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Abstract

On the class of log-concave functions on Rn , endowed with a suitable algebraic structure, we study
the first variation of the total mass functional, which corresponds to the volume of convex bodies when
restricted to the subclass of characteristic functions. We prove some integral representation formulae for
such a first variation, which suggest to define in a natural way the notion of area measure for a log-concave
function. In the same framework, we obtain a functional counterpart of Minkowski’s first inequality for
convex bodies; as corollaries, we derive a functional form of the isoperimetric inequality, and a family of
logarithmic-type Sobolev inequalities with respect to log-concave probability measures. Finally, we propose
a suitable functional version of the classical Minkowski’s problem for convex bodies, and prove some partial
results towards its solution.
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1. Introduction

This article regards log-concave functions defined in Rn , i.e. functions of the form

f : Rn
→ R, f = e−u,

where u : Rn
→ R ∪ {+∞} is convex.

In the last decades the interest in log-concave functions has been considerably increasing,
strongly motivated by the analogy between these objects and convex bodies (convex compact
subsets of Rn).

The first breakthrough in the discovery of parallel behaviours of convex bodies and log-
concave functions, was the Prékopa–Leindler inequality, named after the two Hungarian
mathematicians who proved it in the seventies [20,25–27]. It states that, for any given functions
f, g, h ∈ L1(Rn

; R+) which satisfy, for some t ∈ (0, 1), the pointwise inequality

h

(1 − t)x + t y


≥ f (x)1−t g(y)t ∀x, y ∈ Rn,

it holds
Rn

h ≥


Rn

f

1−t
Rn

g

t

. (1.1)

Moreover, it was proved by Dubuc in [9] that the equality sign holds in (1.1) if and only if the
functions f and g are log-concave and translates, meaning that f (x) = g(x − x0) for some
x0 ∈ Rn .

If K and L are measurable subsets of Rn such that also their Minkowski’s combination
(1 − t)K + t L is measurable, by applying the Prékopa–Leindler inequality with f, g and h
equal respectively to the characteristic functions of K , L and (1 − t)K + t L , one obtains

V ((1 − t)K + t L) ≥ V (K )1−t V (L)t .

This is an equivalent formulation of the classical Brunn–Minkowski inequality

V ((1 − t)K + t L)1/n
≥ (1 − t)V (K )1/n

+ tV (L)1/n, (1.2)

which holds with equality sign if and only if K and L belong to the class Kn of convex bodies in
Rn and are homothetic, namely they agree up to a translation and a dilation.
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The geometric inequality (1.2) is a cornerstone in Convex Geometry: it has many important
consequences, such as the isoperimetric inequality for convex bodies, and the uniqueness issue
in the solution of the Minkowski’s problem (see the survey paper [12] for an overview). On the
other hand, in view of its functional form, inequality (1.1) is somehow more “flexible”, and finds
many applications in different fields, such as convex geometry, probability, mass transportation;
we refer the reader to [2,3,32] for more information on Prékopa–Leindler inequality, including
proofs and bibliographical references.

In the same way as (1.1) paraphrases (1.2) into the realm of functions, recently analytic
versions of other geometric inequalities have been studied. In particular, we mention the so-
called Blaschke–Santaló inequality, involving the product of the volume of a convex body and
its polar: functional versions of it have been achieved in [2,1,11,19,10]. Let us also emphasize
that a suitable notion of mean width for log-concave functions has been introduced by Klartag
and Milman in [17], where some related Urysohn-type inequality are also proved; a short time
ago, these topics have been further developed by Rotem in [29,30]. We also refer to the papers
[24,23,5,7], which contain further developments of the results presented here, or investigations
on related topics.

In the same spirit, the aim of this paper is to cast some more light upon the geometry
of log-concave functions, and to propose functional counterparts of some classical quantities
and inequalities in Convex Geometry, that we briefly recall below (for more details, we refer
to [31]).

Going back to the Brunn–Minkowski inequality, it admits a sort of “differential version”, the
so-called Minkowski’s first inequality, which reads

V1(K , L) :=
1
n

lim
t→0+

V (K + t L)− V (K )

t
≥ V (K )

n−1
n V (L)

1
n ∀K , L ∈ Kn . (1.3)

Inequality (1.3) can be easily obtained from (1.2), and it is in fact equivalent to it. Notice that,
when L is the unit ball, V1(K , L) is just the perimeter of K , up to a factor n, and (1.3) becomes
the isoperimetric inequality in the class of convex bodies.

The term V1(K , L), which is one of the mixed volumes of K and L , admits a very simple and
elegant integral representation:

V1(K , L) =
1
n


Sn−1

hL dσK , (1.4)

where hL is the support function of L , and σK is the area measure of K . In view of (1.4), the
measure σK is usually interpreted as the first variation of volume with respect to the Minkowski’s
addition. The classical Minkowski’s problem consists in retrieving K from its surface area
measure, and it is well-known that it admits a unique solution up to translations. More precisely,
given any measure η on the unit sphere Sn−1 which satisfies the compatibility conditions of
having barycentre at the origin and being not concentrated on an equator, there exists a convex
body, unique up to translations, such that η = σK .

Our main goals are to provide a functional version of Minkowski’s first inequality (1.3), of
the representation formula (1.4), and of the Minkowski’s problem. In this perspective, a crucial
issue is to identify a good notion of “area measure” for a log-concave function. To that aim, we
pursue a quite natural idea, namely we replace the volume of a convex body by the integral of a
log-concave function: we set
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J ( f ) =


Rn

f dx,

and we compute the first variation of J at f with respect to suitable perturbations.
Actually, log-concave functions can be equipped with two internal operations: a sum and

a multiplication by positive reals, that will be denoted respectively by ⊕ and ·, and can be
characterized as follows (see Section 2 for a more rigorous presentation). If f = e−u and
g = e−v are log-concave functions and α, β > 0, then

α · f ⊕ β · g := e−w, where w∗
= αu∗

+ βv∗. (1.5)

Here ∗ denotes as usual the Fenchel conjugate of convex functions. In other words, if we write
a generic log-concave function as e−u , the operations introduced in (1.5) are linear with respect
to u∗. In particular, since the Fenchel conjugate of the indicatrix IK of a convex body (see the
definition in Section 2.1) is precisely its support function hK , one has

α · χK ⊕ β · χL = χαK+βL .

Therefore, definition (1.5) can be seen as a natural extension to the class of log-concave functions
of the Minkowski’s structure on convex bodies.

In this framework, for a pair of log-concave functions f and g, we study the quantity

δ J ( f, g) := lim
t→0+

J ( f ⊕ t · g)− J ( f )

t
. (1.6)

Let us point out that, red within this formalism, the above quoted works [17,29,30] are
concerned precisely with the limit in (1.6), in the special case when f is equal to γn , the density
of the Gaussian measure in Rn . In fact, to some extent, γn plays the role of the unit ball in the
class of log-concave functions. Thus, according to [17], the mean width of a log-concave function
g is given by δ J (γn, g), by analogy with the mean width of a convex body K which is given,
up to a constant depending on the dimension, by V1(B, K ). We also mention the paper [16] by
Klartag (see in particular Section 3), where a limit similar to (1.6) is considered, in the class of
s-concave functions endowed with the appropriate algebraic operations, in order to derive several
functional inequalities.

When f and g are arbitrary log-concave functions, the limit in (1.6) exists under the fairly
weak condition J ( f ) > 0. In Section 3.1 we give a rigorous proof of this fact, already pointed
out in [17], and we show that the condition J ( f ) > 0 is not necessary in the one dimensional
case. Moreover we give simple examples which reveal that δ J ( f, g) may become negative or
+∞ (indeed, whereas V (K + t L) is a polynomial in t for every K and L in Kn , this is no longer
true in general for J ( f ⊕ t · g)). Then in Section 3.2 we compute δ J ( f, g) in some special cases:
the case when f = g, which brings into play the entropy of f :

Ent( f ) =


Rn

f log f dx − J ( f ) log J ( f ),

and the case when the logarithms of f and g are powers of support functions of convex bodies. In
the latter case, in order to give the explicit expression of the first variation, we exploit an integral
representation formula for the derivative of p-mixed volume due to Lutwak (see [21,22]).

To go farther than these special cases, in Section 4 we come to the problem at the core of the
paper, namely the problem of giving some general integral representation formula for δ J ( f, g).
We are able to achieve such a representation in two distinct settings: when the finiteness domains
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of u = − log f and v = − log g are the whole space Rn , and when such domains are smooth
strictly convex bodies. In both cases we have to assume further properties on u and v, concerning
regularity, growth at the boundary of their domain, and strict convexity. To be more precise,
our integral representation formulae are settled in the classes A′,A′′ of log-concave functions
f = e−u such that u belongs respectively to

L′
:=


u ∈ L : dom(u) = Rn, u ∈ C 2

+(R
n), lim

∥x∥→+∞

u(x)

∥x∥
= +∞


,

L′′
:=


u ∈ L : dom(u) = K ∈ Kn

∩ C 2
+, u ∈ C 2

+(int(K )) ∩ C 0(K ),

lim
x→∂K

∥∇u(x)∥ = +∞


.

Here the notation C 2
+, used for functions and sets, has the following standard meaning: when

it is referred to a function u, it means that u ∈ C 2 and the Hessian matrix of u is positive definite
at each point; when it is referred to a convex body K , it means that ∂K ∈ C 2 and the Gauss
curvature is everywhere strictly positive.

After proving that A′ and A′′ are both closed with respect to the operations ⊕ and · (see
Lemma 4.9), we state our main results, which are valid under the assumption that the perturbation
g is “controlled” by the perturbed function f (see Definition 4.4 for the precise statement of this
assumption, which is not necessary in the one dimensional case). In Theorem 4.5 we prove that,
when f, g ∈ A′, δ J ( f, g) is finite and is given by

δ J ( f, g) =


Rn
v∗(∇u(x)) f (x) dx . (1.7)

In Theorem 4.6 we prove that, when f, g ∈ A′′, δ J ( f, g) is finite and is given by

δ J ( f, g) =


K
v∗(∇u(x)) f (x) dx +


∂K

hL(νK (x)) f (x) d Hn−1, (1.8)

where K = dom(u), νK is the unit outer normal to ∂K , L = dom(v), and hL is the support
function of L . The proof of these results is quite delicate and requires a careful analysis, see
Section 4.

If we perform the change of variable ∇u(x) = y in (1.7), it becomes

δ J ( f, g) =


Rn
v∗ dµ( f ), dµ( f ) := f (y)e−⟨y,∇u∗(y)⟩+u∗(y) det(∇2u∗(y)) dy. (1.9)

Comparing (1.9) with (1.4), we are lead to identify the measure µ( f ) as the area measure of a
function f in the class A′. (Under this point of view, v∗ plays the role of the support function of
g, as in [17]; this interpretation is quite natural in view of the fact that the algebraic structure we
put on log-concave functions e−u is linear with respect to u∗, in the same way as the Minkowski’s
structure on Kn is linear with respect to support functions). Similarly, with the changes of variable
∇u(x) = y and ∇νK (y) = ξ , (1.8) becomes

δ J ( f, g) =


Rn
v∗ dµ( f )+


Sn−1

hL dσ( f ), dµ( f ) as above,

dσ( f ) := f (ν−1
K (ξ)) dσK (ξ). (1.10)
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Hence, within the class A′′, the notion of area measure of f is provided by the pair (µ( f ), σ ( f ))
(notice that the former is a measure on Rn , the latter on Sn−1).

Having the above representation formulae at our disposal, we then turn attention to functional
inequalities involving δ J ( f, g). Our approach is similar to the one used by Klartag in [16]
for the class of s-concave functions. In Section 5, we prove the following functional form of
Minkowski’s first inequality (1.3) (see Theorem 5.1):

δ J ( f, g) ≥ J ( f )

log J (g)+ n


+ Ent( f ), (1.11)

with equality sign if and only if there exists x0 ∈ Rn such that g(x) = f (x − x0) ∀x ∈ Rn .
Loosely speaking, (1.3) can be proved taking the right derivative at t = 0 of both sides of the
Brunn–Minkowski inequality (1.2), and inequality (1.11) is obtained by adapting this idea to the
Prékopa–Leindler inequality, and using Dubuc’s characterization of the equality case.

In Section 6 we show that, by combining the abstract inequality (1.11) with the above
representation formulae for δ J ( f, g), further functional inequalities come out.

Firstly, we define the perimeter of a function f ∈ A′ in the natural way, that is as P( f ) :=

δ J ( f, γn), and we show that, under suitable assumptions, the following functional version of the
isoperimetric inequality holds (see Proposition 6.2):

P( f ) =
1
2


Rn

∥∇ f ∥
2

f
dx + (log cn) J ( f ) ≥ n J ( f )+ Ent( f ).

