲ A,

where P is a projective object, and Ω(A) is called a syzygy of A. The syzygy of A is not well-
defined, but the functor Extn+1(A,−), defined by recursion as Extn(Ω(A),−) is.

If f : A → B is a morphism in A, a syzygy morphism Ω( f ) : Ω(A) → Ω(B) is induced by
f and yields a morphism of conflations

Ω(A) ✲ P(A) ✲ A

❄

Ω( f )

❄

P( f )

❄

f

Ω(B) ✲ P(B) ✲ B.
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As above, the morphism Ω( f ) is not well-defined, but the natural transformation of functors

Extn+1( f,−) : Extn+1(B,−) → Extn+1(A,−),

given by Extn(Ω( f ),−), is well-defined. Also, if Ω( f ) and Ω ′( f ) : Ω(A) → Ω(B) are syzygy
morphisms induced by f : A → B, they are equivalent modulo the ideal I(E -Proj) of morphisms
that factor through a projective object. So if (I,J ) is an ideal cotorsion pair in (A; E), then I
contains all the projective objects of A, and therefore, the induced syzygy morphisms must also
be equivalent modulo I . In particular, if some syzygy Ω( f ) belongs to the ideal I , then every
syzygy of f does.

The definition of Extn(−,−) is also natural in the left variable, so that a bifunctor

Extn(−,−) : Aop
× A → Ab

arises for all natural numbers n ≥ 1. An ideal cotorsion pair (I,J ) is hereditary if for every
i ∈ I , j ∈ J , Extn(i, j) = 0 for all n ≥ 1.

Proposition 34. If the exact category (A; E) has enough projective objects, then an ideal
cotorsion pair (I,J ) is hereditary if and only if Ω(I) ⊆ I.

Proof. In the same way that we described the case n = 1 in Proposition 3, this bifunctor satisfies
the equation

Extn( f, g) = Extn(Dom( f ), g)Extn( f,Dom(g))

= Extn( f,Codom(g))Extn(Codom( f ), g)

for morphisms f : Dom( f ) → Codom( f ) and g : Dom(g) → Codom(g). Thus

Extn+1( f, g) = Extn+1(Dom( f ), g)Extn+1( f,Dom(g))

= Extn(Ω [Dom( f )], g)Extn(Ω( f ),Dom(g))

= Extn(Dom(Ω( f )), g)Extn(Ω( f ),Dom(g))

= Extn(Ω( f ), g).

To prove the proposition, assume that the ideal cotorsion pair (I,J ) is hereditary. If i ∈ I ,
then for every j ∈ J , Ext(Ω(i), j) = Ext2(i, j) = 0, which implies that Ω(i) ∈

⊥J = I .
Conversely, if Ω(I) ⊆ I , then we proceed, by induction on n, to verify that Extn(i, j) = 0.
If the result holds for n, then for every i ∈ I and j ∈ J , Extn+1(i, j) = Extn(Ω(i), j) = 0,
because Ω(i) ∈ I. �

If the exact category (A; E) has enough injective objects, the preceding considerations may
be dualized to define a cosyzygy Σ (B) of an object B ∈ A and cosyzygy Σ ( f ) of a morphism
f : A → B. Higher Ext functors may then be defined using cosyzygies: if B ∈ A, let

Extn+1(−, B) = Extn(−,Σ (B)).

This definition is natural in both variables, and so gives rise to a bifunctor Extn(−,−) :

Aop
× A → Ab, for every n ≥ 1. As above, an ideal cotorsion pair (I,J ) may be defined

to be hereditary if for every i ∈ I , j ∈ J , Extn(i, j) = 0 for all n ≥ 1, and a proposition dual
to Proposition 34 holds. The material fact here (see, for example [21, Theorem 6.9]) is that if the
exact category (A; E) has enough projective objects and enough injective objects, then these two
definitions of Ext coincide, and there is no ambiguity regarding the definition of a hereditary ideal
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cotorsion pair (I,J ). In the sequel, we shall need the following criterion for an ideal cotorsion
pair to be hereditary.

Proposition 35. Suppose that (A; E) is an exact category with enough projective objects and
enough injective objects. If M is an ideal of A such that Ω(M) ⊆ M, then the ideal cotorsion
theory (⊥(M⊥),M⊥) generated by M is hereditary.

Proof. By the dual of Proposition 34, it suffices to verify that Σ (M⊥) ⊆ M⊥. But if g ∈ M⊥,
then for every m ∈ M, Ext(m,Σ (g)) = Ext2(m, g) = Ext(Ω(m), g) = 0. �

6. Pure phantom morphisms

Let R be an associative ring with identity. The ambient exact category (A; E) =

(R-Mod,ExtR) is the abelian category R-Mod of left R-modules. It is a classical result that
the abelian category (R-Mod; ExtR) has enough injective objects and enough projective objects.
A short exact sequence 0 → B → C → A → 0 is pure-exact if for every finitely presented left
R-module M and morphism f : M → A, there is a lifting, indicated by the dotted arrow, that
makes the diagram

M♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

f

0 ✲ B ✲ C ✲ A ✲ 0

commutative. The rule that associates to a pair of objects (A, B) the subgroup Pext(A, B) ⊆

Ext(A, B) of pure-exact sequences as above constitutes a subfunctor F ⊆ Ext. The Pext-injective
objects are called pure-injective modules; the Pext-projective objects pure-projective modules. It
is well-known [30] that there exist enough pure injective and pure projective objects in the sense
of the present theory. Therefore, Theorems 2 and 33 both apply.

