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Abstract

Let (R∨, R) be a dual pair of Hopf algebras in the category of Yetter–Drinfeld modules over a Hopf
algebra H with bijective antipode. We show that there is a braided monoidal isomorphism between rational
left Yetter–Drinfeld modules over the bosonizations of R and of R∨, respectively. As an application of
this very general category isomorphism we obtain a natural proof of the existence of reflections of Nichols
algebras of semi-simple Yetter–Drinfeld modules over H .
c⃝ 2013 Published by Elsevier Inc.
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0. Introduction

Let H be a Hopf algebra with bijective antipode over the base field k, and let (R∨, R)
together with a bilinear form ⟨, ⟩ : R∨

⊗ R → k be a dual pair of Hopf algebras in the braided
category H

H Y D of left Yetter–Drinfeld modules over H (see Definition 2.2). The smash products
or bosonizations R∨#H and R#H are Hopf algebras in the usual sense. We are interested in
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their braided monoidal categories of left Yetter–Drinfeld modules. By our first main result,
Theorem 7.1, there is a braided monoidal isomorphism

(Ω , ω) :
R#H
R#H Y Drat →

R∨#H
R∨#H Y Drat, (0.1)

where the index rat means Yetter–Drinfeld modules which are rational over R and over R∨ (see
Definition 2.2). In particular, (Ω , ω) maps Hopf algebras to Hopf algebras. For X ∈

R#H
R#H Y Drat,

Ω(X) = X as a Yetter–Drinfeld module over H .
The origin of the isomorphism (0.1) is the standard correspondence between comodule

structures over a coalgebra and module structures over the dual algebra. In Theorem 5.5 we
first prove a monoidal isomorphism between right and left relative Yetter–Drinfeld modules,
and hence a braided monoidal isomorphism between their Drinfeld centers. Then we show in
Theorem 6.5 that this isomorphism preserves the subcategories of right and left Yetter–Drinfeld
modules we want. Finally, in Theorem 7.1 we change the sides to left Yetter–Drinfeld modules
on both sides. Without this strategy, it would be hard to guess and to prove the correct formulas.

Our motivation to find such an isomorphism of categories comes from the theory of Nichols
algebras which in turn are fundamental for the classification of pointed Hopf algebras. If
M ∈

H
H Y D, the Nichols algebra B(M) is a braided Hopf algebra in H

H Y D which is the unique
graded quotient of the tensor algebra T (M) such that M coincides with the space of primitive
elements in B(M).

A basic construction to produce new Nichols algebras is the reflection of semi-simple
Yetter–Drinfeld modules M1 ⊕ · · · ⊕ Mθ , where θ ∈ N and M1, . . . ,Mθ are finite-dimensional
and irreducible objects in H

H Y D. For 1 ≤ i ≤ θ , the i-th reflection of M = (M1, . . . ,Mθ ) is a
certain θ -tuple Ri (M) = (V1, . . . , Vθ ) of finite-dimensional irreducible Yetter–Drinfeld modules
in H

H Y D. It is defined assuming a growth condition of the adjoint action in the Nichols algebra
B(M) of M1 ⊕ · · · ⊕ Mθ . The Nichols algebras B(Ri (M)) of V1 ⊕ · · · ⊕ Vθ and B(M) have the
same dimension. The reflection operators allow to define the Weyl groupoid of M , an important
combinatorial invariant. In this paper we give a natural explanation of the reflection operators in
terms of the isomorphism (Ω , ω).

To describe our new approach to the reflection operators, fix 1 ≤ i ≤ θ , and let K M
i

be the algebra of right coinvariant elements of B(M) with respect to the canonical projection
B(M) → B(Mi ) coming from the direct sum decomposition of M . By the theory of bosonization
of Radford–Majid, K M

i is a Hopf algebra in R#H
R#H Y D. To define Ri (M) we have to assume that

K M
i is rational as an R-module. Let W = adB(Mi )(⊕ j≠i M j ) ⊆ B(M). Then W is an object in

R#H
R#H Y Drat, and by Proposition 8.6 its Nichols algebra is isomorphic to K M

i . This new information
on K M

i is used to prove our second main result, Theorem 8.9, which says that

Ω(K M
i )#B(M∗

i )
∼= B(Ri (M)), (0.2)

where the braided monoidal functor (Ω , ω) is defined with respect to the dual pair (B(M∗

i ),

B(Mi )). The left-hand side of (0.2) is the bosonization, hence a braided Hopf algebra in a natural
way. In [2, Theorem 3.12(1)] a different algebra isomorphism

K M
i #B(M∗

i )
∼= B(Ri (M)), (0.3)

formally similar to (0.2), was obtained. But there, the left-hand side is not a bosonization,
and a priori it is only an algebra and not a braided Hopf algebra. This is the reason why the
proof of (0.3) was quite involved. The Hopf algebra structure of K M

i #B(M∗

i ) induced from the
isomorphism (0.3) was determined in [5, Theorem 4.2].
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If M ∈
H
H Y D is finite-dimensional with finite-dimensional Nichols algebra B(M), then

Theorem 7.1 says that R#H
R#H Y D ∼=

R∨#H
R∨#H Y D, since all Yetter–Drinfeld-modules are rational over

R = B(M) respectively R∨
= B(M∗). Thus the Drinfeld centers of the monoidal categories C

and D of left modules over R#H and over R∨#H are equivalent. Note that R#H is not semi-
simple if M ≠ 0. Thus in our situation, C and D are not fusion categories. By Etingof et al.
[4, Theorem 3.1], the Drinfeld centers of two fusion categories C and D are equivalent if and
only if the categories C and D are Morita equivalent. We do not know whether it is possible to
describe our Theorem 7.1 in a similar way in terms of Morita equivalence.

If R is an algebra and M is a right R-module, we denote its module structure by µR
M = µM :

M ⊗ R → M . If C is a coalgebra and M is a right C-comodule, we denote by δC
M = δM :

M → M ⊗ C the comodule structure map. The same notations µR
M and δC

M will be used for left
modules and left comodules. In the following we assume that H is a Hopf algebra over k with
comultiplication ∆ = ∆H : H → H ⊗ H, h → h(1)⊗h(2), augmentation ε = εH , and bijective
antipode S .

1. Preliminaries on bosonization of Yetter–Drinfeld Hopf algebras

We recall some well-known notions and results (see e.g. [2, Section 1.4]), and note some
useful formulas from the theory of Yetter–Drinfeld Hopf algebras.

A left Yetter–Drinfeld module over H is a left H -module and a left H -comodule with H -
action and H -coaction denoted by H ⊗ V → V, h ⊗v → h ·v, and δ = δV : V → H ⊗ V, v →

δ(v) = v(−1) ⊗ v(0), such that

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0) (1.1)

for all v ∈ V, h ∈ H .
The category of left Yetter–Drinfeld modules over H with H -linear and H -colinear maps as

morphisms is denoted by H
H Y D. It is a monoidal and braided category. If V,W ∈

H
H Y D, then the

tensor product is the vector space V ⊗ W with diagonal action and coaction given by

h · (v ⊗ w) = h(1) · v ⊗ h(2) · w, (1.2)

δ(v ⊗ w) = v(−1)w(−1) ⊗ v(0) ⊗ w(0), (1.3)

and the braiding is defined by

cV,W : V ⊗ W → W ⊗ V, v ⊗ w → v(−1) · w ⊗ v(0), (1.4)

with inverse

c−1
V,W : W ⊗ V → V ⊗ W, w ⊗ v → v(0) ⊗ S −1(v(−1)) · w, (1.5)

for all h ∈ H, v ∈ V, w ∈ W .
The category Y D H

H is defined in a similar way, where the objects are the right Yetter–Drinfeld
modules over H , that is, right H modules and right H -comodules V such that

δ(v · h) = v(0) · h(2) ⊗ S(h(1))v(1)h(3) (1.6)

for all v ∈ V, h ∈ H . The monoidal structure is given by diagonal action and coaction, and the
braiding is defined by

cV,W : V ⊗ W → W ⊗ V, v ⊗ w → w(0) ⊗ v · w(1), (1.7)

for all V,W ∈ Y D H
H .
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We note that for any object V ∈
H
H Y D, there is a linear isomorphism

θV : V
∼=
−→ V, v → S(v(−1)) · v(0), (1.8)

with inverse

V
∼=
−→ V, v → S −2(v(−1)) · v(0). (1.9)

The map θV is not a morphism in H
H Y D, but

θV (h · v) = S 2(h) · θV (v), (1.10)

δ(θV (v)) = S 2(v(−1))⊗ θV (v(0)) (1.11)

for all v ∈ V, h ∈ H , where δ(v) = v(−1) ⊗ v(0).
If A, B are algebras in H

H Y D, then the algebra structure of the tensor product A ⊗ B of the
vector spaces A, B is defined in terms of the braiding by

(a ⊗ b)(a′
⊗ b′) = a(b(−1) · a′)⊗ b(0)b

′ (1.12)

for all a, a′
∈ A and b, b′

∈ B.
Let R be a Hopf algebra in the braided monoidal category H

H Y D with augmentation εR :

R → k, comultiplication ∆R : R → R ⊗ R, r → r (1)⊗r (2), and antipode S R . Thus εR,∆R,S R
are morphisms in H

H Y D satisfying the Hopf algebra axioms. The map S R anticommutes with
multiplication and comultiplication in the following way.

S R(rs) = S R(r (−1) · s)S R(r (0)), (1.13)

∆R(S R(r)) = S R(r
(1)
(−1) · r (2))⊗ S R(r

(1)
(0)) (1.14)

for all r, s ∈ R.
Let A = R#H be the bosonization of R. As an algebra, A is the smash product given by the

H -action on R with multiplication

(r#h)(r ′#h′) = r(h(1) · r ′)#h(2)h
′ (1.15)

for all r, r ′
∈ R, h, h′

∈ H . We will identify r#1 with r and 1#h with h. Thus we view R ⊆ A
and H ⊆ A as subalgebras, and the multiplication map

R ⊗ H → A, r ⊗ h → rh = r#h,

is bijective. Since · denotes the H -action, we will always write ab for the product of elements
a, b ∈ A (and not a · b). Note that

hr = (h(1) · r)h(2), (1.16)

rh = h(2)(S −1(h(1)) · r) (1.17)

for all r ∈ R, h ∈ H . As a coalgebra, A is the cosmash product given by the H -coaction of the
coalgebra R. We will denote its comultiplication by

∆ : A → A ⊗ A, a → a(1) ⊗ a(2).

By definition,

(rh)(1) ⊗ (rh)(2) = r (1)r (2)(−1)h(1) ⊗ r (2)(0)h(2) (1.18)
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for all r ∈ R, h ∈ H . Thus the projection maps

π : A → H, r#h → εR(r)h, (1.19)

ϑ : A → R, r#h → rε(h), (1.20)

are coalgebra maps, and

A → R ⊗ H, a → ϑ(a(1))⊗ π(a(2)),

is bijective.
Then A = R#H is a Hopf algebra with antipode S = S A, where the restriction of S to H is

the antipode of H , and

S(r) = S(r (−1))S R(r (0)), (1.21)

hence

S 2(r) = S 2
R(θR(r)) (1.22)

for all r ∈ R.
The map π is a Hopf algebra projection, and the subalgebra R ⊆ A is a left coideal subalgebra,

that is, ∆(R) ⊆ A ⊗ R, which is stable under S 2.
The structure of the braided Hopf algebra R can be expressed in terms of the Hopf algebra

R#H and the projection π :

R = Aco H
= {r ∈ A | r (1) ⊗ π(r (2)) = r ⊗ 1}, (1.23)

h · r = h(1)r S(h(2)), (1.24)

r (−1) ⊗ r (0) = π(r (1))⊗ r (2), (1.25)

r (1) ⊗ r (2) = r (1)πS(r (2))⊗ r (3), (1.26)

S R(r) = π(r (1))S(r (2)) (1.27)

for all h ∈ H , r ∈ R. We list some formulas related to the projection ϑ .

ϑ(a) = a(1)πS(a(2)), (1.28)

a = ϑ(a(1))π(a(2)), (1.29)

r (1) ⊗ r (2) = ϑ(r (1))⊗ r (2), (1.30)

ϑ(a)(1) ⊗ ϑ(a)(2) = ϑ(a(1))⊗ ϑ(a(2)), (1.31)

ϑ(a)(−1) ⊗ ϑ(a)(0) = π(a(1)S(a(3)))⊗ ϑ(a(2)) (1.32)

for all r ∈ R, a ∈ A.

By (1.24), the inclusion R ⊆ A is an H -linear algebra map, where the H -action on A is the
adjoint action. By (1.31) and (1.32), the map ϑ : A → R is an H -colinear coalgebra map, where
the H -coaction of A is defined by

A → H ⊗ A, a → π(a(1)S(a(3)))⊗ a(2), (1.33)

that is, by the coadjoint H -coaction of A.
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Finally we note the following useful formulas related to the behavior of ϑ with respect to
multiplication.

ϑ(ah) = ε(h)ϑ(a), (1.34)

ϑ(ha) = h · ϑ(a), (1.35)

for all h ∈ H, a ∈ A.

Lemma 1.1. Let R be a Hopf algebra in H
H Y D and A = R#H its bosonization. Then

ϑS


aπS −1(b(2))b(1)


= ϑS(b(2))

π


S(b(1))b(3)


· ϑS(a)


,

for all h ∈ H and a, b ∈ A.

Proof.

ϑS(b(2))

π


S(b(1))b(3)


· ϑS(a)


= ϑS(b(3))π


S(b(2))b(4)


ϑS(a)πS


S(b(1))b(5)


= S(b(2))π(b(3))S(a(2))πS 2(a(1))πS


S(b(1))b(4)


= ϑ


S(b(1))π(b(2))S(a)


= ϑS


aπS −1(b(2))b(1)


,

where the second equality follows from (1.29) applied to S(b(2)) and (1.28) applied to S(a), and
the third equality follows from (1.28). �

It follows from (1.22) and (1.9) that the antipode S R of R is bijective if and only if the antipode
S of R is bijective. In this case the following formulas hold for S −1

R and S −1.