Here cn := (2π)−n/2, and the inequality becomes an equality if and only if there exists x0 ∈ Rn

such that f (x) = γn(x − x0) ∀x ∈ Rn .
Then we derive a family of inequalities of logarithmic Sobolev type for probability measures

ν with a log-concave density v: under suitable assumptions on ν, a and h, including the existence
of a positive constant c such that ∇

2v is bounded below by c times the identity matrix, we obtain
(see Proposition 6.3)

Rn
a(h) log a(h)dν −


Rn

a(h) dν


log


Rn

a(h) dν



≤
1
c


Rn

(a′(h))2

a(h)
∥∇h∥

2 dν. (1.12)

In particular, by choosing ν = γn dx and a(t) = t2, we recover Gross’ logarithmic Sobolev
inequality for the Gaussian measure. We point out that our approach allows much more general
choices of ν and a; on the other hand, as a drawback, the validity of (1.12) is obtained under
some further restrictions on h.

Finally, in Section 7 we move few steps towards the solution of the Minkowski’s problem for
log-concave functions. As a natural extension of the Minkowski’s problem for convex bodies,
such a problem can be formulated as follows: retrieve a log-concave function given the first
variation of its total mass functional. Clearly, in view of (1.9) and (1.10), the prescribed first
variation will consist of a single measure on Rn or of a pair of measures (the first on Rn and
the second on Sn−1), depending on whether we want to solve the problem in the class A′ or
A′′, respectively. We establish a uniqueness result for both these problems (see Proposition 7.4),
and we find some necessary conditions for the existence of a solution, which are quite similar
to those mentioned before for the classic Minkowski’s problem (see Proposition 7.2). However,
differently from the case of convex bodies, it turns out that such conditions are in general not
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sufficient, as the analysis of the one dimensional case easily shows. Thus, at this stage, some
substantial difference between the geometric and the functional setting emerges, which deserves
in our opinion further investigation.

Added in proof. When the publication of the present paper was in final part, the authors learned
about the preprint [8], by Dario Cordero-Erausquin and Bo’az Klartag, which is closely related
to the Minkowski problem introduced in Section 7 of this paper.

2. Preliminaries

2.1. Notation and background

We work in the n-dimensional Euclidean space Rn, n ≥ 1, endowed with the usual scalar
product ⟨x, y⟩ and norm ∥x∥; we set Br := {x ∈ Rn

: ∥x∥ ≤ r}.
For m ≤ n, we indicate by Hm the m-dimensional Hausdorff measure; integration with respect

to the Lebesgue measure Hn is abbreviated by dx .
We denote by Kn the class of convex bodies (compact convex sets) in Rn , and by Kn

0
the subclass of convex bodies K whose relative interior int(K ) is nonempty. We indicate by
V (K ) = Hn(K ) the n-dimensional volume of K ∈ Kn .

Given K ∈ Kn
0 , we denote by νK its Gauss map (i.e., the map which associates with every

point x ∈ ∂K the subset of Sn−1 given by the unit outer normal vectors to ∂K at x), by
σK = (νK )♯(Hn−1 ∂K ) its surface area measure, and by P(K ) =


Sn−1 dσK = Hn−1(∂K ) its

perimeter. We say that K is C 2
+ if its boundary ∂K is of class C 2 with strictly positive Gaussian

curvature.
For any K ∈ Kn , we adopt the standard notation hK for the support function of K , defined by

hK (x) := sup
y∈K

⟨x, y⟩ ∀x ∈ Rn .

We recall that the polar body K o of K is given by

K o
:= {y ∈ Rn

: ⟨x, y⟩ ≤ 1 ∀x ∈ K };

if 0 ∈ int(K ), the support function of K agrees with the gauge function of K o, namely

hK (x) = pK o(x) := inf{t ≥ 0 : x ∈ t K o
}.

We denote by IK and χK the indicatrix function and characteristic function of K , defined
respectively by

IK (x) :=


0 if x ∈ K
+∞ if x ∉ K ,

χK (x) :=


1 if x ∈ K
0 if x ∉ K .

Let u : Rn
→ R ∪ {+∞} be a convex function. We set

dom(u) = {x ∈ Rn
: u(x) ∈ R}.

By the convexity of u, dom(u) is a convex set. We say that u is proper if dom(u) ≠ ∅. We say
that u is of class C 2

+ if it is twice differentiable on int(dom(u)), with a positive definite Hessian
matrix. We denote by epi(u) the epigraph of u.

We recall that the Fenchel conjugate of u is the convex function defined by:

u∗(y) = sup
x∈Rn

⟨x, y⟩ − u(x) ∀y ∈ Rn .
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On the class of convex functions from Rn to R ∪ {+∞}, we consider the operation of infimal
convolution, defined by

u�v(x) := inf
y∈Rn


u(x − y)+ v(y)


∀x ∈ Rn, (2.1)

and the following right scalar multiplication by a nonnegative real number α:

(uα)(x) :=


αu
 x

α


if α > 0

I{0} if α = 0
∀x ∈ Rn . (2.2)

Notice that these operations are convexity preserving, and that the function I{0} acts as the
identity element in (2.1).

The proposition below gathers some elementary properties of the Fenchel conjugate, in
particular about its behaviour with respect to the operations defined above.

Proposition 2.1. Let u : Rn
→ R ∪ {+∞} be a convex function. Then:

(i) it holds u∗(0) = − inf(u); in particular, inf(u) > −∞ implies u∗ proper;
(ii) if u is proper, then u∗(y) > −∞ ∀y ∈ Rn;

(iii) dom(u�v) = dom(u)+ dom(v);
(iv) (u�v)∗ = u∗

+ v∗;
(v) (uα)∗ = αu∗.in

Proof. Items (i), (ii) and (v) are straightforward consequences of the definition of Fenchel
conjugate; items (iii) and (iv) can be found in [28, p. 34] and [28, Theorem 16.4],
respectively. �

Given a differentiable real valued function u on an open subset C of Rn , the Legendre
conjugate of the pair (C, u) is defined to be the pair (D, v), where D is the image of C through
the gradient mapping ∇u, and

v(y) = ⟨∇u−1(y), y⟩ − u

∇u−1(y)


∀y ∈ D,

where ∇u−1(y) :=


x : ∇u(x) = y

. The above definition of v is well posed whenever, for

any y ∈ D, the value of ⟨x, y⟩ − u(x) turns out to be independent from the choice of the point
x ∈ ∇u−1(y).

Following [28, Section 26], we say that a pair (C, u) is a convex function of Legendre type if:

(a) C is a nonempty open convex set;
(b) u is differentiable and strictly convex on C ;
(c) limi ∥∇u(xi )∥ → +∞ whenever {xi } ⊂ C is a sequence converging to some x ∈ ∂C .

Within the class of convex functions of Legendre type, Fenchel and Legendre conjugates may
be identified according to proposition below [28, Theorem 26.5].

Proposition 2.2. Let u : Rn
→ R ∪ {+∞} be a closed convex function, and set C :=

int(dom(u)),C∗
:= int(dom(u∗)). Then (C, u) is a convex function of Legendre type if and

only if (C∗, u∗) is. In this case, (C∗, u∗) is the Legendre conjugate of (C, u) (and conversely).
Moreover, ∇u : C → C∗ is a continuous bijection, and the inverse map of ∇u is precisely ∇u∗.
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2.2. Functional setting

Let us introduce the classes of functions we deal with throughout the paper.

Definition 2.3. We set:

L := {u : Rn
→ R ∪ {+∞} | u proper, convex, lim

∥x∥→+∞
u(x) = +∞},

A := { f : Rn
→ R | f = e−u, u ∈ L}.

Below, we give some examples and basic properties of functions in L; we show that,
consequently, the class of log-concave functions A can be endowed with an algebraic structure
which extends in a natural way the usual Minkowski’s structure on Kn .

Example 2.4. (i) For any K ∈ Kn , the function u = IK belongs to L. Notice that u∗
= hK

belongs to L if and only if 0 ∈ int(K ), which shows that the class L is not closed under
Fenchel transform.

(ii) For any K ∈ Kn with 0 ∈ int(K ), and any p ∈ [1,+∞), the function u =
1
p h p

K belongs to

L. In particular, for any p ∈ [1,+∞), the function u(x) =
1
p ∥x∥

p belongs to L.

Lemma 2.5. Let u ∈ L. Then there exist constants a and b, with a > 0, such that

u(x) ≥ a∥x∥ + b ∀ x ∈ Rn . (2.3)

Moreover u∗ is proper, and satisfies u∗(y) > −∞ ∀y ∈ Rn .

Proof. In order to show (2.3), assume first that 0 ∈ dom(u). Let r > 0 be such that u(x) ≥

1 + u(0) if ∥x∥ ≥ r ; for ∥x∥ ≥ r , the convexity of u implies

u(x) ≥ u(0)+


u


r x

∥x∥


− u(0)


∥x∥

r
≥ u(0)+

∥x∥

r
.

Then, setting m := inf(u), it holds

u(x) ≥ m − 1 +
∥x∥

r
for ∥x∥ ≥ r.

Since the above inequality is verified for ∥x∥ ≤ r as well, it holds in Rn . This shows that (2.3)
is satisfied by taking a = r−1 and b = (m − 1). In the general case, since u is proper, one can
choose x0 ∈ dom(u), and apply the above argument to the function u(x − x0), which yields

u(x) ≥ a∥x + x0∥ + b ≥ a∥x∥ + b − a∥x0∥.

The properties of u∗ follow from Proposition 2.1(i) and (ii). �

We now use Lemma 2.5 in order to prove that L is closed under the operations of infimal
convolution and right scalar multiplication defined in (2.1) and (2.2).

Proposition 2.6. Let u, v ∈ L and α, β ≥ 0. Then (uα)�(vβ) ∈ L.

Proof. From definition (2.2) it is immediate that (uα) ∈ L for any u ∈ L and α ≥ 0. So we have
just to show that u�v belongs to L for any u, v ∈ L. Set for brevity w := u�v. Clearly, w is a
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convex function defined in Rn . Let us prove that w takes values into R ∪ {+∞}, is proper, and
satisfies lim∥x∥→+∞w(x) = +∞.

By Proposition 2.1(i) and (iv), we have

infw = −w∗(0) = −u∗(0)− v∗(0) = inf(u)+ inf(v).

Since inf(u), inf(v) > −∞, we infer that inf(w) > −∞, which shows that w takes values into
R ∪ {+∞}.

By Proposition 2.1(iii), dom(w) = dom(u) + dom(v), hence the properness of both u and v
implies the same property for w.

Let u(x) ≥ a∥x∥ + b and v(x) ≥ a′
∥x∥ + b′ according to Lemma 2.5, and set c :=

min{a, a′
} > 0, d := b + b′. Then, by using the definition of w and the lower bounds satisfied

by u and v, we get

w(x) ≥ inf
y∈Rn


a∥x − y∥ + b + a′

∥y∥ + b′


≥ c∥x∥ + d.

In particular, this implies that lim∥x∥→+∞w(x) = +∞. �

We are now in a position to endow the class A with an addition and a multiplication by
nonnegative scalars. These operations are internal to A thanks to Proposition 2.6.

Definition 2.7. Let f = e−u, g = e−v
∈ A, and let α, β ≥ 0. We define

α · f ⊕ β · g = e−[(uα)�(vβ)]. (2.4)

Recalling (2.1) and (2.2), the explicit form of (2.4) when α and β are strictly positive reads

(α · f ⊕ β · g)(x) := sup
y∈Rn

f


x − y

α

α
g


y

β

β
.

In the particular case when α = 0 and β > 0, we have (α · f ⊕ β · g)(x) = g


x
β

β
. Similarly,

for α > 0 and β = 0, (α · f ⊕ β · g)(x) = f
 x
α

α . Finally, if α = β = 0 we simply have
(α · f ⊕ β · g) = I{0}.

Remark 2.8. In view of the identities

u�v(x) = inf

µ : (x, µ) ∈ epi(u)+ epi(v)


(uα)(x) = inf


µ : (x, µ) ∈ α epi(u)


,

the functional operation in (2.4) has the following geometrical interpretation: it corresponds to
the Minkowski’s combination with coefficients α and β of the epigraphs of u and v (as subsets
of Rn+1).

Next proposition shows that, when restricted to suitable subclasses of A, Definition 2.7 allows
to recover different algebraic structures on convex bodies. Recall that (see [21]), for a fixed
p ∈ [1,+∞), the p-sum of two convex bodies K and L with coefficients α and β is the convex
body α ·p K +p β ·p L defined by the equality

h p
α ·p K +p β ·p L = αh p

K + βh p
L .
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Proposition 2.9. Set

L1 :=

hK o : K ∈ Kn, 0 ∈ int(K )


Lq :=


1
q
(hK o)q : K ∈ Kn, 0 ∈ int(K )


, q ∈ (1,+∞),

L∞ :=


IK : K ∈ Kn.
The above subclasses of L are closed with respect to the operations defined in (2.1) and (2.2).

More precisely, for any α, β ≥ 0, and any u, v belonging to the same class Lq , it holds

(uα)�(vβ) =



hK o∩Lo if q = 1, u = hK ◦ , v = hL◦ ,
1
p
(h(α ·p K +p β ·p L)o)

p with p :=
q

q − 1
, if q ∈ (1,+∞),

u =
1
q
(hK ◦)q , v =

1
q
(hL◦)q ,

IαK+βL if q = ∞, u = IK , v = IL .

Proof. Let u ∈ Lq . We have

u∗
=


IK o if q = 1
1
p

h p
K if q ∈ (1,+∞)

hK if q = ∞.