A Pext-phantom morphism is called a pure phantom morphism. A left R-module M is pure
projective if and only if it is a direct summand of a direct sum (perhaps infinite) of finitely
presented modules. It follows from Proposition 30, that a morphism ϕ : X → A of left R-
modules is a pure phantom morphism provided that for every finitely presented module M and
morphism p : M → X , the composition ϕp : M → X → A factors through a projective module.
For the representations of a finite group ring k[G], this is the definition of a phantom morphism
given by Benson and Gnacadja [6]. Condition (4) of the next proposition is the definition of a
phantom morphism given in [19].

Proposition 36. The following are equivalent for a morphism ϕ : X → A of left R-modules:

(1) ϕ is a pure phantom morphism;
(2) the morphism ϕ is a direct limit of morphisms pi : X i → A, each of which factors through a

projective module Pi ;

(3) for every n ≥ 1 and right R-module Z, Torn(Z , ϕ) = 0; and
(4) Tor1(Z , ϕ) = 0, for every right R-module Z .
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Proof. (1) ⇒ (2). Every module X = lim
→

X i is a direct limit of finitely presented modules. If

the structural morphisms of this limit are denoted by xi : X i → X , then ϕ = lim
→

ϕxi is the

colimit of the projective morphisms pi = ϕxi .
(2) ⇒ (3). For every n ≥ 1, the functor Torn(Z ,−) commutes with direct limits. Since
Torn(Z , pi ) = 0, it follows that Torn(Z , ϕ) = 0.
(4) ⇒ (1). Let η : 0 → K → P → A → 0 be a short exact sequence of left R-modules, with P
projective. By Proposition 30, it suffices to verify that the pullback

η′
: 0 ✲ K i ✲ Q ✲ X ✲ 0

❄

f

❄

ϕ

η : 0 ✲ K ✲ P g ✲ A ✲ 0

of η along ϕ is a pure exact sequence. Let us verify that the morphism i : K → Q is a pure
monomorphism. If Z is a right R-module, then this morphism of short exact sequences gives rise
to a morphism of long exact sequences, part of which is given by

Tor1(Z , X) ∆ ✲ Z ⊗R K Z ⊗ i ✲ Z ⊗R Q

❄

Tor1(Z , ϕ)

❄

Z ⊗ f

Tor1(Z , A) ✲ Z ⊗R K ✲ Z ⊗R P.

Because Tor1(Z , ϕ) = 0, it follows that ∆ = 0, and therefore, that Z ⊗ i is a monomorphism of
abelian groups. �

A Pext-cophantom morphism is called a pure cophantom morphism. These are the morphisms
ψ such that Ext1R(M, ψ) = 0 for every pure projective (resp., finitely presented) left R-module
M . The pure cophantom left R-modules are therefore the FP-injective modules. By the dual of
Proposition 30, a morphism ψ : B → Y is a pure cophantom morphism if and only if the

composition B
ψ
→ Y → PE(Y ) with the pure injective envelope of Y factors through an injective

left R-module.

Proposition 37. Let Φ (resp., Ψ ) denote the ideal in R-Mod of pure phantom (resp., pure
cophantom) morphisms. The ideal cotorsion pair (Φ,Φ⊥) in R-Mod is hereditary; if R is left
coherent, then so is the ideal cotorsion pair (⊥Ψ ,Ψ).

Proof. The ideal cotorsion pair (Φ,Φ⊥) is cogenerated by the pure injective left R-modules.
By Lemma 3.2.10 of [17], the cosyzygy of a pure injective module is itself pure injective. By
the dual of Proposition 35, the ideal cotorsion pair (Φ,Φ⊥) is hereditary. Similarly, the ideal
cotorsion pair (⊥Ψ ,Ψ) is generated by the pure projective left R-modules. If R is left coherent,
then the syzygy of a pure projective left R-module is itself pure projective, so that Proposition 35
implies that the ideal cotorsion pair (⊥Ψ ,Ψ) is hereditary. �
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Tor-Orthogonal Ideal Pairs. The ideal cotorsion pair (Φ,Φ⊥) is a special case of the morphism
version of a standard construction [17, Lemma 2.2.3] by which cotorsion pairs in the category
R-Mod are constructed. To state the morphism version of this lemma, recall the definition of the
character module of a right R-module AR . It is the left R-module of Z-morphisms

R(A
c) := HomZ(A,Q/Z),

where Q/Z is the minimal injective cogenerator in the category of Z-modules. If χ : A → Q/Z
is a character on A, then the action of r ∈ R is given by (rχ)(a) := χ(ar). If f : AR → BR is a
morphism of right R-modules, then f c

: Bc
→ Ac denotes the induced morphism of character

modules, so that the rule A → Ac defines an exact contravariant functor (−)c : Mod-R →

R-Mod, which induces an isomorphism of abelian groups

(A ⊗R X)c = HomZ(A ⊗R X,Q/Z) ∼= HomR(X, Ac)

for every right R-module A and left R-module X , natural in both variables. This isomorphism
induces an isomorphism

Tor(A, X)c ∼= Ext1R(X, Ac)

of the higher derived functors, also natural in both variables. Naturality implies that if f : AR →

BR is a morphism of right R-modules and g : R X → RY is a morphism of left R-modules, then
the morphism

Tor( f, g) : Tor(A, X) → Tor(B, Y )

of abelian groups is zero if and only if the morphism Ext(g, f c) : Ext(Y, Bc) → Ext(X, Ac) is
zero.

