Spectra of combinatorial Laplace operators on simplicial complexes

Danijela Horak ${ }^{\text {a,* }}$, Jürgen Jost ${ }^{\text {a,b,c }}$
${ }^{\text {a }}$ Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig, Germany
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Leipzig University, D-04091 Leipzig, Germany
${ }^{\text {c }}$ Santa Fe Institute for the Sciences of Complexity, Santa Fe, NM 87501, USA

Received 22 November 2011; accepted 2 May 2013
Available online 10 June 2013
Communicated by A. Dress

Abstract

We first develop a general framework for Laplace operators defined in terms of the combinatorial structure of a simplicial complex. This includes, among others, the graph Laplacian, the combinatorial Laplacian on simplicial complexes, the weighted Laplacian, and the normalized graph Laplacian. This framework then allows us to define the normalized Laplace operator $\Delta_{i}^{u p}$ on simplicial complexes which we then systematically investigate. We study the effects of a wedge sum, a join and a duplication of a motif on the spectrum of the normalized Laplace operator and identify some of the combinatorial features of a simplicial complex that are encoded in its spectrum.

(C) 2013 Elsevier Inc. All rights reserved.

Keywords: Normalized graph Laplacian; Combinatorial Laplacian; Hypergraph Laplacian; Graph Laplacian; Simplicial complex

1. Introduction

The study of graph Laplacians has a long and prolific history. It first appeared in a paper by Kirchhoff [25], where he analysed electrical networks and stated the celebrated matrix tree

[^0]theorem. The Laplace operator L of [25] operates on a real valued function f on the vertices of a graph as
\[

$$
\begin{equation*}
L f\left(v_{i}\right)=\operatorname{deg} v_{i} f\left(v_{i}\right)-\sum_{v_{i} \sim v_{j}} f\left(v_{j}\right) . \tag{1.1}
\end{equation*}
$$

\]

In spite of its rather early beginnings this topic did not gain much attention among scientists until the early 1970s and the work of Fiedler [14], and his results on correlation among the smallest non-zero eigenvalue and the connectivity of a graph. Before Fiedler drew attention to the graph Laplacian, graphs were usually characterized by means of the spectrum of its adjacency matrix, but in the wake of [14], there has been a number of papers (e.g. [19]) arguing in favour of the graph Laplacian and its spectrum. For good survey articles on the graph Laplacian the reader is referred to [28] or [30].

In a different tradition, the graph Laplacian was generalized to simplicial complexes by Eckmann [13], who formulated and proved the discrete version of the Hodge theorem; this can be formulated as

$$
\operatorname{ker}\left(\delta_{i}^{*} \delta_{i}+\delta_{i-1} \delta_{i-1}^{*}\right) \cong \tilde{H}^{i}(K, \mathbb{R})
$$

where

$$
L_{i}=\delta_{i}^{*} \delta_{i}+\delta_{i-1} \delta_{i-1}^{*}
$$

is the higher order combinatorial Laplacian. Many subsequent papers then studied properties of the higher order combinatorial Laplacian (see [10,15,11]), building upon properties of the graph Laplacian. In particular, this operator has been employed extensively in investigating the features of networks related to dynamics and coverings (see [31,33]). More recently, in [23], the combinatorial Laplacian is systematically studied in a context of a discrete exterior calculus.

While the graph Laplacian introduced by Kirchhoff naturally appears in his work on electrical flows, for other processes on graphs, like random walks or diffusion, a different operator appears. This was first investigated almost a century after Kirchhoff's work by Bottema [5] who studied a transition probability operator on graphs that is equivalent to the following version of the graph Laplace operator:

$$
\begin{equation*}
\Delta f\left(v_{i}\right)=f\left(v_{i}\right)-\frac{1}{\operatorname{deg} v_{i}} \sum_{v_{i} \sim v_{j}} f\left(v_{j}\right) \tag{1.2}
\end{equation*}
$$

It took, however, almost another one hundred years until a significant advance in the study of this operator Δ, which got to be known by the name normalized graph Laplacian to distinguish it from the graph Laplacian L and to emphasize the fact that its eigenvalues are in the interval [0,2]. In contrast to L, Δ is well suited for problems related to random walks on graphs and graph expanders. For a good introduction to this topic the reader is invited to consult [6] or [18].

The main goals of this paper are a systematic framework that can be used as a starting point for a study of any of the above mentioned versions of the Laplace operator, and the definition and investigation of the normalized Laplacian on simplicial complexes. The latter is based on the simple observation that the form of the combinatorial Laplacian is tightly connected to the choice of the scalar product on the coboundary vector spaces. On the other hand, the scalar products can be viewed in terms of weight functions. Thus, by controlling the weights, we control the range
of the eigenvalues of the Laplace operator. Most importantly, for the normalized Laplacian, the eigenvalues are confined to the range $[0, i+2]$, where i is the order of the Laplacian. This generalizes the fact that the eigenvalues of the normalized graph Laplacian Δ are in the interval [0, 2]. We shall analyse the spectrum of this normalized Laplacian and its connection with the combinatorial structure of the simplicial complex. Perhaps somewhat surprisingly, this generality also permits us to gain new insights for its special case, the already extensively studied normalized graph Laplacian.

There have already been several attempts towards the normalization of the combinatorial Laplace operator. In particular, Chung in [7] defined a normalized Laplacian on simplicial complexes as $\delta^{*} \delta+\rho \delta \delta^{*}$, where ρ is a positive constant. However, the spectrum of this operator is not bounded by a constant. Recently, Taszus [34] suggested a normalization of the combinatorial Laplacian via its matrix form $D^{-1 / 2} L_{i} D^{-1 / 2}$, where L_{i} is the matrix corresponding to the operator $\delta^{*} \delta+\delta \delta^{*}$, where the adjoints are defined with respect to the standard scalar product and D is a diagonal matrix of L_{i}. This operator, too, does not have a bounded spectrum. Lu and Peng in [27] considered random walks on hypergraphs and, to that end, defined a normalized Laplacian on a uniform hypergraph H as $\mathcal{L}_{s}(H)=\Delta\left(G_{H}^{s}\right)$, where G_{K}^{s} is a ($s-1$)-dual graph (see Definition 5.2) of a simplicial complex (hypergraph) H. The drawback of this definition is that it fails to fit into general theory and does not take into account higher order relations among edges of a hypergraph. In contrast to this and from a very different direction, Garland [16] considered a normalized Laplacian on simplicial complexes that arise as Bruhat-Tits buildings for simple p-adic groups and their quotients by discrete subgroups.

As is already clear from Eckmann's seminal work [13], the Laplacians of a simplicial complex encode its basic topology, that is, its homology groups. In terms of the spectrum, they are given by the dimensions of the eigensets for the eigenvalue 0 . This is the same for all the Laplace operators investigated here. These operators, however, differ in the nonzero part of the spectrum and, thereby, encode specific combinatorial or geometric features of a (perhaps weighted) simplicial complex in addition to its topological aspects. Many combinatorial operations that one can perform on a simplicial complex do not affect its homology; nevertheless, they typically leave characteristic traces in the spectrum of a suitable Laplace operator, and that is what we are trying to explore. In the weighted case, there is additional geometric information that likewise influences the spectrum. Let us try to explain this aspect from the following perspective. As is well known, from a covering of a set, one can construct a simplicial complex, by letting an i dimensional simplex corresponds to every intersection of i members of the covering. The Čech cohomology of the covering then is isomorphic to the simplicial cohomology of the resulting complex. When, in addition, the set that is covered carries a measure, then we can assign to every simplex in this construction a weight equal to the measure of the corresponding intersection. We thus obtain a weighted simplicial complex, and we can define a corresponding Laplacian. Its spectrum then reflects the geometry of the intersection pattern, and not only its topology. Since such intersection patterns arise in many areas of application, for instance as colocalization patterns of proteins in a cell [32,4] or for many geographical data sets, we wish to propose this Laplacian spectrum as a new tool in data analysis. This will be developed elsewhere, on the mathematical basis of the present paper.

This paper is organized as follows. In Section 2 we give the basic definitions for simplicial complexes and recall Eckmann's discrete version of the Hodge theorem. We define the combinatorial Laplace operator in its full generality and provide explicit expressions. Section 3 starts with the theorem about the number of zeros in the spectrum of the general Laplace operator. We then discuss the effect of the scalar products on the spectrum and obtain the upper and
lower bound on the maximum eigenvalue of the Laplacian. Finally, we state the definition of the normalized combinatorial Laplace operator, which will be the main object of the remainder of the paper. We calculate the spectrum of the normalized combinatorial Laplacian for some special classes of simplicial complexes in Section 4. In particular, we discuss the spectrum of an i-simplex, of an orientable and a non-orientable circuit, of a path and of a star. In Section 5 we analyse regular, pure simplicial complexes. In Section 6 we discuss the effect of wedges, joins and duplication of motifs on the spectrum of the normalized combinatorial Laplace operator. In Section 7 we identify the combinatorial features of simplicial complexes that cause the appearance of certain integer eigenvalues in the spectrum of $\Delta_{i}^{u p}$. We discuss the occurrence of the eigenvalue $i+2$ in the spectrum of $\Delta_{i}^{u p}$, and its connection to the chromatic number of the underlying graph of a complex. Furthermore, the relation among the eigenvalue $i+1$ and the duplication of vertices is established.

2. Notations, definitions and the combinatorial Laplace operator

An abstract simplicial complex K on a finite set V is a collection of subsets of V, which is closed under inclusion. An i-face or an i-simplex of K is an element of cardinality $i+1$. 0 faces are usually called vertices and 1 -faces edges. The collection of all i-faces of simplicial complex K is denoted by $S_{i}(K)$. The dimension of an i-face is i, and the dimension of a complex K is the maximum dimension of a face in K. The faces which are maximal under inclusion are called facets. We say that a simplicial complex K is pure if all facets have the same dimension. Note that a simplicial complex can also be considered as a hypergraph (a facet of a simplicial complex corresponds to an edge in a hypergraph). For two ($i+1$)simplices sharing an i-face we use the term i-down neighbours, and for two i-simplices which are faces of an $(i+1)$-simplex, we say that they are $(i+1)$-up neighbours. We say that a face F is oriented if we choose an ordering on its vertices and write [F]. Two orderings of the vertices are said to determine the same orientation if there is an even permutation transforming one ordering into the other. If the permutation is odd, then the orientations are opposite.

In the remainder, K will be an abstract simplicial complex on a vertex set $[n]=\{1,2, \ldots, n\}$, when not stated otherwise. The i-th chain group $C_{i}(K, \mathbb{R})$ of a complex K with coefficients in \mathbb{R} is a vector space over the field \mathbb{R} with basis $B_{i}(K, \mathbb{R})=\left\{[F] \mid F \in S_{i}(K)\right\}$.

The cochain groups $C^{i}(K, \mathbb{R})$ are defined as duals of the chain groups, i.e. $C^{i}(K, \mathbb{R}):=$ $\operatorname{hom}(K, \mathbb{R})$. The basis of $C^{i}(K, \mathbb{R})$ is given by the set of functions $\left\{e_{[F]} \mid[F] \in B_{i}(K, \mathbb{R})\right\}$ such that

$$
e_{[F]}\left(\left[F^{\prime}\right]\right)= \begin{cases}1 & \text { if }\left[F^{\prime}\right]=[F] \\ 0 & \text { otherwise }\end{cases}
$$

The functions $e_{[F]}$ are also known as elementary cochains. Traditionally, $C^{i}(K, G)$ for an arbitrary group G is called a cochain group. Therefore, we shall also refer to the $C^{i}(K, \mathbb{R})$ as cochain groups, although the $C^{i}(K, \mathbb{R})$ have the structure of vector spaces, in fact. Note that the one-dimensional vector space $C^{-1}(K, \mathbb{R})$ is generated by the identity function on the empty simplex. We define the simplicial coboundary maps

$$
\left(\delta_{i} f\right)\left(\left[v_{0}, \ldots, v_{i+1}\right]\right)=\sum_{j=0}^{i+1}(-1)^{j} f\left(\left[v_{0}, \ldots, \hat{v}_{j} \cdots v_{i+1}\right]\right),
$$

where \hat{v}_{j} denotes that the vertex v_{j} has been omitted. The δ_{i} are the connecting maps in the augmented cochain complex of K with coefficients in \mathbb{R}, i.e., the sequence of vector spaces and linear transformations

$$
\begin{equation*}
\cdots \stackrel{\delta_{i+1}}{\leftarrow} C^{i+1}(K, \mathbb{R}) \stackrel{\delta_{i}}{\leftarrow} C^{i}(K, \mathbb{R}) \stackrel{\delta_{i-1}}{\leftarrow} \cdots \leftarrow C^{-1}(K, \mathbb{R}) \leftarrow 0 \tag{2.1}
\end{equation*}
$$

Alternatively, δ_{i} can be viewed as the dual of the boundary map ∂_{i+1}. For a systematic treatment of simplicial homology and cohomology the reader is referred to [22]. It is straightforward to check that $\delta_{i} \delta_{i-1}=0$, ergo the image of δ_{i-1} is contained in the kernel of δ_{i} and the reduced cohomology group for every $i \geq 0$ is

$$
\tilde{H}^{i}(K, \mathbb{R}):=\operatorname{ker} \delta_{i} / \operatorname{im} \delta_{i-1}
$$

After choosing inner products $(,)_{C^{i}}$ and $(,)_{C^{i+1}}$ on $C^{i}(K, \mathbb{R})$ and $C^{i+1}(K, \mathbb{R})$, respectively, the adjoint $\delta_{i}^{*}: C^{i+1}(K, \mathbb{R}) \rightarrow C^{i}(K, \mathbb{R})$ of the coboundary operator δ_{i} is defined by

$$
\left(\delta_{i} f_{1}, f_{2}\right)_{C^{i+1}}=\left(f_{1}, \delta_{i}^{*} f_{2}\right)_{C^{i}}
$$

for every $f_{1} \in C^{i}(K, \mathbb{R})$ and $f_{2} \in C^{i+1}(K, \mathbb{R})$.
Definition 2.1. We define the following three operators on $C^{i}(K, \mathbb{R})$:
(i) i-dimensional combinatorial up Laplace operator or simply i-up Laplace operator

$$
\mathcal{L}_{i}^{u p}(K):=\delta_{i}^{*} \delta_{i},
$$

(ii) i-dimensional combinatorial down Laplace operator or i-down Laplace operator

$$
\mathcal{L}_{i}^{\text {down }}(K):=\delta_{i-1} \delta_{i-1}^{*},
$$

(iii) i-dimensional combinatorial Laplace operator or i-Laplace operator

$$
\mathcal{L}_{i}(K):=\mathcal{L}_{i}^{u p}(K)+\mathcal{L}_{i}^{\text {down }}(K)=\delta_{i}^{*} \delta_{i}+\delta_{i-1} \delta_{i-1}^{*}
$$

Since

$$
C^{i+1}(K, \mathbb{R}) \underset{\delta_{i}^{*}}{\stackrel{\delta_{i}}{\leftrightarrows}} C^{i}(K, \mathbb{R}) \underset{\delta_{i-1}^{*}}{\stackrel{\delta_{i-1}}{\leftrightarrows}} C^{i-1}(K, \mathbb{R})
$$

all three operators are well defined. Moreover, it follows directly from the definition that $\mathcal{L}_{i}^{u p}(K), \mathcal{L}_{i}^{\text {down }}(K)$ and $\mathcal{L}_{i}(K)$ are self-adjoint, non-negative and compact operators. Hence their eigenvalues are real, non-negative, and admit a variational characterization as expressed by the Courant-Fischer-Weyl min-max principle that we state here.

Theorem 2.1 (Min-Max Theorem). Let V_{k} and \mathcal{V}_{k} denote a k-dimensional subspace of V and a family of k-dimensional subspaces of V, respectively, and assume that $A: V \rightarrow V$ is a compact, self-adjoint operator of a Hilbert space V. Then

$$
\begin{equation*}
\lambda_{k}=\min _{V_{k} \in \mathcal{V}_{k}} \max _{g \in V_{k}} \frac{(A g, g)}{(g, g)}=\max _{V_{k} \in \mathcal{V}_{m-k+1}} \min _{g \in V_{m-k+1}} \frac{(A g, g)}{(g, g)}, \tag{2.2}
\end{equation*}
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{m}$ are the eigenvalues of A. The g realizing such a min $-\max$ or $\max -\min$ then are corresponding eigenfunctions, and the $\min -$ max spaces V_{k} are spanned by the eigenfunctions for the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, and analogously, the max-min spaces V_{m-k+1} are spanned by the eigenfunctions for the eigenvalues $\lambda_{k}, \ldots, \lambda_{m}$.