(2.5)

In particular, in order to check the above expression of u∗ in case q ∈ (1,+∞), one can apply
with φ(s) =

sq

q the following identity holding for every increasing convex function φ (see
e.g. [15]):

(φ(hK o))∗(x) = inf
t≥0


φ∗(t)+ th∗

K o

 x

t


;

this yields
1
q
(hK o)q

∗

(x) = inf
{t≥0:x∈t K o}


t p

p


=

1
p
ρ

p
K o(x) =

1
p

h p
K (x).

Now, the statement of the proposition follows easily from the computation of ((uα)�(vβ))∗.
Indeed, by Proposition 2.1(iv)–(v), it holds ((uα)�(vβ))∗ = αu∗

+βv∗. According to (2.5), one
has

αu∗
+ βv∗

=



α IK o + β ILo = IK o∩Lo = (hK o∩Lo)∗ if q = 1
1
p


αh p

K + βh p
K


=

1
p
[hα ·p K +p β ·p L ]

p
1
q

[h(α ·p K +p β ·p L)o ]
q

∗

if q ∈ (1,+∞)

αhK + βhL = hαK+βL = (IαK+βL)
∗ if q = ∞. �
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3. Differentiability of the total mass functional

Definition 3.1. We call total mass functional the following integral

J ( f ) =


Rn

f (x) dx ∀ f ∈ A.

Remark 3.2. (i) The growth condition from below satisfied by functions in L according to
Lemma 2.5 (see (2.3)) ensures that J ( f ) ∈ [0,+∞) for every f ∈ A.

(ii) Clearly, when f = χK , one has J ( f ) = V (K ).
(iii) If f = e−u is such that J ( f ) = 0, then f = 0Hn-a.e. in Rn . This implies that the convex

set dom(u) is Lebesgue negligible, and hence its dimension does not exceed (n − 1).

Remark 3.3. By the Prékopa–Leindler inequality, for every f, g ∈ A and for every t ∈ [0, 1], it
holds

J ((1 − t) · f ⊕ t · g) ≥ J ( f )1−t J (g)t ,

with equality sign if and only if there exists x0 ∈ Rn such that g(x) = f (x − x0) ∀ x ∈ Rn

(see [9,12]). Consequently, for every fixed f, g ∈ A, the functions t → log J ( f ⊕ t · g) and
t → log J


(1 − t) · f ⊕ t · g


turn out to be concave respectively on [0,+∞) and on [0, 1]. We

shall repeatedly exploit this concavity property in the sequel.

We are going to study the first variation of the total mass functional, with respect to the
algebraic structure introduced in Definition 2.7.

Definition 3.4. Let f, g ∈ A. Whenever the following limit exists

lim
t→0+

J ( f ⊕ t · g)− J ( f )

t
,

we denote it by δ J ( f, g), and we call it the first variation of J at f along g.

Remark 3.5. Let f = χK and g = χL , with K , L ∈ Kn . In this case J ( f ⊕ t · g) = V (K + t L)
is a polynomial in t ; its derivative at t = 0+ is equal to n times the mixed volume V1(K , L), and
admits the integral representation

d

dt
V (K + t L)|t=0+

= nV1(K , L) =


Sn−1

hL dσK . (3.1)

Notice in particular that δ J (χK , χL) is nonnegative and finite, which is not always true in general
for δ J ( f, g) (cf. the examples given in Remark 3.8 below).

Section 3.1 below is devoted to prove that δ J ( f, g) exists under the fairly weak hypothesis
that J ( f ) is strictly positive. Then in Section 3.2 we show the explicit expression of δ J ( f, g) in
some relevant cases.

3.1. Existence of the first variation

Theorem 3.6. Let f, g ∈ A, and assume that J ( f ) > 0. Then J is differentiable at f along g,
and it holds

δ J ( f, g) ∈ [−k,+∞], (3.2)



720 A. Colesanti, I. Fragalà / Advances in Mathematics 244 (2013) 708–749

being k := [inf(− log g)]+ J ( f ). In dimension n = 1, the same conclusions continue to hold
also when J ( f ) = 0.

Remark 3.7. We point out that the assumption J ( f ) > 0 is somehow technical; we believe that,
when J ( f ) = 0, Theorem 3.6 is likely true not only in dimension n = 1 but also in higher
dimensions (as it is suggested by the fact that the mixed volume V1(K , L) exists regardless of
the condition V (K ) > 0).

Remark 3.8. Estimate (3.2) cannot be improved, as the following examples show.

(i) Let f = e−u
∈ A with J ( f ) > 0, and g = e−v , where v(0) = 1 and v ≡ +∞ in Rn

\ {0}.
Then u�(vt)(x) = u(x)+ t , which implies

δ J ( f, g) = J ( f ) · lim
t→0+

e−t
− 1
t

= −J ( f ) < 0.

(ii) Let K , L ∈ Kn with the origin in their interior, so that u = hK , v = hL ∈ L, and take
f = e−u, g = e−v . Then u�(vt) = hK∩L (cf. Proposition 2.9), and therefore

δ J ( f, g) = lim
t→0+


1
t


Rn


e−hK∩L − e−hL


dx


=


0 if L ⊆ K
+∞ otherwise.

Prior to the proof of Theorem 3.6, we state a preliminary lemma, which will be heavily
exploited also in the next section.

Lemma 3.9. Let f = e−u, g = e−v
∈ A. For t ≥ 0, set ut = u�(vt) and ft = e−ut .

Assume that v(0) = 0. Then, for every fixed x ∈ Rn, ut (x) and ft (x) are respectively pointwise
decreasing and increasing with respect to t; in particular it holds

u1(x) ≤ ut (x) ≤ u(x) and f (x) ≤ ft (x) ≤ f1(x) ∀x ∈ Rn, ∀t ∈ [0, 1].

Proof. Given t ≥ 0 and δ > 0, let us show that ut+δ ≤ ut , i.e.

u�

v(t + δ)


≤ u�(vt).

If t = 0, the above inequality reduces to u�(vδ) ≤ u. This is readily checked: recalling
definitions (2.1) and (2.2), from the assumption v(0) = 0 we deduce

u�(vδ)(x) = inf
y∈Rn


u(x − y)+ δv


y

δ


≤ u(x) ∀x ∈ Rn .

If t > 0, for every x ∈ Rn we have

u�

v(t + δ)


(x) = inf

ξ∈Rn


u(x − ξ)+ (t + δ)v


ξ

t + δ



= inf
ξ∈Rn


u(x − ξ)+ inf

y∈Rn


tv


ξ − y

t


+ δv


y

δ



= inf
y,z∈Rn


u(x − y − z)+ tv


z

t


+ δv


y

δ


=

u�(vt)


�(vδ)(x) ≤ u�(vt)(x).
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Thus ut is monotone decreasing with respect to t , which immediately implies that ft = e−ut

is monotone increasing. �

Proof of Theorem 3.6. We set

u := − log f, v := − log g, ft := f ⊕ t · g, (3.3)

and

d := v(0), ṽ(x) := v(x)− d, g̃(x) := e−ṽ(x), f̃t := f ⊕ t · g̃. (3.4)

Up to a translation of coordinates, we may also assume without loss of generality that inf(v) =

v(0).
Since by construction ṽ(0) = 0, by Lemma 3.9 for every x ∈ Rn there exists f̃ (x) :=

limt→0+ f̃t (x) and it holds f̃ (x) ≥ f (x). As t → 0+, f̃t is pointwise decreasing by Lemma 3.9;
moreover, by Lemma 2.5 and Proposition 2.6, J ( f̃1) < ∞. Hence, by monotone convergence,
we have limt→0+ J ( f̃t ) = J ( f̃ ).

Since ft (x) = e−dt f̃t (x), we have

J ( ft )− J ( f )

t
= J ( f )

e−dt
− 1

t
+ e−dt J ( f̃t )− J ( f )

t
. (3.5)

Let us consider separately the two cases J ( f̃ ) > J ( f ) and J ( f̃ ) = J ( f ).
If J ( f̃ ) > J ( f ), then

lim
t→0+

J ( ft )− J ( f )

t
= lim

t→0+

J ( f̃t )− J ( f )

t
= +∞,

and the statement of the theorem holds true.
If J ( f̃ ) = J ( f ), we further distinguish the following two subcases:

∃t0 > 0 : J ( f̃t0) = J ( f ) or J ( f̃t ) > J ( f ) ∀t > 0.

In the former subcase, since by Lemma 3.9 J ( f̃t ) is a monotone increasing function of t ,
necessarily it holds J ( f̃t ) = J ( f ) for every t ∈ [0, t0]. Hence the second term in the r.h.s. of
(3.5) tends to 0, so that

lim
t→0+

J ( ft )− J ( f )

t
= −d J ( f )

and the statement of the theorem holds true.
In the latter subcase, we can write

J ( f̃t )− J ( f )

t
=

log(J ( f̃t ))− log(J ( f ))

t
·

J ( f̃t )− J ( f )

log(J ( f̃t ))− log(J ( f ))
. (3.6)

Since log(J ( f̃t )) is an increasing concave function of t (respectively by Lemma 3.9 and by the
Prékopa–Leindler inequality, cf. Remark 3.2),

∃ lim
t→0+

log(J ( f̃t ))− log(J ( f ))

t
∈ [0,+∞]. (3.7)

On the other hand,

∃ lim
t→0+

J ( f̃t )− J ( f )

log(J ( f̃t ))− log(J ( f ))
= J ( f ) > 0. (3.8)
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From (3.6)–(3.8), we infer that

∃ lim
t→0+

J ( f̃t )− J ( f )

t
∈ [0,+∞]. (3.9)

Combining (3.5) and (3.9), we deduce that

∃ lim
t→0+

J ( ft )− J ( f )

t
∈ [− max{d, 0}J ( f ),+∞]. (3.10)

Finally, let us show that in the one-dimensional case δ J ( f, g) exists also when J ( f ) = 0. We
keep definitions (3.3) and (3.4). Since by assumption dom(u) is a Lebesgue negligible convex
set, it consists of exactly one point x0. Then

u�(ṽt)(x) = u(x0)+ t ṽ


x − x0

t


∀x ∈ R, ∀t > 0.

Hence

lim
t→0+

J ( f̃t )− J ( f )

t
= lim

t→0+
e−u(x0)


R

e−t ṽ(x−x0) dx

= e−u(x0)H1(dom(v)) ∈ [0,+∞], (3.11)

where the last equality holds true by monotone convergence. Combining (3.5) and (3.11), we see
that (3.10) remains true. �

3.2. Computation of the first variation in some special cases

Firstly, we analyze the case f = g, and we show that δ J ( f, f ) admits a very simple
representation in terms of the mass and the entropy of f , which is defined as follows (cf. [18]).

Definition 3.10. For every f ∈ A with J ( f ) > 0, we call entropy of f the following quantity:

Ent( f ) =


Rn

f log f dx − J ( f ) log J ( f ) ∀ f ∈ A.

Proposition 3.11. For every f ∈ A with J ( f ) > 0, it holds Ent( f ) ∈ (−∞,+∞) and

δ J ( f, f ) = n J ( f )+


Rn

f log f dx =

n + log J ( f )


J ( f )+ Ent( f ). (3.12)

Proof. Since J ( f ) ∈ (0,+∞) for every f ∈ A, to prove the finiteness of Ent( f ) we have just
to show that

Rn
f log f dx ∈ (−∞,+∞).

We set u := − log f and Ω := {x ∈ Rn
: u(x) ≤ 0} (which is possibly an empty set). It holds

Ω
f log f dx = −


Ω

f u dx < − inf
Ω
(u)


Ω

f < +∞,



A. Colesanti, I. Fragalà / Advances in Mathematics 244 (2013) 708–749 723

where in the last inequality we have used the boundedness of u from below on Ω and the
finiteness of J ( f ). On the other hand, we have

Rn\Ω
f log f dx = −


Rn\Ω

f u dx ≥ −m


Rn\Ω
e−u(x)/2 dx > −∞,

where we have used the elementary inequality se−s/2
≤ m := 2/e holding for every s ∈ R+ and

Lemma 2.5. So we have J ( f log f ) ∈ (−∞,+∞).
In order to prove the representation formula (3.12), assume first that u ≥ 0. Since u�(ut) =

u(1 + t), we have

J ( f ⊕ t · f )− J ( f )

t
=

1
t


(1 + t)n


Rn

e−(1+t)u dx −


Rn

e−u dx


=


(1 + t)n − 1

t

 
Rn

e−(1+t)u dx +


Rn

e−u


e−tu
− 1

t


dx .

Now (3.12) follows by passing to the limit as t → 0+ (notice indeed that by the assumption
u ≥ 0 one can apply the monotone convergence theorem).