An ideal Tor pair (M,N ) is a pair of ideals M ⊆ Mod-R and N ⊆ R-Mod such that
(1) f ∈ M if and only if Tor( f, g) = 0 for every g ∈ N ; and (2) g ∈ N if and only
Tor( f, g) = 0 for every f ∈ M.

Proposition 38 (Cf. [17, Lemma 2.2.3]). If (M,N ) is an ideal Tor pair, then N =
⊥(Mc),

where Mc denotes the collection of morphisms f c, where f ∈ M. Consequently, (N ,N ⊥) is
an ideal cotorsion pair in R-Mod.

Proof. A morphism g belongs to N iff for every f ∈ M, Tor( f, g) = 0 iff Ext(g, f c) = 0 iff
g ∈

⊥Mc. �

Clearly, the pair (Mod-R,Φ) is an ideal Tor pair. The proposition implies that Φ =
⊥
[(Mod-R)c]. Now every character module is pure injective, and every pure injective right R-

module is a direct summand of a character module (just apply the character construction twice).
The ideal in R-Mod of morphisms generated by (Mod-R)c is therefore the ideal of morphisms
that factor through a pure injective left R-module.
Phantomless Rings. A left R-module F is an object of the ideal Φ of pure phantom morphisms
if and only Tor1(−, 1F ) = Tor1(−, F) = 0. The subcategory Ob(Φ) of objects in Φ is therefore
the subcategory R-Flat of flat left R-modules. The ring R is said to be left phantomless if
Φ = I(R-Flat), that is, if every pure phantom morphism factors through a flat module.

While the ideal cotorsion pair (Φ,Φ⊥) is cogenerated by the ideal I(R-Pinj) of morphisms
that factor through a pure injective module, the cotorsion pair cogenerated by the subcategory
R-Pinj of pure injective left R-modules is given by (R-Flat, R-Flat⊥). The modules in R-Flat⊥
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are called cotorsion modules and the notation R-Cotor = R-Flat⊥ is used. By [8], the cotorsion
pair (R-Flat, R-Cotor) is complete, so that Theorem 28 implies that the ideal cotorsion pair
(I(R-Flat), I(R-Cotor)) is itself complete. These considerations imply that a ring R is left
phantomless if and only if the equality

(Φ,Φ⊥) = (I(R-Flat), I(R-Cotor))

of ideal cotorsion pairs holds.
In general, every pure injective module is cotorsion, and the subcategory R-Cotor ⊆ R-Mod

is closed under extensions. By Theorem 27, we obtain the inclusions

I(R-Pinj) ⊆ Φ⊥
⊆ I(R-Cotor)

of ideals.

Example 39. [31] The ring R is left Xu if every left cotorsion R-module is pure injective, that
is, if all the above inclusions are equalities. Such a ring is certainly left phantomless.

The ring R is left perfect if R-Cotor = R-Mod; it is left pure semisimple if it satisfies the
stronger equality R-Pinj = R-Mod. If R is left pure semisimple, then the inclusions above are
clearly equalities, and so R is necessarily a left Xu ring.

Proposition 40. A left perfect ring R is left Xu if and only if it is left pure semisimple.

Proof. If R is a left perfect, left Xu ring, then I(R-Pinj) = I(R-Cotor) = I(R-Mod), so that R
is left pure semisimple. �

The ring R is Quasi-Frobenius (QF) if it is left Artinian, and R, considered as a left module
over itself, is injective. This is a left–right symmetric condition and implies that R is left perfect.
By Theorem 27, the object ideal Φ⊥ is generated by modules Z that arise as extensions

0 ✲ M ✲ Z ✲ E ✲ 0,

where M is pure injective and E is injective. If R is QF, then E is also projective, so that the
short exact sequence is split exact and Z = M ⊕ E is itself pure injective. Whence the following.

Proposition 41. If R is a QF ring, then Φ⊥
= I(R-Pinj). If R is, furthermore, left phantomless,

then it is of finite representation type.

Proof. If R is left phantomless, then I(R-Cotor) = Φ⊥
= I(R-Pinj), and so R is left

Xu. Because R is also left perfect, Proposition 40 implies that R is left pure semisimple. By
[18, Corollary 5.3], every left pure semisimple QF ring is of finite representation type. �

A ring R is left semi-hereditary if every finitely generated submodule of a projective left R-
module is itself projective. Equivalently, the ring R is left coherent and of global flat dimension
at most 1.

Proposition 42. Every left semi-hereditary ring is left phantomless.

Proof. Let us verify that the flat cover of a left R-module M is its phantom cover. To do so, it
suffices to show that the kernel C of the flat cover



780 X.H. Fu et al. / Advances in Mathematics 244 (2013) 750–790

0 ✲ C ✲FC(M) ϕ✲ M ✲ 0

is pure injective. Because R is of global flat dimension at most 1, the module C is itself a flat
module. The kernel C of the flat cover of M is a cotorsion module. Over a left coherent ring,
every flat cotorsion module is pure injective. �

If R is a left Artinian, left hereditary ring, then it is left phantomless. On the other hand, the
left Artinian property implies that R is left perfect, so that Proposition 40 implies that R is left Xu
if and only if it is left pure semisimple. In this way, one finds many examples of left phantomless
rings that are not left Xu.