For any operator A acting on a Hilbert space, we denote the weakly increasing rearrangement of its eigenvalues by $\mathbf{s}(A)=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$ and write $\mathbf{s}(A) \stackrel{\circ}{=} \mathbf{s}(B)$, when the multisets $\mathbf{s}(A)$ and $\mathbf{s}(B)$ differ only in their multiplicities of zero (this is an equivalence relation). We denote a union of multisets by \cup.

We now state the discrete version of the Hodge theorem and provide its proof for the sake of completeness.

Theorem 2.2 (Eckmann 1944). For an abstract simplicial complex K,

$$
\operatorname{ker} \mathcal{L}_{i}(K) \cong \tilde{H}^{i}(K, \mathbb{R})
$$

Proof. Since $\delta_{i} \delta_{i-1}=0$ and $\delta_{i-1}^{*} \delta_{i}^{*}=0$, then

$$
\begin{align*}
& \operatorname{im} \mathcal{L}_{i}^{d o w n}(K) \subset \operatorname{ker} \mathcal{L}_{i}^{u p}(K), \tag{2.3}\\
& \operatorname{im} \mathcal{L}_{i}^{u p}(K) \subset \operatorname{ker} \mathcal{L}_{i}^{d o w n}(K) . \tag{2.4}
\end{align*}
$$

Thus,

$$
\begin{aligned}
\operatorname{ker} \mathcal{L}_{i}(K) & =\operatorname{ker} \delta_{i}^{*} \delta_{i} \cap \operatorname{ker} \delta_{i-1} \delta_{i-1}^{*} \\
& =\operatorname{ker} \delta_{i} \cap \operatorname{ker} \delta_{i-1}^{*} \\
& =\operatorname{ker} \delta_{i} \cap\left(\operatorname{im} \delta_{i-1}\right)^{\perp} \\
& \cong \tilde{H}^{i}(K, \mathbb{R}) . \quad \square
\end{aligned}
$$

Due to (2.3) and (2.4), λ is a non-zero eigenvalue of $\mathcal{L}_{i}(K)$ if and only if it is an eigenvalue of $\mathcal{L}_{i}^{u p}(K)$ or $\mathcal{L}_{i}^{\text {down }}(K)$. Therefore,

$$
\begin{equation*}
\mathbf{s}\left(\mathcal{L}_{i}(K)\right) \stackrel{\circ}{=} \mathbf{s}\left(\mathcal{L}_{i}^{u p}(K)\right) \stackrel{\circ}{\cup} \mathbf{s}\left(\mathcal{L}_{i}^{\text {down }}(K)\right) . \tag{2.5}
\end{equation*}
$$

As a direct consequence of the fact that $\mathbf{s}(A B) \stackrel{\circ}{=} \mathbf{s}(B A)$, for operators A and B on suitably chosen Hilbert spaces, we get the following equality, which was pointed out to us by Johannes Rauh:

$$
\begin{equation*}
\mathbf{s}\left(\mathcal{L}_{i}^{u p}(K)\right) \stackrel{\circ}{\leftrightharpoons} \mathbf{s}\left(\mathcal{L}_{i+1}^{\text {down }}(K)\right) . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we conclude that each of the three families of multisets

$$
\left\{\mathbf{s}\left(\mathcal{L}_{i}(K)\right) \mid 0 \leq i \leq d\right\}, \quad\left\{\mathbf{s}\left(\mathcal{L}_{i}^{u p}(K)\right) \mid 0 \leq i \leq d\right\} \quad \text { or } \quad\left\{\mathbf{s}\left(\mathcal{L}_{i}^{\text {down }}(K)\right) \mid 0 \leq i \leq d\right\}
$$

determines the other two. Therefore, it suffices to consider only one of them. In the remainder of the paper, we will omit the argument K in $\mathbf{s}\left(\mathcal{L}_{i}(K)\right), \mathbf{s}\left(\mathcal{L}_{i}^{u p}(K)\right), \mathcal{L}_{i}^{u p}(K), \mathcal{L}_{i}^{\text {down }}(K), S_{i}(K)$,
etc., when it is clear which simplicial complex we investigate or when we state our results for a general simplicial complex K.

For explicit expressions for up and down Laplacians, we have to fix scalar products on the cochain groups. To that end, we introduce the weight function and additional notation.

Definition 2.2. The weight function w is an evaluation function on the set of all faces of K

$$
w: \bigcup_{i=-1}^{\operatorname{dim} K} S_{i}(K) \rightarrow \mathbb{R}^{+}
$$

The weight of a face F is $w(F)$.
For any choice of the inner product on the space $C^{i}(K, \mathbb{R})$, where elementary cochains form an orthogonal basis, there exists a weight function w, such that

$$
(f, g)_{C^{i}}=\sum_{F \in S_{i}(K)} w(F) f([F]) g([F]) .
$$

Furthermore, there is a one-to-one correspondence between weight functions and possible scalar products on cochain groups $C^{i}(K, \mathbb{R})$, such that elementary cochains are orthogonal. In the remainder we will interchangeably use the terms weights, weight function and scalar product.

Definition 2.3. Let $\bar{F}=\left\{v_{0}, \ldots, v_{i+1}\right\}$ be an $(i+1)$-face of a complex K and let $F=$ $\left\{v_{0}, \ldots, \hat{v_{k}}, \ldots, v_{i+1}\right\}$ be an i-face of \bar{F}. Then the boundary of the oriented face $[\bar{F}]$ is

$$
\partial[\bar{F}]=\sum_{k}(-1)^{k}\left[v_{0}, \ldots, \hat{v}_{k}, \ldots, v_{i+1}\right]
$$

and the sign of $[F]$ in the boundary of $[\bar{F}]$ is denoted by $\operatorname{sgn}([F], \partial[\bar{F}])$ and is equal to $(-1)^{k}$.
By abuse of notation, we will write $\partial \bar{F}$ to denote the set of all i-faces of \bar{F}. The i-up Laplace operator is given by

$$
\begin{aligned}
\left(\mathcal{L}_{i}^{u p} f\right)([F])= & \sum_{\substack{\bar{F} \in S_{i+1}: \\
F \in \partial \bar{F}}} \frac{w(\bar{F})}{w(F)} f([F])+\sum_{\substack{F^{\prime} \in S_{i}: F \neq F^{\prime} \\
F, F^{\prime} \in \partial \bar{F}}} \frac{w(\bar{F})}{w(F)} \operatorname{sgn}([F], \partial[\bar{F}]) \\
& \times \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{F}]\right) f\left(\left[F^{\prime}\right]\right),
\end{aligned}
$$

and the expression for the i-down Laplace operator is

$$
\begin{aligned}
\left(\mathcal{L}_{i}^{\text {down }} f\right)([F])= & \sum_{E \in \partial F} \frac{w(F)}{w(E)} f([F])+\sum_{F^{\prime}: F \cap F^{\prime}=E} \frac{w\left(F^{\prime}\right)}{w(E)} \operatorname{sgn}([E], \partial[F]) \\
& \times \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right) f\left(\left[F^{\prime}\right]\right)
\end{aligned}
$$

When dealing with linear operators it is often more convenient to study their matrix form. Hence we give the following expressions for the $\left(e_{[F]}, e_{\left[F^{\prime}\right]}\right)$-th and the $\left(e_{[F]}, e_{[F]}\right)$-th entry of $\mathcal{L}_{i}^{u p}$ and $\mathcal{L}_{i}^{\text {down }}$, where $F \neq F^{\prime}$

$$
\begin{aligned}
& \left(\mathcal{L}_{i}^{u p}\right)_{\left(e_{[F]}, e_{\left[F^{\prime}\right]}\right)}=\operatorname{sgn}([F], \partial[\bar{F}]) \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{F}]\right) \frac{w(\bar{F})}{w(F)}, \\
& \left(\mathcal{L}_{i}^{u p}\right)_{\left(e_{[F]}, e_{[F]}\right)}=\sum_{\substack{\bar{F} \in S_{i+\bar{c}}, F \in \partial \bar{F}}} \frac{w(\bar{F})}{w(F)}, \\
& \left(\mathcal{L}_{i}^{d o w n}\right)_{\left(e_{[F]}, e_{\left[F^{\prime}\right]}\right)}=\operatorname{sgn}([E], \partial[F]) \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right) \frac{w\left(F^{\prime}\right)}{w(E)}, \\
& \left(\mathcal{L}_{i}^{d o w n}\right)_{\left(e_{[F]}, e_{[F]}\right)}=\sum_{E \in \partial F} \frac{w(F)}{w(E)} .
\end{aligned}
$$

The Laplace operator \mathcal{L} of a simplicial complex K is uniquely determined by a weight function w_{K} on the faces of K. Thus, we write $\mathcal{L}\left(K, w_{k}\right)$.

Remark 2.1. From the explicit expressions of Laplace operators it is evident that $\mathcal{L}_{i}^{u p}$ is uniquely determined by its restriction on the $(i+1)$-skeleton of K, whereas $\mathcal{L}_{i}^{d o w n}$ is determined by its i-skeleton. Therefore, when studying $\mathcal{L}_{i}^{u p}$ (or $\mathcal{L}_{i}^{\text {down }}$), it suffices to observe pure $(i+1)$ (or i)-simplicial complexes.
Let D_{i} be the matrix corresponding to the operator δ_{i}, D_{i}^{T} its transpose and W_{i} the diagonal matrix representing the scalar product on C^{i}, then the $\mathcal{L}_{i}^{u p}$ and $\mathcal{L}_{i}^{\text {down }}$ operators are expressed as

$$
\mathcal{L}_{i}^{u p}=W_{i}^{-1} D_{i}^{T} W_{i+1} D_{i}
$$

and

$$
\mathcal{L}_{i}^{\text {down }}=D_{i-1} W_{i-1}^{-1} D_{i-1}^{T} W_{i}
$$

respectively. Therefore, the combinatorial Laplace operator analysed by Duval, Reiner [12], Friedmann [15] and others [31,10] is the combinatorial Laplace operator \mathcal{L}_{i} for the identity matrices weight matrices $W_{i}(-1 \leq i \leq \operatorname{dim} K)$, i.e. $\mathcal{L}_{i}\left(K, w_{K}\right)$, where $w_{K} \equiv 1$. In the remainder of the paper, this version of the Laplace operator will be denoted by L_{i}. The graph Laplacian (1.1) studied by Kirchhoff [25], Fiedler [14], Grone and Merris [19] and many others is a special case of L_{i}; in fact it is equal to $L_{0}^{u p}$. The normalized graph Laplace operator (1.2) investigated by Chung, Yau, Grigoryan and others, see [8,2], is equal to $\mathcal{L}_{0}^{u p}$ for W_{1} being the matrix with diagonal entries equal to the edge weights and W_{0} the diagonal degree matrix, that is the weight function on a vertex v is $w(v)=\operatorname{deg} v$.

Therefore, the combinatorial Laplacian $\mathcal{L}\left(K, w_{K}\right)$, as defined here, unifies all Laplace operators studied so far and provides a general framework for a systematic study of different versions of Laplacians.

Our goal in this paper is to define the higher dimensional analogue of the normalized graph Laplacian and to investigate its properties. However, we will state our results in full generality whenever possible and emphasize which results do not depend on the choice of the scalar products and which are the consequence of suitably chosen weights.

3. The normalized combinatorial Laplacian: definition and basic properties

In this section we derive an upper and a lower bound for the maximal eigenvalue of $\mathcal{L}_{i}^{u p}$, introduce the normalized combinatorial Laplacian $\Delta_{i}^{u p}$, and state and prove its basic properties. We emphasize its advantages compared to the other choices of weights.

Let λ_{m} and λ_{0} be the maximal and the minimal eigenvalue of $\mathcal{L}_{i}^{u p}\left(K, w_{K}\right)$, respectively. As the Laplace operator is positive definite, λ_{0} is always larger or equal to zero. The exact number of zero eigenvalues in the spectrum of $\mathcal{L}_{i}^{u p}$ and $\mathcal{L}_{i}^{d o w n}$ is given in the following theorem.

Theorem 3.1. The multiplicity of the eigenvalue zero in
(i) $\mathbf{s}\left(\mathcal{L}_{i}^{u p}\right)$ is

$$
\operatorname{dim} C^{i}-\sum_{j=0}^{i}(-1)^{i+j}\left(\operatorname{dim} C^{j}-\operatorname{dim} \tilde{H}^{j}\right)
$$

or equivalently

$$
\operatorname{dim} C^{i}+\sum_{j=1}^{d-i}(-1)^{j}\left(\operatorname{dim} C^{i+j}-\operatorname{dim} \tilde{H}^{i+j}\right)
$$

(ii) $\mathbf{s}\left(\mathcal{L}_{i}^{\text {down }}\right)$ is

$$
\operatorname{dim} \tilde{H}^{i}-\sum_{j=0}^{i-1}(-1)^{i+j-1}\left(\operatorname{dim} C^{j}-\operatorname{dim} \tilde{H}^{j}\right)
$$

Proof. The following are short exact sequences that split

$$
\begin{aligned}
& 0 \rightarrow \operatorname{ker} \delta_{i} \rightarrow C^{i} \rightarrow \operatorname{im} \delta_{i} \rightarrow 0, \\
& 0 \rightarrow \operatorname{im} \delta_{i-1} \rightarrow \operatorname{ker} \delta_{i} \rightarrow \tilde{H}^{i} \rightarrow 0
\end{aligned}
$$

This is a direct consequence of the fact that $\operatorname{im} \delta_{i}$ and \tilde{H}^{i} are projective modules (for details on projective modules and splitting exact sequences the reader is referred to [9]). Therefore,

$$
\begin{equation*}
\operatorname{dim} C^{i}=\operatorname{dim} \operatorname{ker} \delta_{i}+\operatorname{dimim} \delta_{i} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} \delta_{i}=\operatorname{dim} \tilde{H}^{i}+\operatorname{dimim} \delta_{i-1} \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2)

$$
\operatorname{dimim} \delta_{i}=\sum_{j=-1}^{i}(-1)^{i+j}\left(\operatorname{dim} C^{j}-\operatorname{dim} \tilde{H}^{j}\right)
$$

The number of zeros in the spectrum of $\mathcal{L}_{i}^{u p}$ is equal to the dimension of its kernel; thus,

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mathcal{L}_{i}^{u p} & =\operatorname{dim} \operatorname{ker} \delta_{i} \\
& =\operatorname{dim} C^{i}-\sum_{j=-1}^{i}(-1)^{j+i}\left(\operatorname{dim} C^{j}-\operatorname{dim} \tilde{H}^{j}\right)
\end{aligned}
$$

The expression (3.1) for the number of zeros in $\mathbf{s}\left(\mathcal{L}_{i}^{u p}\right)$ is easily obtained by using the Euler characteristic and the equality $\chi=\sum_{i=-1}^{d}(-1)^{i} \operatorname{dim} C^{i}=\sum_{i=-1}^{d}(-1)^{i} \operatorname{dim} \tilde{H}^{i}$. As for $\mathcal{L}_{i}^{d o w n}$, the following holds:

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \mathcal{L}_{i}^{\text {down }} & =\operatorname{dim} \operatorname{ker} \delta_{i-1}^{*}=\operatorname{dim} C^{i}-\operatorname{dimim} \delta_{i-1} \\
& =\operatorname{dim} C^{i}-\sum_{j=-1}^{i-1}(-1)^{j+i-1}\left(\operatorname{dim} C^{j}-\operatorname{dim} \tilde{H}^{j}\right)
\end{aligned}
$$

The number of zero eigenvalues in spectra of various Laplace operators, as expected, does not depend on a choice of the scalar products on the cochain vector spaces.

Remark 3.1. If a simplicial complex is $(i+1)$-dimensional, then the number of zero eigenvalues in the spectrum of $\mathcal{L}_{i}^{u p}(K)$ is $\operatorname{dim} C^{i}-\operatorname{dim} C^{i+1}+\operatorname{dim} \tilde{H}^{i+1}$, whereas there are exactly $\operatorname{dim} C^{i+1}-\operatorname{dim} \tilde{H}^{i+1}+\operatorname{dim} \tilde{H}^{i}$ zeros in the spectrum of $\mathcal{L}_{i+1}^{\text {down }}$.