In the general case when the assumption u ≥ 0 is removed, we consider the function f̃ = e−ũ ,
where ũ = u + c and c = − inf(u). One can easily check that u�(ut) = −c(1 + t) + ũ�(ũt)
and consequently J ( f ⊕ t · f ) = ec(1+t) J ( f̃ ⊕ t · f̃ ). As ũ ≥ 0, we know that δ J ( f̃ , f̃ ) exists
and it is finite, so the same is true for δ J ( f, f ). Moreover,

δ J ( f, f ) = cec J ( f̃ )+ ecδ J ( f̃ , f̃ ) = cJ ( f )+ ec


n J ( f̃ )−


Rn

e−(u+c)(u + c) dx


= n J ( f )+


Rn

f log f dx . �

Next we show that, when − log f and − log g belong to the class Lq introduced in
Proposition 2.9, δ J ( f, g) can be written explicitly in integral form, by using the representation
formula for p-mixed volumes given in [21].

Proposition 3.12. Let q ∈ (1,+∞), and let p := q/(q − 1). Let K , L ∈ Kn with the
origin in their interior, let u :=

1
q (hK o)q , v :=

1
q (hLo)q , and f := e−u , g := e−v . Setting

c(n, q) := q
n
q 0(

n+q
q ) (where 0 denotes the Euler Gamma-function), there holds

J ( f ) = c(q, n)V (K ) (3.13)

δ J ( f, g) =
c(q, n)

n


Sn−1

hL(ξ)
p(hK (ξ))

1−p dσK (ξ). (3.14)

Proof. We set for brevity a(t) = t p/p, so that a∗(t) = tq/q. We have:

J ( f ) =


Rn

e−a∗(hK o ) dx =

 1

0
Hnx : e−a∗(hK o )(x) > t


dt

=

 1

0
Hnx : hK o(x) < (a∗)−1(− log t)


dt

=

 1

0
Hn


x : hK o


x

(a∗)−1(− log t)


< 1


dt
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=

 1

0


(a∗)−1(− log t)

n Hny : hK o

y

< 1


dt

=

 1

0


(a∗)−1(− log t)

n dt


V (K ),

which proves (3.13) with

c(q, n) :=

 1

0


(a∗)−1(− log t)

n dt = q
n
q 0


n + q

q


.

Now we recall from Proposition 2.9 that

f ⊕ t · g = e−
1
q (h(K +p t ·p L)o )

q
,

which combined with (3.13) implies

δ J ( f, g) = c(q, n) lim
t→0+

V (K +p t ·p L)− V (K )

t
.

Then (3.14) follows from the representation formula for p-mixed volumes given in [21,
(IIIp)]. �

4. Integral representation of the first variation

In view of the examples in Section 3.2, it is natural to ask whether, in general, δ J ( f, g) admits
some kind of integral representation. In this section we show that this is true when both f and g
belong to suitable subclasses of A.

Let us begin by introducing the measures which intervene in the representation formulae for
δ J ( f, g). Such measures can be viewed as the “first variation” of J in the class of log-concave
functions, since they play for f the same role as the surface area measure for the volume in
Convex Geometry. This fact emerges in a clear way by comparing the first variation of volume
in (3.1) with Theorems 4.5 and 4.6 below.

Definition 4.1. Let f = e−u
∈ A, and consider the gradient map ∇u : dom(u) → Rn . We set

µ( f ) the Borel measure on Rn defined by

µ( f ) := (∇u)♯( f Hn).

When dom(u) =: K ∈ Kn , we also set σ( f ) the Borel measure on Sn−1 defined by

σ( f ) := (νK )♯( f Hn−1 ∂K ).

Next, we define the subclasses of A where our integral representation formulae are settled.

Definition 4.2. We set A′,A′′ the subclasses of A given by functions f such that u = − log f
belongs respectively to

L′
:=


u ∈ L : dom(u) = Rn, u ∈ C 2

+(R
n), lim

∥x∥→+∞

u(x)

∥x∥
= +∞


L′′

:=


u ∈ L : dom(u) = K ∈ Kn

∩ C 2
+, u ∈ C 2

+(int(K )) ∩ C 0(K ),

lim
x→∂K

∥∇u(x)∥ = +∞


.



A. Colesanti, I. Fragalà / Advances in Mathematics 244 (2013) 708–749 725

Remark 4.3. Notice that, for any u belonging to L′ or L′′, (int(dom(u)), u) is a convex function
of Legendre type, and u is cofinite, i.e. the domain of its Fenchel conjugate is the whole Rn .

Finally, we introduce the concept of an admissible perturbation.

Definition 4.4. We say that g = e−v is an admissible perturbation for f = e−u if

∃ c > 0 : ϕ − cψ is convex, where ϕ = u∗ and ψ = v∗. (4.1)

Our integral representation results read as follows.

Theorem 4.5. Let f, g ∈ A′, and assume that g is an admissible perturbation for f . Then
δ J ( f, g) is finite and is given by

δ J ( f, g) =


Rn
ψ dµ( f ), (4.2)

where ψ = v∗.

Theorem 4.6. Let f, g ∈ A′′, and assume that g is an admissible perturbation for f . Then
δ J ( f, g) is finite and is given by

δ J ( f, g) =


Rn
ψ dµ( f )+


Sn−1

hL dσ( f ), (4.3)

where ψ = v∗ and L = dom(v).

Remark 4.7. For n = 1, (4.2) and (4.3) continue to hold, possibly as an equality +∞ = +∞,
if the assumption that g is an admissible perturbation for f is removed (see the Appendix for a
proof).

Remark 4.8. Under the assumptions of Theorem 4.5 or Theorem 4.6, by using the definition of
push-forward measure and the change of variables ∇u(x) = y, one obtains

Rn
ψ dµ( f ) =


dom(u)

ψ(∇u(x)) f (x) dx

=


Rn
ψ(y) e−⟨y,∇ϕ(y)⟩+ϕ(y) det(∇2ϕ(y)) dy.

Similarly, under the assumptions of Theorem 4.6, it holds
Sn−1

hL dσ( f ) =


∂K

hL(νK (x)) f (x) d Hn−1(x)

=


Sn−1

hL(ξ) f (ν−1
K (ξ)) det(∇ν−1

K (ξ)) d Hn−1(ξ).

The proof of Theorems 4.5 and 4.6 is quite delicate and requires several preliminary lemmas,
whose proof is postponed to the Appendix.

The first one establishes the closure of the two subclasses of L introduced in Definition 4.2
with respect to the operations of infimal convolution and right scalar multiplication.

Lemma 4.9. Let u and v belong both to the same class L′ or L′′ and, for any t > 0, set
ut := u�(vt). Then ut belongs to the same class as u and v.
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We now turn attention to the behaviour of the functions ut = u�(vt) with respect to the
parameter t , more precisely regarding their pointwise convergence as t → 0+ (Lemma 4.10),
and their differentiability in t (Lemma 4.11).

Lemma 4.10. Let u and v belong both to the same class L′ or L′′ and, for any t > 0, set
ut := u�(vt). Assume that v(0) = 0. Then

(i) ∀x ∈ dom(u), limt→0+ ut (x) = u(x);
(ii) ∀E ⊂⊂ dom(u), limt→0+ ∇ut (x) = ∇u uniformly on E.

The following result is a key point in the proof of Theorems 4.5 and 4.6; it contains an explicit
expression of the pointwise derivative of u�(vt) with respect to t .

Lemma 4.11. Let u and v belong both to the same class L′ or L′′ and, for any t > 0, let
ut := u�(vt). Then

∀x ∈ int(dom(ut )), ∀t > 0,
d

dt
ut (x) = −ψ(∇ut (x)), where ψ := v∗.

Next lemma provides a summability property of the Fenchel conjugate of u = − log f with
respect to the measure µ( f ) introduced in Definition 4.1.

Lemma 4.12. Let f = e−u
∈ A, with ϕ = u∗

≥ 0. Then ϕ ∈ L1(dµ( f )), namely
Rn
ϕ(∇u(x)) f (x) dx < +∞.

Finally, when u, v ∈ L′′, we need an estimate for ut = u�(vt) which will be exploited to
deal with the boundary term in Theorem 4.6.

Lemma 4.13. Let u, v ∈ L′′ and, for any t > 0, let ut = u�(vt). Set K := dom(u), L :=

dom(v), vmax := maxL v, and vmin := minL v. Then, for every x ∈ K + t L, there exists
y = y(x, t) ∈ K ∩ (x − t L) such that

tvmin + u(y) ≤ ut (x) ≤ tvmax + u(y).

Proof of Theorems 4.5 and 4.6. We assume that either the hypotheses of Theorem 4.5 or the
hypotheses of Theorem 4.6 are satisfied.

Throughout the proof we set

f = e−u, g = e−v, ϕ = u∗,

ψ = v∗, E = dom(u), F = dom(v),

and, for every t ≥ 0,

ft = f ⊕ t · g, ut = u�(vt), ϕt = ϕ + tψ, Et = E + t F.

Let us point out that, under the assumptions of Theorem 4.5, we have E = F = Rn ,
whereas, under the assumptions of Theorem 4.6, E and F are convex bodies that will be named
respectively K and L .
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Further, we need to ‘localize’ our total mass functional: for every measurable set A ⊆ Rn and
any function h ∈ A, we set

JA(h) :=


A

h dx .

For convenience, we divide the proof into several steps.
Step 1. Decomposition.
With the notation introduced above, we can write

J ( ft )− J ( f ) = JE ( ft )− JE ( f )+ JEt \E ( ft ).

We are going to prove the integral representation formulae (4.2) and (4.3) by showing that:

– under the assumptions of one among Theorems 4.5 and 4.6, it holds

lim
t→0+

JE ( ft )− JE ( f )

t
=


Rn
ψ dµ( f ); (4.4)

– under the assumptions of Theorem 4.6, it holds

lim
t→0+

JEt \E ( ft )

t
=


Sn−1

hL dσ( f ). (4.5)

Step 2. Reduction to the case 0 ∈ int(F), v(0) = 0, v ≥ 0, ϕ ≥ 0, ψ ≥ 0.
Assume that equalities (4.4) and (4.5) hold true (respectively under the assumptions of

Theorems 4.5 and 4.6), when all the conditions 0 ∈ int(F), v(0) = 0, v ≥ 0, ϕ ≥ 0, ψ ≥ 0 are
satisfied.

In the general case, up to a translation of coordinates (which does not affect J ), we may
assume that inf v = v(0). Since by assumption v belongs to L′ or L′′, its minimum is necessarily
attained in the interior of its domain, so we have 0 ∈ int(F). If c := u(0) and d := v(0), we set

ũ(x) := u(x)− c, ṽ(x) := v(x)− d, ϕ̃(y) := (ũ)∗(y), ψ̃(y) := (ṽ)∗(y)

and

f̃ = e−ũ, g̃ = e−ṽ, f̃t := f̃ ⊕ t · g̃.

By construction it holds dom(ṽ) = F, ṽ(0) = 0, ṽ ≥ 0, ϕ̃ ≥ 0, ψ̃ ≥ 0. Then, taking also into
account that dom(ũ) = E, ψ̃(y) = ψ(y)+ d, and f̃ = ec f , it holds

lim
t→0+

JE ( f̃t )− JE ( f̃ )

t
=


Rn
ψ̃ dµ( f̃ ) = ec


Rn
ψ dµ( f )+ dec JE ( f ) (4.6)

and

lim
t→0+

JEt \E ( f̃t )

t
=


Sn−1

hL dσ( f̃ ) = ec


Sn−1
hL dσ( f ). (4.7)

Now, since

f ⊕ t · g = e−(c+dt)( f̃ ⊕ t · g̃),

we may compute the left hand sides of (4.4) and (4.5) as derivatives of a product.
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Using (4.6), we get

lim
t→0+

JE ( ft )− JE ( f )

t
= −de−c JE ( f̃ )+ e−c


ec


Rn
ψ dµ( f )+ dec JE ( f )



=


Rn
ψ dµ( f ).

Similarly, using (4.7), we get

lim
t→0+

JEt \E ( ft )

t
= e−c

· ec


Sn−1
hL dσ( f ) =


Sn−1

hL dσ( f ).

Thus, in the remaining of the proof, we assume that all the following conditions hold true:
0 ∈ int(F), v(0) = 0, v ≥ 0, ϕ ≥ 0, ψ ≥ 0.

Step 3. For every t > 0, it holds

JE ( ft )− JE ( f ) =

 t

0
Ψ(s) ds, (4.8)

where

Ψ(s) :=


E
ψ dµ( fs) ∀ s ≥ 0. (4.9)

Let t > 0 be fixed, and take C ⊂⊂ E . Thanks to the reduction 0 ∈ int(F) made in Step 2, we
have C ⊂⊂ Et . Then by Lemma 4.11 it holds

lim
h→0

ft+h(x)− ft (x)

h
= ψ(∇ut (x)) ft (x) ∀x ∈ C. (4.10)

Moreover, thanks to the reduction v(0) = 0 made in Step 2, we can apply Lemmas 3.9 and
4.10(ii) to infer that, for every s ∈ [0, 1], the nonnegative functions ψ(∇us(x)) fs(x) are
bounded above on C by some continuous function independent of s. Then, by the pointwise
convergence in (4.10), Lagrange mean value theorem, and dominated convergence we infer

lim
h→0

JC ( ft+h)− JC ( ft )

h
= lim

h→0


C

ft+h − ft

h
dx =


C
ψ(∇ut ) ft dx .