7. Semisplit phantom morphisms

Let (A; E) be the abelian category Ch(R-Mod) of complexes of left R-modules. The object
M∗ of Ch(R-Mod) is depicted as

· · · ✲R M0 d0
✲R M1 d1

✲ · · · ✲R Mn dn
✲R Mn+1 dn+1

✲ · · · ,

where R Mn is a left R-module for every n ∈ Z, and the boundary morphisms dn : Mn
→ Mn+1

are R-linear morphisms that satisfy dn+1dn
= 0. For n ∈ Z, the rule Degn : M∗

→ Mn

that assigns to the complex M∗ its component of degree n defines an exact functor Degn :

Ch(R-Mod) → R-Mod. In the other direction, the functor Dn
: R-Mod → Ch(R-Mod)

associates to a module M ∈ R-Mod the complex Dn(M), whose objects are 0 in all degrees
except n and n + 1, and dn = 1M : M → M . This complex is depicted as

· · · ✲ 0 0 ✲ M 1M ✲ M 0 ✲ 0 ✲ · · · .

It is readily verified that Dn is the left adjoint of Degn i.e., for every left R-module M and
complex X∗, there is an isomorphism

HomCh(D
n(M), X∗) ∼= HomR(M, Xn), (1)

natural in both M and X∗. If P ∈ R-Mod is a projective module, then it follows from the
exactness of Degn that Dn(P) is a projective object of Ch(R-Mod). Given a complex X∗, we may
find for every Xn , n ∈ Z, an epimorphism pn

: Pn
→ Xn in R-Mod from a projective module.

Let πn
: Dn(Pn) → X∗ be the corresponding morphism of complexes given by the isomorphism

(1). The coproduct ⊕n π
n

: ⊕n Dn(Pn) → X∗ is then an epimorphism in Ch(R-Mod) with a
projective domain. The abelian category Ch(R-Mod) therefore has enough projective objects.

The functor Dn−1
: R-Mod → Ch(R-Mod) is the right adjoint of Degn , and the exactness of

Degn may be used similarly to prove that if E ∈ R-Mod is an injective left R-module, then the
complex Dn−1(E) is an injective object in the category Ch(R-Mod). An argument dual to the one
given above then shows that the abelian category Ch(R-Mod) also has enough injective objects.

An exact substructure (Ch(R-Mod); E0) of the abelian category of complexes is given by the
exact category whose conflations are those short exact sequences

η : 0 ✲ X∗ f ∗
✲ Y ∗ g∗

✲ Z∗ ✲ 0
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of complexes such that for every n ∈ Z, the short exact sequence

Degn(η) : 0 ✲ Xn f n
✲ Y n gn

✲ Zn ✲ 0

is split exact; such exact sequences of complexes are called semisplit.
The exact category (Ch(R-Mod); E0) is Frobenius [9, Section 13.4]. This means that: (1) there

exist enough injective objects in (Ch(R-Mod); E0); (2) there exist enough projective objects
in (Ch(R-Mod); E0); and (3) E0-Proj = E0-Inj. The projective/injective objects of this exact
category are the contractible complexes, those of the form ⊕n Dn(An). We will consider the
exact substructure (Ch(R-Mod); E0) as a subfunctor F ⊆ Ext satisfying F -inj = F -proj. To
see that the subfunctor F ⊆ Ext has enough projective objects, let X∗ be a complex of left R-
modules and set M = Xn in the isomorphism (1). Choose the morphism ιn : Dn(Xn) → X∗

of complexes associated to the identity morphism. The coproduct of the morphisms ιn , n ∈ Z,
is then a semisplit epimorphism ⊕n ιn : ⊕n Dn(Xn) → X∗ of complexes with a contractible
domain. A similar argument uses the right adjoint property of Dn−1 to show that the subfunctor
F ⊆ Ext has enough injective objects.

Theorems 2 and 33 imply that the subcategory F -inj = F -proj of contractible complexes
cogenerates (resp., generates) a complete ideal cotorsion pair. A morphism that belongs to
the ideal Φ = Φ(F) of F -phantom morphisms is called a semisplit phantom morphism. By
Proposition 30, a morphism f ∗

: M∗
→ X∗ of complexes is a semisplit phantom if for every

contractible complex C∗ and morphism c∗
: C∗

→ M∗, the composition f ∗c∗ factors through a
projective complex. This implies that each of the morphisms f ncn

: Cn
→ Xn factors through a

projective module.
The complete ideal cotorsion theory cogenerated by the contractible complexes is given by

(Φ,Φ⊥); and the one generated by them by (⊥Ψ ,Ψ). Proposition 35 implies that the ideal
cotorsion pair (Φ,Φ⊥) is hereditary, because the syzygy of a contractible complex C∗ is itself
contractible. Indeed, the complex C∗ is of the form ⊕n Dn(Mn), so if

0 ✲Ω(Mn) ✲ Pn ✲ Mn ✲ 0

is a short exact sequence in R-Mod with Pn a projective module, then one obtains a short exact
sequence of complexes

0 ✲⊕n Dn(Ω(Mn)) ✲⊕n Dn(Pn) ✲ C∗ ✲ 0,

where the middle term is projective and the syzygy of C∗ is given by the contractible complex
⊕n Dn(Ω(Mn)). A similar argument proves that the ideal cotorsion pair (⊥Ψ ,Ψ) is also
hereditary.