Next we introduce the degree of a simplex F.
Definition 3.1. The degree of an i-face F of K is equal to the sum of the weights of all simplices that contain F in its boundary, i.e.

$$
\operatorname{deg} F=\sum_{\bar{F} \in S_{i+1}(K): F \in \partial \bar{F}} w(\bar{F})
$$

The upper bound on $\mathbf{s}\left(\mathcal{L}_{i}^{u p}\right)$ follows from the subsequent discussion. We have

$$
\begin{align*}
\left(\mathcal{L}_{i}^{u p} f, f\right) & =\left(\delta_{i} f, \delta_{i} f\right) \tag{3.3a}\\
& =\left(\sum_{\bar{F} \in S_{i+1}(K)} f(\partial[\bar{F}]) \mathrm{e}_{[\bar{F}]}, \sum_{\bar{F} \in S_{i+1}(K)} f(\partial[\bar{F}]) \mathrm{e}_{[\bar{F}]}\right) \tag{3.3b}\\
& =\sum_{\bar{F} \in S_{i+1}(K)} f(\partial[\bar{F}])^{2} w(\bar{F}) \tag{3.3c}\\
& \leq(i+2) \sum_{F \in S_{i}(K)} f([F])^{2} \sum_{\bar{F} \in S_{i+1}(K): F \in \partial \bar{F}} w(\bar{F}), \tag{3.3d}
\end{align*}
$$

where (3.3d) is obtained by using the Cauchy-Schwarz inequality. In terms of degrees the last inequality can be restated as

$$
\begin{equation*}
\left(\mathcal{L}_{i}^{u p} f, f\right) \leq(i+2) \sum_{F \in S_{i}(K)} f([F])^{2} \operatorname{deg} F . \tag{3.4}
\end{equation*}
$$

By dividing (3.4) by (f, f) we get

$$
\begin{equation*}
\frac{\left(\mathcal{L}_{i}^{u p} f, f\right)}{(f, f)} \leq(i+2) \frac{\sum_{F \in S_{i}(K)} f([F])^{2} \operatorname{deg} F}{\sum_{F \in S_{i}(K)} f([F])^{2} w(F)} \tag{3.5}
\end{equation*}
$$

Replacing f in (3.5) with the eigenfunction f_{m}, corresponding to the largest eigenvalue $\lambda_{\max }$ of $\mathcal{L}_{i}^{u p}$ gives

$$
\begin{equation*}
\lambda_{\max } \leq(i+2) \frac{\sum_{F \in S_{i}(K)} f_{m}([F])^{2} \operatorname{deg} F}{\sum_{F \in S_{i}(K)} f_{m}([F])^{2} w(F)} . \tag{3.6}
\end{equation*}
$$

Therefore, if

$$
\begin{equation*}
w(F)=\operatorname{deg} F \tag{3.7}
\end{equation*}
$$

for every $F \in S_{i}(K)$, then $\lambda_{\max } \leq i+2$ and the eigenvalues of $\mathcal{L}_{i}^{u p}$ are in the interval $[0, i+2]$.

Definition 3.2. Let w be a weight function on K which satisfies (3.7) for every face of the simplicial complex K, which is not a facet $(\operatorname{dim} F<\operatorname{dim} K)$, then the Laplace operator defined on the cochain complex of K is called the weighted normalized combinatorial Laplace operator. If additionally, the weights of the facets of K are equal to 1 , then the obtained operator is called the normalized combinatorial Laplace operator and is denoted by $\Delta_{i}^{u p}$. We will keep the same notation for the weighted normalized combinatorial Laplacian, emphasizing that we are considering its weighted version.

If (3.7) does not hold, we derive a bound on the maximal eigenvalue of the Laplacian $\mathcal{L}_{i}^{u p}$ from the inequality (3.6), i.e.

$$
\begin{equation*}
\lambda_{m} \leq(i+2) \frac{\max _{F \in S_{i}(K)} \operatorname{deg} F}{\min _{F \in S_{i}(K)} w(F)} . \tag{3.8}
\end{equation*}
$$

Here $\min _{F \in S_{i}(K)} w(F)$ stands for the minimal non-zero weight over all i-faces F of K. The inequality (3.8) in the case of the combinatorial Laplacian $L_{i}^{u p}$ reduces to

$$
\begin{equation*}
\lambda_{m} \leq(i+2) \max _{F \in S_{i}(K)} \operatorname{deg} F, \tag{3.9}
\end{equation*}
$$

which for $i=0$ becomes exactly

$$
\lambda_{m} \leq 2 \max _{v \in S_{0}(G)} \operatorname{deg} v
$$

This is the well-known bound on the maximal eigenvalue of $L_{0}^{u p}$ (see [1]). Another upper bound of the spectrum of $L_{i}^{u p}$ was obtained by Duval and Reiner in [12] as a part of more general study, i.e.

$$
\begin{equation*}
\lambda_{m} \leq n, \tag{3.10}
\end{equation*}
$$

where n is the number of vertices of the complex K. The inequality (3.9) is sharper than (3.10) for large values of n and small values of i. In particular, if $\max _{F \in S_{i}} \operatorname{deg} F<n /(i+2)$, then the estimate (3.9) is sharper, otherwise (3.10) is. We sum up our results in the following theorem.

Theorem 3.2. The spectrum of $\mathcal{L}_{i}^{u p}$ is bounded from above by
(i) $i+2$, if $\mathcal{L}_{i}^{u p}=\Delta_{i}^{u p}$,
(ii) $(i+2) \max _{F \in S_{i}(K)} \operatorname{deg} F$, if $\mathcal{L}_{i}^{u p}=L_{i}^{u p}$,
(iii) $(i+2) \max _{F \in S_{i}(K)} \operatorname{deg} F / \min _{F \in S_{i}(K)} w(F)$, for all other choices of scalar products.

In the following theorems we present some lower bounds on $\lambda_{\max }$.
Theorem 3.3. Without loss of generality, let K be a pure simplicial complex of dimension $i+1$, $\mathcal{L}\left(K, w_{K}\right)$ the Laplace operator with the weight function $w_{K}, \lambda_{\max }$ the maximal eigenvalue in the spectrum of $\mathcal{L}_{i}^{u p}\left(K, w_{K}\right)$, and $\operatorname{vol}_{i}(K)=\sum_{F \in S_{i}} \operatorname{deg} F$, then
(i) $\operatorname{dim} C^{i} /\left(\operatorname{dim} C^{i+1}-\operatorname{dim} H^{i+1}\right) \leq \lambda_{\max }$, if $\mathcal{L}_{i}^{u p}=\Delta_{i}^{u p}$,
(ii) $\operatorname{vol}_{i}(K) /\left(\operatorname{dim} C^{i+1}-\operatorname{dim} H^{i+1}\right) \leq \lambda_{\text {max }}$, if $\mathcal{L}_{i}^{u p}=L_{i}^{u p}$,
(iii) $\operatorname{vol}_{i}(K) /\left(\max _{F \in S_{i}} w(F)\left(\operatorname{dim} C^{i+1}-\operatorname{dim} H^{i+1}\right)\right) \leq \lambda_{\text {max }}$, for all other choices of scalar products.

Proof. The sum of all eigenvalues is equal to the trace of the Laplace matrix, i.e. $\sum_{F \in S_{i}}$ $\sum_{\bar{F}: F \in \bar{F}} \frac{w(\bar{F})}{w(F)}$. Together with Theorem 3.1, this yields the inequality

$$
\begin{equation*}
\frac{\sum_{F \in S_{i}} \sum_{\bar{F}: F \in \bar{F}} \frac{w(\bar{F})}{w(F)}}{\operatorname{dim} C^{i+1}-\operatorname{dim} H^{i+1}} \leq \lambda_{\max } \tag{3.11}
\end{equation*}
$$

which proves the theorem.
Theorem 3.4. Let K be a pure $(i+1)$-dimensional simplicial complex and let $\lambda_{\max }$ denote the maximum eigenvalue of the operator $\mathcal{L}_{i}^{u p}(K, w)$, then

$$
\begin{equation*}
\frac{D}{d}+\frac{(i+1) D}{N d} \leq \lambda_{\max } \tag{3.12}
\end{equation*}
$$

where D, d are maximal degree, weight, respectively over all i-simplices and N is the minimal number of $(i+1)$-faces which are incident to an i-simplex of degree D.

Proof. Assume that F is an i-simplex of maximal degree with the minimal number of incident $(i+1)$-faces, i.e. there exist exactly $N(i+1)$-simplices which contain F as a facet and $\sum_{\bar{F}: F \in \bar{F}} w(\bar{F})=D$. Let $f=\sum_{k=1}^{N} \operatorname{sgn}\left([F], \partial\left[\bar{F}_{k}\right]\right) e_{\left[\bar{F}_{k}\right]}$, then we obtain

$$
\begin{aligned}
\lambda_{\max } \geq & \frac{\left(\delta_{i}^{*} f, \delta_{i}^{*} f\right)}{(f, f)} \\
\geq & \frac{1}{D}\left(\sum_{k=1}^{N} \operatorname{sgn}\left([F], \partial\left[\bar{F}_{k}\right]\right) \sum_{E \in \partial \bar{F}_{k}} \operatorname{sgn}\left([E], \partial\left[\bar{F}_{k}\right]\right) \frac{w\left(\bar{F}_{k}\right)}{w(E)} \mathrm{e}_{[E]},\right. \\
& \left.\sum_{k=1}^{N} \operatorname{sgn}\left([F], \partial\left[\bar{F}_{k}\right]\right) \sum_{E \in \partial \bar{F}_{k}} \operatorname{sgn}\left([E], \partial\left[\bar{F}_{k}\right]\right) \frac{w\left(\bar{F}_{k}\right)}{w(E)} \mathrm{e}_{[E]}\right) \\
= & \frac{1}{D}\left(e_{[F]}, e_{[F]}\right)+\frac{1}{D}\left(\sum_{k=1}^{N} \operatorname{sgn}\left([F], \partial\left[\bar{F}_{k}\right]\right) \sum_{\substack{E \in \partial \bar{F}_{k}: \\
E \neq F}} \operatorname{sgn}\left([E], \partial\left[\bar{F}_{k}\right]\right) \frac{w\left(\bar{F}_{k}\right)}{w(E)} \mathrm{e}_{[E]},\right. \\
& \left.\sum_{k=1}^{D} \operatorname{sgn}\left([F], \partial\left[\bar{F}_{k}\right]\right) \sum_{\substack{E \in \partial \bar{F}_{k}: \\
E \neq F}} \operatorname{sgn}\left([E], \partial\left[\bar{F}_{k}\right]\right) \frac{w\left(\bar{F}_{k}\right)}{w(E)} \mathrm{e}_{[E]}\right) \\
= & \frac{D}{w(F)}+\frac{1}{D} \sum_{k=1}^{N} \sum_{\substack{E \in \partial \bar{F}_{k}: \\
E \neq F}} \frac{w^{2}\left(\bar{F}_{k}\right)}{w(E)} \\
\geq & \frac{D}{w(F)}+\frac{i+1}{d D} \sum_{k=1}^{N} w^{2}\left(\bar{F}_{k}\right) \\
\geq & \frac{D}{d}+\frac{i+1}{d D} \frac{D^{2}}{N} .
\end{aligned}
$$

The inequalities above are a consequence of the variational characterization of eigenvalues (Theorem 2.1) and of the Cauchy-Schwarz inequality.

The previous result for $\mathcal{L}\left(K, w_{K}\right)=L$ generalizes Proposition 8.2 from [12] and its proof. As another special case of Theorem 3.4 we obtain the following lower bounds for the maximal eigenvalue of the normalized Laplacian.

Corollary 3.5.

$$
\begin{equation*}
1+\frac{i+1}{D} \leq \lambda_{\max } \tag{3.13}
\end{equation*}
$$

where D is the maximal degree over all i simplices and $\lambda_{\max }$ the maximal eigenvalue of $\Delta_{i}^{u p}$.

Remark 3.2 (Negative Weights). If negative weights in the definition of the weight function are allowed, then bilinear forms (inner products) on cochain vector spaces are no longer positive definite. With arbitrary weights, $\mathcal{L}_{i}^{u p}$ acts on functions on i-simplices

$$
\Delta_{i}^{u p} f([F])=\frac{1}{w(F)} \sum_{\substack{\bar{F} \in S_{i+1} \\ F \in \partial \bar{F}}} \operatorname{sgn}([F], \partial[\bar{F}]) f(\partial[\bar{F}]) .
$$

This approach enables us to use negative weights, but it also deprives us of the structure of the cohomology of simplicial complexes. The eigenvalues need no longer be real nor non-negative. Here, however, we do not pursue the study of Laplacians with negative weights.

4. Circuits, paths, stars and their spectrum

In this section we calculate the spectrum of the up (down) normalized Laplace operator for some classes of simplicial complexes.

Theorem 4.1. Let K be an $(n-1)$-dimensional simplex. Then $\mathbf{s}\left(\Delta_{i}^{u p}(K)\right)$ consists of the eigenvalue $n /(n-i-1)$ with multiplicity $\binom{n-1}{i+1}$ and the eigenvalue zero with multiplicity $\binom{n-1}{i}$.

Proof. We will prove that the function $f \in C^{i}(K, \mathbb{R})$,

$$
f_{[\bar{F}]}([F])= \begin{cases}\operatorname{sgn}([F], \partial[\bar{F}]) & \text { if } F \text { is facet of }(i+1) \text {-face } \bar{F} \\ 0 & \text { otherwise, }\end{cases}
$$

is an eigenfunction of $\Delta_{i}^{u p}(K)$ for the eigenvalue $n /(n-i-1)$.
It is not difficult to see that there are exactly $\binom{n-1}{i+1}$ linearly independent functions of this form. We have to check that the equality

$$
\left(\Delta_{i}^{u p} f_{[\bar{F}]}\right)[F]=\frac{n}{n-i-1} f([F])
$$

holds for every i-dimensional face F of K. We distinguish three cases:
(i) F is an arbitrary facet of \bar{F}. Then,

$$
\begin{aligned}
& \left(\Delta_{i}^{u p} f_{[\bar{F}]}\right)([F])=\sum_{\substack{\bar{E} \in S_{i+1}: \\
F \in \partial \bar{E}}} \frac{w(\bar{E})}{w(F)} f_{[\bar{F}]}([F]) \\
& +\sum_{\substack{F^{\prime} \in S_{i}(L): \\
\left(\exists \exists \in \in S_{i+1}(L) F, F^{\prime} \in \partial \bar{E}\right.}} \frac{w(\bar{E})}{w(F)} \operatorname{sgn}([F], \partial[\bar{E}]) \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{E}]\right) f_{[\bar{F}]}\left(\left[F^{\prime}\right]\right) \\
& =\frac{1}{n-i-1} \sum_{\substack{\bar{E} \in S_{i+1}: \\
F \in \partial \bar{E}}} f_{[\bar{F}]}([F])+\frac{1}{n-i-1} \\
& \times \sum_{\substack{F^{\prime} \in S_{i}(L): \\
\left(\exists \bar{E} \in S_{i+1}(L)\right) F, F^{\prime} \in \partial \bar{E}}} \operatorname{sgn}([F], \partial[\bar{E}]) \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{E}]\right) f_{[\bar{F}]}\left(\left[F^{\prime}\right]\right) \\
& =f_{[\bar{F}]}([F])+\frac{i+1}{n-i-1} \operatorname{sgn}([F], \partial[\bar{F}]) \\
& =\frac{n}{n-i-1} f([F]) .
\end{aligned}
$$

(ii) F and \bar{F} have i vertices in common, i.e. they intersect in a face of dimension $i-1$.