So we have

JC ( ft )− JC ( f ) =

 t

0


C
ψ dµ( fs)


ds,

which implies (4.8) by letting C ↑ E .
Step 4. The function Ψ defined in (4.9) takes finite values at every s ≥ 0.
Let s > 0. By the reduction ϕ ≥ 0 made in Step 2, we have

sΨ(s) ≤


Rn
(ϕ + sψ) dµ( fs) =


Rn

u∗
s (∇us) fs dx < +∞,

where the last inequality follows from Lemma 4.12 (which applies thanks to the conditions
ϕ,ψ ≥ 0).

Let now s = 0. Since by assumption g is an admissible perturbation for f , by (4.1) it holds

(ϕ − cψ)(y) ≥ (ϕ − cψ)(0)+ ⟨y,∇ϕ(0)− c∇ψ(0)⟩,
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so that

ψ(y) ≤ c1 + c2ϕ(y)+ c3∥y∥,

with

c1 := ψ(0)− c−1ϕ(0), c2 := c−1, c3 := c−1
∥∇ϕ(0)− c∇ψ(0)∥.

Therefore
Rn
ψ(∇u(x)) f (x) dx ≤ c1


Rn

f (x) dx + c2


Rn
ϕ(∇u(x)) f (x) dx

+ c3


Rn

∥∇u(x)∥ f (x) dx

=: c1 I1 + c2 I2 + c3 I3.

Let us show separately that each of the integrals I j , j = 1, 2, 3, is finite. As already noticed in
Remark 3.2(i), the integral I1 is finite for every f ∈ A. The integral I2 is finite by Lemma 4.12.
Finally, in order to estimate the integral I3, we use the coarea formula: if m := maxRn f it holds

I3 =


Rn

∥∇ f ∥ dx =

 m

0
Hn−1∂{ f ≥ s}


ds. (4.11)

According to Lemma 2.5, there exist constant a, b, with a > 0 such that

f (x) ≤ g(x) := e−a∥x∥−b,

which implies { f ≥ s} ⊆ {g ≥ s}, and in turn,

Hn−1∂{ f ≥ s}


≤ Hn−1∂{g ≥ s}


= c(n)


− log s − b

a

n−1

. (4.12)

The finiteness of I3 follows from (4.11) and (4.12).
Step 5. The function Ψ defined in (4.9) is continuous at every s > 0, and it is continuous from

the right at s = 0.
Through the change of variable ∇us(x) = y, we obtain

Ψ(s) =


E
ψ(∇us(x)) fs(x) dx =


Rn

h(s, y) dy,

with

h(s, y) := ψ(y)eϕs (y)−⟨y,∇ϕs (y)⟩ det(∇2ϕs)(y)χQs (y), Qs := ∇us(E).

We now use the expansion

det(∇2ϕs) = det(∇2ϕ + s∇2ψ) =

n
j=0

s j D j (ϕ, ψ),

where the mixed determinants Di (ϕ, ψ) are nonnegative functions of y independent of s. We
infer that

Ψ(s) =

n
j=0

s jΨ j (s), (4.13)
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where

Ψ j (s) :=


Rn

h j (s, y) dy h j (s, y) := ψ(y)eϕs (y)−⟨y,∇ϕs (y)⟩ D j (ϕ, ψ)(y)χQs (y).

In the sequel, when no ambiguity may arise, for brevity we omit to indicate the variable y in the
expressions ψ(y), ϕs(y),∇ϕs(y), D j (ϕ, ψ)(y), and χQs (y).

Let us prove the continuity of Ψ at a fixed s0 > 0. In view of (4.13) it is enough to show that,
for any fixed index i ∈ {0, 1, . . . , n}, the function Ψi is continuous at s0.

We begin by noticing that

lim
s→s0

χQs (y) = lim
s→s0

χQs0
(y) for a.e. y ∈ Rn . (4.14)

Indeed, when E = F = Rn , (4.14) is trivially true since Qs = Rn for every s ≥ 0. Assume
E = K and F = L , with K , L ∈ Kn . The reduction 0 ∈ int(F) made in Step 2 ensures that
K ⊂⊂ Ks0 , and hence by Lemma 4.10(ii), we know that ∇us converge uniformly to ∇us0 on K .
Therefore, the compact sets Qs converge to Qs0 in Hausdorff distance, which implies that the
characteristic functions χQs converge to χQs0

in L1(Rn), which in turn implies (4.14).
Using (4.14), we deduce that we have the pointwise convergence

lim
s→s0

hi (s, y) = hi (s0, y) for a.e. y ∈ Rn .

We claim that, as a consequence, Ψi (s) tends to Ψi (s0) as s → s0 by dominated convergence.
Indeed, let us show that hi (s, y) are bounded from above by a function in L1(Rn) independent
of s. By the reduction v ≥ 0 made in Step 2 and by Lemma 3.9, for any fixed y ∈ Rn the map

s → eϕs (y)−⟨y,∇ϕs (y)⟩ (4.15)

is pointwise decreasing. Therefore, if we fix s ∈ (0, s0), for any s ≥ s it holds

hi (s, y) ≤ ψeϕs−⟨y,∇ϕs ⟩ Di (ϕ, ψ)

=
1

si ψeϕs−⟨y,∇ϕs ⟩si Di (ϕ, ψ)

≤
1

si ψeϕs−⟨y,∇ϕs ⟩
n

j=0

s j D j (ϕ, ψ)

=
1

si ψeϕs−⟨y,∇ϕs ⟩ det(∇2ϕs)

≤
1

si+1 ϕseϕs−⟨y,∇ϕs ⟩ det(∇2ϕs),

and the function in the last line belongs to L1(Rn) by Lemma 4.12.
Let us now prove the continuity from the right of Ψ at s = 0. To that aim, in view of (4.13) it

is enough to show that

lim
s→0+

Ψ0(s) = Ψ(0) (4.16)

lim sup
s→0+

Ψi (s) < +∞ ∀ i ∈ {1, . . . , n}. (4.17)

To prove equality (4.16), we begin by noticing that, as s → 0+, the sets Qs invade Rn , meaning

∀r > 0, ∃s > 0 : Qs ⊇ Br ∀s ≤ s. (4.18)
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Indeed, when E = F = Rn , (4.18) is trivially true since Qs = Rn for every s ≥ 0. Assume
E = K and F = L , with K , L ∈ Kn , and let r > 0 be fixed. We have

Qs = ∇us(K ) ⊇ ∇us(C), with C := ∇u−1(B2r ). (4.19)

Since C ⊂⊂ K and K ⊂⊂ Ks (the latter thanks to the reduction 0 ∈ int(L) made in Step 2), by
Lemma 4.10(ii) we know that ∇us converge uniformly to ∇u on C . Therefore, the compact sets
∇us(C) converge to B2r in Hausdorff distance, so that they contain Br for s sufficiently small.
Combined with (4.19), this implies (4.18).

Using (4.18), we deduce that we have the pointwise convergence

lim
s→0

h0(s, y) = h0(0, y) for a.e. y ∈ Rn . (4.20)

Now, by the monotonicity of the map (4.15), for any s ≥ 0 it holds

h0(s, y) ≤ h0(0, y) = ψeϕ−⟨y,∇ϕ⟩ det(∇2ϕ), (4.21)

and the last expression is in L1(Rn) because we have proved in Step 4 that Ψ(0) is finite.
In view of (4.20) and (4.21), (4.16) holds true by dominated convergence.
To prove (4.17) we notice that assumption (4.1) implies ∇

2ψ ≤ c−1
∇

2ϕ and hence

Di (ϕ, ψ) ≤ Di (ϕ, c−1ϕ).

This, combined with the monotonicity of the map (4.15), implies

hi (s, y) ≤ ψeϕ−⟨y,∇ϕ⟩ Di (ϕ, c−1ϕ) = ψeϕ−⟨y,∇ϕ⟩γi (c) det(∇2ϕ),

where the coefficients γi (c) depend only on c. The last expression is in L1(Rn) again by the
finiteness of Ψ(0), and (4.17) follows.

Step 6. Equality (4.4) holds.
The equality (4.8) proved in Step 3, together with the finiteness and continuity of Ψ(s) for

s > 0 proved respectively in Steps 4 and 5, gives

Ψ(s) =
d

dt
JE ( ft )|t=s ∀ s > 0. (4.22)

Moreover, the continuity from the right of Ψ at s = 0 proved in Step 5 implies

lim
s→0+

Ψ(s) = Ψ(0) =


Rn
ψ dµ( f ). (4.23)

Therefore,

lim
t→0+

JE ( ft )− JE ( f )

t
=

d

dt
JE ( ft )|t=0+ = lim

s→0+

d

dt
JE ( ft )|t=s

= lim
s→0+

Ψ(s) =


Rn
ψ dµ( f ). (4.24)

Step 7. Under the assumptions of Theorem 4.6, equality (4.5) holds.
We define the map m : Sn−1

× (0, t] → Kt \ K by

m(ξ, s) := ν−1
Ks
(ξ) = ν−1

K (ξ)+ sν−1
L (ξ).

By the area formula [13, Section 3.1.5], we have
Kt \K

ft =

 t

0


Sn−1

ft (m(ξ, s))| det Jm(ξ, s)| d Hn−1(ξ) ds. (4.25)
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Let (ξ, s) ∈ Sn−1
× [0, t] be fixed and let us compute | det Jm(ξ, s)|. We choose an

orthonormal basis {e1, . . . , en} of the tangent space ξ⊥
× R to Sn−1

× [0, t] given by

ei = (vi , 0) i = 1, . . . , n − 1, en = (0, . . . , 0, 1),

where vi are eigenvectors of the reverse Weingarten operator ∇ν−1
Ks
(ξ). Then, denoting by

ρi (ξ, s) the corresponding eigenvalues (namely the principal radii of curvature of ∂Ks at ξ ),
it holds

∂ei m(ξ, s) = ρi (ξ, s)ei i = 1, . . . , n − 1, ∂en m(ξ, s) = ν−1
L (ξ).

Hence

| det Jm(ξ, s)| = ∥∂e1m(ξ, s) ∧ · · · ∧ ∂en m(ξ, s)∥

= |⟨ξ, ν−1
L (ξ)⟩| ·

n−1
i=1

ρi (ξ, s) = hL(ξ) det

∇ν−1

Ks
(ξ)

,

where the last equality holds because, by the reduction 0 ∈ int(L) made in Step 2, we have
hL ≥ 0.

Now we recall that the reverse Weingarten operator of Ks is given by

∇ν−1
Ks

= (hKs )i j + hKs δi j ,

where indices i and j denote second order covariant derivation with respect to an orthonormal
frame on Sn−1. Therefore, as hKs = hK + shL , we have

∇ν−1
Ks

= (hK )i j + hK δi j + s

(hL)i j + hLδi j


,

and hence

| det Jm(ξ, s)| = hL(ξ)


det

∇ν−1

K (ξ)

+

n−1
i=1

γi (ξ)s
i


, (4.26)

where γi (ξ) are continuous functions depending on the principal curvatures and on the principal
directions of ∂K and ∂L at ξ .

Inserting (4.26) into (4.25) and dividing by t we obtain

1
t


Kt \K

ft dx =
1
t

 t

0


Sn−1

ft (m(ξ, s))hL(ξ) det

∇ν−1

K (ξ)


d Hn−1(ξ) ds

+

n−1
i=1

1
t

 t

0
si


Sn−1

ft (m(ξ, s))hL(ξ)γi (ξ) d Hn−1(ξ)


ds. (4.27)

We observe that

lim
t→0+

n−1
i=1

1
t

 t

0
si


Sn−1

ft (m(ξ, s))hL(ξ)γi (ξ) d Hn−1(ξ)


= 0. (4.28)

Indeed, for every i = 1, . . . , n − 1, we have t

0
si


Sn−1

ft (m(ξ, s))hL(ξ)γi (ξ) d Hn−1(ξ)



≤ (sup
Rn

f1)


Sn−1

hLγi d Hn−1
 t

0
si ds,
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where we used the inequality ft (x) ≤ f1(x) holding for every x ∈ Rn and every t ∈ [0, 1] by
Lemma 3.9 (which applies thanks to the reduction v(0) = 0 made in Step 2).

By (4.27) and (4.28), to conclude the proof of Step 7 it is enough to show that

lim
t→0+

1
t

 t

0


Sn−1

ft (m(ξ, s))hL(ξ) det

∇ν−1

K (ξ)


d Hn−1(ξ) ds =


Sn−1

hL dσ( f ),

or equivalently

lim
t→0+

1
t

 t

0


Sn−1


ft (m(ξ, s))− f (m(ξ, 0))


hL(ξ) det


∇ν−1

K (ξ)


d Hn−1(ξ) = 0.

Such equality is clearly satisfied if

lim
t→0+

sup
s∈[0,t], ξ∈Sn−1

| ft (m(ξ, s))− f (m(ξ, 0))| = 0. (4.29)

Let s ∈ [0, t] and ξ ∈ Sn−1. By Lemma 4.13 applied at the point x := m(ξ, s) ∈ ∂Ks ⊂ Kt ,
there exists y ∈ K ∩ (x − t L) such that

tvmin + u(y) ≤ ut (m(ξ, s)) ≤ tvmax + u(y).