Because F -inj is an object ideal, Theorem 27 implies that Φ⊥ is also an object ideal, generated
by those complexes Z∗ that appear in a conflation

C∗ ✲ Z∗ ✲ E∗,
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where C∗ is a contractible complex and E∗ an injective one. In what follows, we will use
the Frobenius property of the exact category (Ch(R-Mod), E0) to obtain a more constructive
description of a semisplit phantom precover of a complex, and the objects of Φ⊥, but we need
to slightly weaken the property in order to include the example of Auslander–Reiten phantom
morphisms, treated in the next section.

Let (A; E) be an exact category and F ⊆ Ext a subfunctor with enough injective morphisms
such that for every object A ∈ A, there exists a conflation

Ω(A)
e

−→ P
p

−→ A, (2)

where p : P → A is a projective morphism and e : Ω(A) → P is an F -injective morphism. This
property is clearly satisfied by (Ch(R-Mod); E0) ⊆ (Ch(R-Mod); E), because every projective
complex in Ch(R-Mod) is contractible.

There is an F -injective F -inflation e′
: Ω(A) → E given in the top row of the diagram below.

Because e : Ω(A) → P is an F -injective morphism, a morphism of conflations

Ω(A) e′
✲ E ′ σ ′

✲ Σ ′

❄

f

❄

ϕ

Ω(A) e ✲ P p ✲ A

arises, where the top row is actually an F -conflation and the object Σ ′
= Σ ′(Ω(A)) is an F -

cosyzygy of a syzygy of A. Lemma 16 implies that ϕ : Σ ′
→ A is an F -phantom morphism.

This commutative diagram yields another morphism of conflations

Ω(A) e ✲ P g ✲ A

❄

e′

❄


1
0



E ′


f

−σ ′


✲ P ⊕ Σ ′ (p, ϕ) ✲ A.

Now p : P → A is also a phantom morphism, because it is projective, so that the morphism
(p, ϕ) : P ⊕Σ ′

→ A is itself phantom. The choice of e′
: Ω(A) → E ′ implies that it belongs to

Φ⊥. By Theorem 17, the morphism (p, ϕ) is a special phantom precover of A.

Definition 43. Given an object M ∈ A, define ξM : Ω(Σ (M)) → M to be any morphism that
makes the diagram
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ΩΣ (M) ω✲ P p ✲Σ (M)

❄

ξM

❄

M e ✲ E σ ✲Σ (M)

commute, where e : M → E is an injective inflation, and p : P → Σ (M) is a projective
deflation with ω : Ω(Σ (M)) → P an F -injective morphism.

Theorem 44. Let (A; E) be an exact category and F ⊆ Ext a subfunctor with enough injective
morphisms. Suppose furthermore, that for every object A ∈ A there exists a conflation

Ω(A) ω ✲ P p ✲ A

with p projective and ω F -injective. If Φ is the ideal of F -phantom morphisms, then an object
M ∈ A belongs to Φ⊥ if and only if some (any) morphism ξM : ΩΣ (M) → M is F -injective.

Proof. Apply the condition to A = Σ (M). As above, there is a morphism of conflations

ΩΣ (M) e′
✲ E ′ σ ′

✲ Σ ′

❄ ❄

ϕ

ΩΣ (M) ω✲ P p ✲Σ (M),

where the top row is an F -conflation, e′
: ΩΣ (M) → E ′ is an F -injective morphism, and ϕ ∈ Φ.

Composing this morphism of conflations with the one that appears in the definition of ξM yields
the commutative diagram

ΩΣ (M) e′
✲ E ′ ✲ Σ ′

❄

ξM

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

ϕ

M e ✲ E σ ✲Σ (M).

If M ∈ Φ⊥, then Ext(ϕ,M) = 0, so that one obtains the homotopy indicated by the dotted
arrows. The morphism ξM then factors through e′

: ΩΣ (M) → E ′, and is therefore itself F -
injective.

To prove the converse, suppose that ξM : ΩΣ (M) → M is F -injective. Then ξM factors
through e′ and the homotopy indicated by the dotted arrows arises. It follows that the morphism
ϕ : Σ ′

→ Σ (M) factors through σ : E → Σ (M). The morphism p : P → Σ (M)
is projective so that it too factors through σ : E → Σ (M). The special phantom precover
(p, ϕ) : P ⊕ Σ ′

→ Σ (M) therefore factors through σ , and we may infer that every phantom
morphism ϕ′

: X → Σ (M) factors through σ : E → Σ (M). By Lemma 31, M ∈ Φ⊥. �
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A consequence of the theorem is that a complex M∗ belongs to Φ⊥ if and only if some (any)
morphism ξM∗ : ΩΣ (M∗) → M∗ factors through a contractible complex.