S −1
R (r) = S −1(r (0))r (−1) = ϑS −1(r), (1.36)

S −1(rh) = S −1(h)S −1
R (r (0))S −1(r (−1)) (1.37)

for all r, s ∈ R.

2. Dual pairs of braided Hopf algebras and rational modules

The field k will be considered as a topological space with the discrete topology. We denote by
Lk the category of linearly topologized vector spaces over k. Objects of Lk are topological vector
spaces which have a basis of neighborhoods of 0 consisting of vector subspaces. Morphisms in
Lk are continuous k-linear maps.

Thus an object in Lk is a vector space and a topological space V , where the topology on V is
given by a set {Vi ⊆ V | i ∈ I } of vector subspaces of V such that for all i, j ∈ I there is an
index k ∈ I with Vk ⊆ Vi ∩ V j . The set {Vi ⊆ V | i ∈ I } is a basis of neighborhoods of 0, and a
subset U ⊆ V is open if and only if for all x ∈ U there is an index i ∈ I such that x + Vi ⊆ U .

In particular, a vector subspace U ⊆ V is open if and only if Vi ⊆ U for some i ∈ I .
Let V,W ∈ Lk, and let {Vi ⊆ V | i ∈ I } and {W j ⊆ W | j ∈ J } be bases of neighborhoods

of 0. Then a linear map f : V → W is continuous if and only if for all j ∈ J there is an index
i ∈ I with f (Vi ) ⊆ W j . We define the tensor product V ⊗ W as an object in Lk with

{Vi ⊗ W + V ⊗ W j | (i, j) ∈ I × J }

as a basis of neighborhoods of 0.
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Let R, R∨ be vector spaces, and let

⟨, ⟩ : R∨
⊗ R → k, ξ ⊗ x → ⟨ξ, x⟩,

be a k-bilinear form. If X ⊆ R and X ′
⊆ R∨ are subsets, we define

⊥ X = {ξ ∈ R∨
| ⟨ξ, x⟩ = 0 for all x ∈ X},

X ′⊥
= {x ∈ R | ⟨ξ, x⟩ = 0 for all ξ ∈ X ′

}.

We endow R∨ with the finite topology (or the weak topology), which is the coarsest topology on
R∨ such that the evaluation maps ⟨ , x⟩ : R∨

→ k, ξ → ⟨ξ, x⟩, for all x ∈ R are continuous.
In the same way we view R as a topological space with the finite topology with respect to the
evaluation maps ⟨ξ, ⟩ : R → k, x → ⟨ξ, x⟩, for all ξ ∈ R∨.

Let E be a cofinal subset of the set of all finite-dimensional subspaces of R (that is, E is a set
of finite-dimensional subspaces of R, and any finite-dimensional subspace E ⊆ R is contained
in some E1 ∈ E ). Let E ′ be a cofinal subset of the set of all finite-dimensional subspaces of R∨.
Then R∨ and R are objects in Lk, where

{
⊥E | E ∈ E } and {E ′⊥

| E ′
∈ E ′

}

are bases of neighborhoods of 0 of R∨ and R, respectively.
The pairing ⟨, ⟩ is called non-degenerate if ⊥ R = 0 and R∨⊥

= 0. Let E ∈ E , and assume
that ⊥ R = 0. Then

E → (R∨/⊥E)∗, x → (ξ → ⟨ξ, x⟩),

is injective. Since

R∨/⊥E → E∗, ξ → (x → ⟨ξ, x⟩),

is injective by definition, it follows that

R∨/⊥E
∼=
−→ E∗, ξ → ⟨ξ, ⟩, (2.1)

is bijective. By the same argument, for all E ′
∈ E R∨

R/E ′⊥
∼=
−→ E ′∗, x → ⟨, x⟩, (2.2)

is bijective, if R∨⊥
= 0.

If V,W are vector spaces, denote by

Homrat(R
∨

⊗ V,W ) (respectively Homrat(V ⊗ R∨,W ))

the set of all linear maps g : R∨
⊗V → W (respectively g : V ⊗R∨

→ W ) such that for all v ∈ V
there is a finite-dimensional subspace E ⊆ R with g(⊥E ⊗v) = 0 (respectively g(v⊗

⊥E) = 0).

Lemma 2.1. Let ⟨, ⟩ : R∨
⊗ R → k be a non-degenerate k-bilinear form of vector spaces, and

let V,W be vector spaces. Then the following hold.

(1) The map

D : Hom(V, R ⊗ W ) → Homrat(R
∨

⊗ V,W ), f → (⟨, ⟩ ⊗ id)(id ⊗ f ),

is bijective.
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(2) The map

D′
: Hom(V, R ⊗ W ) → Homrat(V ⊗ R∨,W ), f → (id ⊗ ⟨, ⟩)τ ( f ⊗ id),

is bijective, where τ : R ⊗ W ⊗ R∨
→ W ⊗ R∨

⊗ R is the twist map with τ(x ⊗w ⊗ ξ) =

w ⊗ ξ ⊗ x for all x ∈ R, w ∈ W, ξ ∈ R∨.

Proof. (1) For completeness we recall the following well-known argument.
Let f ∈ Hom(V, R⊗W ), and g = D( f ). For all v ∈ V there is a finite-dimensional subspace

E ⊆ R with f (v) ∈ E ⊗ W , hence g(⊥E ⊗ v) = 0. Thus g ∈ Homrat(R∨
⊗ V,W ).

Conversely, let g ∈ Homrat(R∨
⊗ V,W ). For any finite-dimensional subspace U ⊆ V there is

a finite-dimensional subspace E ⊆ R with g(⊥E ⊗U ) = 0. Let gU,E ∈ Hom(R∨ /⊥ E ⊗U,W )

be the map induced by g, and fU,E ∈ Hom(U, E ⊗ W ) the inverse image of gU,E under the
isomorphisms

Hom(U, E ⊗ W )
∼=
−→ Hom(E∗

⊗ U,W )
∼=
−→ Hom(R∨ /⊥ E ⊗ U,W ),

where the first map is the canonical isomorphism, and the second map is induced by the
isomorphism in (2.1).

If E ′ is a finite-dimensional subspace of R containing E , then

fU,E (v) = fU,E ′(v) for all v ∈ U.

Hence fU ∈ Hom(U, R ⊗ W ), defined by fU (v) = fU,E (v) for all v ∈ U , does not depend on
the choice of E .

Since fU ′ | U = fU for all finite-dimensional subspaces U ⊆ U ′ of V , the inverse image
D−1(g) can be defined by the family ( fU ).

(2) follows from (1) since the twist map V ⊗ R∨
→ R∨

⊗ V defines an isomorphism
Homrat(R∨

⊗ V,W ) ∼= Homrat(V ⊗ R∨,W ). �

Let R, R∨ be Hopf algebras in the braided monoidal category H
H Y D, and let

⟨, ⟩ : R∨
⊗ R → k, ξ ⊗ x → ⟨ξ, x⟩,

be a k-bilinear form of vector spaces.

Definition 2.2. Assume that there are cofinal subsets E R (respectively E R∨ ) of the sets of all
finite-dimensional vector subspaces of R (respectively of R∨) consisting of subobjects in H

H Y D.
Then the pair (R, R∨) together with the bilinear form ⟨, ⟩ : R∨

⊗ R → k is called a dual pair
of Hopf algebras in H

H Y D if

⟨, ⟩ is non-degenerate, (2.3)

⟨h · ξ, x⟩ = ⟨ξ,S(h) · x⟩, (2.4)

ξ (−1)⟨ξ (0), x⟩ = S −1(x (−1))⟨ξ, x (0)⟩, (2.5)

⟨ξ, xy⟩ = ⟨ξ (1), y⟩⟨ξ (2), x⟩, ⟨1, x⟩ = ε(x), (2.6)

⟨ξη, x⟩ = ⟨ξ, x (2)⟩⟨η, x (1)⟩, ⟨ξ, 1⟩ = ε(ξ), (2.7)

∆R∨ : R∨
→ R∨

⊗ R∨ is continuous, (2.8)

∆R : R → R ⊗ R is continuous (2.9)

for all x, y ∈ R, ξ, η ∈ R∨ and h ∈ H .
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A left or right R∨-module (respectively R-module) M is called rational if any element of M
is annihilated by ⊥E (respectively E ′⊥) for some finite-dimensional vector subspace E ⊆ R
(respectively E ′

⊆ R∨).

Lemma 2.3. Let (R, R∨) together with ⟨, ⟩ : R∨
⊗ R → k be a dual pair of Hopf algebras in

H
H Y D. Then for all x ∈ R, ξ ∈ R∨ and for all E ∈ E R, E ′

∈ E R∨ ,

⟨S R∨(ξ), x⟩ = ⟨ξ,S R(x)⟩, (2.10)
⊥E ⊆ R∨ and E ′⊥

⊆ R are subobjects in H
H Y D. (2.11)

Proof. The vector space Hom(R∨, R∗op) is an algebra with convolution product. We define
linear maps ϕ1, ϕ2, ψ ∈ Hom(R∨, R∗op) by

ϕ1(ξ)(x) = ⟨ξ,S R(x)⟩, ϕ2(ξ)(x) = ⟨S R∨(ξ), x⟩, ψ(ξ)(x) = ⟨ξ, x⟩,

for all ξ ∈ R∨, x ∈ R. Then by (2.6) and (2.7) the unit element in Hom(R∨, R∗op) is equal to
ϕ1 ∗ ψ and also to ψ ∗ ϕ2. Hence ϕ1 = ϕ2.

(2.11) follows from (2.4) and (2.5). �

Note that the bilinear form ⟨, ⟩ : R∨
⊗ R → k is a morphism in H

H Y D if and only if (2.4) and
(2.5) are satisfied.

The continuity conditions (2.8) and (2.9) are equivalent to the following. For all E ∈ E R and
E ′

∈ E R∨ there are E1 ∈ E R and E ′

1 ∈ E R∨ such that

∆R∨(⊥E1) ⊆
⊥E ⊗ R∨

+ R∨
⊗

⊥E, ∆R(E
′

1
⊥
) ⊆ E ′⊥

⊗ R + R ⊗ E ′⊥.

By (2.1) and (2.2), rational modules over R or R∨ are locally finite. Recall that a module
over an algebra is locally finite if each element of the module is contained in a finite-dimensional
submodule.

Example 2.4. Let R∨
= ⊕n≥0 R∨(n) and R = ⊕n≥0 R(n) be N0-graded Hopf algebras in H

H Y D
with finite-dimensional components R∨(n) and R(n) for all n ≥ 0, and let ⟨, ⟩ : R∨

⊗ R → k
be a bilinear form of vector spaces such that

⟨R∨(m), R(n)⟩ = 0 for all n ≠ m in N0. (2.12)

Assume (2.3)–(2.7).
For all integers n ≥ 0 we define

Fn R =
n
⊕

i=0
R(i), Fn R∨

=
n
⊕

i=0
R∨(i).

Then the subspaces Fn R ⊆ R, n ≥ 0, and Fn R∨
⊆ R∨, n ≥ 0, form cofinal subsets of the set of

all finite-dimensional subspaces of R and of R∨ consisting of subobjects in H
H Y D. For all n ≥ 0,

let

F n R = ⊕
i≥n

R(i), F n R∨
= ⊕

i≥n
R∨(i).

Then by (2.12) and (2.3), for all n ≥ 0,

⊥(Fn−1 R) = F n R∨, (Fn−1 R∨)⊥ = F n R. (2.13)
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Since the coalgebras R∨ and R are N0-graded, it follows that

∆R∨(F 2n R∨) ⊆ F n R∨
⊗ R∨

+ R∨
⊗ F n R∨,

∆R(F 2n R) ⊆ F n R ⊗ R + R ⊗ F n R

for all n ≥ 0. Thus ∆R and ∆R∨ are continuous.
Hence the pair (R, R∨) together with the bilinear form ⟨, ⟩ is a dual pair of Hopf algebras in

H
H Y D. Moreover, the remaining structure maps of R∨ and of R, that is multiplication, unit map,
augmentation and antipode, are all continuous, since they are N0-graded. Here, the ground field
is graded by k(0) = k, and k(n) = 0 for all n ≥ 1.

Since R(0) is a finite-dimensional Hopf algebra in H
H Y D, the antipode of R(0) is bijective

by Takeuchi [10, Proposition 7.1]. Hence the Hopf subalgebra F0 R#H of R#H has bijective
antipode by (1.22) and (1.9). The filtration

F0 R#H ⊆ F1 R#H ⊆ F2 R#H ⊆ · · · ⊆ R#H

is a coalgebra filtration, and by the argument in [5, Remark 2.1], the antipodes of R#H and of R
are bijective. The same proof shows that the antipodes of R∨#H and of R∨ are bijective.

Let (R, R∨) together with ⟨, ⟩ : R∨
⊗ R → k be a dual pair of Hopf algebras in H

H Y D. We
denote by R(H

H Y D) the category of left R-comodules in the monoidal category H
H Y D, and by

R∨(H
H Y D)rat the category of left R∨-modules in H

H Y D which are rational as R∨-modules.

Proposition 2.5. (1) For all M ∈
R(H

H Y D) let D(M) = M as an object in H
H Y D with R∨-

module structure given by

ξm = ⟨ξ,m⟨−1⟩⟩m⟨0⟩

for all ξ ∈ R∨,m ∈ M,where the left R-comodule structure of M is denoted by δM (m) =

m⟨−1⟩ ⊗ m⟨0⟩. Then D(M) ∈ R∨(H
H Y D)rat.

(2) The functor

D :
R(H

H Y D) → R∨(H
H Y D)rat

mapping M ∈
R(H

H Y D) onto D(M), and with D( f ) = f for all morphisms in R(H
H Y D), is

an isomorphism of categories.

Proof. This follows from Lemma 2.1 together with (2.4)–(2.7). �

Lemma 2.6. The trivial left R#H-module k is rational as an R-module (by restriction). Let
V,W be left R#H-modules, and V ⊗ W the left R#H-module given by diagonal action. If V
and W are rational as left R-modules, then V ⊗ W is a rational R-module.