Hence

tvmin + u(y)− u(m(ξ, 0)) ≤ ut (m(ξ, s))− u(m(ξ, 0))

≤ tvmax + u(y)− u(m(ξ, 0)). (4.30)

As x ∈ m(ξ, 0)+ sL ⊆ m(ξ, 0)+ t L , we have m(ξ, 0) ∈ K ∩ (x − t L), and therefore

∥m(ξ, 0)− y∥ ≤ diam

K ∩ (x − t L)


≤ t diam(L). (4.31)

By (4.30), (4.31) and the uniform continuity of u on K , we infer that

lim
t→0+

sup
s∈[0,t], ξ∈Sn−1

|ut (m(ξ, s))− u(m(ξ, 0))| = 0,

and (4.29) follows.
Step 8: Conclusion.
Equalities (4.2) and (4.3) follow from Steps 1, 6, and 7. Moreover, the finiteness of Ψ(0)

proved in Step 4 implies that


Rn ψ dµ( f ) < +∞; on the other hand, for any K , L ∈ Kn , one
has


Sn−1 hL dσ( f ) < +∞. Therefore δ J ( f, g) is finite. �

5. A functional form of Minkowski’s first inequality

Minkowski’s first inequality states that

lim
t→0+

V (K + t L)− V (K )

t
= nV1(K , L) ≥ nV (K )1−

1
n V (L)

1
n ∀K , L ∈ Kn

0, (5.1)

with equality sign if and only if K and L are homothetic (see [31, Theorem 6.2.1]).
The main result of this section provides a functional version of such inequality:

Theorem 5.1. Let f, g ∈ A, and assume that J ( f ) > 0. Then

δ J ( f, g) ≥ J ( f )

log J (g)+ n


+ Ent( f ), (5.2)

with equality sign if and only if there exists x0 ∈ Rn such that g(x) = f (x − x0) ∀x ∈ Rn .
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Remark 5.2. We point out that, by choosing f = γn , Theorem 5.1 allows to recover the
Urysohn-type inequality for the mean width of a log-concave function proved in [17, Proposition
3.2] and [30, Theorem 1.4].

Before giving the proof of Theorem 5.1, let us present a straightforward consequence of it,
which will be exploited in Section 7 in order to get uniqueness in the functional form of the
Minkowski’s problem.

Corollary 5.3. Let f1, f2 ∈ A, with J ( f1) = J ( f2) > 0, and assume that

δ J ( f2, f1) = δ J ( f1, f1) and δ J ( f1, f2) = δ J ( f2, f2). (5.3)

Then there exists x0 ∈ Rn such that f2(x) = f1(x − x0) ∀x ∈ Rn .

Proof. By the assumption J ( fi ) > 0, we may apply inequality (5.2) (once with f = f1 and
g = f2 and once with f = f2 and g = f1); since J ( f1) = J ( f2), we get

δ J ( f1, f2) ≥ n J ( f1)+


Rn

f1 log f1 dx and

δ J ( f2, f1) ≥ n J ( f2)+


Rn

f2 log f2 dx .
(5.4)

By assumption (5.3) and Proposition 3.11, the two inequalities in (5.4) may be rewritten respec-
tively as

δ J ( f2, f2) ≥ δ J ( f1, f1) and δ J ( f1, f1) ≥ δ J ( f2, f2),

which implies that both hold with equality sign. Then f1 and f2 are translates of each other by
Theorem 5.1. �

We now turn to the proof of Theorem 5.1. We need the following

Lemma 5.4. Let f, g ∈ A, and assume that J ( f ) > 0. Then

lim
t→0+

J

(1 − t) · f ⊕ t · g


− J ( f )

t
= δ J ( f, g)− δ J ( f, f ).

Proof. For t ∈ (0, 1), we set

α(t) :=
t

1 − t
and fα(t) := f ⊕ α(t) · g.

Let us write

J

(1 − t) · f ⊕ t · g


− J ( f )

t
=

J

(1 − t) · fα(t)


− J


fα(t)


t

+
J


fα(t)

− J ( f )

t
, (5.5)

and let us focus attention on the first term in the r.h.s. of (5.5).
For every fixed t ∈ (0, 1), we have

J

(1 − t) · fα(t)


− J


fα(t)


t

=
γt (t)− γt (0)

t
,

where the function γt is defined by

γt (s) := J

(1 − s) · fα(t)


∀s ∈ (0, 1).
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In more explicit terms

γt (s) =


Rn

f 1−s
α(t)


x

1 − s


dx = (1 − s)n


Rn

f 1−s
α(t) (y)dy.

Proceeding as in the proof of Proposition 3.11 we can differentiate this expression with respect
to s and obtain:

γ ′
t (s) = −n(1 − s)n−1 J


f 1−s
α(t)


− (1 − s)n


Rn

f 1−s
α(t) log


f 1−s
α(t)


dx .

Then, for every fixed t ∈ (0, 1), we can apply Lagrange mean value theorem to infer that there
exists s ∈ (0, t) such that

J

(1 − t) · fα(t)


− J


fα(t)


t

= γ ′
t (s) = −n(1 − s)n−1 J


f 1−s
α(t)


− (1 − s)n


Rn

f 1−s
α(t) log


f 1−s
α(t)


dx . (5.6)

We are now ready to pass to the limit as t → 0+ in the r.h.s. of (5.5).
Concerning the first term, assume for a moment that the function v := − log g satisfies the

condition v(0) = 0. In this case, by Lemma 3.9, as t → 0+ the functions fα(t)(x) converge
decreasingly to some pointwise limit f̃ (x) (which is bounded above and below by some functions
in A). Then, by monotone convergence, taking also into account that s → 0+ as t → 0+, we
infer from (5.6) that

lim
t→0+

J

(1 − t) · fα(t)


− J


fα(t)


t

= −n J


f̃

−


Rn

f̃ log f̃ dx ∈ (−∞,+∞). (5.7)

Concerning the second term, differentiating a composition of functions shows immediately
that

lim
t→0+

J


fα(t)

− J ( f )

t
= δ J ( f, g). (5.8)

By combining (5.7) and (5.8), it is straightforward to conclude. Indeed, similarly as in the
proof of Theorem 3.6, we may distinguish the two cases J ( f̃ ) > J ( f ) and J ( f̃ ) = J ( f ).

If J ( f̃ ) > J ( f ), the limit in (5.7) remains finite, whereas the limit in (5.8) becomes +∞.
Hence it holds

lim
t→0+

J

(1 − t) · f ⊕ t · g


− J ( f )

t
= δ J ( f, g) = +∞,

and the statement of the lemma holds true.
If J ( f̃ ) = J ( f ), then f̃ = f Hn-a.e., so that the r.h.s. of (5.7) agrees with −δ J ( f, f ), and

the lemma follows summing up (5.7) and (5.8).
It remains to get rid of the assumption v(0) = 0. In the general case, we set as usual

d := v(0), ṽ(x) := v(x)− d, g̃(x) := e−ṽ(x).

Since

(1 − t) · f ⊕ t · g = e−dt(1 − t) · f ⊕ t · g̃

,
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we have

J

(1 − t) · f ⊕ t · g


− J ( f )

t
= J ( f )

e−dt
− 1

t

+ e−dt J

(1 − t) · f ⊕ t · g̃


− J ( f )

t
.

By passing to the limit as t → 0+, since ṽ(0) ≥ 0 by construction, we obtain

lim
t→0+

J

(1 − t) · f ⊕ t · g


− J ( f )

t
≥ −d J ( f )+ δ J ( f, g̃)− δ J ( f, f ).

To conclude, it is enough to observe that −d J ( f )+ δ J ( f, g̃) = δ J ( f, g) (cf. (3.5)). �

Proof of Theorem 5.1. By the Prékopa–Leindler inequality, the function ψ(t) := log

J ((1 −

t) · f ⊕ t · g)


is concave on [0, 1] (cf. Remark 3.3). In particular, it holds

ψ(t) ≥ ψ(0)+ t[ψ(1)− ψ(0)] ∀t ∈ [0, 1]. (5.9)

As a consequence, the (right) derivative of the function ψ at t = 0 satisfies

ψ ′(0) ≥

ψ(1)− ψ(0)


. (5.10)

By Lemma 5.4, we have

ψ ′(0) =
δ J ( f, g)− δ J ( f, f )

J ( f )
.

Therefore (5.10) can be rewritten as

δ J ( f, g)− δ J ( f, f )

J ( f )
≥ log


J (g)

J ( f )


.

Inserting (3.12) into the above inequality, (5.2) is proved.
Finally, assume that g(x) = f (x − x0) for some x0 ∈ Rn . Then (5.2) holds with equality

sign thanks to Proposition 3.11 and the invariance of J by translation of coordinates. Conversely,
assume that (5.2) holds with equality sign. By inspection of the above proof one sees immediately
that also inequality (5.10), and hence inequality (5.9), must hold with equality sign. This entails
that the Prékopa–Leindler inequality holds as an equality, and therefore f and g agree up to a
translation. �

6. Isoperimetric and log-Sobolev inequalities for log-concave functions

Let us now turn attention to some consequences of the results in Sections 4 and 5.
Motivated by the equality

lim
t→0+

V (K + t B1)− V (K )

t
= P(K ),

and having in mind that the Gaussian probability density

γn(x) := cne−
∥x∥

2
2 , cn := (2π)−

n
2 ,

plays within the class A′ the role of the unit ball in Kn , we set the following
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Definition 6.1. For any f ∈ A′ with J ( f ) > 0, we define the perimeter of f as

P( f ) := δ J ( f, γn).

Similarly as Minkowski’s first inequality (5.1) (when applied with L equal to a ball B) implies
the classical isoperimetric inequality

V (K )
1
n P(K )−

1
n−1 ≤ V (B)

1
n P(B)−

1
n−1 ∀K ∈ Kn

0 .

Theorem 5.1 (when applied with g = γn and combined with Theorem 4.5) yields the following
functional version of the isoperimetric inequality:

Proposition 6.2. Let f = e−u
∈ A′ Then

P( f ) ≥ n J ( f )+ Ent( f ), (6.1)

with equality sign if and only if there exists x0 ∈ Rn such that f (x) = γn(x − x0) ∀x ∈ Rn . In
particular, if ϕ := u∗ is uniformly strictly convex, namely

∃ c > 0 : ∇
2ϕ(y) ≥ c Id ∀y ∈ Rn, (6.2)

inequality (6.1) reads

1
2


Rn

∥∇ f ∥
2

f
dx + (log cn) J ( f ) ≥ n J ( f )+ Ent( f ). (6.3)

Proof. Inequality in (6.1) is obtained by applying Theorem 5.1 (simply take into account that
J (γn) = 1). If (6.2) holds, then γn is an admissible perturbation for f according to Definition 4.4.
In this case, by applying Theorem 4.5, one gets

P( f ) = δ J ( f, γn) =


Rn


1
2
∥∇u∥

2
+ log cn


f dx,

and (6.3) follows. �

For related functional versions of the isoperimetric inequality, we refer to [5, Section 6].
As a further application of our results, we now provide a generalized logarithmic Sobolev

inequality for log-concave measures. After the pioneering result by Gross concerning the
Gaussian measure [14], the validity of logarithmic Sobolev inequalities for more general
probability measures, having in particular a log-concave density, has been investigated by several
authors. We refer in particular to the paper [4] by Bobkov, where necessary and sufficient
conditions are discussed.

Proposition 6.3. Let ν = gHn
= e−vHn be a log-concave probability measure such that g ∈ A′

and

∇
2v ≥ c Id for some c > 0. (6.4)

Let a : R+ → R+ be a C 2 increasing function with a(0) = 0.
Let h be a positive function of class C 2(Rn) which satisfies the conditions

lim
∥x∥→+∞

− log(a(h))+ v

∥x∥
= +∞ and

−c′
∇

2v ≤ ∇
2 log(a(h)) < ∇

2v for some c′ > 0.
(6.5)
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Then it holds
Rn

a(h) log a(h)dν −


Rn

a(h) dν


log


Rn

a(h) dν



≤
1
c


Rn

(a′(h))2

a(h)
∥∇h∥

2 dν. (6.6)

Example 6.4. Assume that g = γn is the density of the Gaussian measure and a is defined by
a(t) = t p, for some p ≥ 1. If h is of the form h = e−w, where w ∈ C2(Rn) is such that
w(x) → 0 as ∥x∥ → ∞ and there exist c,C > 0 such that

c Id ≤ D2w(x) ≤ C Id ∀ x ∈ Rn,

then the assumptions of Proposition 6.3 are verified.

Remark 6.5. The constant 1
c in the r.h.s. of (6.6) is non-optimal. Indeed, consider for instance

the case when g = γn (so that c = 1), and a(t) = t2. Then (6.6) becomes
Rn

h2 log(h2)dν −


Rn

h2 dν


log


Rn

h2 dν


≤ 4


Rn

∥∇h∥
2 dν, (6.7)

and it is known that (6.7) holds true with 2 in place of 4 at the r.h.s. This assertion can be
recovered by inspection of the proof below, since in this case the number t appearing in (6.11)
equals 1

2 .