8. Auslander–Reiten phantom morphisms

Let Λ be an Artin algebra and denote by Λ-mod the abelian category of finitely presented
left Λ-modules. The Jacobson radical Jac(Λ-mod) of Λ-mod is the intersection of all left (resp.,
right) maximal ideals of Λ-mod. Let F ⊆ ExtΛ be the subfunctor defined by the condition that
η ∈ F(A, B) provided that every morphism j : B → Y that belongs to the Jacobson radical
j ∈ Jac(B, Y ) factors through the inflation of η as indicated by the dotted arrow

η : 0 ✲ B ✲ C ✲ A ✲ 0

❄

j

♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠
Y

The collection of short exact sequences that satisfy this property constitutes a subfunctor
F ⊆ ExtΛ, and every morphism in the Jacobson radical of Λ-mod is F -injective. The subfunctor
F is the largest subfunctor of ExtΛ for which Jac(Λ-mod) ⊆ F -inj. In this section, we will
apply the theory of almost split sequences [1] to prove that F has enough injective morphisms.
A morphism that belongs to the ideal Φ = Φ(F) is called an Auslander–Reiten (AR) phantom
morphism. Theorem 1 implies that the ideal cotorsion pair (Φ,Φ⊥) generated by the AR phantom
morphisms is complete.

Every object M ∈ Λ-mod is of finite length, and therefore admits a direct sum decomposition

M =

m
j=1

U j ,

where each summand Ui is an indecomposable module with a local endomorphism ring. If the
decomposition of N ∈ Λ-mod as a direct sum of indecomposables is given by N = ⊕

n
i=1 Vi ,

then a morphism f : M → N belongs to Jac(M, N ) if and only if each of the induced
morphisms fi j : U j → Vi belongs to Jac(U j , Vi ). For this reason, the Jacobson radical is
determined by the subgroups Jac(U, V ), where U and V are indecomposable. Indeed, if U
and V are both indecomposable, but not isomorphic, then Jac(U, V ) = HomΛ(U, V ) while
Jac(U,U ) = Jac(End(U )), where Jac(End(U )) denotes the Jacobson radical of the local
endomorphism ring of U.

Proposition 45. If V ∈ Λ-mod is an indecomposable module, then a morphism f : M → V in
Λ-mod belongs to Jac(M, V ) if and only if it is not a split epimorphism. Dually, if U ∈ Λ-mod
is indecomposable, then a morphism f : U → N in Λ-mod belongs to Jac(U, N ) if and only if
it is not a split monomorphism.

Proof. Decompose M = ⊕
m
j=1 U j as a direct sum of indecomposables. Then f : M → V is

not in Jac(M, V ) if and only if one of the induced morphisms f j : U j → V is an isomorphism
if and only if there is a section g : V → M such that f g = 1V . �
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An almost split, or Auslander–Reiten, sequence in Λ-mod is a short exact sequence

α : 0 ✲ U i ✲ W p ✲ V ✲ 0

that is (1) not split exact; (2) every morphism j : U → Y that is not a split monomorphism factors
through i : U → W ; and (3) every morphism j ′ : X → V that is not a split epimorphism factors
through p : W → V . Condition (1) implies that the Λ-module U is not injective; Condition
(2) that it is indecomposable. By the proposition, Condition (2) is equivalent to the property
that every morphism j : U → Y that belongs to the Jacobson radical of Λ-mod factors though
i : U → W . It follows that every almost split sequence in Λ-mod belongs to F . Because U is
indecomposable, another application of Proposition 45 shows that the F -inflation i : U → W
itself belongs to the Jacobson radical, and is therefore F -injective. The following result is then
part of Auslander and Reiten’s theory of almost split sequences.

Theorem 46. There exist enough F -injective morphisms. Furthermore,

F -inj = Jac(Λ-mod)+ I(Λ-Inj),

where I(Λ-Inj) denotes the ideal of morphisms that factor through an injective object in Λ-mod.
Dually, there exist enough F -projective morphisms and F -proj = Jac(Λ-mod)+ I(Λ-Proj).

Proof. Decompose a finitely presented Λ-module M = ⊕
m
j=1 U j as a direct sum of

indecomposables. If U j is injective, then the trivial sequence

0 ✲ U j
1 ✲ U j ✲ 0 ✲ 0

belongs to F and 1 : U j → U j is an injective morphism, which is therefore F -injective. If U j is
not injective, then [1, Theorem 4.2] implies that there exists an almost split sequence

α j : 0 ✲ U j
ι j ✲ W j ✲ V j ✲ 0.

It follows from the foregoing considerations that the direct sum of these short exact sequences
gives a short exact sequence in F whose inflation i : M → W = ⊕

m
j=1 W j is F -injective.

To prove the equality, it suffices to establish the inclusion F -inj ⊆ Jac(Λ-mod)+ I(Λ-inj), so
let f : M → N be a morphism in Λ-mod that belongs to F -inj and decompose M = ⊕

m
j=1 U j

as a direct sum of indecomposables. If the summand U j is injective, then the restriction
f j : U j → N belongs to I(Λ-inj). If not, then the restriction f j : U j → N also belongs to

F -inj, and therefore factors through the inflation ι j : U j → W j of the almost split sequence
α j . Because ι j belongs to Jac(Λ-mod), so does f j . It follows that f =


j f j belongs to

Jac(Λ-mod)+ I(Λ-Inj).
Let us define the subfunctor F ′

⊆ ExtΛ by the condition that η′
∈ F ′(A, B) provided that

every morphism j ′ : X → A that belongs to the Jacobson radical j ′ ∈ Jac(X, A) factors through
the deflation of η as indicated by the dotted arrow
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X♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣✠ ❄

j ′

η : 0 ✲ B ✲ C ✲ A ✲ 0.