Proof. The trivial R-module k is rational since for all x ∈ (k1R∨)⊥,

x1k = ε(x) = ⟨1R∨ , x⟩ = 0

by (2.6).
To prove that V ⊗ W is rational as an R-module, let v ∈ V, w ∈ W . It is enough to show that

E⊥(v ⊗ w) = 0 for some E ∈ E R∨ . Since V and W are rational R-modules, there are E1, E2 ∈



364 I. Heckenberger, H.-J. Schneider / Advances in Mathematics 244 (2013) 354–394

E R∨ with E⊥

1 v = 0, E⊥

2 w = 0. Let E3 ∈ E R∨ with E1 + E2 ⊆ E3. Then E⊥

3 v = 0, E⊥

3 w = 0.
By (2.9) there is a subspace E ∈ E R∨ such that

∆R(E
⊥) ⊆ E⊥

3 ⊗ R + R ⊗ E⊥

3 . (2.14)

Let r ∈ E⊥. Then by (1.18),

r(v ⊗ w) = r (1)r (2)(−1)v ⊗ r (2)(0)w. (2.15)

We rewrite the first tensorand on the right-hand side in (2.15) according to the multiplication rule
(1.17) for elements in R#H . Then the equality r(v ⊗ w) = 0 follows from (2.14), (2.15) and
(2.11). �

Lemma 2.6 also holds for R∨ instead of R using (2.7) and (2.8) instead of (2.6) and (2.9).

Lemma 2.7. Assume that the antipodes of R and of R∨ are bijective. Define ⟨, ⟩′ : R ⊗ R∨
→ k

by

⟨x, ξ⟩′ = ⟨ξ,S 2(x)⟩ (2.16)

for all x ∈ R, ξ ∈ R∨, where S is the antipode of R#H. Then (R∨, R) together with ⟨, ⟩′ :

R ⊗ R∨
→ k is a dual pair of Hopf algebras in H

H Y D.

Proof. Using (1.22) and (2.3)–(2.7) for ⟨, ⟩′ are easily checked.
We denote by ⊥ (respectively ⊥

′) the complements with respect to ⟨, ⟩ (respectively to ⟨, ⟩′).
To prove (2.8) for ⟨, ⟩′, we note that by (2.16) for all finite-dimensional subspaces E ⊆ R,

E⊥
′

=
⊥(S 2(E)). By assumption and (1.22), S 2 induces an isomorphism on R. Hence the weak

topologies of R∨ defined with respect to ⟨, ⟩ and to ⟨, ⟩′ coincide, and (2.8) for ⟨, ⟩′ follows.
To prove (2.9) for ⟨, ⟩′, we again show that the weak topologies of R defined with respect to

⟨, ⟩ and to ⟨, ⟩′ coincide. For all x ∈ R, ξ ∈ R∨,

⟨x, ξ⟩′ = ⟨ξ,S 2(x)⟩

= ⟨ξ,S 2
R(S(x (−1)) · x (0))⟩ (by (1.22))

= ⟨S 2
R∨(ξ),S(x (−1)) · x (0)⟩ (by (2.10)).

Hence for all E1 ∈ E R∨ ,
⊥

′

E1 = {x ∈ R | S(x (−1)) · x (0) ∈ (S 2
R∨(E1))

⊥
}

= (S 2
R∨(E1))

⊥,

where the second equality follows from (1.9) and (2.11). This proves our claim, since {S 2
R∨(E1) |

E1 ∈ E R∨} is a cofinal subset of E R∨ by the bijectivity of S R∨ . �

3. Review of monoidal categories and their centers

Our reference for monoidal categories is [7], where the term tensor categories is used. Let C
and D be strict monoidal categories, and F : C → D a functor. We assume that F(I ) is the unit
object in D. Let

ϕ = (ϕX,Y : F(X)⊗ F(Y ) → F(X ⊗ Y ))X,Y∈C

be a family of natural isomorphisms. Then (F, ϕ) is a monoidal functor if for all U, V,W ∈ C

ϕI,U = idF(U ) = ϕU,I , (3.1)
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and the diagram

F(U )⊗ F(V )⊗ F(W )
id⊗ϕV,W
−−−−−→ F(U )⊗ F(V ⊗ W )

ϕU,V ⊗id
 ϕU,V ⊗W


F(U ⊗ V )⊗ F(W )

ϕU⊗V,W
−−−−→ F(U ⊗ V ⊗ W )

(3.2)

commutes. A monoidal functor (F, ϕ) is called strict if ϕ = id. If C and D are strict braided
monoidal categories, then a monoidal functor (F, ϕ) is braided if for all X, Y ∈ C the diagram

F(X)⊗ F(Y )
ϕX,Y

−−−−→ F(X ⊗ Y )

cF(X),F(Y )

 F(cX,Y )


F(Y )⊗ F(X)

ϕY,X
−−−−→ F(Y ⊗ X)

(3.3)

commutes. A monoidal equivalence (respectively isomorphism) is a monoidal functor (F, ϕ)
such that F is an equivalence (respectively an isomorphism) of categories. Recall that a functor
F : C → D is called an isomorphism if there is a functor G : D → C with FG = idD
and G F = idC . A braided monoidal equivalence (respectively isomorphism) is a monoidal
equivalence (respectively isomorphism) (F, ϕ) such that (F, ϕ) is a braided monoidal functor.

If (F, ϕ) : C → D and (G, ψ) : D → E are monoidal (respectively braided monoidal)
functors, then the composition

(G F, λ) : C → E, λX,Y = G(ϕX,Y )ψF(X),F(Y ), for all X, Y ∈ C, (3.4)

is a monoidal (respectively braided monoidal) functor.
Let (F, ϕ) : C → D be a monoidal isomorphism of categories with inverse functor

G : D → C. Then (G, ψ) is a monoidal functor with

ψU,V = G(ϕG(U ),G(V ))
−1

: G(U )⊗ G(V ) → G(U ⊗ V ) (3.5)

for all U, V ∈ D.
For later use we note the following lemma.

Lemma 3.1. Let C,D and E be strict monoidal and braided categories, and F : C → D a
functor. Let (G, ψ) : D → E and (G F, λ) : C → E be braided monoidal functors. Assume that
the functor G is fully faithful. Then there is exactly one family ϕ = (ϕX,Y )X,Y∈C such that (F, ϕ)
is a braided monoidal functor and

(G F, λ) = (C (F,ϕ)
−−−→ D (G,ψ)

−−−→ E).

Proof. Since G is fully faithful, for all X, Y ∈ C there is exactly one morphism ϕX,Y : F(X)⊗

F(Y ) → F(X ⊗ Y ) with λX,Y = G(ϕX,Y )ψF(X),F(Y ). Then one checks that (F, ϕ) is a braided
monoidal functor. �

We recall the notion of the (left) center Z(C) of a strict monoidal category C with tensor
product ⊗ and unit object I (see [7, XIII.4], where the right center is discussed). Objects of
Z(C) are pairs (M, γ ), where M ∈ C, and

γ = (γX : M ⊗ X → X ⊗ M)X∈C
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is a family of natural isomorphisms such that

γX⊗Y = (idX ⊗ γY )(γX ⊗ idY ) (3.6)

for all X, Y ∈ C.
Note that by (3.6)

γI = idM (3.7)

for all (M, γ ) ∈ Z(C).
A morphism f : (M, γ ) → (N , λ) between objects (M, γ ) and (N , λ) in Z(C) is a morphism

f : M → N in C such that

(idX ⊗ f )γX = λX ( f ⊗ idX ) (3.8)

for all X ∈ C. Composition of morphisms is given by the composition of morphisms in C. The
category Z(C) is braided monoidal. For objects (M, γ ), (N , λ) in Z(C) the tensor product is
defined by

(M, γ )⊗ (N , λ) = (M ⊗ N , σ ), (3.9)

σX = (γX ⊗ idN )(idM ⊗ λX ) (3.10)

for all X ∈ C. The pair (I, id), where idX = idI⊗X for all X ∈ C, is the unit in Z(C). The
braiding is defined by

γN : (M, γ )⊗ (N , λ) → (N , λ)⊗ (M, γ ). (3.11)

We note that a monoidal isomorphism (F, ϕ) : C → D defines in the natural way a braided
monoidal isomorphism between the centers of C and D. For all objects (M, γ ) ∈ C let

F Z (M, γ ) = (F(M),γ ), (3.12)

and for all X ∈ C, the isomorphism γF(X) is defined by the commutative diagram

F(M)⊗ F(X)
γF(X)

−−−−→ F(X)⊗ F(M)

ϕM,X

 ϕX,M


F(M ⊗ X)

F(γX )
−−−−→ F(X ⊗ M).

(3.13)

For morphisms f in Z(C) we define F Z ( f ) = F( f ). For (M, γ ), (N , λ) ∈ Z(C) let

ϕZ
(M,γ ),(N ,λ) = ϕM,N . (3.14)

Then the next lemma follows by carefully writing down the definitions.

Lemma 3.2. Let (F, ϕ) : C → D be a monoidal isomorphism. Then

(F Z , ϕZ ) : Z(C) → Z(D)

is a braided monoidal isomorphism.

Finally we note that we may view the categories of vector spaces and of modules or comodules
over a Hopf algebra as strict monoidal categories since the associativity and unit constraints are
given by functorial maps.
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4. Relative Yetter–Drinfeld modules

In this section we assume that B,C are Hopf algebras with bijective antipode, ρ : B → C
is a Hopf algebra homomorphism, and R ⊆ B M is a full subcategory of the category of left
B-modules closed under tensor products and containing the trivial left B-module k.

Definition 4.1. We denote by C
B Y D R the following monoidal category (depending on the map

ρ). Objects of C
B Y D R are left B-modules and left C-comodules M with comodule structure

δ : M → C ⊗ M,m → m(−1) ⊗ m(0), such that M ∈ R as a module over B and

δ(bm) = ρ(b(1))m(−1)ρS(b(3))⊗ b(2)m(0) (4.1)

for all m ∈ M and b ∈ B. Morphisms are left B-linear and left C-colinear maps.
The tensor product M ⊗ N of M, N ∈

C
B Y D R is the tensor product of the vector spaces M, N

with diagonal action of B and diagonal coaction of C .
We define C

B Y D =
C
B Y D R, when R = B M is the category of all B-modules. The full

subcategory of B
B Y D consisting of all objects M ∈

B
B Y D with M ∈ R as a B-module is denoted

by B
B Y D R.

The Hopf algebra map ρ : B → C defines a functor

ρ( ) :
B
B Y D →

C
B Y D, (4.2)

mapping an object M ∈
B
B Y D onto ρM , where ρM = M as a B-module, and where ρM is a

C-comodule by M
δM
−→ B ⊗ M

ρ⊗idM
−−−−→ C ⊗ M .

Let

Φ :
B
B Y D R → Z(CB Y D R) (4.3)

be the functor defined on objects M ∈
B
B Y D R by

Φ(M) = (ρM, cM ), cM,X : M ⊗ X → X ⊗ M,

m ⊗ x → m(−1)x ⊗ m(0),
(4.4)

for all X ∈
C
B Y D R, where M → B ⊗ M,m → m(−1)⊗ m(0), denotes the B-comodule structure

of M . We let Φ( f ) = f for morphisms f in B
B Y D R. It is easy to see that Φ is a well-defined

functor.
We need the existence of enough objects in C

B Y D R.

Definition 4.2. The category C
B Y D R is called B-faithful if the following conditions are satisfied.

For any 0 ≠ b ∈ B, bX ≠ 0 for some X ∈
C
B Y D R. (4.5)

For any 0 ≠ t ∈ B ⊗ B, t (X ⊗ Y ) ≠ 0 for some X, Y ∈
C
B Y D R. (4.6)

Examples 4.3. (1) Let B be the left B-module with the regular representation, and the left C-
comodule with the coadjoint coaction

B → C ⊗ B, b → ρ(b(1)S(b(3)))⊗ b(2). (4.7)



368 I. Heckenberger, H.-J. Schneider / Advances in Mathematics 244 (2013) 354–394

Then B is an object in C
B Y D. Since bB ≠ 0, t (B ⊗ B) ≠ 0 for all 0 ≠ b ∈ B, 0 ≠ t ∈ B ⊗ B,

the category C
B Y D is B-faithful.

(2) Let

R =


n∈N0

R(n)

be an N0-graded Hopf algebra in H
H Y D, and A = R#H the bosonization. We define H

A Y D with
respect to the Hopf algebra map π : A → H . As in (1), A with the regular representation and
the coadjoint coaction with respect to π defined in (4.7), is an object in H

A Y D. The H -coaction
δA : A → H ⊗ A can be computed explicitly as

δA(rh) = r (−1)h(1)S(h(3))⊗ r (0)h(2)

for all r ∈ R, h ∈ H . Hence it follows that for all n ≥ 0,

F n A =


i≥n

R(i)⊗ H ⊆ A

is an ideal and a left H -subcomodule of A ∈
H
A Y D. Note that

n≥0

F n A = 0,

n≥0

(F n A ⊗ A + A ⊗ F n A) = 0. (4.8)

Hence for any 0 ≠ a ∈ A, 0 ≠ t ∈ A ⊗ A there is an integer n ≥ 0 with

a(A/F n A) ≠ 0, t (A/F n A ⊗ A/F n A) ≠ 0.

Thus H
A Y D R is A-faithful for all full subcategories R of A M such that A/F n A ∈

H
A Y D R for

all n ≥ 0. Note that for all n ≥ 0, A/F n A as an R-module is annihilated by ⊕i≥n R(i).

Proposition 4.4. Assume that C
B Y D R is B-faithful.

(1) The functor Φ :
B
B Y D R → Z(CB Y D R) is fully faithful, strict monoidal and braided.

(2) Let (M, γ ) ∈ Z(CB Y D R) with comodule structure δM : M → C ⊗ M. Assume that there is
a k-linear map δM : M → B ⊗ M, denoted by δM (m) = m[−1] ⊗ m[0] for all m ∈ M, with

γX (m ⊗ x) = m[−1]x ⊗ m[0] (4.9)

δM = (ρ ⊗ idM )δM , (4.10)

for all X ∈
C
B Y D R, x ∈ X and m ∈ M. Then the map δM is uniquely determined. LetM = M as a B-module. Then M ∈

B
B Y D R with B-comodule structure δM , and Φ(M) =

(M, γ ).