Then by definition $f([F])=0$. Let $v_{0}, v_{1}, \ldots, v_{i+2} \in[n]$ be arbitrary vertices of L ordered increasingly. Without loss of generality, assume $0 \leq j<k<l \leq$ $i+2, \bar{F}=\left[v_{0}, \ldots, \hat{v}_{l}, \ldots, v_{i+2}\right]$ and $[F]=\left[v_{0}, \ldots, \hat{v_{j}}, \ldots, \hat{v}_{k}, \ldots, v_{i+2}\right]$. Then there exist exactly two i-faces F_{1} and F_{2} in the boundary of \bar{F} and two $(i+1)$ simplices \bar{F}_{1} and \bar{F}_{2} of L, such that $F, F_{1} \in \partial \bar{F}_{1}$ and $F, F_{2} \in \partial \bar{F}_{2}$. In particular, $F_{1}=\left[v_{0}, \ldots, \hat{v}_{k}, \ldots, \hat{v}_{l}, \ldots, v_{i+2}\right], F_{2}=\left[v_{0}, \ldots, \hat{v}_{j}, \ldots, \hat{v}_{l}, \ldots, v_{i+2}\right]$ and $\bar{F}_{1}=$ $\left[v_{0}, \ldots, \hat{v}_{k}, \ldots, v_{i+2}\right], \bar{F}_{2}=\left[v_{0}, \ldots, \hat{v_{j}}, \ldots, v_{i+2}\right]$. Now it is straightforward to calculate

$$
\begin{aligned}
\left(\Delta_{i}^{u p} f_{[\bar{F}]}\right)([F])= & 0+\operatorname{sgn}\left([F], \partial\left[\bar{F}_{1}\right]\right) \operatorname{sgn}\left(\left[F_{1}\right], \partial\left[\bar{F}_{1}\right]\right) f_{[\bar{F}]}\left(\left[F_{1}\right]\right) \\
& +\operatorname{sgn}\left([F], \partial\left[\bar{F}_{2}\right]\right) \operatorname{sgn}\left(\left[F_{2}\right], \partial\left[\bar{F}_{2}\right]\right) f_{[\bar{F}]}\left(\left[F_{2}\right]\right) \\
= & \operatorname{sgn}\left([F], \partial\left[\bar{F}_{1}\right]\right) \operatorname{sgn}\left(\left[F_{1}\right], \partial\left[\bar{F}_{1}\right]\right) \operatorname{sgn}\left(\left[F_{1}\right], \partial[\bar{F}]\right) \\
& +\operatorname{sgn}\left([F], \partial\left[\bar{F}_{2}\right]\right) \operatorname{sgn}\left(\left[F_{2}\right], \partial\left[\bar{F}_{2}\right]\right) \operatorname{sgn}\left(\left[F_{2}\right], \partial[\bar{F}]\right) \\
= & (-1)^{j}(-1)^{l-1}(-1)^{k}+(-1)^{k-1}(-1)^{l-1}(-1)^{j} \\
= & 0 .
\end{aligned}
$$

(iii) F and \bar{F} have less than i vertices in common.

Then there are no faces in the boundary of \bar{F} which are ($i+1$)-up neighbours of F. This implies that $\Delta_{i}^{u p} f([F])=0$, which completes the proof.

In the remainder of this section, we calculate the spectrum of circuits, paths and stars.
Definition 4.1. A pure simplicial complex L of dimension i is called an i-path of length m iff there is an ordering of its i-simplices $F_{1}<F_{2}<\cdots<F_{m}$, such that F_{i} and F_{j} are $(i-1)$-down neighbours iff $|j-l|=1$. When F_{m} coincides with F_{1}, we say that L is an i-circuit of length ($m-1$). The vertices in the intersection $\bigcap_{j=1}^{m-1} F_{j}$ are called centres of L.

Note that the simplicial complexes in Fig. 1(b) and (c) have one central vertex, i.e. a centre.

Fig. 1. Examples of circuits, paths and stars.
Before we proceed to calculate $\mathbf{s}\left(\Delta_{i}^{u p}\right)$ of these complexes, we recall the definition of orientability.

Definition 4.2. Let K be a pure $(i+1)$-dimensional simplicial complex. We say that K is orientable iff it is possible to assign an orientation to all $(i+1)$-faces of K in such a way that any two simplices that intersect in an i-face induce a different orientation on that face. We say that such simplices are oriented coherently.

Note that if an $i+1$-dimensional simplicial complex is orientable, then any of its $i+1$-faces has at most one i-down neighbour.

Choosing an orientation on $(i+1)$-faces of the orientable simplicial complex K is equivalent to choosing a basis $B_{i+1}(K)$ of the vector space $C_{i+1}(K, \mathbb{R})$ consisting of elementary $(i+1)$ chains $[\bar{F}]$ that are oriented coherently.

For the subsequent calculations, the following obvious result (see e.g. [17]) will be useful.
Lemma 4.2. If two matrices M and P commute, i.e., $M P=P M$, and if λ is a simple eigenvalue of P, then its corresponding eigenvector v is also an eigenvector of M.

Let \tilde{p} be a permutation of the elements of a basis $B_{i}(K)$ of $C_{i}(K, \mathbb{R})$, for an arbitrary simplicial complex K, and let \bar{p} be the permutation of elementary cochains of dimension i induced by \tilde{p}. Denote the linear extension of \bar{p} on $C^{i}(K, \mathbb{R})$ by p. Then we have the following equivalences

$$
\tilde{p}([F])=[F] \Leftrightarrow \bar{p}\left(e_{[F]}\right)=e_{[F]} \Leftrightarrow p\left(e_{[F]}\right)=e_{[F]} .
$$

To simplify the notation, we will designate any of the maps \tilde{p}, \bar{p}, p by p. It will be clear from the argument of p which one is used. Furthermore, we will write $p(F)$ to denote the i-face which is uniquely determined by the mapping $p([F])$. To prove that p and $\Delta_{i}^{\text {down }}$ commute, it is necessary to check if $p \Delta_{i}^{\text {down }} e_{[F]}=\Delta_{i}^{\text {down }} p e_{[F]}$ holds for every i-face F. Since

$$
\begin{aligned}
p \Delta_{i}^{\text {down }} e_{[F]}= & \sum_{E \in \partial F} \frac{w(F)}{w(E)} p\left(e_{[F]}\right)+\sum_{\substack{F^{\prime} \in S_{i}(K): \\
\left(\exists E \in S_{i-1}(K)\right) F \cap F^{\prime}=E}} \frac{w(F)}{w(E)} \operatorname{sgn}([E], \partial[F]) \\
& \times \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right) p\left(e_{\left[F^{\prime}\right]}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{i}^{\text {down }} p e_{[F]}= & \sum_{p(E) \in \partial p(F)} \frac{w(p(F))}{w(p(E))} e_{p([E])}+\sum_{\substack{\left.p\left(F^{\prime}\right) \in S_{i}(K): \\
(\nexists) \\
p(F) \in \in i_{i-1}(\mathcal{K})\right) \\
p(F) \cap\left(F^{\prime}\right)=p(E)}} \frac{w(p(F))}{w(p(E))} \\
& \times \operatorname{sgn}(p([E]), \partial p([F])) \operatorname{sgn}\left(p([E]), \partial p\left(\left[F^{\prime}\right]\right)\right) e_{p\left(\left[F^{\prime}\right]\right)},
\end{aligned}
$$

it suffices to show

$$
\begin{equation*}
\sum_{E \in \partial F} \frac{w(F)}{w(E)}=\sum_{p(E) \in \partial p(F)} \frac{w(p(F))}{w(p(E))} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{w(p(F))}{w(p(E))} \operatorname{sgn}(p([E]), \partial p([F])) \operatorname{sgn}\left(p([E]), \partial p\left(\left[F^{\prime}\right]\right)\right) \\
& \quad=\frac{w(F)}{w(E)} \operatorname{sgn}([E], \partial[F]) \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right) \tag{4.2}
\end{align*}
$$

for every F and F^{\prime} which are $(i-1)$-down neighbours in K and every elementary i-cochain $e_{[F]}$.
Theorem 4.3. Let K be an orientable i-circuit of length m. Then the eigenvalues of $\Delta_{i}^{\text {down }}(K)$ are $i-\cos (2 \pi j / m), j=0,1, \ldots, m-1$.

Proof. Let $F_{1}<F_{2}<\cdots<F_{m}$ be the ordering of i-simplices of K satisfying the conditions of Definition 4.1. Moreover, let $\left[F_{1}\right],\left[F_{2}\right], \ldots,\left[F_{m}\right]$ be a choice of coherent orientation on them. Let $p: C^{i}(K, \mathbb{R}) \rightarrow C^{i}(K, \mathbb{R})$ be a map given by $p\left(\left[F_{k}\right]\right)=\left[F_{k+1}\right]$, for $1 \leq k<m$ and $p\left(\left[F_{m}\right]\right)=\left[F_{1}\right]$. It is not difficult to check that

$$
\begin{equation*}
p \Delta_{i}^{\text {down }}=\Delta_{i}^{\text {down }} p \tag{4.3}
\end{equation*}
$$

In particular, equality (4.1) is satisfied since the weights of all i-faces are equal to 1 and $w(F) / w(E)=w(p F) / w(p E)$. Equality (4.2) holds because i-faces of K are coherently oriented, which gives the equalities $\operatorname{sgn}([E], \partial[F]) \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right)=-1$ and $\operatorname{sgn}([p E], \partial[p F]) \operatorname{sgn}\left([p E], \partial\left[p F^{\prime}\right]\right)=-1$, where F and F^{\prime} are $(i-1)$-down neighbours of K and E is their intersecting face. Hence (4.3) is true.

Let P be the matrix associated with the mapping $p . P$ is a permutation matrix and its characteristic polynomial is $\lambda^{m}-1=0$. Eigenvectors of P are $U_{\theta}=\left(1, \theta, \theta^{2}, \ldots, \theta^{m-1}\right)^{T}$, where θ is the m-th root of unity. Thus, the eigenfunctions of the map p are $u_{\theta}\left(\left[F_{k}\right]\right)=\theta^{k-1}$.

With Lemma 4.2, we can now easily calculate the eigenvalues of $\Delta_{i}^{\text {down }}$.
Let $E_{k}:=F_{k-1} \cap F_{k}$ for $2 \leq k \leq m-1$ and let $E_{m}:=F_{m} \cap F_{1}$. We have

$$
\begin{aligned}
\Delta_{i}^{d o w n} u_{\theta}\left(\left[F_{k}\right]\right)= & \sum_{\substack{E \in S_{i-1}(L): \\
E \in \partial F_{k}}} \frac{w\left(F_{k}\right)}{w(E)} \theta^{k-1} \\
& +\frac{w\left(F_{k}\right)}{w\left(E_{k}\right)} \operatorname{sgn}\left(\left[E_{k}\right], \partial\left[F_{k}\right]\right) \operatorname{sgn}\left(\left[E_{k}\right], \partial F_{k-1}\right) \theta^{k-2} \\
& +\frac{w\left(F_{k}\right)}{w\left(E_{k+1}\right)} \operatorname{sgn}\left(\left[E_{k+1}\right], \partial\left[F_{k}\right]\right) \operatorname{sgn}\left(\left[E_{k+1}\right], \partial\left[F_{k+1}\right]\right) \theta^{k} \\
= & \left(\frac{2}{2}+i-1\right) \theta^{k-1}-\frac{1}{2} \theta^{k-2}-\frac{1}{2} \theta^{k} \\
= & \theta^{k-1}\left(i-\frac{\theta^{-1}+\theta}{2}\right) \\
= & \theta^{k-1}\left(i-\cos \left(\frac{2 \pi j}{m}\right)\right)
\end{aligned}
$$

It is straightforward to check that a similar equality holds for $k=1$ and $k=m$. Thus, $\lambda_{j}=i-\cos (2 \pi j / n)$, where $j=0,1, \ldots, m-1$ are the eigenvalues of $\Delta_{i}^{\text {down }}(K)$.

Remark 4.1. The eigenvalues of an orientable i-circuit depend only on its length; thus there are different combinatorial structures which give the same eigenvalues of $\Delta_{i}^{\text {down }}$. For example, $1,1.5,1.5,2.5,2.5,3$ are the eigenvalues of $\Delta_{2}^{\text {down }}$ of both simplicial complexes, in Fig. 1(b), and the simplicial complex in Fig. 1(a).

A similar analysis can be carried out for a non-orientable i-circuit of length m. In that case we define p to be $p\left(\left[F_{k}\right]\right)=\left[F_{k+1}\right]$, for $1 \leq k<m$ and $p\left(\left[F_{m}\right]\right)=-\left[F_{1}\right]$. The remaining calculations are carried out as in Theorem 4.3. Thus, we have the following theorem.

Theorem 4.4. Let K be a non-orientable i-circuit of length m. Then the eigenvalues of $\Delta_{i}^{\text {down }}(K)$ are $i-\sin (2 \pi j / m)$ for m even and $i+\cos (2 \pi j / m)$ for m odd, where $j=$ $0,1, \ldots, m-1$.

Corollary 4.5. Eigenvalues of $\Delta_{i}^{\text {down }}(K)$ of an i-path K of length m are $\lambda_{k}=i-\cos (\pi k / m)$, for $k=0, \ldots, m-1$.

Proof. Since there are no self-intersections of dimension $(i-1)$ in an i-path, every path is orientable. From Theorem 4.3, we conclude that in the spectrum of the i-th down Laplacian of an i-circuit of length $2 m$, all eigenvalues appear twice, except $(i-1)$ and $(i+1)$. In particular, $\lambda_{k}=i-\cos (k \pi / m)=i-\cos ((2 m-k) \pi / m)=\lambda_{2 m-k}$, for $k \neq 0$ and $k \neq m$. Let $\phi=\exp (i k \pi / m)$ (where here $i=\sqrt{-1}$ should not be confused with the same symbol i for the order of the Laplace operator); then the eigenvector corresponding to λ_{k} is $u_{k}=(1, \exp (i k \pi / m), \ldots, \exp (i(2 m-1) k \pi / m))^{T}$.

The function $v_{k}=u_{k}+u_{2 m-k}$ is the eigenvector for the eigenvalue λ_{k} as well

$$
v_{k}(m)=\mathrm{e}^{i \frac{\pi k}{m}}+\mathrm{e}^{i \frac{\pi(2 m-k)}{m}}=\mathrm{e}^{i \frac{\pi k}{m}}+\mathrm{e}^{-i \frac{\pi k}{m}} .
$$

It is now a straightforward calculation to see that the first m entries of v_{k}, for every $k=$ $0,1, \ldots, m-1$, constitute the eigenvectors of K for the eigenvalue $i-\cos (\pi k / m)$.

This idea generalizes to paths with self-intersections of dimension $(i-1)$, but then it is necessary to distinguish among orientable and non-orientable paths. The eigenvalues of a star are described in the following theorem.

Theorem 4.6. Let K be a simplicial complex consisting of $m i$-simplices assembled in a star like formation, i.e., all simplices have one ($i-1$)-face in common. Then the non-zero eigenvalues of $\Delta_{i}^{\text {down }}(K)$ are i with multiplicity $(m-1)$ and $(i+1)$ with multiplicity 1.

Proof. Let $F_{k}, k \in\{1, \ldots, m\}$, be an i-dimensional face of K and let $\bigcap_{k} F_{k}=E$. Let $p: B_{i}(K, \mathbb{R}) \rightarrow B_{i}(K, \mathbb{R})$ be a permutation, such that $p\left(\left[F_{k}\right]\right)=\left[F_{k+1}\right]$. Since $F_{k} \cap F_{j}=E$, for any two i-faces of K, we can fix the orientations on the F_{k} such that they induce the same orientation on E. Now it is easy to check that

$$
p \Delta_{i}^{\text {down }}=\Delta_{i}^{\text {down }} p
$$

Fig. 2. Examples of i-path connected simplicial complexes and their dual graphs.

Let θ denote an m-th root of unity different from 1 and u the eigenvector of p corresponding to it. Then we obtain

$$
\begin{aligned}
\Delta_{i}^{\text {down }} u_{\theta}\left(\left[F_{k}\right]\right) & =\sum_{E, E \in \partial F_{k}} \frac{w\left(F_{k}\right)}{w(E)} \theta^{k-1}+\sum_{F, F \neq F_{k}} \frac{w(F)}{w(E)} u_{\theta}([F]) \\
& =i \theta^{k-1}+\frac{1}{m}\left(1+\theta+\cdots+\theta^{m-1}\right) \\
& =i \theta^{k-1}
\end{aligned}
$$

Thus, u_{θ} is an eigenfunction of $\Delta_{i}^{\text {down }}(K)$ corresponding to the eigenvalue i. The case when $\theta=1$ results in the eigenvalue $k+1$.

5. Regular simplicial complexes

In this section we analyse the spectrum of the normalized Laplacian of a regular simplicial complex, as defined in [29].

Definition 5.1. A simplicial complex K is i-regular iff all its i-faces have the same degree.
Note that a regular graph is a 0 -regular simplicial complex. To characterize the eigenvalues of regular simplicial complexes, we introduce the notion of i-dual graph and i-path connected simplicial complexes.