The definition of F ′ is dual to that of F and there is a well-known duality [1, Section 1] of
categories D : (Λ-mod)op

→ mod-Λ that may now be applied to infer, using dual reasoning,
that this subfunctor F ′

⊆ ExtΛ also has enough projective morphisms, and that F ′-proj =

Jac(Λ-mod)+I(Λ-Proj), where I(Λ-Proj) is the ideal of morphisms in Λ-mod that factor through
a projective module. Condition (3) of an almost split sequence implies that it belongs to F ′.

To finish the proof, we will show that F = F ′. It suffices to verify that F ⊆ F ′, for the
duality D may then be used to obtain the other inclusion F ′

⊆ F . To that end, let η ∈ F(N ,M)
and decompose these two Λ-modules as direct sums of indecomposable modules M = ⊕

m
j=1 U j

and N = ⊕
n
i=1 Vi . Then F(N ,M) = F(⊕i Vi ,⊕ j U j ) = ⊕i, j F(Vi ,U j ) so that we may

decompose η =

ηi j as a sum of the short exact sequences

ηi j : 0 ✲ Ui
mi j ✲ Wi j ✲ V j ✲ 0,

where Ui and V j are indecomposable. Each of the sequences ηi j belongs to F because it is
obtained by pullback along V j and pushout along Ui . If some sequence ηi j is not split exact,
ηi j ≠ 0, then Ui is not injective and the morphism mi j : Ui → Wi j belongs to F ′. Because the
morphisms in Jac(Λ-mod) are F -injective, one obtains the following composition of morphisms
of short exact sequences

αi : 0 ✲ Ui ✲ W ✲ V ✲ 0

❄

w

❄

v

ηi j : 0 ✲ Ui ✲ Wi j ✲ V j ✲ 0

❄

w′

❄

v′

αi : 0 ✲ Ui ✲ W ✲ V ✲ 0,

where the short exact sequence αi is almost split. By [1, Proposition 5.2], the composition
w′w : W → W is an automorphism, and therefore the composition vv′

: V → V is also
an automorphism. Condition (3) of an almost split sequence implies that V is indecomposable.
Because V j is also indecomposable, the morphism v : V → V j is an isomorphism. It follows
that the short exact sequence ηi j is almost split, and therefore belongs to the subfunctor F ′.
Consequently, so does η =


ηi j . �

Because F = F ′, the subfunctor F ⊆ ExtΛ is called the socle of ExtΛ. By Theorem 1, the
ideal Φ = Φ(F) of Auslander–Reiten phantom morphisms generates a complete ideal cotorsion
pair (Φ,Φ⊥).
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Corollary 47. A morphism ϕ : X → A of finitely presented left Λ-modules is an Auslander–
Reiten phantom morphism if and only if, for every j ∈ Jac(Y, X), the composition ϕ j factors
through a projective Λ-module.

Proof. By Proposition 30, it is enough to prove that for every F -projective morphism j ′ : Y →

X , the composition ϕ j ′ factors through a projective Λ-module. By the theorem, the morphism j ′

may be expressed as a sum j ′ = j + p, where j ∈ Jac(Λ-mod) and p factors through a projective
module. It is therefore sufficient to verify that the composition ϕ j factors through a projective
Λ-module. �

A Λ-module C that belongs to Φ is called an AR phantom object. According to the next
consequence of Theorem 46, the indecomposable AR phantom objects have been characterized
in [1, Theorem 5.5].

Corollary 48. Let C be an indecomposable Λ-module that is not projective. Then C is an AR
phantom object if and only if the short exact sequence

η : 0 ✲Ω(C) ✲ P(C) p ✲ C ✲ 0

where p : P(C) → C is the projective cover of C is almost split.

Proof. That the Λ-module C belongs to Φ means that 1C ∈ Φ. By Corollary 47, this is equivalent
to the condition that every morphism j : X → C in the Jacobson radical factors through a
projective module. Because C is indecomposable, this is equivalent to the condition that every
morphism j : X → C that is not a split epimorphism factors through p : P(C) → C. �

An almost split sequence η in Λ-mod is called left special if it arises as the pullback along an
AR phantom morphism ϕ : V → V ′,

η : 0 ✲ U j ✲ W ✲ V ✲ 0

❄ ❄

ϕ

η′
: 0 ✲ U ✲ W ′ ✲ V ′ ✲ 0.

Equivalently, the almost split sequence η belongs to the subfunctor PB(Φ). For example, if
C ∈ Λ-mod is an AR phantom object, then the almost split sequence that appears in Corollary 48
is left special.

Corollary 49. Let U be an indecomposable, noninjective left Λ-module. There exists a left
special almost split sequence η as above if and only if U ∉ Φ⊥.