Proof. (1) It is clear from the definitions that Φ is strict monoidal and braided, see (1.7), (3.11)
and (4.4). To prove that Φ is fully faithful, let M, N ∈

B
B Y D, and f : Φ(M) → Φ(N ) a

morphism in Z(CB Y D R). In particular, f : M → N is a left B-linear and left C-colinear
homomorphism. We have to show that f is left B-colinear. Let X ∈

C
B Y D R, m ∈ M and x ∈ X .

Then

f (m)(−1)x ⊗ f (m)(0) = m(−1)x ⊗ f (m(0)), (4.11)
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since f is a morphism in Z(CB Y D R). It follows from (4.11) and (4.5) that

f (m)(−1) ⊗ f (m)(0) = m(−1) ⊗ f (m(0))

in B ⊗ M for all m ∈ M , that is, f is B-colinear.
(2) The map δM is uniquely determined by (4.5) and (4.9). We have to show that M is a B-

comodule with structure map δM , and that M ∈
B
B Y D R with comodule structure δM and the

given B-module structure.
Let X, Y ∈

C
B Y D R, x ∈ X, y ∈ Y and m ∈ M . By (3.6),

∆(m[−1])(x ⊗ y)⊗ m[0] = m[−1]x ⊗ m[0][−1]y ⊗ m[0][0].

Hence δM is coassociative by (4.6). Let k ∈
C
B Y D R be the trivial object. Then by (3.7),

1 ⊗ m = γk(m ⊗ 1) = m[−1]1 ⊗ m[0] = 1 ⊗ ε(m[−1])m(0)

for all m ∈ M . Hence the comultiplication δM is counitary.
For all X ∈

C
B Y D R, the map γX is B-linear. Hence

(b(1)m)[−1]b(2)x ⊗ (b(1)m)[0] = b(1)m[−1]x ⊗ b(2)m[0]

for all b ∈ B,m ∈ M and x ∈ X . Hence M ∈
B
B Y D R by (4.5).

Finally Φ(M) = (M, γ ) by (4.9) and (4.10). �

Remark 4.5. In general, Φ :
B
B Y D R → Z(CB Y D R) is not an equivalence. However, in the

case when C = k and ρ = ε, hence C
B Y D = B M, it is well-known (compare [7], XIII.5) that

Φ :
B
B Y D → Z(B M) is an equivalence. Indeed, let (M, γ ) ∈ Z(B M). Define m[−1] ⊗ m[0] =

γB(m ⊗ 1) for all m ∈ M , where the B-module structure of B ∈ B M is given by multiplication.
Then for any X ∈ B M and x ∈ X there is a B-linear map f : B → X with f (1) = x , and
γX (m ⊗ x) = m[−1]x ⊗ m[0] by the naturality of γ . This proves (4.9). Similarly, (4.10) follows
by considering the trivial B-module k and the B-linear map ε. Moreover, B M is B-faithful by
Examples 4.3(1). Thus in this case the assumption in Proposition 4.4(2) is always satisfied.

Definition 4.6. We denote by Y DC
B the monoidal category whose objects are right B-modules

and right C-comodules M with comodule structure denoted by δ : M → M ⊗ C,m →

m(0) ⊗ m(−1), such that

δ(mb) = m(0)b(2) ⊗ S(ρ(b(1)))m(1)ρ(b(3)) (4.12)

for all m ∈ M and b ∈ B. Morphisms are right B-linear and right C-colinear maps.
The tensor product M ⊗ N of M, N ∈ Y DC

B is the tensor product of the vector spaces M, N
with diagonal action of B and diagonal coaction of C . The monoidal category Y DC

C is braided
by (1.7).

We define a functor

Ψ : Y DC
C → Z(Y DC

B) (4.13)

on objects M ∈ Y DC
C by

Ψ(M) = (Mρ, cM ), cM,X : M ⊗ X → X ⊗ M, m ⊗ x → x (0) ⊗ mx (1), (4.14)

for all X ∈ Y DC
B , where Mρ is M as a B-module via ρ. We let Ψ( f ) = f for morphisms f in

Y DC
C .
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Example 4.7. Let C be the regular corepresentation with right C-comodule structure given by
the comultiplication ∆C of C . We define a right B-module structure on C by the adjoint action,
that is

c ▹ b = ρS(b(1))cρ(b(2)) (4.15)

for all c ∈ C, b ∈ B. Then C is an object in Y DC
B .

Proposition 4.8. (1) The functor Ψ : Y DC
C → Z(Y DC

B) is fully faithful, strict monoidal and
braided.

(2) Let (M, γ ) ∈ Z(Y DC
B) with module structure µM : M ⊗ B → M. Assume that there is a

k-linear map µM : M ⊗ C → M such that

γX (m ⊗ x) = x (0) ⊗ µM (m ⊗ x (1)), (4.16)

µM = µM (id ⊗ ρ) (4.17)

for all X ∈ Y DC
B, x ∈ X and m ∈ M. Then the map µM is uniquely determined. Let M = M

as a C-comodule. Then M ∈ Y DC
C with C-module structure µM , and Ψ(M) = (M, γ ).

Proof. (1) Again it is clear that Ψ is strict monoidal and braided. To see that Ψ is fully faithful,
let M, N ∈ Y DC

C and f : Ψ(M) → Ψ(N ) a morphism in Z(Y DC
B). We have to show that f is

right C-linear. Let X = C ∈ Y DC
B in Example 4.7. Since f is a morphism in Z(Y DC

B),

x (1) ⊗ f (mx (2)) = x (1) ⊗ f (m)x (2)

for all x ∈ C,m ∈ M . By applying ε ⊗ id to this equation it follows that f is right C-linear.
(2) Let C ∈ Y DC

B as in Example 4.7. Then (ε ⊗ id)γC = µM . Hence µM is uniquely
determined. Let X = Y = C ∈ Y DC

B . By (3.6)

x (1) ⊗ y(1) ⊗ µM (m ⊗ x (2)y(2)) = x (1) ⊗ y(1) ⊗ µM (µM (m ⊗ x (2))⊗ y(2))

for all x, y ∈ C,m ∈ M . By applying ε ⊗ ε ⊗ id it follows that µM is associative. By (3.7), µM
is unitary. We will write mc = µM (m ⊗ c) for all m ∈ M, c ∈ C .

Since γC is right C-colinear,

x (1) ⊗ (mx (3))(0) ⊗ x (2)(mx (3))(1) = x (1) ⊗ m(0)x (2) ⊗ m(1)x (3)

for all x ∈ C,m ∈ M . By applying ε ⊗ id it follows that M ∈ Y DC
C .

Finally Ψ(M) = (M, γ ) by (4.16) and (4.17). �

We fix an odd integer l, and assume that the antipodes of B and C are bijective.
Let M ∈ Y DC

B with C-comodule structure δM : M → M ⊗ C, m → m(0) ⊗ m(1). We define
an object Sl(M) ∈

C
B Y D by Sl(M) = M as a vector space with left B-action and left C-coaction

given by

bm = mS −l(b), (4.18)

δSl (M)(m) = S l(m(1))⊗ m(0) (4.19)

for all b ∈ B,m ∈ M . For morphisms f in Y DC
B we set Sl( f ) = f .
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Let M ∈
C
B Y D with comodule structure δM : M → C ⊗ M, m → m(−1) ⊗ m(0). We define

S−1
l (M) = M as a vector space with right B-action and right C-coaction given by

mb = S l(b)m, (4.20)

δS−1
l (M)(m) = m(0) ⊗ S −l(m(−1)) (4.21)

for all b ∈ B,m ∈ M . For morphisms f in C
B Y D we set S−1

l ( f ) = f .

Lemma 4.9. Let l be an odd integer, and assume that the antipodes of B and C are bijective.

(1) The functor Sl : Y DC
B →

C
B Y D mapping an object M ∈ Y DC

B onto Sl(M), and a morphism
f onto f , is an isomorphism of categories with inverse S−1

l .
(2) Let B = C = H, and ρ = idH . Then (Sl , ϕ) : Y D H

H →
H
H Y D is a braided monoidal

isomorphism, where ϕ is defined by

ϕM,N : Sl(M)⊗ Sl(N ) → Sl(M ⊗ N ),

m ⊗ n → mS −1(n(1))⊗ n(0) = S −1(n(−1))m ⊗ n(0),

for all M, N ∈ Y D H
H .

The inverse braided monoidal isomorphism is (S−1
l , ψ) :

H
H Y D → Y D H

H , where ψ is
defined by

ψM,N : S−1
l (M)⊗ S−1

l (N ) → S−1
l (M ⊗ N ),

m ⊗ n → n(−1)m ⊗ n(0) = mn(1) ⊗ n(0),

for all M, N ∈
H
H Y D.

Proof. (1) Let M ∈ Y DC
B . Then Sl(M) ∈

C
B Y D since for all m ∈ M, b ∈ B,

δSl (M)(bm) = δSl (M)(mS −l(b)) = S l

ρS S −l(b(3))m(1)ρS −l(b(1))


⊗ m(0)S −l(b(2))

= ρ(b(1))S l(m(1))Sρ(b(3))⊗ b(2)m(0).

Thus Sl is a well-defined functor. Similarly it follows that S−1
l is a well-defined functor.

(2) is shown in [1, Proposition 2.2.1, 1.] for l = −1. �

Remark 4.10. In general, it is not clear whether the functor Sl in Lemma 4.9 is monoidal. This is
one of the reasons why in the proof of our braided monoidal isomorphism of left Yetter–Drinfeld
modules given in Theorem 7.1 we have to change sides starting in Theorem 5.5 with a monoidal
isomorphism between relative right and left Yetter–Drinfeld modules.

5. The first isomorphism

Definition 5.1. Let R be a Hopf algebra in H
H Y D.

We denote by R#H
H Y D and Y D R#H

H the categories R#H
H Y D and Y D R#H

H in Definitions 4.1 and
4.6 with respect to the inclusion H ⊆ R#H as the Hopf algebra map ρ.

We denote by H
R#H Y D the category H

R#H Y D in Definition 4.1 where ρ is the Hopf algebra
projection π : R#H → H of R#H .

Assume that (R, R∨) together with ⟨, ⟩ is a dual pair of Hopf algebras in H
H Y D with bi-

jective antipodes. Then the antipodes of R#H and of R∨#H are bijective by (1.22) and (1.9).
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We denote by H
R∨#H Y Drat (respectively R∨#H

R∨#H Y Drat) the full subcategory of objects of H
R∨#H Y D

(respectively of R∨#H
R∨#H Y D) which are rational as R∨-modules by restriction. The full subcate-

gories of R#H
R#H Y D (respectively of Y D R#H

R#H ) consisting of objects which are rational over R will
be denoted by R#H

R#H Y Drat (respectively rat Y D R#H
R#H ).

Lemma 5.2. Let R be a Hopf algebra in H
H Y D, and let R(

H
H Y D) be the category of left R-

modules in the monoidal category H
H Y D.

(1) Let M ∈
H
R#H Y D. Define V1(M) = M as a vector space and as a left H- and a left R-

module by restriction of the R#H-module structure. Then V1(M) ∈
H
H Y D with the given

H-comodule structure, and the multiplication map R ⊗ M → M is a morphism in H
H Y D.

(2) The functor

V1 :
H
R#H Y D → R(

H
H Y D)

mapping objects M ∈
H
H Y D to V1(M) and morphisms f to f , is an isomorphism of cate-

gories. The inverse functor V −1
1 maps an object M ∈ R(

H
H Y D) onto the vector space M with

given H-comodule structure and R#H-module structure R#H ⊗M
idR⊗µH

M
−−−−−→ R⊗M

µR
M

−−→ M.

Proof. It follows from the definition of the smash product that M is a left R#H -module if and
only if µR

M is H -linear.
The set of all elements a ∈ R#H satisfying the following Yetter–Drinfeld condition

δH (am) = π(a(1))m(−1)πS(a(3))⊗ a(2)m(0) (5.1)

for all m ∈ M and a ∈ R#H , is a subalgebra of R#H . Hence (5.1) holds for all a ∈ R#H and
m ∈ M if and only if (5.1) holds for all m ∈ M and a ∈ R ∪ H . Note that (5.1) for all m ∈ M
and a ∈ H is the Yetter–Drinfeld condition of H

H Y D, and (5.1) for all m ∈ M and a ∈ R says
that µR

M is H -colinear, since for all a ∈ R, a(1) ⊗ a(2) ⊗ a(3) ∈ R#H ⊗ R#H ⊗ R, hence

a(1) ⊗ a(2) ⊗ πS(a(3)) = a(1) ⊗ a(2) ⊗ 1.

This proves the Lemma. �

Lemma 5.3. Let R be a Hopf algebra in H
H Y D, and let R(H

H Y D) be the category of left R-
comodules in the monoidal category H

H Y D.

(1) Let M ∈
R#H

H Y D with comodule structure δM : M → R#H ⊗ M. Define V2(M) = M as a
vector space with left H-comodule structure δH

M and left R-comodule structure δR
M given by

δH
M = (π ⊗ idM )δM , δR

M = (ϑ ⊗ idM )δM .

Then V2(M) ∈
H
H Y D with H-comodule structure δH

M and the given H-module structure, and
δR

M : M → R ⊗ M is a morphism in H
H Y D.

(2) The functor

V2 :
R#H

H Y D →
R(H

H Y D)
mapping objects M ∈

H
H Y D to V2(M) and morphisms f to f , is an isomorphism of

categories. The inverse functor V −1
2 maps an object M ∈

R(H
H Y D) onto the vector space

M with given H-module structure and R#H-comodule structure M
δR

M
−→ R ⊗ M

idR⊗δH
M

−−−−→

R#H ⊗ M.
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Proof. This is shown similarly to the proof of Lemma 5.2. �

For later use we note a formula for the right R#H -comodule structure of a left R#H -comodule
defined via S −1.