Definition 5.2. Let K be a simplicial complex. Then a graph G_{K} with the vertex set $V=\left\{F_{j} \mid\right.$ $\left.F_{j} \in S_{i}(K)\right\}$ and the edge set $E=\left\{\left(F_{j}, F_{l}\right) \mid F_{j} \cap F_{l} \in S_{i-1}(K)\right\}$ is called an i-dual graph of K. Note that in graph theory dual graphs are called line graphs.

Definition 5.3. A simplicial complex K is i-path connected iff for any two i-faces F_{1}, F_{2} of K there exists an i-path connecting them.

Remark 5.1. The definition of i-path connectedness is different from the definition of i connected simplicial complexes in [26].

From now on, until the end of this section, we assume K to be $i+1$-path connected (see Fig. 2).
Theorem 5.1. Let K be an orientable i-regular simplicial complex, with i-simplices of degree r, and G_{K} its $(i+1)$-dual graph. Then for $r \neq 1(r=2)$

$$
\lambda_{k}=\frac{(i+2)}{2} \mu_{k}
$$

where the λ 's are the eigenvalues of $\Delta_{i+1}^{\text {down }}$ and the μ 's the eigenvalues of $\Delta_{0}^{u p}\left(G_{K}\right)$, both ordered non-decreasingly. If $r=1$, then the only eigenvalue of $\Delta_{i+1}^{\text {down }}$ is $\lambda_{1}=(i+2)$.

Proof. Assume that $r>1$. Since the complex K is orientable, we can choose an orientation on the $(i+1)$-simplices of K, s.t. $\operatorname{sgn}([E], \partial[F]) \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right)=-1$, where F and F^{\prime} are $(i+1)$-simplices and E their intersecting face of dimension i. Such oriented simplices uniquely determine a basis B^{i+1} of C^{i+1}. Hence, the matrix of the operator $\Delta_{i+1}^{\text {down }}$ with respect to B^{i} is equal to $(i+2) / r I-1 / r A$, where $A=\left(a_{i j}\right)$ and $a_{i j}=1$ if the $(i+1)$-simplices F_{i} and F_{j} are i-down neighbours. Assume that G_{K} is the $(i+1)$-dual graph of K; then G_{K} is regular as well, and the degree of its vertices is $(r-1)(i+2)$. Furthermore, the adjacency matrix of G_{K} equals A. Thus

$$
\Delta_{i+1}^{\text {down }}=\frac{(2-r)(i+2)}{r} I+\frac{(r-1)(i+2)}{r} \Delta_{0}^{u p}\left(G_{K}\right)
$$

therefore

$$
\lambda_{k}=\frac{(2-r)(i+2)}{r}+\frac{(r-1)(i+2)}{r} \mu_{k}
$$

The eigenvalue 0 is in $\mathbf{s}\left(\Delta_{0}^{u p}\left(G_{K}\right)\right)$; thus $(2-r)(i+2) / r$ must be in the spectrum of $\Delta_{i+1}^{\text {down }}(K)$. Since the operator $\Delta_{i+1}^{d o w n}$ is positive definite $(2-r)(i+2) / r \geq 0$, then $2 \geq r$. Together with the assumption at the beginning $r>1$, we conclude that r must be equal to 2 (another way to see that $r \leq 2$ is from a definition of orientable simplicial complexes). Finally,

$$
\lambda_{k}=\frac{(i+2)}{2} \mu_{k}
$$

If $r=1$, then $\Delta_{i+1}^{\text {down }}=(i+2) I$ and its only eigenvalue is $i+2$.
In other words, the i-up spectrum of the normalized Laplacian of orientable $(i+1)$-dimensional pseudomanifolds is uniquely determined by the normalized spectrum of its $(i+1)$-dual graph.

From the previous theorem we obtain the following corollary.
Corollary 5.2. Let K be an i-regular, orientable, simplicial complex, with eigenvalue $i+2$; then the spectrum of $\Delta_{i+1}^{\text {down }}$ is symmetric about $(i+2) / 2$.

Theorem 5.3. Let K be an i-regular simplicial complex, with i-simplices of degree r, and let G_{K} be its $(i+1)$-dual graph and $i+2 \in \mathbf{s}\left(\Delta_{i+1}^{\text {down }}\right)$. Then

$$
\lambda_{k}=i+2-\frac{(r-1)(i+2)}{r} \mu_{n-k}
$$

where the λ 's are the eigenvalues of $\Delta_{i+1}^{\text {down }}$ and the μ 's the eigenvalues of $\Delta_{0}^{u p}\left(G_{K}\right)$ both ordered non-decreasingly, and n is the number of vertices of G_{K}.

Proof. Since $i+2 \in \mathbf{s}\left(\Delta_{i+1}^{\text {down }}(K)\right)$, according to Theorem 7.1 we can choose an orientation on the $(i+1)$-simplices of K, s.t. $\operatorname{sgn}([E], \partial[F]) \operatorname{sgn}\left([E], \partial\left[F^{\prime}\right]\right)=1$, for every i-down neighbours F and F^{\prime}, where $F \cap F^{\prime}=E$ and $\operatorname{dim} E=i$. The matrix of the operator $\Delta_{i+1}^{\text {down }}$ is

$$
\begin{equation*}
\Delta_{i+1}^{d o w n}=\frac{i+2}{r} I+\frac{1}{r} A \tag{5.1}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$, and

$$
a_{i j}= \begin{cases}1 & \text { if } F \text { and } F^{\prime} \text { are } i \text {-down neighbours } \\ 0 & \text { otherwise }\end{cases}
$$

Since the degree of every vertex in the dual graph G_{K} is $(r-1)(i+2)$, then

$$
\Delta_{i+1}^{d o w n}=(i+2) I-\frac{(r-1)(i+2)}{r} \Delta_{0}^{u p}\left(G_{K}\right)
$$

Remark 5.2. The eigenvalues of $\Delta_{i+1}^{\text {down }}$ are non-negative; hence $(i+2)-(r-1)(i+2) / r \mu_{n-k} \geq$ 0 , and

$$
\begin{equation*}
\frac{r}{r-1} \geq \mu_{n} \tag{5.2}
\end{equation*}
$$

where μ_{n} is the maximal eigenvalue of $\Delta_{0}^{u p}\left(G_{K}\right)$. Inequality (5.2) is always satisfied for $r=2$.

6. Constructions and their effect on the spectrum: wedges, joins and duplication of motifs

6.1. Wedges

Let $\left(X_{i}\right)_{i \in I}$ be a family of topological spaces and $x_{i} \in X_{i}$; then the wedge sum $\bigvee_{i} X_{i}$ is the quotient of their disjoint union by the identification $x_{i} \sim x_{j}$, for all $i, j \in I$, i.e.

$$
\bigvee_{i} X_{i}:=\bigsqcup_{i} X_{i} /\left\{x_{i} \sim x_{j} \mid i, j \in I\right\} .
$$

For the purposes of this paper we define a combinatorial wedge sum, which is in many ways similar to the above wedge sum.

Definition 6.1. For simplicial complexes K_{1} and K_{2} with vertex sets [n] and [m], respectively, and k-simplices $F_{1}=\left\{v_{0}, \ldots, v_{k}\right\}$ in $S_{k}\left(K_{1}\right)$ and $F_{2}=\left\{u_{0}, \ldots, u_{k}\right\}$ in $S_{k}\left(K_{2}\right)$, the combinatorial k-wedge sum of K_{1} and K_{2} is an abstract simplicial complex on the vertex set [$m+n-k-1$], such that

$$
K_{1} \vee_{k} K_{2}:=\left\{\left\{v_{i_{0}}, \ldots, v_{i_{k}}\right\} \mid\left\{v_{i_{0}}, \ldots, v_{i_{k}}\right\} \in K_{1} \text { or if }\left\{u_{i_{0}}, \ldots, u_{i_{k}}\right\} \in K_{2}\right\}
$$

where $u_{i_{j}}:=u_{l}$ if $v_{i_{j}}=v_{l}, u_{i_{j}}:=v_{i_{j}}+k+1$ if $v_{i_{j}}>n$ and $u_{i_{j}}:=v_{i_{j}}$ for the other values of $v_{i_{j}}$. This definition generalizes in an obvious way to the k-wedge sum of arbitrary many simplicial complexes.

It is not difficult to check that $K_{1} \vee_{k} K_{2}$ is a simplicial complex, too.
Remark 6.1. The combinatorial wedge sum $K_{1} \vee_{k} K_{2}$ can also be viewed as

$$
K_{1} \sqcup K_{2} /\left\{F_{1} \sim F_{2}\right\}
$$

Fig. 3. Combinatorial wedge.
where \sim is an equivalence relation which identifies the faces F_{1} and F_{2}. The combinatorial k-wedge sum among graphs is a common notion in graph theory, although it is called by many different names: the combinatorial 0 -wedge sum of graphs is also known as vertex amalgamation [21], coalescence [20] and join [2], whereas the combinatorial 1-wedge sum of graphs is called edge amalgamation.

Note that $K_{1} \vee_{k} K_{2}$, for arbitrary k, and the wedge sum of K_{1} and K_{2} as topological spaces have isomorphic homology groups. From the homological point of view it is impossible to distinguish among k-wedge sums for different values of k as well as among different choices of the base points. However, combinatorially, they are clearly different; see e.g. the two wedge sums in Fig. 3. Consequently, in a combinatorial k-wedge sum of simplicial complexes, it is important which complexes are identified as well as the dimension of these complexes. The following theorem gives the first characterization of the effect of the wedge sum on the spectrum of the Laplacian.

Theorem 6.1.

$$
\mathbf{s}\left(\Delta_{i}^{u p}\left(K_{1} \vee_{k} K_{2}\right)\right) \stackrel{\circ}{=} \mathbf{s}\left(\Delta_{i}^{u p}\left(K_{1}\right)\right) \stackrel{\circ}{\cup} \mathbf{s}\left(\Delta_{i}^{u p}\left(K_{2}\right)\right)
$$

for all i, k with $0 \leq k<i$.
Proof. Since K_{1} and K_{2} are identified by a face of dimension k, then obviously, $C^{i}\left(K_{1} \vee_{k} K_{2}, \mathbb{R}\right)=C^{i}\left(K_{1}, \mathbb{R}\right) \oplus C^{i}\left(K_{2}, \mathbb{R}\right)$ for every $i>k$. Thus, the coboundary mapping $\delta_{i}: C^{i}\left(K_{1} \vee_{k} K_{2}, \mathbb{R}\right) \rightarrow C^{i+1}\left(K_{1} \vee_{k} K_{2}, \mathbb{R}\right)$ will map $C^{i}\left(K_{j}, \mathbb{R}\right)$ to $C^{i+1}\left(K_{j}, \mathbb{R}\right), j=1,2$ and the same holds for the adjoint δ_{i}^{*}.

The operator $\Delta_{i}^{u p}$ is uniquely determined by the i and $(i+1)$-faces of K. Hence its non-zero eigenvalues depend only on the structure of the $(i+1)$-faces of K. By abuse of notation, let $S_{i+1}(K)$ determine a pure $(i+1)$-dimensional subcomplex of K, whose facet set is $S_{i+1}(K)$. Then, there exist $k_{1}, \ldots, k_{m-1}<i$, and simplicial complexes K_{1}, \ldots, K_{m}, such that

$$
\begin{equation*}
S_{i+1}(K)=K_{1} \vee_{k_{1}} K_{2} \vee_{k_{2}} \cdots \vee_{k_{m-1}} K_{m} \tag{6.1}
\end{equation*}
$$

i.e.

$$
\mathbf{s}\left(\Delta_{i}^{u p}(K)\right) \stackrel{\circ}{=} \mathbf{s}\left(\Delta_{i}^{u p}\left(K_{1}\right)\right) \cup^{\circ} \cdots \cup^{\circ} \mathbf{s}\left(\Delta_{i}^{u p}\left(K_{m}\right)\right)
$$

Therefore, when studying $\Delta_{i}^{u p}$, it is useful to determine if K can be represented as a combinatorial k-wedge sum of simplicial complexes and if so, how many of them there are. One possible way to answer this question is via the $(i+1)$-dual graph of K. The number of complexes in the wedge sum (6.1) is exactly the number of connected components of the $(i+1)$-dual graph of K. It is also equal to the number of $(i+1)$-path connected components.

Remark 6.2. If K is an $(i+1)$-path connected simplicial complex, it cannot be decomposed into a combinatorial k-wedge $(k<i)$ of simplicial complexes.

We collect the above observations in the following proposition.
Proposition 6.2. The following statements are equivalent.
(i) $S_{i+1}(K) \cong K_{1} \vee_{k_{1}} K_{2} \vee_{k_{2}} \cdots \vee_{k_{m-1}} K_{m}$, where $k_{1}, \ldots, k_{m-1}<i$ and K_{1}, \ldots, K_{m} are simplicial complexes.
(ii) The $(i+1)$-dual graph G_{K} of K has at least m connected components.
(iii) The number of $(i+1)$-path connected components of K is at least m.

The analysis on the combinatorial wedge sum above does not depend on the choice of the scalar products. Hence Theorem 6.1 and Proposition 6.2 hold for the general Laplace operator \mathcal{L} as well. In the remainder of this section we investigate the effect of the k wedge sum for $i=k$ on the spectrum of the (weighted) normalized combinatorial Laplacian $\Delta_{i}^{u p}$.

Theorem 6.3. Let K_{1} and K_{2} be simplicial complexes, for which the spectra of $\Delta_{i}^{u p}\left(K_{1}\right)$ and $\Delta_{i}^{u p}\left(K_{2}\right)$ both contain the eigenvalue λ, and let f_{1}, f_{2} be their corresponding eigenfunctions. If an i-wedge $K:=\left(K_{1} \vee_{i} K_{2}\right)$ is obtained by identifying i-faces F_{1} and F_{2}, for which $f_{1}\left(\left[F_{1}\right]\right)=f_{2}\left(\left[F_{2}\right]\right)$, then the spectrum of $\Delta_{i}^{u p}(K)$ contains the eigenvalue λ, too.