Remark 6.6. It is not surprising that, in order to have an inequality of logarithmic Sobolev type
for the measure ν, condition (6.4) is needed; indeed, (6.4) can be related to the so-called Herbst
necessary condition (see [4] for a more detailed discussion).

Proof of Proposition 6.3. Set f := a(h)g. Since


Rn g dx = 1, inequality (5.2) reads

δ J ( f, g) ≥ n J ( f )+ Ent( f ). (6.8)

The computation of J ( f ) and


Rn f log f dx is straightforward:

J ( f ) =


Rn

a(h) dν,


Rn
f log f dx =


Rn


−v + log a(h)


a(h) dν.

On the other hand, by the hypotheses made on h and g, the functions f = a(h)g and g turn out
to satisfy the assumptions of Theorem 4.5. In particular, we point out that the upper and lower
bound for ∇

2 log(a(h)) in (6.5) ensure respectively that f ∈ A′ and that g is an admissible
perturbation for f . Then, setting ψ = v∗, we have

δ J ( f, g) =


Rn
ψ

∇v − ∇ log a(h)


a(h) dν.

Inserting the above expressions of J ( f ),


Rn f log f dx , and δ J ( f, g) into (6.8) leads to
Rn

a(h) log a(h)dν −


Rn

a(h) dν


log


Rn

a(h) dν


≤ R(h), (6.9)
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with

R(h) =


Rn


ψ

∇v − ∇ log a(h)


+ v − n


a(h) dν.

Using the identity v(x) = ⟨x,∇v(x)⟩ − ψ(∇v(x)), we may rewrite R(h) as

R(h) =


Rn


ψ

∇v − ∇ log a(h)


− ψ(∇v)+ ⟨x,∇v⟩ − n


a(h) dν.

Now we observe that

⟨x,∇v⟩a(h)g = −⟨x,∇g⟩a(h) = −div(xa(h)g)+ ⟨x,∇a(h)⟩g + na(h)g,

and 
Rn

div(xa(h)g) dx = lim
r→+∞

r

∂Br

a(h)g d Hn−1
= lim

r→+∞
r

∂Br

f d Hn−1
= 0

(where the last equality is satisfied by the exponential decay of f at infinity, cf. Lemma 2.5).
Therefore,

R(h) =


Rn


ψ

∇v − ∇ log a(h)


− ψ(∇v)+ ⟨x,∇ log a(h)⟩


a(h) dν. (6.10)

In view of (6.9) and (6.10), the statement is proved if the following pointwise inequality holds:

ψ

∇v − ∇ log a(h)


− ψ(∇v)+ ⟨x,∇ log a(h)⟩ ≤

1
c
∥∇ log a(h)∥2.

This is readily checked: indeed, setting y := −∇ log a(h), by Lagrange mean value theorem and
assumption (6.4), there exist t, s ∈ (0, 1) such that

ψ

∇v + y


− ψ(∇v)− ⟨x, y⟩ = ⟨∇ψ(∇v + t y), y⟩ − ⟨∇ψ(∇v), y⟩

= ⟨∇
2ψ(∇v + sty)t y, y⟩ ≤

1
c
∥y∥

2, (6.11)

and the proof is achieved. �

7. About the Minkowski’s problem

In this concluding section we move the first steps towards the solution of the functional
Minkowski’s problem. In view of Theorems 4.5 and 4.6, its formulation within the class A′

or A′′ reads as follows: find f ∈ A′ such that

µ( f ) = m, (7.1)

where m is a given positive Borel measure on Rn , or find f ∈ A′′ such that

(µ( f ), σ ( f )) = (m, η), (7.2)

where (m, η) are given positive Borel measures respectively on Rn and Sn−1. Here the measures
µ( f ) and σ( f ) are intended according to Definition 4.1.

We begin by the following simple observation.
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Remark 7.1. We have the following finiteness necessary condition on the measures m and η, in
order to solve the Minkowski’s problem with datum m or (m, η):

Rn
dm < +∞,


Sn−1

dη < +∞.

Indeed, if f belongs to A′ or to A′′, we have
Rn

dµ( f ) = J ( f ) < +∞,

while, if f ∈ A′′ we have
Sn−1

dσ( f ) ≤ (max
K

f )Hn−1(∂K ) < +∞,

where K = dom(− log f ).

Next, we show that, for the solvability of (7.1), m must satisfy an equilibrium condition, which
is completely analogous to the null barycentre property well-known in the classical Minkowski’s
problem for convex bodies. The same holds true, for the solvability of (7.2), replacing m by the
pair (m, η).

Proposition 7.2. (i) For any f ∈ A′, the measure µ( f ) verifies
Rn

y dµ( f )(y) = 0.

(ii) For any f ∈ A′′, the measures µ( f ) and σ( f ) verify
Rn

y dµ( f )(y)+


Sn−1

y dσ( f )(y) = 0.

Proof. Given a point x0 ∈ Rn and a function v ∈ L, we denote by [v]x0 the translated function
x → v(x − x0). With this notation it is straightforward to check that, for any u, v ∈ L, it holds

u�[v]xo = [u�v]x0 . (7.3)

Assume now that f = e−u belongs either to A′ or to A′′. For any fixed x0 ∈ Rn and any
ε > 0, let us compute δ J ( f, gε), where gε = e−vε , being

vε(x) := εu


x − x0

ε


= [uε] x0

ε
(x) ∀ x ∈ Rn .

For any t > 0 one has

(vεt)(x) = tεu


x − t x0

tε


= [u(tε)] x0

ε
(x),

and hence, in view of (7.3),

u�(vεt) = [u�u(tε)] x0
ε
.

Therefore,

δ J ( f, gε) = lim
t→0+

J (e−u�u(tε))− J ( f )

t
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= ε lim
t→0+

J (e−u�u(tε))− J ( f )

tε
= εδ J ( f, f ). (7.4)

On the other hand, we observe that

v∗
ε (y) = ⟨x0, y⟩ + εu∗(y) and dom(vε) = x0 + εdom(u).

Therefore, if f ∈ A′, by applying Theorem 4.5 we get

δ J ( f, gε) =


Rn

⟨x0, y⟩ dµ( f )(y)+ ε


Rn

u∗(y) dµ( f )(y); (7.5)

similarly, if f ∈ A′′, by applying Theorem 4.6 we get

δ J ( f, gε) =


Rn

⟨x0, y⟩ dµ( f )(y)+ ε


Rn

u∗(y) dµ( f )(y)

+


Sn−1

⟨x0, y⟩ dσ( f )(y)+ ε


Sn−1

hdom(u)(y) dσ( f )(y). (7.6)

We now observe that the following terms, which appear multiplied by ε in (7.4)–(7.6), are finite:

δ J ( f, f ),


Rn
u∗(y) dµ( f )(y),


Sn−1

hdom(u)(y) dσ( f )(y)

(recall in particular Proposition 3.11 and Lemma 4.12). Then the statement follows by combining
(7.4) with (7.5) or (7.6), in the limit as ε → 0+. �

Remark 7.3. We observe that the conditions expressed by Remark 7.1 and Proposition 7.2 are
in general not sufficient for the solvability of the Minkowski’s problem within one of the classes
A′ or A′′. Indeed, assume for instance that n = 1 and consider the Minkowski’s problem in A′:
given an absolutely continuous measure on R with a positive continuous density m, satisfying the
necessary conditions


R m(y) dy < +∞ and


R ym(y) dy = 0, it amounts to finding a function

ϕ ∈ C 2
+(R), with u = ϕ∗

∈ L′, solving the second order o.d.e.

eϕ(y)−yϕ′(y)ϕ′′(y) = m(y) ∀y ∈ R. (7.7)

We observe that, if ϕ is a solution to (7.7), for any α ∈ R, also ϕ + αy is a solution. Therefore,
we may assume with no loss of generality that ϕ′(0) = 0, and write the unique solution to (7.7)
with initial datum at y = 0 as

ϕ(y) = ϕ(0)− y
 y

0

log(eϕ(0) − M(t))− ϕ(0)

t2 dt, where M(t) :=

 t

0
sm(s) ds. (7.8)

Now, let u = ϕ∗
∈ L′. In particular, this implies that dom(ϕ∗) = Rn . Since the condition of being

cofinite is equivalent to the condition of being supercoercive (see [6, Proposition 3.5.4]), we have
to impose that ϕ(y)y diverges as |y| → +∞. Such condition can be satisfied (by inspection of
(7.8)) only if

eϕ(0) = M∞ :=


+∞

0
sm(s) ds. (7.9)

By (7.8) and (7.9), it holds

lim
y→+∞

ϕ(y)

y
= lim

y→+∞

 y

0

log(M∞ − M(t))− log M∞

t2 dt.
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It is quite easy to construct explicit examples of positive continuous functions m, with finite
integral and zero barycentre, such that limit at the r.h.s. of the above equality remains finite. For
such a datum m, the Minkowski’s problem does not admit solutions in A′.

In view of the above remark, and since in higher dimensions equality (7.1) does not correspond
any longer to an o.d.e., but rather to a Monge–Ampère type equation, proving a general existence
result for the functional Minkowski’s problem seems to be a quite delicate task. On the other
hand, as a consequence of Corollary 5.3, we are able to prove that uniqueness (up to translations)
holds true, in both the cases of A′ and A′′.

Proposition 7.4. Let f1, f2 ∈ A satisfy one of the following conditions:

fi ∈ A′ i = 1, 2, and µ( f1) = µ( f2) (7.10)

or

fi ∈ A′′ i = 1, 2, and µ( f1) = µ( f2), σ ( f1) = σ( f2). (7.11)

Then there exists x0 ∈ Rn such that f2(x) = f1(x − x0).

Proof. Firstly notice that the equality µ( f1) = µ( f2) implies J ( f1) = J ( f2). Moreover the
assumption fi ∈ A′ (or fi ∈ A′′) implies that J ( fi ) > 0. If (7.10) holds, by Theorem 4.5 one
has

δ J ( f1, g) = δ J ( f2, g) ∀g ∈ A′′.

In particular, taking g = f1 or g = f2, one sees that condition (5.3) is satisfied. Therefore, we
are in a position to apply Corollary 5.3, and the statement follows. If (7.11) holds, the proof is
exactly the same by using Theorem 4.6 in place of Theorem 4.5. �
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Appendix

This appendix contains the proofs of some results stated in Section 4, precisely all the
preliminary lemmas used in the proof of Theorems 4.5 and 4.6, and the claim made in
Remark 4.7.

Proof of Lemma 4.9. It is immediate to check that the classes L′ and L′′ are closed by right
multiplication by a positive scalar. Let us show that each of them is closed also by infimal
convolution.

(i) Let u, v ∈ L′, set ϕ := u∗, ψ := v∗, and w := u�v.
By Proposition 2.1(iii), it holds dom(w) = dom(u)+ dom(v) = Rn .
The condition of having a superlinear growth at infinity is equivalent to the condition of being

cofinite [6, Proposition 3.5.4], and the latter is clearly closed by infimal convolution in view of
the equality w∗

= ϕ +ψ holding by Proposition 2.1(iv). Therefore, w has superlinear growth at
infinity.
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Since (Rn, u) and (Rn, v) are convex functions of Legendre type, with u, v ∈ C 2
+, the

mappings ∇u and ∇v are C 1 bijections from Rn to Rn , with a nonsingular Jacobian. Therefore
also their inverse maps, which by Proposition 2.2 are precisely ∇ϕ and ∇ψ , are C 1 bijections
from Rn to Rn , and the same holds true for their sum. Hence (Rn, ϕ + ψ) is a convex function
of Legendre type, with ϕ + ψ of class C 2

+. In turn, this implies that the Legendre conjugate of
(Rn, ϕ + ψ), namely (Rn, w), is a convex function of Legendre type, with w of class C 2

+.
(ii) Let u, v ∈ L′′, and set K := dom(u), L := dom(v), ϕ, ψ , and w as above.
By Proposition 2.1(iii), it holds dom(w) = K + L ∈ Kn

∩ C 2
+.

Since u and v are of class C 2
+, and their gradients diverge at the boundary of their domains,

(int(K ), u) and (int(L), v) are convex functions of Legendre type, and the mappings ∇u and ∇v

are C 1 bijections respectively from K and L onto Rn . Hence, similarly as above, we may apply
Proposition 2.2 to infer that (Rn, ϕ), (Rn, ψ), and hence (Rn, ϕ + ψ), are convex functions of
Legendre type, with ϕ+ψ of class C 2

+. This yields that (Rn, w) is a convex function of Legendre
type, with w of class C 2

+.
It remains to check that w is continuous up to ∂(K + L). To this end we are going to use as a

crucial tool the identity

u�v(x) = inf
x1+x2=x

{u(x1)+ v(x2)}

= u(ν−1
K (νK+L(x)))+ v(ν−1

L (νK+L(x))) ∀x ∈ ∂(K + L), (A.1)

which follows from the definition of infimal convolution and the assumption ∂K , ∂L ∈ C 2
+.

Let x ∈ ∂(K + L), and let us show that for every sequence of points xh
∈ K + L such that

xh
→ x , it holds

lim
h

u�v(xh) = u�v(x). (A.2)

Up to passing to a (not relabelled) subsequence, we may assume that one of the following two
cases occurs:

xh
∈ ∂(K + L) ∀h or xh

∈ int(K + L) ∀h.