Lemma 5.4. Let R be a Hopf algebra in H
H Y D with bijective antipode, M a left H-comodule

with H-coaction δH
: M → H ⊗ M, m → m(−1) ⊗ m(0), and

δR
: M → R ⊗ M, m → m⟨−1⟩ ⊗ m⟨0⟩

a linear map. Define δ : M → R#H ⊗ M, m → m[−1] ⊗ m[0], by δ = (id ⊗ δH )δR . Then

ϑS −1(m[−1])⊗ m[0] = S −1
R


S −1(m⟨0⟩(−1)) · m⟨−1⟩


⊗ m⟨0⟩(0) (5.2)

for all m ∈ M.

Proof. Let m ∈ M . Then m[−1] ⊗ m[0] = m⟨−1⟩m⟨0⟩(−1) ⊗ m⟨0⟩(0), and

S −1(m⟨0⟩(−1)) · m⟨−1⟩ ⊗ m⟨0⟩(0) = S −1(m⟨0⟩(−1))m⟨−1⟩m⟨0⟩(−2) ⊗ m⟨0⟩(0)

= S −1(m[0](−1))m[−1] ⊗ m[0](0).

Hence

S −1
R


S −1(m⟨0⟩(−1)) · m⟨−1⟩


⊗ m⟨0⟩(0) = S −1

R


S −1(m[0](−1))m[−1]


⊗ m[0](0)

= ϑS −1


S −1(m[0](−1))m[−1]


⊗ m[0](0) (by (1.36))

= ϑS −1(m[−1])⊗ m[0] (by (1.34)). �

Theorem 5.5. Let (R, R∨) be a dual pair of Hopf algebras in H
H Y D with bijective antipodes and

with bilinear form ⟨, ⟩.
A monoidal isomorphism

(F, ϕ) : Y D R#H
H →

H
R∨#H Y Drat

is defined as follows.
For any object M ∈ Y D R#H

H with right R#H-comodule structure denoted by

δM : M → M ⊗ R#H, m → m[0] ⊗ m[1],

let F(M) = M as a vector space and F(M) ∈
H

R∨#H Y D with left H-action, H-coaction δH
F(M)

and R∨-action, respectively, given by

hm = mS −1(h), (5.3)

δH
F(M)(m) = πS(m[1])⊗ m[0], (5.4)

ξm = ⟨ξ, ϑS(m[1])⟩m[0] (5.5)

for all h ∈ H,m ∈ M, ξ ∈ R∨. For any morphism f in Y D R#H
H let F( f ) = f . The natural

transformation ϕ is defined by

ϕM,N : F(M)⊗ F(N ) → F(M ⊗ N ), m ⊗ n → mπS −1(n[1])⊗ n[0], (5.6)

for all M, N ∈ Y D R#H
H .
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Proof. The functor F is the composition of the isomorphisms

Y D R#H
H

S
−→

R#H
H Y D V2

−→
R(H

H Y D) D
−→ R∨(H

H Y D)rat
V −1

1
−−→

H
R∨#H Y Drat,

where S = S1 is the isomorphism of Lemma 4.9, V2 is the isomorphism of Lemma 5.3, D is the
isomorphism of Proposition 2.5, and where the last isomorphism is the restriction of V −1

1 for R∨

of Lemma 5.2 to rational objects.
Let M, N ∈ Y D R#H

H . The map

ϕ = ϕM,N : F(M)⊗ F(N ) → F(M ⊗ N )

is a linear isomorphism with ϕ−1(m ⊗ n) = mπ(n[1]) ⊗ n[0] for all m ∈ M, n ∈ N . It follows
from the Yetter–Drinfeld condition (4.12) that ϕ is an H -linear and H -colinear map, since for all
m ∈ M, n ∈ N and h ∈ H ,

ϕ(h(m ⊗ n)) = ϕ(mS −1(h(1))⊗ nS −1(h(2)))
= mS −1(h(1))πS −1(h(4)n[1]S −1(h(2)))⊗ n[0]S −1(h(3))
= mS −1(h(1))S −2(h(2))πS −1(n[1])S −1(h(4))⊗ n[0]S −1(h(3))
= hϕ(m ⊗ n),

δH
F(M⊗N )ϕ(m ⊗ n) = πS(π(n[4])m[1]πS −1(n[2])n[1])⊗ m[0]πS −1(n[3])⊗ n[0]

= πS(n[2]m[1])⊗ m[0]πS −1(n[1])⊗ n[0]

= (idH ⊗ ϕ)δH
F(M)⊗F(N )(m ⊗ n).

To prove that ϕ is a left R∨-linear map, let ξ ∈ R∨,m ∈ M and n ∈ N . We first show that

ξ (−2) ⊗ ξ (−1)⟨ξ (0), ϑS(a)⟩ = π(S(a(2))a(4))⊗ π(S(a(1))a(5))⟨ξ, ϑS(a(3))⟩ (5.7)

for all a ∈ R#H .
By (1.32),

(ϑS(a))(−2) ⊗ (ϑS(a))(−1) ⊗ (ϑS(a))(0)
= ∆(π(S(a(3))S 2(a(1))))⊗ ϑS(a(2))
= π(S(a(5))S 2(a(1)))⊗ π(S(a(4))S 2(a(2)))⊗ ϑS(a(3)).

Hence (5.7) follows from (2.5).
Then

ϕ(ξ(m ⊗ n)) = ϕ(ξ (1)m ⊗ ξ (2)n)

= ϕ(ξ (1)ξ (2)(−1)m ⊗ ξ (2)(0)n)

= ϕ

ξ (1)


mS −1(ξ (2)(−1))


⊗ ξ (2)(0)n


= ϕ


ξ (1), ϑS


ξ (2)(−1)m[1]S −1(ξ (2)(−3))


m[0]S −1(ξ (2)(−2))

⊗ ⟨ξ (2)(0), ϑS(n[1])⟩n[0]


= ϕ(m[0]S −1(ξ (2)(−1))⊗ n[0]) (by (1.34))

×


ξ (1), ϑ


ξ (2)(−2)S(m[1])


⟨ξ (2)(0), ϑS(n[1])⟩.
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Hence by (5.7) we obtain

ϕ(ξ(m ⊗ n)) = ϕ(m[0]S −1(π(S(n[1])n[5]))⊗ n[0])

× ⟨ξ (1), ϑ(π(S(n[2])n[4])S(m[1]))⟩⟨ξ
(2), ϑS(n[3])⟩

= m[0]π(S −1(n[6])n[2])πS −1(n[1])⊗ n[0] (by (2.6))

× ⟨ξ, ϑS(n[4])ϑ(π(S(n[3])n[5])S(m[1]))⟩

= m[0]πS −1(n[4])⊗ n[0]

×

ξ, ϑS(n[2])ϑ(π(S(n[1])n[3])S(m[1]))


= m[0]πS −1(n[3])⊗ n[0]⟨ξ, ϑS(m[1]πS −1(n[2])n[1])⟩,

where the last equality follows from Lemma 1.1 and from (1.35).
On the other hand

ξϕ(m ⊗ n) = ξ(mπS −1(n[1])⊗ n[0])

= ⟨ξ, ϑS(π(n[4])m[1]πS −1(n[2])n[1])⟩m[0]πS −1(n[3])⊗ n[0]

= m[0]πS −1(n[3])⊗ n[0]⟨ξ, ϑS(m[1]πS −1(n[2])n[1])⟩ (by (1.34)).

Hence ϕ(ξ(m ⊗ n)) = ξϕ(m ⊗ n).
It is easy to check that the diagrams (3.2) commute for (F, ϕ). Hence (F, ϕ) is a monoidal

functor. �

6. The second isomorphism

In this section we assume that (R, R∨) is a dual pair of Hopf algebras in H
H Y D with bijective

antipodes and bilinear form ⟨, ⟩. The monoidal isomorphism (F, ϕ) : Y D R#H
H →

H
R∨#H Y Drat of

Theorem 5.5 induces by Lemma 3.2 a braided monoidal isomorphism between the centers

(F Z , ϕZ ) : Z(Y D R#H
H ) → Z( H

R∨#H Y Drat).

Assume that H
R∨#H Y Drat is R∨#H -faithful. By Propositions 4.8 and 4.4, the functors

Ψ : rat Y D R#H
R#H → Z(Y D R#H

H ),

Φ :
R∨#H
R∨#H Y Drat → Z( H

R∨#H Y Drat)

are fully faithful, strict monoidal and braided. The functor Ψ is defined with respect to the Hopf
algebra inclusion ι : H → R#H . We denote the image of M ∈ rat Y D R#H

R#H in Y D R#H
H defined

by restriction by Mres. The functor Φ is defined with respect to the Hopf algebra projection
π : R∨#H → H , and we denote the image of M ∈

R∨#H
R∨#H Y Drat in H

R∨#H Y Drat by πM .
Our goal is to show in Theorem 6.5 that (F, ϕ) induces a braided monoidal isomorphism

rat Y D R#H
R#H →

R∨#H
R∨#H Y Drat.

Let G :
H

R∨#H Y Drat → Y D R#H
H be the inverse functor of the isomorphism F of Theorem 5.5.

Then (G, ψ) :
H

R∨#H Y Drat → Y D R#H
H is a monoidal isomorphism, where ψ is defined by (3.5).

We first construct functorsF : rat Y D R#H
R#H →

R∨#H
R∨#H Y Drat, G :

R∨#H
R∨#H Y Drat → rat Y D R#H

R#H
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such that the diagrams

rat Y D R#H
R#H

F
−−−−→

R∨#H
R∨#H Y Drat

Ψ

 Φ


Z(Y D R#H

H )
F Z

−−−−→ Z( H
R∨#H Y Drat)

(6.1)

and

R∨#H
R∨#H Y Drat

G
−−−−→ rat Y D R#H

R#H

Φ

 Ψ


Z( H

R∨#H Y Drat)
G Z

−−−−→ Z(Y D R#H
H )

(6.2)

commute.
The existence of F will follow from the next two lemmas.

Lemma 6.1. Let (F Z , ϕZ ) : Z(Y D R#H
H ) → Z( H

R∨#H Y Drat) be the monoidal isomorphism
induced by the isomorphism (F, ϕ) of Theorem 5.5. Let M ∈ rat Y D R#H

R#H , and Ψ(M) = (Mres, γ ),
where γ = cM is defined in (4.14). Then

F Z Ψ(M) = (F(Mres),γ ),
and γF(X) : F(Mres)⊗ F(X) → F(X)⊗ F(Mres) is given by

γF(X)(m ⊗ x) = x [0]π


S(x [1])x [4]m[1]


⊗ m[0]πS −1(x [3])x [2] (6.3)

for all X ∈ Y D R#H
H , x ∈ X and m ∈ M.

Proof. Let X ∈ Y D R#H
H with comodule structure

X → X ⊗ R#H, x → x [0] ⊗ x [1].

Recall that γF(X) = ϕX,Mres
−1 F(cM,X )ϕMres,X by (3.13). It follows from the definition of ϕX,Mres

in Theorem 5.5 that

ϕX,Mres
−1(x ⊗ m) = xπ(m[1])⊗ m[0] (6.4)

for all x ∈ X,m ∈ M . Hence

γ̃F(X)(m ⊗ x) = ϕX,Mres
−1 F(cM,X )ϕMres,X (m ⊗ x)

= ϕX,Mres
−1 F(cM,X )(mπS −1(x [1])⊗ x [0])

= ϕX,Mres
−1


x [0] ⊗ mπS −1(x [2])x [1]


= x [0]π


S


πS −1(x [2])x [1]


[1]


m[1]


πS −1(x [2])x [1]


[3]


⊗ m[0]


πS −1(x [2])x [1]


[2]

= x [0]π


S(S −1(x [6])x [1])m[1]S −1(x [4])x [3]


⊗ m[0]πS −1(x [5])x [2]

= x [0]π


S(x [1])x [4]m[1]


⊗ m[0]πS −1(x [3])x [2]. �
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In the next lemma we define a map δF(M) which will be the coaction of R#H on F(M) in
Theorem 6.5.

Lemma 6.2. Let M ∈ rat Y D R#H
R#H . We denote the left H-comodule structure of F(Mres) by

M → H ⊗ M,m → m(−1) ⊗ m(0). Define a linear map

δR∨

M : M → R∨
⊗ M, m → m⟨−1⟩

⊗ m⟨0⟩,

by the equation

mr = ⟨r,S −1
R∨ (S −1(m⟨0⟩

(−1)) · m⟨−1⟩)⟩′m⟨0⟩
(0) (6.5)

for all r ∈ R,m ∈ M. Let

δF(M) : M → R∨#H ⊗ M, m → m[−1]
⊗ m[0]

= m⟨−1⟩m⟨0⟩
(−1) ⊗ m⟨0⟩

(0). (6.6)

Then the following hold.

(1) For all m ∈ M, a ∈ R#H,

⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩, ϑS(a)⟩m⟨0⟩

(0) = mπS −1(a(2))a(1).

(2) Let X ∈ Y D R#H
H , and let γF(X) : F(Mres)⊗ F(X) → F(X)⊗ F(Mres) be the isomorphism

in H
R∨#H Y D defined in Lemma 6.1. Then for all x ∈ X and m ∈ M, m[−1]x ⊗ m[0]

=γF(X)(m ⊗ x).
(3) For all m ∈ M, π(m[−1])⊗ m[0]

= m(−1) ⊗ m(0).

Proof. (1) The map δR∨

M is well-defined since M is a rational right R-module, ⟨, ⟩ is non-
degenerate, and the maps S R∨ and

R∨
⊗ M → R∨

⊗ M, ξ ⊗ m → S −1(m(−1)) · ξ ⊗ m(0),

are bijective.
Note that if (1) holds for a ∈ R#H then it holds for ha for all h ∈ H . Thus it is enough to

assume in (1) that a ∈ S −1(R). For all r ∈ R and a = S −1(r),

πS −1(a(2))a(1) = πS −2(r (1))S −1(r (2)) = S R(S −2(r))

by (1.27). Therefore (1) is equivalent to

⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩, r⟩m⟨0⟩

(0) = mS R(S −2(r))

for all r ∈ R,m ∈ M . This last equation holds by our definition of δR∨

M since

mS R(S −2(r)) = ⟨S R(S −2(r)),S −1
R∨ (S −1(m⟨0⟩

(−1)) · m⟨−1⟩)⟩′m⟨0⟩
(0) (by (6.5))

= ⟨S −2(r),S −1(m⟨0⟩
(−1)) · m⟨−1⟩

⟩
′m⟨0⟩

(0) (by (2.10))

= ⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩, r⟩m⟨0⟩

(0).