Proof. We will prove that

$$
g([F])= \begin{cases}f_{1}([F]) & \text { for every } F \text { which is an } i \text {-face of } K_{1} \text { different from } F_{1} \\ f_{2}([F]) & \text { for every } F \text { which is an } i \text {-face of } K_{2}\end{cases}
$$

is an eigenfunction of $\Delta_{i}^{u p}(K)$ corresponding to the eigenvalue λ. For an i-dimensional face F of K_{1} different from F_{1}, the following equality holds:

$$
\left.\Delta_{i}^{u p}(K)\right|_{K_{1}-F_{1}} f_{1}([F])=\lambda f_{1}([F])
$$

Similar is true when $F \in S_{i}\left(K_{2}\right), F \neq F_{2}$, i.e.

$$
\left.\Delta_{i}^{u p}(K)\right|_{K_{2}-F_{2}} f_{2}([F])=\lambda f_{2}([F])
$$

Let $w_{K_{1}}$ and $w_{K_{2}}$ denote the weight functions on the complexes K_{1}, K_{2} respectively. Since we investigate $\Delta_{i}^{u p}$, the weights of the i-simplices are uniquely determined by the weights of the $(i+1)$-simplices and the incidence relations among them. Thus, for the weight (degree) of the simplex $F=F_{1}=F_{2}$, we have $w_{K}(F)=w_{K_{1}}\left(F_{1}\right)+w_{K_{1}}\left(F_{2}\right)$, whereas the weights of all other simplices from K_{1} or K_{2} will remain the same in K. Hence

$$
\begin{aligned}
\Delta_{i}^{u p}(K) f([F])= & \frac{1}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \sum_{\bar{F} \in S_{i+1}\left(K_{1}\right)} w_{K_{1}}(\bar{F}) \operatorname{sgn}([F], \partial[\bar{F}]) f(\partial[\bar{F}]) \\
& +\frac{1}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \sum_{\bar{F} \in S_{i+1}\left(K_{2}\right)} w_{K_{2}}(\bar{F}) \operatorname{sgn}([F], \partial[\bar{F}]) f_{2}(\partial[\bar{F}]) \\
= & \frac{w_{K_{1}}\left(F_{1}\right)}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \frac{1}{w_{K_{1}}\left(F_{1}\right)} \\
& \times \sum_{\bar{F} \in S_{i+1}\left(K_{1}\right)} w_{K_{1}}(\bar{F}) \operatorname{sgn}([F], \partial[\bar{F}]) f(\partial[\bar{F}]) \\
& +\frac{w_{K_{2}}\left(F_{2}\right)}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \frac{1}{w_{K_{2}}\left(F_{2}\right)} \\
& \times \sum_{\bar{F} \in S_{i+1}\left(K_{2}\right)} w_{K_{2}}(\bar{F}) \operatorname{sgn}([F], \partial[\bar{F}]) f_{2}(\partial[\bar{F}]) \\
= & \frac{w_{K_{1}}\left(F_{1}\right)}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \lambda f_{1}([F])+\frac{w_{K_{2}}\left(F_{2}\right)}{w_{K_{1}}\left(F_{1}\right)+w_{K_{2}}\left(F_{2}\right)} \lambda f_{2}([F]) \\
= & \lambda f([F]) . \quad \square
\end{aligned}
$$

This also includes the case when either f_{1} or f_{2} is identically equal to zero.
Remark 6.3. The previous theorem will hold for the weighted normalized Laplacian if the weight function $w_{K}: \bigcup_{k} S_{k}(K) \rightarrow \mathbb{R}^{+}$is

$$
w_{K}(F)= \begin{cases}w_{K_{1}}(F) & \text { if } F \text { is a face of } K_{1} \text { and } \operatorname{dim} F>i \\ w_{K_{2}}(F) & \text { if } F \text { is a face of } K_{2} \text { and } \operatorname{dim} F>i \\ \sum_{\substack{F_{1} \in K_{1} \\ F \in \partial F_{1}}} w_{K_{1}}\left(\bar{F}_{1}\right)+\sum_{\substack{F_{2} \in K_{2} \\ F \in \partial F_{2}}} w_{K_{2}}\left(\bar{F}_{2}\right) & \text { if } F \text { is a face of } K \text { and } \operatorname{dim} F \leq i .\end{cases}
$$

Example 6.1. Let σ_{1} be an i-simplex, then $\mathbf{s}\left(\Delta_{i}^{\text {down }}(\sigma)\right) \stackrel{\circ}{=} \mathbf{s}\left(\Delta_{i-1}^{u p}(\sigma)\right) \stackrel{\circ}{=}\{i+1\}$. A function which is equal to 1 on every oriented simplex in the boundary of $[\sigma$] will be an eigenfunction of $\Delta_{i}^{\text {down }}$ corresponding to $(i+1)$.
According to Theorem 6.3, an $(i-1)$-wedge of any number of i-simplices will possess the eigenvalue $(i+1)$, as long as we are able to orient them such that any two simplices whose intersection is of dimension i induce the same orientation on their intersecting face. For an alternative proof of this claim, see Theorem 7.2.

Theorem 6.3 identifies some of the eigenvalues of the combinatorial wedge sum. However, the results obtained by using the interlacing theorem for simplicial maps, as shown in the next theorem, are more comprehensive.

Theorem 6.4. Let μ_{1}, \ldots, μ_{m} be the eigenvalues of $\Delta_{i}^{u p}\left(K_{1} \cup K_{2}\right)$ and $\lambda_{1}, \ldots, \lambda_{m-1}$ the eigenvalues of $\Delta_{i}^{u p}(K)$, where $K:=\left(K_{1} \vee_{i} K_{2}\right)$, then

$$
\mu_{i} \leq \lambda_{i} \leq \mu_{i+1}
$$

for every $0 \leq i \leq m-1$.

Proof. Let F_{1} and F_{2} be i-faces which are identified in an i-wedge sum K, and let $f: K_{1} \cup K_{2} \rightarrow$ $K_{1} \vee_{F_{1} \sim F_{2}} K_{2}$ be a map, which identifies the vertices of F_{1} with the vertices of F_{2}, and is the identity on the remaining vertices of $K_{1} \cup K_{2}$. Furthermore, f is a simplicial map. The interlacing theorem for simplicial maps (see [24]) gives

$$
\mu_{i} \leq \lambda_{i} \leq \mu_{i+k}
$$

where $k=\left|S_{i}\left(K_{1} \cup K_{2}\right)\right|-\left|S_{i}(K)\right|$.
Thus the spectrum of $\Delta_{i}^{u p}$ of the union of two simplicial complexes majorizes the spectrum of their i-wedge sum.

Remark 6.4. The wedge sums of graphs and its effect on the spectrum of the normalized graph Laplacian have already been analysed in [2], and the spectrum of the combinatorial graph Laplacian was analysed in [20]. These are special cases of the general theory presented here.

6.2. Joins

Let K_{1} and K_{2} be simplicial complexes on the vertex sets [n] and [m], respectively. The join $K_{1} * K_{2}$ is a simplicial complex on the vertex set $[m+n]$, whose faces are $F_{1} * F_{2}:=$ $\left\{v_{0}, \ldots, v_{k}, n+u_{0}, \ldots, n+u_{l}\right\}$, where $F_{1}=\left\{v_{0}, \ldots, v_{k}\right\}$ is a simplex in K_{1} and $F_{2}=$ $\left\{u_{0}, \ldots, u_{l}\right\}$ a simplex in K_{2}. The cochain groups of $K_{1} * K_{2}$ are

$$
C^{i}\left(K_{1} * K_{2}, \mathbb{R}\right)=\bigoplus_{i_{1}+i_{2}+1=i} C^{i_{1}}\left(K_{1}, \mathbb{R}\right) \otimes C^{i_{2}}\left(K_{2}, \mathbb{R}\right)
$$

and the coboundary map δ_{i} is defined as the graded derivation

$$
\delta_{i}(f \otimes g)=\delta f \otimes g+(-1)^{|f|} f \otimes \delta g
$$

where $f \otimes g \in C^{i}\left(K_{1} * K_{2}, \mathbb{R}\right)$ and $|f|$ denotes the order of a cochain group which contains f.
A natural scalar product on a tensor product of Hilbert spaces is

$$
\begin{equation*}
\left(f_{1} \otimes g_{1}, f_{2} \otimes g_{2}\right)=\left(f_{1}, f_{2}\right)_{C^{i_{1}}\left(K_{1}\right)}\left(g_{1}, g_{2}\right)_{C^{i_{2}}\left(K_{2}\right)} \tag{6.2}
\end{equation*}
$$

where $f_{1}, f_{2} \in C^{i_{1}}\left(K_{1}\right), g_{1}, g_{2} \in C^{i_{2}}\left(K_{2}\right)$. A more general product is

$$
\begin{equation*}
\left(f_{1} \otimes g_{1}, f_{2} \otimes g_{2}\right)=p\left(i_{1}\right)\left(f_{1}, f_{2}\right)_{C^{i_{1}}\left(K_{1}\right)} q\left(i_{2}\right)\left(g_{1}, g_{2}\right)_{C^{i_{2}\left(K_{2}\right)}}, \tag{6.3}
\end{equation*}
$$

where $p:\left\{0,1, \ldots, \operatorname{dim} K_{1}\right\} \rightarrow \mathbb{R}^{+}$and $q:\left\{0,1, \ldots, \operatorname{dim} K_{2}\right\} \rightarrow \mathbb{R}^{+}$are positive, real valued functions. In terms of the weight functions, this is

$$
\begin{equation*}
w_{K_{1} * K_{2}}\left(F_{1} \otimes F_{2}\right)=p\left(\operatorname{dim} F_{1}\right) w_{K_{1}}\left(F_{1}\right) q\left(\operatorname{dim} F_{2}\right) w_{K_{2}}\left(F_{2}\right) . \tag{6.4}
\end{equation*}
$$

An elementary calculation yields

$$
\begin{equation*}
\delta_{i}^{*}(f \otimes g)=\frac{p(|f|)}{p(|f|-1)} \delta^{*} f \otimes g+\frac{q(|g|)}{q(|g|-1)}(-1)^{|f|} f \otimes \delta^{*} g \tag{6.5}
\end{equation*}
$$

Then the following result holds.

Theorem 6.5.

where $i_{1}+i_{2}+1=i$, and

$$
P_{\lambda_{i}}= \begin{cases}p\left(i_{1}+1\right) / p\left(i_{1}\right) & \text { if } \lambda_{i} \in \mathbf{s}\left(\mathcal{L}_{i j}^{u p}\left(K_{1}\right)\right), \\ p\left(i_{1}\right) / p\left(i_{1}-1\right) & \text { if } \lambda_{i} \in \mathbf{s}\left(\mathcal{L}_{i_{1}}^{\text {down }}\left(K_{1}\right)\right),\end{cases}
$$

and

$$
Q_{\mu_{j}}= \begin{cases}q\left(i_{2}+1\right) / q\left(i_{2}\right) & \text { if } \mu_{j} \in \mathbf{s}\left(\mathcal{L}_{i_{2}}^{u p}\left(K_{2}\right)\right), \\ q\left(i_{2}\right) / q\left(i_{2}-1\right) & \text { if } \mu_{j} \in \mathbf{s}\left(\mathcal{L}_{i_{2}}^{\text {down }}\left(K_{2}\right)\right)\end{cases}
$$

Proof.

$$
\begin{align*}
\delta_{i}^{*} \delta_{i}(f \otimes g)= & \frac{p(|f|+1)}{p(|f|)} \delta^{*} \delta f \otimes g+(-1)^{|f|+1} \frac{q(|g|)}{q(|g|-1)} \delta f \otimes \delta^{*} g \\
& +(-1)^{|f|} \frac{p(|f|)}{p(|f|-1)} \delta^{*} f \otimes \delta g+\frac{q(|g|+1)}{q(|g|)} f \otimes \delta^{*} \delta g \tag{6.7}\\
\delta_{i} \delta_{i}^{*}(f \otimes g)= & \frac{p(|f|)}{p(|f|-1)} \delta \delta^{*} f \otimes g+(-1)^{|f|} \frac{q(|g|)}{q(|g|-1)} \delta f \otimes \delta^{*} g \\
& +(-1)^{|f|-1} \frac{p(|f|)}{p(|f|-1)} \delta^{*} f \otimes \delta g+\frac{q(|g|)}{q(|g|-1)} f \otimes \delta \delta^{*} g . \tag{6.8}
\end{align*}
$$

The addition of (6.7) and (6.8) gives

$$
\begin{align*}
\left(\delta_{i}^{*} \delta_{i}+\delta_{i} \delta_{i}^{*}\right)(f \otimes g)= & \left(\frac{p(|f|+1)}{p(|f|)} \mathcal{L}_{|f|}^{u p}\left(K_{1}\right)+\frac{p(|f|)}{p(|f|-1)} \mathcal{L}_{|f|}^{\text {down }}\left(K_{1}\right)\right) f \otimes g \\
& +f \otimes\left(\frac{q(|g|+1)}{q(|g|)} \mathcal{L}_{|g|}^{u p}\left(K_{2}\right)+\frac{q(|g|)}{q(|g|-1)} \mathcal{L}_{|g|}^{d o w n}\left(K_{2}\right)\right) g . \tag{6.9}
\end{align*}
$$

From the last equation we immediately deduce

$$
\begin{equation*}
\mathbf{s}\left(\left(\delta_{i}^{*} \delta_{i}+\delta_{i-1} \delta_{i-1}^{*}\right)\left(K_{1} * K_{2}\right)\right) \stackrel{\circ}{=} \bigcup_{\substack{\lambda_{i} \in \boldsymbol{s}\left(\mathcal{L}_{i_{1}}\left(K_{1}\right)\right) \\ \mu_{j} \in \mathbf{s}\left(\mathcal{L}_{i_{2}}\left(K_{2}\right)\right)}} P_{\lambda_{i}} \lambda_{i}+Q_{\mu_{j}} \mu_{j} . \tag{6.10}
\end{equation*}
$$

Remark 6.5. Proposition 4.9. in [12] treats the special case of Theorem 6.5 where the functions p and q are identically equal to 1 . In that case, the eigenvalues of these complexes satisfy

$$
\begin{equation*}
\mathbf{s}\left(\left(\delta_{i}^{*} \delta_{i}+\delta_{i-1} \delta_{i-1}^{*}\right)\left(K_{1} * K_{2}\right)\right) \stackrel{\circ}{=} \bigcup_{\substack{\lambda_{i} \in s\left(\left(\delta_{1}^{*} \delta_{i_{2}}+\delta_{i-1}-1 \delta_{i_{1}-1}^{*}\right)\left(K_{1}\right)\right) \\ \mu_{j} \in\left(\left(\delta_{i 2}^{*} \delta_{\delta_{2}}+\delta_{i_{2}}-1 \delta_{i-1}^{*}\right)\left(K_{2}\right)\right)}} \lambda_{i}+\mu_{j} . \tag{6.11}
\end{equation*}
$$

In [12], it is assumed that the weight functions on the cochain spaces of K_{1} and K_{2} are equal to the identity, which yields the combinatorial Laplacian.

The next theorem provides necessary conditions on p and q for the Laplace operator defined on $K_{1} * K_{2}$ to be normalized.

Theorem 6.6. Let $w_{K_{1}}$ and $w_{K_{2}}$ be the weight functions on K_{1} and K_{2}, resp., such that $\mathcal{L}\left(K_{1}, w_{K_{1}}\right)$ and $\mathcal{L}\left(K_{2}, w_{K_{2}}\right)$ are the normalized Laplace operators. Without loss of generality, assume that $\operatorname{dim} K_{1} \leq \operatorname{dim} K_{2}$. If $p(i+1) / p(i)+q(j+1) / q(j)=1$ for every $i<$ $\operatorname{dim} K_{1}$ and $j<\operatorname{dim} K_{2}$, then $\mathbf{s}\left(\mathcal{L}_{i}^{u p}\left(K_{1} * K_{2}, p w_{K_{1}} q w_{K_{2}}\right)\right) \subset[0, i+2]$, or in other words $\mathcal{L}\left(K_{1} * K_{2}, p w_{K_{1}} q w_{K_{2}}\right)$ is the normalized Laplacian.

Proof. We check for which values of p and q the weight function of a join $K_{1} * K_{2}$ satisfies the normalizing condition (3.7). For arbitrary $F_{1} \in K_{1}$ and $F_{2} \in K_{2}$, we have

$$
\begin{aligned}
\operatorname{deg} F_{1} \otimes F_{2}= & \sum_{\substack{F \in S_{i+1}\left(K_{1} * K_{2}\right): \\
F_{1} \otimes F_{2} \in \partial F}} w(F) \\
= & \sum_{\bar{F}_{1}: F_{1} \in \partial \bar{F}_{1}} w_{K_{1} * K_{2}}\left(\bar{F}_{1} \otimes F_{2}\right)+\sum_{\bar{F}_{2}: F_{2} \in \partial \bar{F}_{2}} w_{K_{1} * K_{2}}\left(F_{1} \otimes \bar{F}_{2}\right) \\
= & \sum_{\bar{F}_{1}: F_{1} \in \partial \bar{F}_{1}} p\left(\operatorname{dim} \bar{F}_{1}\right) w_{K_{1}}\left(\bar{F}_{1}\right) q\left(\operatorname{dim} F_{2}\right) w_{K_{2}}\left(F_{2}\right) \\
& +\sum_{\bar{F}_{2}: F_{2} \in \partial \bar{F}_{2}} p\left(\operatorname{dim} F_{1}\right) w_{K_{1}}\left(F_{1}\right) q\left(\operatorname{dim} \bar{F}_{2}\right) w_{K_{2}}\left(\bar{F}_{2}\right) \\
= & p\left(\operatorname{dim} F_{1}+1\right) q\left(\operatorname{dim} F_{2}\right) \operatorname{deg} F_{1} w_{K_{2}}\left(F_{2}\right) \\
& +p\left(\operatorname{dim} F_{1}\right) q\left(\operatorname{dim} F_{2}+1\right) \operatorname{deg} F_{2} w_{K_{1}}\left(F_{1}\right) \\
= & \left(p\left(\operatorname{dim} F_{1}+1\right) q\left(\operatorname{dim} F_{2}\right)\right. \\
& \left.+p\left(\operatorname{dim} F_{1}\right) q\left(\operatorname{dim} F_{2}+1\right)\right) w_{K_{1}}\left(F_{1}\right) w_{K_{2}}\left(F_{2}\right) .
\end{aligned}
$$