Consider first the case xh
∈ ∂(K + L) ∀h. Let us write the identity (A.1) at xh

u�v(xh) = u(ν−1
K (νK+L(x

h)))+ v(ν−1
L (νK+L(x

h))) ∀h,

and then let us pass to the limit in h. Since by hypothesis the Gauss maps νK , νL and their inverse
are continuous, and u, v are continuous up to ∂K , ∂L , we get

lim
h

u�v(xh) = u(ν−1
K (νK+L(x)))+ v(ν−1

L (νK+L(x))).

In view of the identity (A.1), the r.h.s. of the above equality equals u�v(x), and (A.2) is proved.
Consider now the case xh

∈ int(K + L) ∀h. We set

yh
:= ∇w(xh) = (∇(ϕ + ψ))−1(xh),

and we decompose xh as xh
1 + xh

2 , with

xh
1 := ∇ϕ(yh) ∈ int(K ) and xh

2 := ∇ψ(yh) ∈ int(L).

Then we have

u�v(xh) = [⟨xh
1 , yh

⟩ − ϕ(yh)] + [⟨xh
2 , yh

⟩ − ψ(yh)] = u(xh
1 )+ v(xh

2 ).



744 A. Colesanti, I. Fragalà / Advances in Mathematics 244 (2013) 708–749

Let us now pass the limit in h. By compactness, after possibly selecting a (not relabelled)
subsequence, there exist limh xh

1 =: x1 ∈ ∂K and limh xh
2 =: x2 ∈ ∂L . Since by assumption

u ∈ C 0(K ) and v ∈ C 0(L), we infer

lim
h

u�v(xh) = u(x1)+ v(x2).

In view of the identity (A.1), the above equality implies (A.2) provided

x1 = ν−1
K


νK+L(x)


and x2 = ν−1

L


νK+L(x)


.

In turn, by the C 2
+ assumption on ∂K , ∂L , such conditions are satisfied provided the normal

vectors νK (x1) and νL(x2) coincide. Let us show that in fact each of them agrees with

ξ := lim
h

yh

∥yh∥
.

Since yh
= ∇u(xh

1 ), and ∥yh
∥ → +∞ (being yh

= ∇wh(xh) and xh
→ x ∈ ∂(K + L)), by

passing to the limit in the inequality

u(x)

∥yh∥
≥

u(xh
1 )

∥yh∥
+


yh

∥yh∥
, x − xh

1


,

we infer that any cluster point of the sequence yh/∥yh
∥ belongs to the normal cone to ∂K

at x1, which is reduced to νK (x1). In the same way we obtain ξ = νL(x2), and the proof is
achieved. �

Proof of Lemma 4.10. (i) Let x ∈ dom(u) be fixed. By the assumption v(0) = 0, we have
ut (x) ≤ u(x) for every t > 0, so that lim supt→0+ ut (x) ≤ u(x). Let us prove that we also have

lim inf
t→0+

ut (x) ≥ u(x). (A.3)

Assume u, v ∈ L′, and set ϕ := u∗, ψ := v∗. We choose r > ∥∇u(x)∥ and we set c := supBr
ψ

(notice that c is finite because ψ is bounded on bounded sets [6, Theorem 4.4.13]). Then

ut (x) = sup
y∈Rn


⟨x, y⟩ − ϕ(y)− tψ(y)


≥ sup

y∈Br


⟨x, y⟩ − ϕ(y)


− tc

= ⟨x,∇u(x)⟩ − ϕ(∇u(x))− tc = u(x)− tc,

and (A.3) follows by passing to the inferior limit as t → 0+.
Assume u, v ∈ L′′. Setting L := dom(v) and m := min v, it holds v ≥ IL + m. Then

ut (x) = inf
x1+x2=x


u(x1)+ tv(x2/t)


≥ inf

x1+x2=x


u(x1)+ t IL(x2/t)


+ tm

= inf
x1+x2=x


u(x1)+ t It L(x2)


+ tm = inf

x1∈K∩(x−t L)
{u(x1)} + tm,

and, thanks to the continuity of u at x , (A.3) follows by passing to the inferior limit as t → 0+.
Statement (ii) is an immediate consequence of the convexity of the functions ut and of the

differentiability of their pointwise limit u in the interior of its domain. �

Proof of Lemma 4.11. Set Kt := dom(ut ). First we claim that, for every fixed x ∈ int(Kt ),

the map t → ∇ut (x) is differentiable on (0,+∞). (A.4)
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Indeed, as noticed in the proof of Lemma 4.9, the Fenchel conjugates ϕ := u∗ and ψ := v∗ are
both of class C 2

+ on Rn . Therefore, the function F : Rn
× Rn

× (0,+∞) → Rn defined by

F(x, y, t) := ∇ϕ(y)+ t∇ψ(y)− x,

is of class C 1 on Rn
× Rn

× (0,+∞), and ∂F
∂y = ∇

2ϕ + t∇2ψ is nonsingular for every y ∈ Rn .
Consequently, by the implicit function theorem, the equation F(x, y, t) = 0 locally defines a
map y = y(x, t) which is of class C 1 in its arguments. By Lemma 4.9, (int(Kt ), ut ) is a convex
function of Legendre type, hence by Proposition 2.2 ∇ut is the inverse map of ∇ϕt , namely

F(x,∇ut (x), t) = ∇ϕt (∇ut (x))− x = 0.

Therefore, for every x ∈ int(Kt ) and every t > 0, y(x, t) = ∇ut (x), and (A.4) is proved.
Next, we apply again to Proposition 2.2 in order to write the identity

ut (x) = ⟨x,∇ut (x)⟩ − ϕt

∇ut (x)


∀x ∈ int(Kt ). (A.5)

By (A.4) and (A.5) we obtain that, for every fixed x ∈ int(Kt ), the map t → ut (x) is
differentiable on (0,+∞), with

d

dt
ut (x) =


x,

d

dt


∇ut (x)


− ψ


∇ut (x)


−


∇ϕt


∇ut (x)


,

d

dt


∇ut (x)


= −ψ


∇ut (x)


. �

Proof of Lemma 4.12. We have
Rn
ϕ(∇u(x)) f (x) dx =


Rn


⟨x,∇u⟩ − u


f dx

= −


Rn

⟨x,∇ f ⟩ dx +


Rn

f log f dx .

= −


Rn

div( f x) dx + n J ( f )+


Rn

f log f dx .

We observe that
Rn

div( f x) dx = lim
r→+∞


Br

div( f x) dx = lim
r→+∞

r

∂Br

f d Hn−1
= 0,

where the last equality holds true by Lemma 2.5. Therefore we have
Rn
ϕ(∇u(x)) f (x) dx = n J ( f )+


Rn

f log f dx,

and the lemma follows recalling that both J ( f ) and


Rn f log f dx are finite (cf. respectively
Lemma 2.5 and Proposition 3.11). �

Proof of Lemma 4.13. By definition we have

ut (x) = inf
x1+x2=x


u(x1)+ tv


x2

t


.

Since

vmin + IL(x) ≤ v(x) ≤ vmax + IL(x) ∀x ∈ Rn,
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it holds

inf
x1+x2=x


u(x1)+ tvmin + t IL


x2

t


≤ ut (x)

≤ inf
x1+x2=x


u(x1)+ tvmax + t IL


x2

t


,

namely

tvmin + inf
x1∈K∩(x−t L)


u(x1)


≤ ut (x) ≤ tvmax + inf

x1∈K∩(x−t L)


u(x1)


.

Therefore the statement is satisfied by taking y as a point where u attains its minimum on
K ∩ (x − t L). �

Proof of Remark 4.7. By inspection of the proof of Theorems 4.5 and 4.6, one can see that
assumption (4.1) is used only in Step 4 (in order to prove that Ψ(0) < +∞) and in Step 5 (in
order to prove that lims→0+ Ψ(s) = Ψ(0)). Assume now n = 1, and drop assumption (4.1): let
us indicate how Steps 4 and 5 (and consequently also Step 6) have to be modified in order to
show that (4.3) continues to hold, possibly as an equality +∞ = +∞.

In Step 4, we limit ourselves to prove that Ψ takes finite values at every s > 0.
In Step 5, the proof of the continuity of Ψ at every s > 0 remains unchanged, whereas for

s → 0+ we make the following claim (whose proof is postponed below):

if Ψ(0) < +∞, then Ψ is continuous from the right at s = 0. (A.6)

Consequently, in Step 6 we must distinguish two cases. In case Ψ(0) < +∞, thanks to (A.6)
equality (4.4) can be proved exactly as before. In case Ψ(0) = +∞, (4.4) continues to hold as
an equality +∞ = +∞, and it can be proved by slight modifications of the case Ψ(0) < ∞.
More precisely, (4.22) and (4.24) in Step 6 remain unchanged, whereas (4.23) has to be replaced
by

lim inf
s→0+

Ψ(s) ≥ sup
C⊂⊂E

lim inf
s→0+


C
ψ dµ( fs) = sup

C⊂⊂E


C
ψdµ( f ) = +∞ (A.7)

(notice that the second equality in (A.7) holds by dominated convergence, since by Lemma 4.10
we have ψ(∇us) fs → ψ(∇u) f as s → 0+, and by Lemmas 3.9 and 4.10(ii) the nonnegative
functions ψ(∇us) fs are bounded above on C by some continuous function independent of s).

Let us finally prove (A.6). Assume

Ψ(0) =


R
ψϕ′′eϕ−yϕ′

dy < +∞. (A.8)

Since n = 1, (4.13) simplifies into

Ψ(s) = Ψ0(s)+ sΨ1(s),

where

Ψ0(s) :=


R

h0(s, y) dy h0(s, y) := ψeϕs−yϕ′
sϕ′′χQs

Ψ1(s) :=


R

h1(s, y) dy h1(s, y) := ψeϕs−yϕ′
sψ ′′χQs .
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To get (A.6) it suffices to show that

lim
s→0+

Ψ0(s) = Ψ(0) (A.9)

lim
s→0+

sΨ1(s) = 0. (A.10)

Thanks to assumption (A.8), (A.9) can be proved exactly as before (cf. the proof of (4.16)). To
prove (A.10), we write

sΨ1(s) = I+(s)+ I−(s) :=


R+

sh1(s, y) dy +


R−

sh1(s, y) dy,

and we show that both I±(s) tend to 0 as s → 0+. Let us consider I+(s) (the case of I−(s) is
completely analogous).

We observe that

0 ≤ sh1(s, y) = sψeϕs−yϕ′
sψ ′′χQs ≤ −F(y)G ′

s(y) ∀y, s > 0,

where we have set

F(y) :=
ψ

y
eϕ−yϕ′

and Gs(y) := es(ψ−yψ ′).

Then an integration by parts gives

0 ≤ I+(s) ≤ lim
ε→0+, r→+∞

 r

ε

F ′(y)Gs(y) dy + F(ε)Gs(ε)− F(r)Gs(r)


.

Since ψ(0) = ψ ′(0) = 0 (respectively because v ≥ 0 and ψ ≥ 0), passing to the limit in ε gives

0 ≤ I+(s) ≤ lim
r→+∞

 r

0
F ′(y)Gs(y) dy − F(r)Gs(r)


. (A.11)

Next we observe that the following limit exists:

α := lim
r→+∞

F(r) = lim
r→+∞

 r

0
F ′(y)dy.

Indeed a straightforward computation gives

F ′(y) = −ψϕ′′eϕ−yϕ′

+
eϕ−yϕ′

y2 (ψ ′y − ψ),

and both the functions at the right and side are integrable on (0,+∞) (the former by assumption
(A.8), the latter because it is nonnegative).

Let us show that α > 0 cannot occur. Indeed in such case, for some constants c and r , it would
be F(r) ≥ c ∀r ≥ r . This would contradict (A.8), since

Ψ(0) ≥


+∞

r
ψϕ′′eϕ−yϕ′

dy ≥ c


+∞

r
yϕ′′ dy

= c


lim
r→+∞

[rϕ′(r)− ϕ(r)] − [rϕ′(r)− ϕ(r)]


= +∞.
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Taking into account that α = 0 (and also that limr→+∞ Gs(r) = 0), we may rewrite (A.11)
as

0 ≤ I+(s) ≤ lim
r→+∞

 r

0
F ′(y)Gs(y) dy. (A.12)

Moreover, since α = 0, we have in particular


+∞

0 F ′(y) dy < +∞, which implies F ′
∈

L1(0,+∞). Therefore, for every fixed s > 0, the functions F ′Gs satisfy

|F ′(y)Gs(y)| ≤ |F ′(y)| ∈ L1(0,+∞).

We deduce that (A.12) can be rewritten as

0 ≤ I+(s) ≤


+∞

0
F ′(y)Gs(y) dy. (A.13)

Finally, passing to the limit as s → 0+ in the right hand side of (A.13) we obtain

lim
s→0+


+∞

0
F ′(y)Gs(y) dy =


+∞

0
lim

s→0+
F ′(y)Gs(y) dy =


+∞

0
F ′(y) dy = α = 0.

This implies that I+(s) tends to 0 as s → 0+ and the proof is achieved. �
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