Here, we used that by Lemma 2.7, (R∨, R) together with ⟨, ⟩′ : R ⊗ R∨
→ k is a dual pair of

Hopf algebras in H
H Y D.

(2) Let X ∈ Y D R#H
H . By Lemma 6.1 we have to show that

m[−1]x ⊗ m[0]
= x [0]π(S(x [1])x [4]m[1])⊗ m[0]πS −1(x [3])x [2] (6.7)

for all x ∈ X,m ∈ M .
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By (6.6) and (6.5), the left-hand side of (6.7) can be written as

m[−1]x ⊗ m[0]
= m⟨−1⟩(m⟨0⟩

(−1)x)⊗ m⟨0⟩
(0)

= m⟨−1⟩(x S −1(m⟨0⟩
(−1)))⊗ m⟨0⟩

(0)

= ⟨m⟨−1⟩, ϑS(m⟨0⟩
(−1)x [1]S −1(m⟨0⟩

(−3)))⟩x [0]S −1(m⟨0⟩
(−2))⊗ m⟨0⟩

(0)

= ⟨m⟨−1⟩, ϑS(x [1]S −1(m⟨0⟩
(−2)))⟩x [0]S −1(m⟨0⟩

(−1))⊗ m⟨0⟩
(0),

where the last equality follows from (1.34). Thus (6.7) is equivalent to the equation

⟨m⟨−1⟩, ϑS(x [1]S −1(m⟨0⟩
(−2)))⟩x [0]S −1(m⟨0⟩

(−1))⊗ m⟨0⟩
(0)

= x [0]π(S(x [1])x [4]m[1])⊗ m[0]πS −1(x [3])x [2] (6.8)

for all x ∈ X,m ∈ M .
To simplify (6.8) we apply the isomorphism

X ⊗ M → X ⊗ M, x ⊗ m → x S −2(m(−1))⊗ m(0). (6.9)

Under the isomorphism (6.9) the left-hand side of (6.8) becomes

⟨m⟨−1⟩, ϑS(x [1]S −1(m⟨0⟩
(−1)))⟩x [0] ⊗ m⟨0⟩

(0)

= ⟨m⟨−1⟩, ϑ(m⟨0⟩
(−1)S(x [1]))⟩x [0] ⊗ m⟨0⟩

(0)

= ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑS(x [1])⟩x [0] ⊗ m⟨0⟩

(0) (by (1.35))

= ⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩, ϑS(x [1])⟩x [0] ⊗ m⟨0⟩

(0), (by (2.4))

and the right-hand side equals

x [0]π


S(x [1])x [4]m[1]


S −2 Sπ


(m[0]πS −1(x [3])x [2])[1]


⊗ (m[0]πS −1(x [3])x [2])[0]

= x [0]π


S(x [1])x [8]m[2]


S −1π


S


πS −1(x [7])x [2]


m[1]πS −1(x [5])x [4]


⊗ m[0]πS −1(x [6])x [3]

= x [0]π


S(x [1])x [8]m[2]


S −1π


S(x [2])x [7]m[1]S −1(x [5])x [4]


⊗ m[0]πS −1(x [6])x [3]

= x [0] ⊗ mπS −1(x [2])x [1].

Thus the claim follows from (1).
(3) Let m ∈ M . By (6.5) and (2.6), m = m1 = ε(m⟨−1⟩)m⟨0⟩. Hence

π(m[−1])⊗ m[0]
= ε(m⟨−1⟩)m⟨0⟩

(−1) ⊗ m⟨0⟩
(0) = m(−1) ⊗ m(0). �

The existence of G will follow from the next two lemmas.
Let M ∈

R∨#H
R∨#H Y Drat. We denote the left R∨#H -comodule structure of M by

M → R∨#H ⊗ M, m → m[−1]
⊗ m[0]

= m⟨−1⟩m⟨0⟩
(−1) ⊗ m⟨0⟩

(0),

where M → R∨
⊗M,m → m⟨−1⟩

⊗m⟨0⟩, is the R∨-comodule structure of M . For all objects X ∈
H

R∨#H Y Drat the right R#H -comodule structure of G(X) is denoted by

X → X ⊗ R#H, x → x [0] ⊗ x [1].



I. Heckenberger, H.-J. Schneider / Advances in Mathematics 244 (2013) 354–394 379

Note that G(X) = X as a vector space. The right H -module structure of G(X) is defined by

xh = S(h)x (6.10)

for all x ∈ X, h ∈ H . Since FG(πM)=π M , it follows that

πS(m[1])⊗ m[0] = π(m[−1])⊗ m[0] (6.11)

for all m ∈ M .

Lemma 6.3. Let (G Z , ψZ ) : Z( H
R∨#H Y Drat) → Z(Y D R#H

H ) be the monoidal isomorphism

induced by the monoidal isomorphism (G, ψ). Let M ∈
R∨#H
R∨#H Y Drat, and Φ(M) = (πM, γ ),

where γ = cM is defined in (4.4). Then

G Z Φ(M) = (G(πM),γ ),
and γG(X) : G(πM)⊗ G(X) → G(X)⊗ G(πM) is given by

γG(X)(m ⊗ x) =


S −1(m⟨0⟩

(−1)πS 2(x [1])) · m⟨−1⟩


x [0] ⊗ πS(x [2])m

⟨0⟩
(0) (6.12)

for all X ∈
H

R∨#H Y Drat, x ∈ X and m ∈ M.

Proof. Let X ∈
H

R∨#H Y Drat. By (4.4), γX :
πM ⊗ X → X ⊗

πM is defined by

γX (m ⊗ x) = m[−1]x ⊗ m[0]

for all x ∈ X,m ∈ M .
By (3.5) and (3.13), the isomorphism γG(X) is defined by the equationγG(X)G(ϕG(π M),G(X)) = G(ϕG(X),G(π M))G(γX ). (6.13)

We apply both sides of (6.13) to an element m ⊗ x,m ∈ M, x ∈ X . ThenγG(X)G(ϕG(π M),G(X))(m ⊗ x) = γG(X)(mπS −1(x [1])⊗ x [0]),

and

G(ϕG(X),G(π M))G(γX )(m ⊗ x) = (m[−1]x)πS −1(m[0]
[1])⊗ m[0]

[0]

= π(m[0]
[1])(m

[−1]x)⊗ m[0]
[0] (by (6.10))

= πS −1(m[−1])m[−2]x ⊗ m[0] (by (6.11))

=


S −1(m⟨0⟩

(−1)) · m⟨−1⟩


x ⊗ m⟨0⟩

(0),

where in the proof of the last equality the following formula in R∨#H is used for a = m[−1]
=

m⟨−1⟩m⟨0⟩
(−1). Let ξ ∈ R∨, h ∈ H and a = ξh ∈ R∨#H . Then

πS −1(a(2))a(1) = πS −1(ξ (2)(0)h(2))ξ
(1)ξ (2)(−1)h(1)

= S −1(h(2))ξh(1)

= S −1(h) · ξ.

We have shown that

γG(X)(mπS −1(x [1])⊗ x [0]) =


S −1(m⟨0⟩

(−1)) · m⟨−1⟩


x ⊗ m⟨0⟩

(0). (6.14)
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Since m ⊗ x = mπ(x [2])πS −1(x [1]) ⊗ x [0] = (πS(x [2])m)πS −1(x [1]) ⊗ x [0], we obtain from
(6.14) and the Yetter–Drinfeld condition for M

γG(X)(m ⊗ x) =


S −1


(πS(x [1])m)

⟨0⟩
(−1)


·

πS(x [1])m


⟨−1⟩


x [0]

⊗ (πS(x [1])m)
⟨0⟩
(0)

=


S −1


(πS(x [1])m

⟨0⟩)(−1)


· πS(x [2])m

⟨−1⟩


x [0]

⊗


πS(x [1])m

⟨0⟩


(0)

=


S −1(m⟨0⟩

(−1)πS 2(x [1])) · m⟨−1⟩


x [0] ⊗ πS(x [2])m

⟨0⟩
(0). �

Lemma 6.4. Let M ∈
R∨#H
R∨#H Y Drat, and G Z Φ(M) = (G(πM),γ ) as in Lemma 6.3. Let

⟨, ⟩′ : R ⊗ R∨
→ k be the form defined in (2.16). Define a linear map µG(M) : M ⊗ R#H → M

by

µG(M)(m ⊗ a) = ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑ(πS 2(a(2))S(a(1)))⟩πS(a(3))m⟨0⟩

(0) (6.15)

for all m ∈ M, a ∈ R#H. Then the following hold.

(1) For all X ∈
H

R∨#H Y Drat, x ∈ X and m ∈ M,

γG(X)(m ⊗ x) = x [0] ⊗ µG(M)(m ⊗ x [1]).

(2) For all m ∈ M and h ∈ H, µG(M)(m ⊗ h) = mh.

(3) For all m ∈ M and r ∈ R, µG(M)(m ⊗ r) = ⟨r, ϑS −1(m[−1])⟩′m[0].

Proof. (1) Let X ∈
H

R∨#H Y Drat, x ∈ X and m ∈ M . Then by (6.12),

γG(X)(m ⊗ x) = (S −1(m⟨0⟩
(−1)πS 2(x [1])) · m⟨−1⟩)x [0] ⊗ πS(x [2])m

⟨0⟩
(0)

= ⟨S −1(m⟨0⟩
(−1)πS 2(x [2])) · m⟨−1⟩, ϑS(x [1])⟩x [0] ⊗ πS(x [3])m

⟨0⟩
(0)

= x [0] ⊗ ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑ(πS 2(x [2])S(x [1]))⟩πS(x [3])m

⟨0⟩
(0)

= x [0] ⊗ µG(M)(m ⊗ x [1]),

where we used (5.5) and the equality X = FG(X) together with (1.35) and (2.4).
(2) Let m ∈ M and h ∈ H . Then

µG(M)(m ⊗ h) = ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑ(πS 2(h(2))S(h(1)))⟩πS(h(3))m⟨0⟩

(0)

= ⟨m⟨−1⟩,m⟨0⟩
(−1) · 1⟩πS(h)m⟨0⟩

(0)

= ⟨m⟨−1⟩, 1⟩πS(h)m⟨0⟩ (by (2.7))

= πS(h)m
= mh.
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(3) Let m ∈ M and r ∈ R. Then r (1) ⊗ π(r (2)) = r ⊗ 1. Hence

µG(M)(m ⊗ r) = ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑ(S(r))⟩m⟨0⟩

(0)

= ⟨m⟨−1⟩,m⟨0⟩
(−1) · ϑ(S(r (−1))S R(r (0)))⟩m

⟨0⟩
(0) (by (1.21))

= ⟨m⟨−1⟩, (m⟨0⟩
(−1)S(r (−1))) · S R(r (0))⟩m

⟨0⟩
(0) (by (1.35))

= ⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩,S(r (−1)) · S R(r (0))⟩m

⟨0⟩
(0) (by (2.4))

= ⟨S −1(m⟨0⟩
(−1)) · S −1

R∨ (m⟨−1⟩),S(r (−1)) · S 2
R(r (0))⟩m

⟨0⟩
(0) (by (2.10))

= ⟨S −1(m⟨0⟩
(−1)) · S −1

R∨ (m⟨−1⟩),S 2(r)⟩m⟨0⟩
(0) (by (1.22))

= ⟨S −1(m⟨0⟩
(−1)) · ϑS −1(m⟨−1⟩),S 2(r)⟩m⟨0⟩

(0) (by (1.36))

= ⟨ϑS −1(m⟨−1⟩m⟨0⟩
(−1)),S 2(r)⟩m⟨0⟩

(0) (by (1.35))

= ⟨r, ϑS −1(m[−1])⟩′m[0]. �

Theorem 6.5. Let (R, R∨) be a dual pair of Hopf algebras in H
H Y D with bijective antipodes and

bilinear form ⟨, ⟩ : R∨
⊗ R → k. Let ⟨, ⟩′ : R ⊗ R∨

→ k be the form defined in (2.16). Assume
that H

R∨#H Y Drat is R∨#H-faithful.
Then the functor

(F,ϕ) : rat Y D R#H
R#H →

R∨#H
R∨#H Y Drat

as defined below is a braided monoidal isomorphism.
For any object M ∈ rat Y D R#H

R#H with right R#H-comodule structure denoted by

δM : M → M ⊗ R#H, m → m[0] ⊗ m[1],

let F(M) = M as a vector space and F(M) ∈
R∨#H
R∨#H Y Drat with left H-action, H-coaction

δHF(M), R∨-action, and R∨#H-coaction

δF(M) : M → R∨#H ⊗ M, m → m[−1]
⊗ m[0],

respectively, given by

hm = mS −1(h), (6.16)

δHF(M)(m) = πS(m[1])⊗ m[0], (6.17)

ξm = ⟨ξ, ϑS(m[1])⟩m[0], (6.18)

mr = ⟨r, ϑS −1(m[−1])⟩′m[0] (6.19)

for all h ∈ H,m ∈ M, ξ ∈ R∨ and r ∈ R. For any morphism f in rat Y D R#H
R#H let F( f ) = f . The

natural transformation ϕ is defined by

ϕM,N : F(M)⊗ F(N ) → F(M ⊗ N ), (6.20)

m ⊗ n → mπS −1(n[1])⊗ n[0] = πS −1(n[−1])m ⊗ n[0], (6.21)

for all M, N ∈ rat Y D R#H
R#H .
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Proof. Let M ∈ rat Y D R#H
R#H . As in Lemma 6.1 we write Ψ(M) = (Mres, γ ). Then

F Z Ψ(M) = (F(Mres),γ ).
By Lemma 5.4, the definitions of δF(M) in Lemma 6.2 and in (6.19) coincide. Thus, by

Lemma 6.2(2), for all X ∈ Y D R#H
H , the isomorphismγF(X) : F(Mres)⊗ F(X) → F(X)⊗ F(Mres)

has the formγF(X)(m ⊗ x) = m[−1]x ⊗ m[0]

for all m ∈ M, x ∈ X , where δF(M)(m) = m[−1]
⊗ m[0] is defined in Lemma 6.2. By

Lemma 6.2(3), the left H -comodule structure of F(Mres) is (π ⊗ id)δF(M). The left H -action,

H -coaction and R∨#H -action of F(M) are those of F(Mres), see Theorem 5.5.
We now conclude from Proposition 4.4 that F(M) with R∨#H -comodule structure δF(M) is

an object in rat Y D R#H
R#H , and Φ(F(M)) = F Z Ψ(M).