Thus, the weight function $w_{K_{1} * K_{2}}$ satisfies (3.7) iff

$$
(p(i+1) q(j)+p(i) q(j+1))=p(i) q(j)
$$

for every i, j.
The following corollary is a direct consequence of Theorems 6.5 and 6.6.
Corollary 6.7. Let $\operatorname{dim} K_{1}=d_{1}$ and $\operatorname{dim} K_{2}=d_{2}$ and let $\mathcal{L}\left(K_{1}, w_{K_{1}}\right)$ and $\mathcal{L}\left(K_{2}, w_{K_{2}}\right)$ be normalized Laplace operators. Assume $w_{K_{1} * K_{2}}:=w_{K_{1}} w_{K_{2}}$ and denote $\mathcal{L}\left(K_{1} * K_{2}, w_{K_{1} * K_{2}}\right)$ by $\Delta\left(K_{1} * K_{2}\right)$, then

$$
\begin{equation*}
\mathbf{s}\left(\Delta_{d_{1}+d_{2}+1}^{\text {down }}\left(K_{1} * K_{2}\right)\right) \stackrel{\circ}{=} \bigcup_{\substack{\lambda_{i} \in \mathbf{s}\left(\Delta_{d o w n}^{\left.d_{\left(K_{1}\right)}\right)} \\ \mu_{j} \in \boldsymbol{s}\left(\Delta_{d_{2}}^{d o w n}\left(K_{2}\right)\right)\right.}} \lambda_{i}+\mu_{j}, \tag{6.12}
\end{equation*}
$$

or equivalently

$$
\mathbf{s}\left(\Delta_{d_{1}+d_{2}}^{u p}\left(K_{1} * K_{2}\right)\right) \stackrel{\circ}{=} \bigcup_{\substack{\lambda_{i} \in s\left(\Delta_{d d_{1}-1}^{u p}\left(K_{1}\right)\right) \\ \mu_{j} \in s\left(\Delta_{d_{2}-1}^{u p}\left(K_{2}\right)\right)}} \lambda_{i}+\mu_{j} .
$$

Proof. For $F_{1} \in K_{1}$ and $F_{2} \in K_{2}$ we have

$$
\operatorname{deg} F_{1} \otimes F_{2}=\sum_{\bar{F}_{1}: F_{1} \in \partial \bar{F}_{1}} w_{K_{1}}\left(\bar{F}_{1}\right) w_{K_{2}}\left(F_{2}\right)+\sum_{\bar{F}_{2}: F_{2} \in \partial \bar{F}_{2}} w_{K_{1}}\left(F_{1}\right) w_{K_{2}}\left(\bar{F}_{2}\right) .
$$

If neither F_{1} nor F_{2} is a facet of K_{1}, K_{2}, then the degree of $F_{1} \otimes F_{2}$ is $2 w_{K_{1}}\left(F_{1}\right) w_{K_{2}}\left(F_{2}\right)$. Therefore, (3.7) does not hold. Consequently, the Laplace operator determined by this function will not be the normalized Laplace operator of the join $K_{1} * K_{2}$. However, if F_{1} or F_{2} is a facet, then $\operatorname{deg} F_{1} \otimes F_{2}=w_{K_{1}}\left(F_{1}\right) w_{K_{2}}\left(F_{2}\right)$. Thus, $w_{K_{1} * K_{2}}$ coincides with the weight function determining $\Delta_{i}^{u p}\left(K_{1} * K_{2}\right)$, for $i=d_{1}+d_{2}+1$. Together with (6.11), this yields (6.12).

As a direct consequence of Corollary 6.7 and the fact that $\mathbf{s}\left(\Delta_{-1}^{u p}(K)\right)=\{1\}$ we get the following corollary.

Corollary 6.8. If K is simplicial complex of dimension d, and $v * K$ a cone over K, then

$$
\mathbf{s}\left(\Delta_{d}^{u p}(v * K)\right) \stackrel{\circ}{\rightleftharpoons} \bigcup_{\lambda_{i} \in \mathbf{s}\left(\Delta_{d-1}^{u p}(K)\right)} 1+\lambda_{i}
$$

Remark 6.6 (Direct Product of Graphs). Direct products of graphs can be treated similarly as joins of simplicial complexes. The direct product of two graphs G_{1} and G_{2} is the simplicial complex G of dimension 1 with $C^{1}(G)=C^{1}\left(G_{1}\right) \otimes C^{0}\left(G_{2}\right) \oplus C^{0}\left(G_{1}\right) \otimes C^{1}\left(G_{2}\right)$ and $C^{0}(G)=C^{0}\left(G_{1}\right) \otimes C^{0}\left(G_{2}\right)$. Then, by applying the same principle as in Theorem 6.5, we obtain

$$
\mathbf{s}\left(\mathcal{L}_{0}^{u p}\left(G_{1} \times G_{2}\right)\right) \stackrel{\circ}{=} \bigcup_{\substack{\lambda_{i} \in s\left(\mathcal{L}_{0}^{u p}\left(G_{1}\right)\right) \\ \mu_{j} \in s\left(\mathcal{L}_{0}^{u p}\left(G_{2}\right)\right)}} \frac{p(1)}{p(0)} \lambda_{i}+\frac{q(1)}{q(0)} \mu_{j},
$$

where $p(0), p(1)$ and $q(0), q(1)$ are, as before, parameters of a scalar product. This was proven by Fiedler [14] for the special case when $p=q \equiv 1$ and by Grigoryan in [18] for the case of the normalized graph Laplacian for p, q with $p(1) / p(0)+q(1) / q(0)=1$.

Note that the extension of the direct product to higher dimensions would lead to a cubical (instead of simplicial) complexes.

6.3. Duplication of motifs

Let K be a simplicial complex on the vertex set [n] and S a collection of simplices in K. The closure $\mathrm{Cl} S$ of S is the smallest subcomplex of K that contains each simplex in S. The star $\mathrm{St} S$ of S is the set of all simplices in K that have a face in S. The link $\operatorname{lk} S$ of S is $\mathrm{ClSt} S-\mathrm{StCl} S$.

If the subcomplex Σ of K on the vertices v_{0}, \ldots, v_{k} contains all of K 's faces on those vertices, then it is called a motif.

Definition 6.2. A subcomplex Σ of a simplicial complex K is a k-motif iff
(i) $\left(\forall F_{1}, F_{2} \in \Sigma\right) F_{1}, F_{2} \subset F \in K \Rightarrow F \in \Sigma$
(ii) $\operatorname{dim} \operatorname{lk} \Sigma=k$.

In fact, as a consequence of Theorem 6.1 for $i<k$ we obtain

$$
\mathbf{s}\left(\Delta_{i}^{u p}(K)\right) \stackrel{\circ}{=} \mathbf{s}\left(\Delta_{i}^{u p}(K-\operatorname{St} \Sigma)\right) \stackrel{\circ}{\cup} \mathbf{s}(\mathrm{ClSt} \Sigma)
$$

Therefore, it is meaningful to investigate the effect of the duplication of a k-motif on the spectrum of $\Delta_{i}^{u p}$ only if $i=k$.

Remark 6.7. If K is an $(i+1)$-path connected simplicial complex, then any motif satisfying (i) in Definition 6.2 will have a link of dimension i.

Let u_{0}, \ldots, u_{m} be vertices of $1 \mathrm{k} \Sigma$. By the definition of the link, these vertices are different from those in the motif $\Sigma\left(u_{i} \neq v_{j}\right.$, for every $0 \leq i \leq m$ and $\left.0 \leq j \leq k\right)$. Let Σ^{\prime} denote a simplicial complex on the vertices $v_{0}^{\prime}, \ldots, v_{k}^{\prime}$, which is isomorphic to Σ. And let $f: v_{i}^{\prime} \mapsto v_{i}$ be a simplicial isomorphism among these complexes. Then $K^{\Sigma}:=K \cup\left\{\left\{v_{i_{0}}^{\prime}, \ldots, v_{i_{l}}^{\prime}, u_{j_{1}}, \ldots, u_{j_{s}}\right\} \mid\right.$ $\left.\left\{v_{i_{0}}, \ldots, v_{i_{l}}, u_{j_{1}}, \ldots, u_{j_{s}}\right\} \in K\right\}$.

Fig. 4. Duplication of motif Σ.
Proposition 6.9. K^{Σ} is a simplicial complex and $\mathrm{ClSt} \Sigma$ is isomorphic to $\mathrm{ClSt} \Sigma^{\prime}$. Proof. Elementary.

Definition 6.3. We say that the simplicial complex K^{Σ} is obtained from the simplicial complex K by the duplication of the i-motif Σ.

Remark 6.8. It could be argued that it is $\mathrm{ClSt} \Sigma$ that we duplicate rather than Σ alone. This point of view will be very helpful in the sequel, but we will refer to duplication as the duplication of the motif Σ, since this is consistent with the previous work on the duplication of motifs of graphs (see [2]) (see Fig. 4).

Theorem 6.10. Let n be the number of i-simplices in $\operatorname{St} \Sigma$. Then there exist n linearly independent functions f_{1}, \ldots, f_{n}, satisfying

$$
\Delta_{i}^{u p}(K) f_{j}([F])=\lambda_{j} f_{j}([F])
$$

for every $F \in S_{i}(\operatorname{St} \Sigma)$ and some real values λ_{j}. The doubling of the motif Σ produces a simplicial complex K^{Σ} with the eigenvalues λ_{j} and the eigenfunctions g_{j} which agree with f_{j} on St Σ and $-f_{j}$ on St Σ^{\prime} and are zero elsewhere.
Proof. It is trivial to check that $\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)$ and $\Delta_{i}^{u p}\left(K^{\Sigma}\right)$ coincide on St Σ. Let $\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma}$ be the restriction of the operator $\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)$ on St Σ. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma}$ and f_{1}, \ldots, f_{n} the corresponding eigenfunctions. Then

$$
g_{j}([F])= \begin{cases}f_{j}([F]) & \text { for } F \text { in St } \Sigma \\ -f_{j}([F]) & \text { for } F \text { in St } \Sigma^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

is an eigenfunction of $\Delta_{i}^{u p}\left(K^{\Sigma}\right)$ with eigenvalue λ_{j}. Without loss of generality, assume that the labelling of the vertices of Σ is v_{0}, \ldots, v_{k} and the vertices of Σ^{\prime} is $v_{0}^{\prime}, \ldots, v_{k}^{\prime}$, and they are chosen such that $v_{0}<\cdots<v_{k}<v_{0}^{\prime},<\cdots<v_{k}^{\prime}$. Enumerate the vertices of $1 \mathrm{k} \Sigma$ with u_{1}, \ldots, u_{m} such that
$v_{0}<\cdots<v_{k}<v_{0}^{\prime},<\cdots<v_{k}^{\prime}<u_{1}<\cdots<u_{m}$. Then,

$$
\Delta_{i}^{u p} f_{j}([F])=\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma} f_{j}([F])=\lambda_{j} f_{j}([F])
$$

and

$$
\Delta_{i}^{u p}\left(-f_{j}\right)\left(\left[F^{\prime}\right]\right)=\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma}-f_{j}\left(\left[F^{\prime}\right]\right)=-\lambda_{j} f_{j}\left(\left[F^{\prime}\right]\right),
$$

for all $F \in S_{i}(\Sigma)$ and $F^{\prime} \in S_{i}\left(\Sigma^{\prime}\right)$.

Furthermore, assume that $\left[u_{1}, \ldots, u_{i+1}\right]$ is a face of $1 \mathrm{k} \Sigma$, then

$$
\begin{aligned}
& \Delta_{i}^{u p} f_{j}\left(\left[u_{1}, \ldots, u_{i+1}\right]\right)=\sum_{v_{j},\left[v_{j}, u_{1}, \ldots, u_{i+1}\right] \in S_{i+1}(\mathrm{ClSt} \Sigma)}(-1)^{1} f_{j}\left(\partial\left[v_{j}, u_{1}, \ldots, u_{i+1}\right]\right) \\
& \quad+\sum_{v_{j}^{\prime},\left[v_{j}^{\prime}, u_{1}, \ldots, u_{i+1}\right] \in S_{i+1} \mathrm{ClSt} \Sigma^{\prime}}(-1)^{1}\left(-f_{j}\right)\left(\partial\left[v_{j}^{\prime}, u_{1}, \ldots, u_{i+1}\right]\right) \\
& \quad=0
\end{aligned}
$$

Since the functions f_{j} are 0 on the boundary of those $(i+1)$-simplices that are neither in $\mathrm{ClSt} \Sigma$ nor in $\mathrm{ClSt} \Sigma^{\prime}$, we omit them from the discussion. Hence the λ_{j} 's are the eigenvalues of $\Delta_{i}^{u p}\left(K^{\Sigma}\right)$.
As a simple consequence of Theorem 6.10 we have the following corollary.
Corollary 6.11. If the spectrum of the simplicial complex $\mathrm{ClSt} \Sigma$ contains the eigenvalue λ, with an eigenfunction f that is identically equal to zero on $1 \mathrm{k} \Sigma$, then the spectrum of K^{Σ} will contain the eigenvalue λ as well.

Theorem 6.10 is an improved and generalized version of Theorem 2.3 from [2], which was stated for the case of the normalized graph Laplacian $\Delta_{0}^{u p}$. The duplication of the motif Σ will leave a specific trace in the spectrum of the resulting simplicial complex K^{Σ}. In particular, if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St}} \Sigma$, then after duplicating the motif Σ, m times, the spectrum of the resulting complex will contain $(m-1)$ instances of every eigenvalue λ_{j}.

It is not always straightforward to calculate the eigenvalues of $\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma}$; therefore we prove a theorem about interlacing of the λ_{j} and the eigenvalues μ_{j} of $\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)$. With the notation of Theorem 6.10, we have the following theorem.

Theorem 6.12. The following inequality holds

$$
\mu_{i} \leq \lambda_{i} \leq \mu_{i+\left|S_{i}(\operatorname{lk} \Sigma)\right|}
$$

where $\left|S_{i}(\mathrm{lk} \Sigma)\right|$ denotes the number of i-simplices in the link of a motif Σ.
Proof. The matrix $\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma}$ is obtained from the matrix $\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)$ by deleting $\left|S_{i}(\mathrm{lk} \Sigma)\right|$ rows and columns. Thus, the interlacing inequality follows directly from the Cauchy interlacing theorem.

Remark 6.9. Theorem 6.10 and Corollary 6.11 will hold for any choice of the weight function satisfying (3.7).

7. Eigenvalues in the spectrum of $\Delta_{i}^{u p}$ and the combinatorial properties they encode

One of the main advantages of the normalized combinatorial Laplace operator is the fact that the spectrum of any simplicial complex K is bounded from above by a constant. The eigenvalues of $\Delta_{i}^{u p}(K)$ are in the interval $[0, i+2]$. As this is not the case for the spectrum of the combinatorial Laplacian L, or for any other known type of the combinatorial Laplace operator \mathcal{L}, it seems impossible to assign combinatorial properties to the presence of a particular eigenvalue in the spectrum of L and \mathcal{L}. Nonetheless, the global properties of the spectrum of L_{i} relate to the combinatorial properties of the complex. For instance, the spectrum of certain combinatorially suitable complexes is proved to be an integer (see [10,12]).

Returning to the normalized Laplacian, the appearance of the eigenvalue 2 in the spectrum of the normalized graph Laplacian $\Delta_{0}^{u p}$ means that the underlying graph is bipartite (see [6]), while the eigenvalue 1 is produced by the duplication of motifs (see [2]). In the following, we characterize some of the integer eigenvalues in the spectrum of $\Delta_{i}^{u p}$.

7.1. Eigenvalue $i+2$

Without loss of generality assume that K is an $(i+1)$-path connected simplicial complex on the vertex set $[n]$. As shown earlier, the following inequality holds:

$$
\begin{align*}
\left(\Delta_{i}^{u p}(K) f, f\right) & =\sum_{\bar{F} \in S_{i+1}(K)} f(\partial[\bar{F}])^{2} w(\bar{F}) \tag{7.1a}\\
& \leq(i+2) \sum_{F \in S_{i}(K)} f([F])^{2} w(F) \tag{7.1b}
\end{align*}
$$

The equality in (7.1b) is reached iff there exists a function $f \in C^{i}(K, \mathbb{R})$, which satisfies

$$
\operatorname{sgn}\left(\left[F_{j}\right], \partial[\bar{F}]\right) f\left(\left[F_{j}\right]\right)=\operatorname{sgn}\left(\left[F_{k}\right], \partial[\bar{F}]\right) f\left(\left[F_{k}\right]\right)
$$

for every \bar{F} in S_{i+1} and $F_{j}, F_{k} \in \partial \bar{F}$. Thus $|f([F])|$ must be constant for every $F \in S_{i}(K)$. Assume further that $|f([F])|=1$, then for every $F \in \partial \bar{F}, f([F])$ is equal either to $\operatorname{sgn}([F], \partial[\bar{F}])$ or to $-\operatorname{sgn}([F], \partial[\bar{F}])$. Now it is possible to consider f as a choice of orientation on the $(i+1)$-faces of K.