Proof. If U ∈ Φ⊥, then it is obvious that any short exact sequence with left term U that arises
by an AR phantom morphism is split exact. On the other hand, if U ∉ Φ⊥, then there exists a
special Φ⊥-preenvelope j : U → W of U that arises as the monomorphism in a short exact
sequence arising as the pullback along an AR phantom morphism ϕ : V → V ′, as in the
diagram above. Because j : U → W is a special Φ⊥-preenvelope, and U is not F -injective,
the morphism j is not a split monomorphism. The short exact sequence η is therefore a nonzero
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element of F(V,U ). Another application of [1, Proposition 5.2] implies that there exists an
indecomposable direct summand i : τ−1(U ) → V of V such that the pullback of η along i is
an almost split sequence whose left term is U . This almost split sequence is special, because it is
the pullback of η′ along the AR phantom morphism ϕi. �

By Proposition 15 and that fact that F -inj = Jac(Λ-mod)+ I(Λ-inj), we conclude that

Φ =
⊥(F -inj) =

⊥(Jac(Λ-mod)),

and therefore that the complete ideal cotorsion pair (Φ,Φ⊥) is cogenerated by Jac(Λ-mod) ⊆

Φ⊥. Because Jac(Λ-mod) is the maximum ideal of Λ-mod that contains no nonzero objects, the
ideals I that contain Jac(Λ-mod) are characterized by their objects. Indeed, if I ⊇ Jac(Λ-mod)
is an ideal of Λ-mod, then an indecomposable module U ∈ Λ-mod is an object in I if and only
if the inclusion Jac(U,U ) ⊆ I(U,U ) is proper. Consequently, I = Jac(Λ-mod)+ I[Ob(I)].

To characterize the objects of Φ⊥, let us verify that the hypotheses of Theorem 44 are satisfied:
if A is a finitely presented left Λ-module, then there is a short exact sequence in Λ-mod

0 ✲ Ω(A) j ✲ P p ✲ A ✲ 0,

where P is a projective module, and j : Ω(A) → P belongs to the Jacobson radical. This only
requires taking the morphism p : P → A to be the projective cover of A. Then the kernel
Ω(A) ⊆ P does not contain a nonzero direct summand of P . This inclusion j : Ω(A) → P
therefore belongs to the Jacobson radical of Λ-mod. The following is then a consequence of
Theorem 44.

Corollary 50. An indecomposable left Λ-module U that is not injective belongs to Φ⊥ if and
only if the morphism ξU : ΩΣ (U ) → U is not a split epimorphism.

Proof. By Theorem 44, the module U belongs to Φ⊥ if and only if ξU : ΩΣ (U ) → U
belongs to F -inj. Because U is indecomposable, this holds if and only if U is injective or if
ξU ∈ Jac(ΩΣ (U ),U ), which is equivalent to the condition that the morphism ξU : ΩΣ (U ) → U
is not a split epimorphism. �

If the Artin algebra Λ is Quasi-Frobenius, then Λ-proj = Λ-inj, so if an indecomposable
left Λ-module U is not projective/injective, we may take ΩΣ (U ) = U and ξU : U → U
to be the identity. The corollary implies that U does not belong to Φ⊥. If, on the other hand,
the indecomposable left Λ-module U is projective/injective, then it certainly belongs to Φ⊥.
Because Φ⊥ contains the Jacobson radical, it is determined by the objects that belong to it,
Φ⊥

= Jac(Λ-mod) + I(Λ-inj) = F -inj. By Corollary 23, the socle F ⊆ Ext is the subfunctor
PB(Φ) that consists of those conflations that arise as pullbacks along AR phantom morphisms.
In particular, every almost split sequence in Λ-mod is left special.

Corollary 51. If Λ is a Quasi-Frobenius Artin algebra, and U is an indecomposable left Λ-
module that is not injective, then the almost split sequence with left term U is left special.

Example 52 (Cf. [1, Section 6]). Let k be a field and suppose that Λ is the hereditary Artin
algebra given by

Λ =

k k k
0 k 0
0 0 k

 .
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There are three projective indecomposable left Λ-modules, given by Pi = Λei i , for 1 ≤ i ≤ 3.
There are three simple left Λ-modules, given by Si = top(Pi ), with S1 = P1. Finally, there are
three injective left Λ-modules Ei = E(Si ), with E(S2) = S2 and E(S3) = S3. It is not difficult
to verify that these six indecomposable left Λ-modules, the three projective indecomposables
and the three injective indecomposables, constitute a complete list of the indecomposable left
modules over Λ.

The three noninjective indecomposables are therefore given by the projectives P1, P2 and P3.
The almost split sequence with left term P1 is given by

0 ✲ P1 ✲ P2 ⊕ P3 ✲E(S1) ✲ 0.

Because the middle term is projective, the right term E(S1) is an AR phantom object and this
almost split sequence is therefore left special. The almost split sequence with left term P2 is
given by

0 ✲ P2 ✲E(S1) ✲ S3 ✲ 0.

This almost split sequence is not left special, because the morphism ξ : ΩΣ (P2) → P2 is
not a split epimorphism. Indeed, taking the projective cover of S3, one obtains the commutative
diagram

0 ✲ S1 ✲ P(S3) ✲ S3 ✲ 0

ξ

❄ ❄

0 ✲ P2 ✲E(S1) ✲ S3 ✲ 0

with exact rows, and sees that ΩΣ (P2) = S1 is simple. Similar considerations apply to the third
projective indecomposable P3: the almost split sequence with left term P3 is not left special.
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