Thus we have defined a functor F : rat Y D R#H
R#H →

R∨#H
R∨#H Y Drat such that the diagram (6.1)

commutes. By Lemma 3.1 there is a uniquely determined family ϕ such that (F,ϕ) is a braided
monoidal functor with

(F Z , ϕZ )(Ψ , id) = (Φ, id)(F,ϕ).
Let M, N ∈ rat Y D R#H

R#H . Then Φ(ϕM,N ) = ϕZ
Ψ (M),Ψ (N ) by (3.4), that is, for all m ∈ M, n ∈ N ,

ϕM,N (m ⊗ n) = ϕMres,Nres(m ⊗ n) = mπS −1(n[1])⊗ n[0]

by Theorem 5.5. To define the inverse functor of F let M ∈
R∨#H
R∨#H Y Drat. Let G(M) = M as a

vector space with right R#H -comodule structure and H -module structure given by πM , and with
right R#H -module structure µG defined in (6.15). Then G(M) ∈ Y D R#H

R#H by Proposition 4.8 and
Lemma 6.4(1), (2). It follows from Lemma 6.4(3) that G(M) is rational as an R-module. We letG( f ) = f for morphisms in R∨#H

R∨#H Y Drat.

Thus we have defined a functor G :
R∨#H
R∨#H Y Drat → rat Y D R#H

R#H , and it is clear form the explicit
definitions of F and G that F G = id and G F = id. �

7. The third isomorphism

Finally we compose the isomorphism in Theorem 6.5 with the isomorphism in Lemma 4.9.
We recall from Lemmas 5.2 and 5.3 the description of left modules and left comodules over

R#H , where R is a Hopf algebra in H
H Y D. In particular, the restriction of an object M ∈

R#H
R#H Y D

with R#H -comodule structure δM is an object in H
H Y D, where the H -action is defined by

restriction and the H -coaction is (π ⊗ id)δM .

Theorem 7.1. Let (R, R∨) be a dual pair of Hopf algebras in H
H Y D with bijective antipodes and

with bilinear form ⟨, ⟩ : R∨
⊗ R → k. Assume that H

R∨#H Y Drat is R∨#H-faithful.
Then the functor

(Ω , ω) :
R#H
R#H Y Drat →

R∨#H
R∨#H Y Drat

as defined below is a braided monoidal isomorphism.
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Let M ∈
R#H
R#H Y Drat with left R-comodule structure denoted by

δR
M : M → R ⊗ M, m → m⟨−1⟩ ⊗ m⟨0⟩.

Let Ω(M) = M as an object in H
H Y D by restriction, and Ω(M) ∈

R∨#H
R∨#H Y Drat with R∨-action

and R∨-coaction δR∨

Ω(M), respectively, given by

ξm = ⟨ξ,m⟨−1⟩⟩m⟨0⟩, (7.1)

δR∨

Ω(M)(m) = c2
R∨,M (m

⟨⟨−1⟩⟩
⊗ m⟨⟨0⟩⟩), (7.2)

where

rm = ⟨m⟨⟨−1⟩⟩, θR(r)⟩m
⟨⟨0⟩⟩ (7.3)

for all m ∈ M, ξ ∈ R∨ and r ∈ R. For any morphism f in R#H
R#H Y Drat let Ω( f ) = f . The natural

transformation ω is defined by

ωM,N : Ω(M)⊗ Ω(N ) → Ω(M ⊗ N ), m ⊗ n → S −1 S R(n⟨−1⟩)m ⊗ n⟨0⟩, (7.4)

for all M, N ∈
R#H
R#H Y Drat.

Proof. Let (S−1
1 , ψ) :

R#H
R#H Y D → Y D R#H

R#H be the braided monoidal isomorphism defined in
Lemma 4.9(2). Let M ∈

R#H
R#H Y D, and assume that M is rational as a left R-module. By definition,

S−1
1 (M) = M as a vector space, and mr = S(r)m for all m ∈ M, r ∈ R, where S is the antipode

of R#H . Let m ∈ M . Since M is a rational left R-module, E ′⊥m = 0 for some E ′
∈ E R∨ .

Choose a subspace E ′′
∈ E R∨ with S R∨(E ′) ⊆ E ′′. Then S(r)m = S(r (−1))S R(r (0))m = 0 for

all r ∈ E ′′⊥ by (1.21) and (2.10). Hence S−1
1 (M) is rational as a right R-module.

Thus (S−1
1 , ψ) induces a functor on the rational objects. We denote the induced functor again

by

(S−1
1 , ψ) :

R#H
R#H Y Drat → rat Y D R#H

R#H .

Let

(F,ϕ) : rat Y D R#H
R#H →

R∨#H
R∨#H Y Drat

be the braided monoidal isomorphism of Theorem 6.5. Then the composition

(Ω , ω) = (F,ϕ)(S−1
1 , ψ) (7.5)

is a braided monoidal isomorphism.
Let M ∈

R#H
R#H Y Drat. The R∨#H -coaction denoted by

δΩ(M) : M → R∨#H ⊗ M, m → m[−1]
⊗ m[0],

is given by

S(r)m = ⟨r, ϑS −1(m[−1])⟩′m[0] (7.6)

for all m ∈ M and r ∈ R.
Let

δR∨

Ω(M) = (ϑ ⊗ id)δΩ(M) : M → R∨
⊗ M, m → m⟨−1⟩

⊗ m⟨0⟩,

be the R∨-coaction of Ω(M).
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To prove (7.2), let m ∈ M, r ∈ R. Then by (7.6) and (1.22),

S(r)m = ⟨ϑS −1(m[−1]),S 2
R(θR(r))⟩m

[0],

hence

S R(r)m = ⟨ϑS −1(m[−1]),S 2
R(θR(r (0)))⟩r (−1)m

[0] (by (1.21))

= ⟨S 2
R∨ϑS −1(m⟨−1⟩m⟨0⟩

(−1)), θR(r (0))⟩r (−1)m
⟨0⟩
(0) (by (2.10))

= ⟨S −1(m⟨0⟩
(−1)) · S 2

R∨ϑS −1(m⟨−1⟩), θR(r (0))⟩r (−1)m
⟨0⟩
(0) (by (1.35))

= ⟨S −1(m⟨0⟩
(−1)) · S R∨(m⟨−1⟩), θR(r (0))⟩r (−1)m

⟨0⟩
(0) (by (1.36))

= ⟨S −1(m⟨0⟩
(−1)) · S R∨(m⟨−1⟩), θR(r)(0)⟩S −2(θR(r)(−1))m

⟨0⟩
(0) (by (1.11)).

Since θR S −1
R = S −1

R θR , we obtain by (2.10)

rm = ⟨S −1(m⟨0⟩
(−1)) · m⟨−1⟩, θR(r)(0)⟩S −2(θR(r)(−1))m

⟨0⟩
(0). (7.7)

Note that c−1
R∨,M (m

⟨−1⟩
⊗ m⟨0⟩) = m⟨0⟩

(0) ⊗ S −1(m⟨0⟩
(−1)) · m⟨−1⟩. Hence by (7.7) and (2.5),

rm = ⟨m⟨⟨−1⟩⟩, θR(r)⟩m⟨⟨0⟩⟩,

where m⟨⟨−1⟩⟩
⊗ m⟨⟨0⟩⟩

= c−1
M,R∨c−1

R∨,M (m
⟨−1⟩

⊗ m⟨0⟩).
Finally, by (7.5) and (3.4) the natural transformation ω is given by

ωM,N : Ω(M)⊗ Ω(N ) → Ω(M ⊗ N ), m ⊗ n → n[−1]πS −1(n[−2])m ⊗ n[0], (7.8)

for all M, N ∈
R#H
R#H Y Drat, where

N → R#H ⊗ N , n → n[−1] ⊗ n[0] = n⟨−1⟩n⟨0⟩(−1) ⊗ n⟨0⟩(0),

denotes the R#H -coaction of N . Let r ∈ R, h ∈ H and a = rh ∈ R#H . Then

a(2)πS −1(a(1)) = ε(h)r (2)πS −1(r (1))

= ε(h)r (2)(0)πS −1(r (1)r (2)(−1))

= ε(h)r (0)S −1(r (−1))

= ε(h)S −1 S R(r) by (1.27).

Hence (7.4) follows from (7.8). �

We specialize the last theorem to the case of N0-graded dual pairs of braided Hopf algebras
in H

H Y D.
Let R = ⊕n≥0 R(n) be an N0-graded Hopf algebra in H

H Y D. We view the bosonization R#H
as an N0-graded Hopf algebra with deg R(n) = n for all n ≥ 0, and deg H = 0.

For any Yetter–Drinfeld module W ∈
R#H
R#H Y D we define two ascending filtrations of

Yetter–Drinfeld modules in H
H Y D by

F δ
n W = {w ∈ W | δR

W (w) ∈
n
⊕

i=0
R(i)⊗ W }, (7.9)

Fµ
n W = {w ∈ W | R(i)w = 0 for all i > n} (7.10)

for all n ≥ 0. Then ∪n≥0 F δ
n W = W . But in general, ∪n≥0 Fµ

n W ≠ W .
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Given an abelian monoid Γ and a Γ -graded Hopf algebra A with bijective antipode, we say
that M ∈

A
A Y D is Γ -graded if M = ⊕γ∈Γ M(γ ) is a vector space grading and if the module and

comodule maps of M are Γ -graded of degree 0.

Corollary 7.2. Let R∨
= ⊕n≥0 R∨(n) and R = ⊕n≥0 R(n) be N0-graded Hopf algebras in

H
H Y D with finite-dimensional components R∨(n) and R(n) for all n ≥ 0, and let ⟨, ⟩ : R∨

⊗R →

k be a bilinear form of vector spaces satisfying (2.3)–(2.7) and (2.12). Then the functor

(Ω , ω) :
R#H
R#H Y Drat →

R∨#H
R∨#H Y Drat

as defined in Theorem 7.1 is a braided monoidal isomorphism.
Moreover, the following hold.

(1) A left R– (respectively R∨) – module M is rational if and only if for any m ∈ M there is a
natural number n0 such that R(n)m = 0 (respectively R∨(n)m = 0) for all n ≥ n0.

(2) Let M ∈
R#H
R#H Y Drat be Z-graded. Then Ω(M) is a Z-graded object in R∨#H

R∨#H Y Drat with
Ω(M)(n) = M(−n) for all m ∈ Z.

(3) For any M ∈
R#H
R#H Y Drat and n ≥ 0,

Fµ
n Ω(W ) = F δ

n W, F δ
nΩ(W ) = Fµ

n W.

Proof. By Example 2.4, the antipodes of R and of R∨ are bijective, and (R, R∨) together with
⟨, ⟩ is a dual pair of Hopf algebras in H

H Y D. By Examples 4.3(2), the category H
R∨#H Y Drat is

R∨#H -faithful. Thus (Ω , ω) is a braided monoidal isomorphism by Theorem 7.1.
(1) is clear from Example 2.4, and (2) and (3) can be checked using (7.1) and (7.2). �

Proposition 7.3. Let R = ⊕n≥0 R(n) be an N0-graded Hopf algebra in H
H Y D with finite-

dimensional components R(n) for all n ≥ 0. Let W be an irreducible object in the category
of Z-graded left Yetter–Drinfeld modules over R#H. Assume that W is locally finite as an R-
module, or equivalently finite-dimensional. Let n0 ≤ n1 in Z, and W = ⊕

n1
i=n0

W (i) be the
decomposition into homogeneous components such that W (n0) ≠ 0,W (n1) ≠ 0. Then

F δ
n W =

n0+n
⊕

i=n0

W (i), Fµ
n W =

n1
⊕

i=n1−n
W (i) (7.11)

for all n ≥ 0. Moreover, W (n0) and W (n1) are irreducible Yetter–Drinfeld modules over
R(0)#H, where the action and coaction arise from the action and coaction of R#H on W by
restriction and projection, respectively.

Proof. The inclusions ⊇ in (7.11) follow from the definitions since W is a Z-graded Yetter–
Drinfeld module. On the other hand, assume that F δ

n W ≠ ⊕
n0+n
i=n0

W (i) for some n ≥ 0. Then

there exist l > n0+n andw ∈ W (l)∩F δ
n (W )withw ≠ 0, since W is a Z-graded Yetter–Drinfeld

module. Then the Yetter–Drinfeld submodule of W generated by w is contained in ⊕n>n0 W (n).
This is a contradiction to W (n0) ≠ 0 and the irreducibility of W . The proof of the second
equation in (7.11) is similar. By degree reasons, W (n0) is a Yetter–Drinfeld module over R(0)#H
in the way explained in the claim. It is irreducible, since W is irreducible and hence it is the R#H -
module generated by any nonzero Yetter–Drinfeld submodule over R(0)#H of W (n0). Similarly,
W (n1) is an irreducible Yetter–Drinfeld module over R(0)#H , since W is the R#H -comodule
generated by any nonzero Yetter–Drinfeld submodule over R(0)#H of W (n1). �
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Let R be a braided Hopf algebra in H
H Y D, and let K be a Hopf algebra in R#H

R#H Y D. Then

K #R := (K #(R#H))co H

denotes the braided Hopf algebra in H
H Y D of H -coinvariant elements with respect to the

canonical projection K #(R#H) → R#H → H .

Corollary 7.4. In the situation of Theorem 7.1 assume that R is a Hopf subalgebra of a Hopf
algebra B in H

H Y D with a Hopf algebra projection onto R, and let K := Bco R .

(1) K = (B#H)co R#H is a Hopf algebra in R#H
R#H Y D, and the multiplication map K #R → B is

an isomorphism of Hopf algebras in H
H Y D.