Theorem 7.1. The existence of a function f satisfying the equality in (7.1b) is equivalent to the existence of an orientation on the $(i+1)$-simplices of K, for which any two $(i+1)$-simplices intersecting in a common i-face induce the same orientation on the intersecting simplex. (This condition is opposite to the condition of coherently oriented simplices.)

Theorem 7.2. For an i-connected simplicial complex K the following statements are equivalent:

1. spectrum $\Delta_{i}^{u p}(K)$ contains the eigenvalue $i+2$;
2. there are no $(i+1)$-orientable circuits of odd length nor $(i+1)$-non orientable circuits of even length in K.
Proof. (1) \Rightarrow (2) proceeds by contradiction. Assume that there exists an $(i+1)$-orientable circuit of odd length, whose i-simplices $F_{1}, \ldots, F_{2 n+1}$ are ordered increasingly, as suggested in Definition 4.1. Then it is possible to orient these simplices in such a way that every two neighbouring simplices induce different orientations on their intersecting face. Denote these oriented simplices by $\left[F_{1}\right], \ldots,\left[F_{2 n+1}\right]$. In order to have the same orientation induced on the intersecting face, we reverse the orientation of every simplex [F_{k}], for k even. Thus, [F_{l}] and $-\left[F_{l+1}\right]$ induce the same orientation on $\left[F_{l} \cap F_{l+1}\right]$, for every $1 \leq l \leq 2 n$. However, $\left[F_{1}\right]$ and [$F_{2 n+1}$] remain coherently oriented, which contradicts Theorem 7.1. The analysis for the case of ($i+1$)-non-orientable circuits is analogous.
(2) \Rightarrow (1). Let F_{1} be an arbitrary $(i+1)$-face of K. Consider its positive orientation [F_{1}] and call it an initial oriented face. Let $\left[F_{i_{1} i_{2} \cdots i_{n}}\right.$] be an $(i+1)$-face of K which shares an i-face with [$F_{i_{1} i_{2} \cdots i_{n-1}}$] and both faces induce the same orientation on their intersecting face. Now, assume the opposite: the eigenvalue $i+2$ is not in the spectrum of $\Delta_{i}^{u p}$, i.e. it is not possible to choose an orientation on the $(i+1)$-faces of K, which satisfies the conditions of Theorem 7.1. This means
that after some number of steps in the construction above, two faces $\left[F_{i_{1} i_{2} \cdots i_{n}}\right],\left[F_{i_{1} i_{2} \cdots i_{m}}\right]$ which are the same, but differently oriented, are obtained. Obviously, there exists a circuit containing [$F_{i_{1} i_{2} \cdots i_{n}}$], which does not admit an orientation as in Theorem 7.1. This is possible only in the case when a circuit is orientable and odd or non-orientable and even. This is a contradiction; hence, $i+2$ is contained in the spectrum of $\Delta_{i}^{u p}$.

The spectrum of the normalized graph Laplacian contains the eigenvalue 2 iff the chromatic number of the underlying graph is 2 . However, in general, such a connection between the chromatic number and the boundary eigenvalue in the spectrum of the normalized combinatorial Laplace operator only holds in one direction.

Theorem 7.3. If the chromatic number of the 1 -skeleton of the simplicial complex K is $i+2$, then $i+2$ is contained in $\mathbf{s}\left(\Delta_{i}^{u p}(K)\right)$.

Proof. Let I_{0}, \ldots, I_{i+1} be disjoint sets of vertices of K, such that every simplex of K contains at most one point of each set. Thus, there are no vertices of $\bar{F} \in S_{i+1}(K)$ which are contained in the same I_{j}. To avoid notational complications we relabel the vertices of K : instead of $v \in I_{j}$ ($v \in\{1, \ldots, n\}$) we write $j n+v$. Therefore, we have

$$
v \in I_{j}, \quad u \in I_{k} \quad \text { and } \quad j<k \Rightarrow v<u
$$

The function f, defined as $f\left(\left[v_{0}, \ldots, \hat{v_{j}}, \ldots, v_{i+1}\right]\right)=(-1)^{j}\left(\left[v_{0}, \ldots, v_{i+1}\right]\right.$, is an $(i+1)$ simplex of K whose vertices are ordered increasingly, i.e. $\left.v_{0}<\cdots<v_{i+1}\right)$ is the eigenfunction of $\Delta_{i}^{u p}(K)$ corresponding to the eigenvalue $i+2$, i.e.

$$
\begin{aligned}
\Delta_{i}^{u p} f([F]) & =\frac{\sum_{\bar{F}: F \in \partial \bar{F}} \operatorname{sgn}([F], \partial[\bar{F}]) f(\partial[\bar{F}])}{\operatorname{deg} F} \\
& =(i+2) f([F]) . \quad \square
\end{aligned}
$$

7.2. Eigenvalues $(i+1)$ and 1

As a special case of Theorem 6.10 we consider a motif Σ consisting of only one vertex.
Corollary 7.4. When we duplicate an i-motif Σ consisting of one vertex which is the centre of neither an $(i+1)$-orientable odd circuit nor an $(i+1)$-non-orientable even circuit, then we produce the eigenvalue $(i+1)$ in the spectrum of K^{Σ}.

Proof. Let $v_{0}=\Sigma$ and let the 0 -simplices of $1 \mathrm{k} \Sigma$ be u_{1}, \ldots, u_{k}. In $\mathrm{ClSt} \Sigma$ all $(i+1)$-simplices must contain v_{1}. Since v_{1} is neither a centre of an $(i+1)$-orientable odd circuit nor a centre of an $(i+1)$-non-orientable even circuit, by Theorem $7.2, i+2 \in \mathbf{s}(\mathrm{ClSt} \Sigma)$. From Theorem 7.1, it follows that there is a function $f \in C^{i}(\mathrm{ClSt} \Sigma, \mathbb{R})$, s.t.

$$
\operatorname{sgn}\left(\left[F_{1}\right], \partial[\bar{F}]\right) f\left(\left[F_{1}\right]\right)=\cdots=\operatorname{sgn}\left(\left[F_{i+2}\right], \partial[\bar{F}]\right) f\left(\left[F_{i+2}\right]\right)
$$

for every $\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)$ and each of its i-faces. Let g be a function which coincides with f on i-faces of St Σ, with $-f$ on i-faces of St Σ^{\prime} and is zero elsewhere. We will now show that g is an eigenfunction of $\Delta_{i}^{u p}\left(K^{\Sigma}\right)$ associated with the eigenvalue $(i+1)$. Let F be an arbitrary i-face of St Σ, then

$$
\begin{aligned}
\left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma} g([F])= & \frac{1}{w(F)} \sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} \operatorname{sgn}([F], \partial[\bar{F}]) g(\partial[\bar{F}]) \\
= & \frac{1}{w(F)} \sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} \operatorname{sgn}([F], \partial[\bar{F}]) \\
& \times \sum_{\substack{F_{j} \in \partial \bar{F} \\
F_{j} \notin \mathrm{k} \Sigma}} \operatorname{sgn}\left(\left[F_{j}\right], \partial[\bar{F}]\right) f\left(\left[F_{j}\right]\right) \\
= & \frac{1}{w(F)} \sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} \operatorname{sgn}([F], \partial[\bar{F}])(i+1) \\
& \times \operatorname{sgn}([F], \partial[\bar{F}]) f([F]) \\
= & (i+1) \frac{1}{w(F)} \sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} f([F]) \\
= & (i+1) .
\end{aligned}
$$

The same analysis holds for i-faces of $\operatorname{St} \Sigma^{\prime}$. Let F be an i-faces of $\mathrm{ClSt} \Sigma-\mathrm{St} \Sigma$, then

$$
\begin{aligned}
& \left.\Delta_{i}^{u p}(\mathrm{ClSt} \Sigma)\right|_{\mathrm{St} \Sigma} f([F])=\frac{1}{w(F)}\left(\sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} \operatorname{sgn}([F], \partial[\bar{F}]) g(\partial[\bar{F}])\right. \\
& \left.\quad+\sum_{\bar{F} \in S_{i+1}\left(\mathrm{ClSt} \Sigma^{\prime}\right)} \operatorname{sgn}([F], \partial[\bar{F}]) g(\partial[\bar{F}])\right) \\
& \quad=\frac{1}{w(F)}(i+1)\left(\sum_{\bar{F} \in S_{i+1}(\mathrm{ClSt} \Sigma)} g\left(\left[F_{j}\right]\right)+\sum_{\bar{F} \in S_{i+1}\left(\mathrm{ClSt} \Sigma^{\prime}\right)} g\left(\left[F_{j}\right]\right)\right) \\
& \quad=\frac{1}{w(F)}(i+1)\left(\sum_{F_{j} \in S_{i}(\mathrm{St} \Sigma)} f\left(\left[F_{j}\right]\right)+\sum_{F_{j}^{\prime} \in S_{i}\left(\mathrm{St} \Sigma^{\prime}\right)}-f\left(\left[F_{j}\right]\right)\right) \\
& \quad=0,
\end{aligned}
$$

where F_{j} is a face of \bar{F}.
This theorem is a generalization of the vertex doubling effect on the normalized graph Laplacian $\Delta_{0}^{u p}$ discussed in [2].

In the graph case, the eigenvalue 1 plays a very important role, since its multiplicity is usually significantly higher than other eigenvalues in graphs obtained from real world data; see [3]. For the Laplace operator on higher dimensional simplicial complexes, the role of the eigenvalue 1 is partially transferred to the eigenvalue $(i+1)$ in higher dimensions, as shown above. Nevertheless, the next theorem gives a characterization of the eigenvalue 1 in the spectrum of $\Delta_{i}^{u p}$.

Theorem 7.5. Let K be a simplicial complex with an eigenvalue $i+2$ in the spectrum of $\Delta_{i}^{u p}$ and let G_{K}^{i} be its i-dual graph. Then,

$$
1 \in \mathbf{s}\left(\Delta_{0}^{u p}\left(G_{K}^{i}\right)\right) \Leftrightarrow 1 \in \mathbf{s}\left(\Delta_{i}^{u p}(K)\right)
$$

Proof. The multiplicity of the eigenvalue 1 in the spectrum of $\Delta_{i}^{u p}(K)$ is equal to the dimension of the kernel of the adjacency matrix $A_{i}^{u p}$ of the i-faces of K. Its entries are

$$
\left(A_{i}^{u p}\right)_{[F],\left[F^{\prime}\right]}= \begin{cases}\operatorname{sgn}([F], \partial[\bar{F}]) \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{F}]\right) & F, F^{\prime} \text { are }(i+1) \text {-up neighbours } \\ 0 & \text { otherwise } .\end{cases}
$$

Due to Theorem 7.1, it is possible to orient the $(i+1)$-simplices of K such that $\operatorname{sgn}([F], \partial[\bar{F}]) \operatorname{sgn}\left(\left[F^{\prime}\right], \partial[\bar{F}]\right)$ is always positive. Consequently, all entries of the matrix $A_{i}^{u p}$ will be positive. The adjacency matrices of G_{K}^{i} and $A_{i}^{u p}$ are the same; hence, the dimension of the kernel of $A_{i}^{u p}$ is equal to the multiplicity of the eigenvalue 1 in the spectrum of the normalized graph Laplacian of the graph G_{K}^{i}.

Acknowledgments

We thank Frank Bauer and Johannes Rauh for useful suggestions. This work was supported by a PhD fellowship of the International Max-Planck Research School "Mathematics in the Sciences" for the first author. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 267087. The second author was also supported by the Volkswagen Foundation.

References

[1] W.N. Anderson, T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (2) (1985) 141-145.
[2] A. Banerjee, J. Jost, On the spectrum of the normalized graph Laplacian, Linear Algebra Appl. 428 (11-12) (2008) 3015-3022.
[3] A. Banerjee, J. Jost, Graph spectra as a systematic tool in computational biology, Discrete Appl. Math. 157 (10) (2009) 2425-2431.
[4] A. Barysenka, A. Dress, W. Schubert, An information theoretic thresholding method for detecting protein colocalizations in stacks of fluorescence images, J. Biotech. 149 (2010) 127-131.
[5] O. Bottema, Über die Irrfahrt in einem Straßennetz, Math. Z. (ISSN: 1432-1823) 39 (1935) 137-145.
[6] F. Chung, Spectral Graph Theory, in: CBMS Regional Conference Series in Mathematics, No. 92, American Mathematical Society, 1996.
[7] F. Chung, The Laplacian of a hypergraph, in: Expanding Graphs: Proc. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 1993, pp. 21-36.
[8] F. Chung, A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A 75 (2) (1996) 316-327. http://dx.doi.org/10.1006/jcta.1996.0080.
[9] P.M. Cohn, Basic Algebra, Springer, 2002.
[10] X. Dong, M. Wachs, Combinatorial Laplacian of the matching complex, Electron. J. Combin. 9 (1) (2002) 1-11.
[11] A. Duval, C. Klivans, J. Martin, Simplicial matrix-tree theorems, Trans. Amer. Math. Soc. 361 (11) (2009) 6073-6114.
[12] A. Duval, V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc. 354 (11) (2002) 4313-4344.
[13] B. Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv. 17 (1) (1944) 240-255.
[14] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (2) (1973) 298-305.
[15] J. Friedman, Computing betti numbers via combinatorial laplacians, in: Proc. 28th Ann. ACM Sympos. Theory Comput., 1996, pp. 386-391.
[16] H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Ann. of Math. 97 (1973) 375-423.
[17] J.V. Greenman, Symmetry, graphs and eigenvalues, Math. Gaz. 61 (417) (1977) 195-200.
[18] A. Grigor'yan, Analysis on Graphs, Lecture Notes, University of Bielefeld.
[19] R. Grone, R. Merris, Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (2) (1990) 218-238.
[20] R. Grone, R. Merris, Coalescence, majorization, edge valuations and the Laplacian spectra of graphs, Linear Multilinear Algebra 27 (2) (1990) 139-146.
[21] J. Gross, T. Tucker, Topological Graph Theory, Courier Dover Publications, 2001.
[22] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
[23] A. Hirani, Discrete exterior calculus, Ph.D. Thesis, California Institute of Technology, Pasadena, California, May 2003.
[24] D. Horak, J. Jost, Interlacing inequalities for eigenvalues of discrete Laplace operators, Ann. Global Anal. Geom. (2012).
[25] G. Kirchhoff, Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird, Ann. Phys. Chem. 72 (1847) 497-508.
[26] D. Kozlov, Combinatorial Algebraic Topology, Springer, 2007.
[27] L. Lu, X. Peng, High-ordered random walks and generalized Laplacians on hypergraphs, in: Proc. Algorithms and Models for the Web-Graph, 2011.
[28] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197-198 (1994) 143-176.
[29] F. Meunier, Combinatorial Stokes formulae, European J. Combin. 29 (1) (2008) 286-297.
[30] B. Mohar, The Laplacian spectrum of graphs, Graph Theory Combin. Appl. 2 (1991) 871-898.
[31] A. Muhammad, M. Egerstedt, Control using higher order Laplacians in network topologies, in: Mathematical Theory of Networks and Systems, Kyoto, Japan, 2006, pp. 1024-1038.
[32] W. Schubert, B. Bonnekoh, A. Pommer, L. Philipsen, R. Bockelmann, Y. Malykh, H. Gollnick, M. Friedenberger, M. Bode, A. Dress, Analyzing proteome topology and function by automated multidimensional fluorescence microscopy, Nat. Biotech. 24 (2006) 1270-1278.
[33] A. Tahbaz-Salehi, A. Jadbabaie, Distributed coverage verification in sensor networks without location information, IEEE Trans. Automat. Control 55 (8) (2010) 1837-1849.
[34] C. Taszus, Higher order Laplace Beltrami spectra of networks, Master’s Thesis, Friedrich Schiller Universität Jena, 2010.

[^0]: * Correspondence to: Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.

 E-mail addresses: danijela.horak@gmail.com, d.horak@warwick.ac.uk (D. Horak).