(2) Assume that K is rational as an R-module. Then Ω(K )#R∨ is a Hopf algebra in H
H Y D with

a Hopf algebra projection onto R∨.

Proof. (1) is shown in [2, Lemma 3.1]. By Theorem 7.1, Ω(K ) is a Hopf algebra in R∨#H
R∨#H Y D.

This proves (2). �

8. An application to Nichols algebras

In the last section we want to apply the construction in Corollary 7.4 to Nichols algebras. We
show in Theorem 8.9 that if B is a Nichols algebra of a semi-simple Yetter–Drinfeld module,
then the Hopf algebra Ω(K )#R∨ constructed in Corollary 7.4 is again a Nichols algebra. The
advantage of the construction is that the new Nichols algebra is usually not twist equivalent to
the original one.

We start with some general observations.

Remark 8.1. Let R = ⊕n∈N0 R(n) be an N0-graded bialgebra in H
H Y D.

(1) The space

P(R) = {x ∈ R | ∆R(x) = 1 ⊗ x + x ⊗ 1}

of primitive elements of R is an N0-graded subobject of R in H
H Y D, since it is the kernel of the

graded, H -linear and H -colinear map

R → R ⊗ R, x → ∆R(x)− 1 ⊗ x − x ⊗ 1.

(2) Assume that R(0) = k. Then R(1) ⊆ P(R). Moreover, R is an N0-graded braided Hopf
algebra in H

H Y D.

Let M ∈
H
H Y D. A pre-Nichols algebra [8] of M is an N0-graded braided bialgebra R =

⊕n≥N0 R(n) in H
H Y D such that

(N1) R(0) = k,
(N2) R(1) = M ,
(N3) R is generated as an algebra by M .

The Nichols algebra of M is a pre-Nichols algebra R of M such that

(N4) P(R) ∩ R(n) = 0 for all n ≥ 2.



I. Heckenberger, H.-J. Schneider / Advances in Mathematics 244 (2013) 354–394 387

It is denoted by B(M). Up to isomorphism, B(M) is uniquely determined by M . By Remark 8.1,
our definition of B(M) coincides with [3, Definition 2.1]. The Nichols algebra B(M) has the
following universal property:

For any pre-Nichols algebra R of M there is exactly one map

ρ : R → B(M), ρ | M = id,

of N0-graded braided bialgebras in H
H Y D. Thus B(M) is the smallest pre-Nichols algebra of M .

In the situation of Theorem 7.1, the functor

(Ω , ω) :
R#H
R#H Y Drat →

R∨#H
R∨#H Y Drat

is a braided monoidal isomorphism. Hence for any N0-graded braided bialgebra B in R#H
R#H Y Drat

with multiplication µB and comultiplication ∆B , the image Ω(B) is an N0-graded braided
bialgebra in R∨#H

R∨#H Y Drat with multiplication

Ω(B)⊗ Ω(B)
ωB,B
−−−→ Ω(B ⊗ B)

Ω(µB )
−−−−→ Ω(B)

and comultiplication

Ω(B)
Ω(∆B )
−−−−→ Ω(B ⊗ B)

ω−1
B,B

−−−→ Ω(B)⊗ Ω(B).

The unit elements and the augmentations in B and Ω(B) coincide.

Corollary 8.2. Under the assumptions of Theorem 7.1, let M ∈
R#H
R#H Y Drat. Then

Ω(B(M)) ∼= B(Ω(M))

as N0-graded braided Hopf algebras in R∨#H
R∨#H Y Drat.

Proof. By (N3) and (2.9), B(M) is rational as an R-module, since M is rational. By Theorem 7.1,
(Ω , ω) is a braided monoidal isomorphism. Hence B(M) is an N0-graded braided bialgebra in
R#H
R#H Y Drat. Since Ω is the identity on morphisms, (N1)–(N4) hold for Ω(B(M)). This proves the
Corollary. �

Let B be a coalgebra. An N0-filtration F = (Fn B)n∈N0 of B is a family of subspaces
Fn B, n ≥ 0, of B such that

Fn B is a subspace of Fm B for all m, n ∈ N0 with n ≤ m,
B =


n∈N0

Fn B, and
∆B(x) ∈

n
i=0 Fi B ⊗ Fn−i B for all x ∈ Fn B, n ∈ N0.

Lemma 8.3. Let B be a coalgebra having an N0-filtration F . Let U ∈
B M be a non-zero object.

Then there exists u ∈ U \ {0} such that δ(u) ∈ F0 B ⊗ U.

Proof. The coradical B0 of B is contained in F0 B by [9, Lemma 5.3.4]. Hence δ−1(F0 B ⊗U ) ≠

0, since for any irreducible subcomodule U ′
⊆ U there is a simple subcoalgebra C ′ with

δ(U ′) ⊆ C ′
⊗ U ′.

We give an alternative and more explicit proof. Let x ∈ U \ {0}. Then there exists n ∈ N0
with δ(x) ∈ Fn B ⊗ U . If n = 0, we are done. Assume now that n ≥ 1 and let π0 : B → B/F0 B
be the canonical linear map. Since F is a coalgebra filtration, there is a maximal m ∈ N0
such that

π0(x(−m))⊗ · · · ⊗ π0(x(−1))⊗ x(0) ≠ 0,
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where δ(x) = x (−1) ⊗ x (0). Let f1, . . . , fm ∈ B∗ with fi |B0 = 0 for all i ∈ {1, . . . ,m} such that

y := f1(x(−m)) · · · fm(x(−1))x(0) ≠ 0.

Then δ(y) = f1(x(−m−1)) · · · fm(x(−2))x(−1) ⊗ x(0) ∈ F0 B ⊗ U by the maximality of m. �

Lemma 8.4. Let Γ be an abelian group with neutral element 0, and A a Γ -graded Hopf algebra.

(1) Let K be a Nichols algebra in A
A Y D, and K (1) = ⊕γ∈Γ K (1)γ a Γ -graded object in A

A Y D.
Then there is a unique Γ -grading on K extending the grading on K (1). Moreover, K (n) is
Γ -graded in A

A Y D for all n ≥ 0.
(2) Let K be a Γ -graded braided Hopf algebra in A

A Y D. Then the bosonization K #A is a Γ -
graded Hopf algebra with deg K (γ )#A(λ) = γ + λ for all γ, λ ∈ Γ .

(3) Let H ⊆ A be a Hopf subalgebra of degree 0, and π : A → H a Hopf algebra map with
π | H = id. Define R = Aco H . Then R is a Γ -graded braided Hopf algebra in H

H Y D with
R(γ ) = R ∩ A(γ ) for all γ ∈ Γ .

Proof. (1) The module and comodule maps of K (1) are Γ -graded and hence the infinitesimal
braiding c ∈ Aut(K (1) ⊗ K (1)), being determined by the module and comodule maps, is Γ -
graded. Now the claim of the lemma follows from the fact that K (n) for n ∈ N as well as the
structure maps of K as a braided Hopf algebra are determined by c and K (1).

(2) and (3) are easily checked. �

We now study the projection of H -Yetter–Drinfeld Hopf algebras in Corollary 7.4 in the case
of Nichols algebras. Recall that for any M, N ∈

H
H Y D there is a canonical surjection

πB(N ) : B(M ⊕ N ) → B(N ), πB(N ) | N = id, πB(N ) | M = 0,

of braided Hopf algebras in H
H Y D. It defines a canonical projection

πB(N )#H = πB(N )#id : B(M ⊕ N )#H → B(N )#H

of Hopf algebras. Let K = (B(M ⊕ N )#H)co B(N )#H be the space of right B(N )#H -coinvariant
elements with respect to the projection πB(N )#H . Thus K is a braided Hopf algebra in B(N )#H

B(N )#H Y D
with B(N )#H -action

ad : B(N )#H ⊗ K → K , a ⊗ x → (ada)x = a(1)x S(a(2)),

and B(N )#H -coaction

δK : K → B(N )#H ⊗ K , x → πB(N )#H (x (1))⊗ x (2).

Then by [2, Lemma 3.1], K = B(M ⊕ N )co B(N ), the space of right B(N )-coinvariant elements
with respect to πB(N ).

The bosonization B(N )#H is a Z-graded Hopf algebra with deg N = 1 and deg H = 0. We
always view the bosonizations of Nichols algebras in H

H Y D as graded Hopf algebras in this way.

Lemma 8.5. Let M, N ∈
H
H Y D and K = (B(M ⊕ N )#H)co B(N )#H .

(1) The standard N0-grading of B(M ⊕ N ) induces an N0-grading on

W = (adB(N ))(M) = ⊕
n∈N0

(adN )n(M)
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with deg(adN )n(M) = n + 1. Then W is a Z-graded object in B(N )#H
B(N )#H Y D, where W ⊆ K is

a subobject in B(N )#H
B(N )#H Y D.

(2) Assume that M = ⊕i∈I Mi is a direct sum of irreducible objects in H
H Y D. Let Wi =

(adB(N ))(Mi ) for all i ∈ I . Then W = ⊕i∈I Wi is a decomposition into irreducible
subobjects Wi in B(N )#H

B(N )#H Y D. For all i ∈ I , Wi = ⊕n≥0(adN )n(Mi ) is a Z-graded object in
the category of left Yetter–Drinfeld modules over B(N )#H.

Proof. (1) Let a ∈ N and x ∈ B(M ⊕ N ) a homogeneous element. Then ∆B(M⊕N )#H (a) =

a ⊗ 1 + a(−1) ⊗ a(0), since a is primitive in B(N ). Hence

(ada)(x) = ax − (a(−1) · x)a(0)

is of degree deg x + 1 in B(M ⊕ N ). This implies the decomposition of W . Moreover, W ⊆ K ,
since M ⊆ K .

Since W = (adB(N )#H)(M), it is clear that W is stable under the adjoint action of B(N )#H ,
and that

ad : B(N )#H ⊗ W → W

is Z-graded. To see that W ⊆ K is a B(N )#H -subcomodule, and that the comodule structure

W → B(N )#H ⊗ W

is Z-graded, we compute δK on elements of W . For all a ∈ B(N )#H and x ∈ M ,

δK (ada)(x) = (πB(N )#H ⊗ id)∆B(M⊕N )#H (ada)(x)

= πB(N )#H

a(1)x (1)S(a(4))


⊗ a(2)x (2)S(a(3))

= πB(N )#H

a(1)x S(a(4))


⊗ a(2)S(a(3))

+πB(N )#H

a(1)x (−1)S(a(4))


⊗ a(2)x (0)S(a(3))

= a(1)x (−1)S(a(3))⊗ (ada(2))(x (0)).

Thus the B(N )#H -costructure of W is well-defined and Z-graded.
(2) is shown in [2, Propositions 3.4 and 3.5]. �

Proposition 8.6. Let M, N ∈
H
H Y D and K = (B(M ⊕ N )#H)co B(N )#H . Then there is a unique

isomorphism

K ∼= B ((adB(N ))(M))

of braided Hopf algebras in B(N )#H
B(N )#H Y D which is the identity on (adB(N ))(M).

Proof. Since M ⊕ N is a Z-graded object in H
H Y D with deg M = 1 and deg N = 0, the Nichols

algebra B(M ⊕ N ) is a Z-graded braided Hopf algebra in H
H Y D by Lemma 8.4(1). Hence the

bosonization B(M ⊕ N )#H is a Z-graded Hopf algebra with deg M = 1, deg N = 0, deg H = 0.
By Lemma 8.4(3), K is a Z-graded Hopf algebra in B(N )#H

B(N )#H Y D. By [2, Proposition 3.6], K is
generated as an algebra by K (1) = (adB(N ))(M). Hence K (n) = K (1)n for all n ≥ 1, and
K (0) = k.

It remains to prove that all homogeneous primitive elements of K are of degree one. Let
n ∈ N≥2 and let U ⊆ K (n) be a subspace of primitive elements. We have to show that U = {0}.
By Remark 8.1(1) we may assume that U ∈

B(N )#H
B(N )#H Y D. Since B(N )#H has a coalgebra filtration
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F with F0 = H and F1 = N H + H , Lemma 8.3 implies that there exists a nonzero primitive
element u ∈ U with δ(u) ∈ H ⊗ U . Then u is primitive in B(M ⊕ N ). Indeed,

∆K #(B(N )#H) = u ⊗ 1 + 1u[−1] ⊗ u[0] = u ⊗ 1 + u(−1) ⊗ u(0),

and hence ∆K #B(N )(u) = (ϑ ⊗ id)∆K #(B(N )#H)(u) = u ⊗ 1 + 1 ⊗ u.
Since K (n) = (adB(N )(M))n , u is an element of degree at least n in the usual grading of

B(M ⊕ N ). This contradicts the assumption that B(M ⊕ N ) is a Nichols algebra. �

Next we prove the converse of the above proposition under additional restrictions, see
Proposition 8.8.

Let C be a coalgebra, D ⊆ C a subcoalgebra, and W a left C-comodule with comodule
structure δ : W → C ⊗ W . We denote the largest D-subcomodule of W by

W (D) = {w ∈ W | δ(w) ∈ D ⊗ W }.

Lemma 8.7. Let N ∈
H
H Y D and W ∈

B(N )#H
B(N )#H Y D. Assume that ⊕i∈I Wi is a decomposition

of W into irreducible objects in the category of Z-graded left Yetter–Drinfeld modules over
B(N )#H. Let M = W (H), and Mi = M ∩ Wi for all i ∈ I .

(1) M = ⊕i∈I Mi is a decomposition into irreducible objects in H
H Y D.

(2) For all i ∈ I , Mi is the Z-homogeneous component of Wi of minimal degree, and Wi =

B(N ) · Mi = ⊕n≥0 N n
· Mi .

Proof. Let W = ⊕n∈Z W (n) be the Z-grading of W in B(N )#H
B(N )#H Y D. Then M is a Z-graded object

in H
H Y D with homogeneous components M(n) = M ∩ W (n) for all n ∈ Z. It is clear that

M = ⊕i∈I Mi , where Mi = M ∩ Wi = Wi (H) for all i .
Let i ∈ I . By Lemma 8.3, Mi ≠ 0. Let 0 ≠ M ′

i be a homogeneous subobject of Mi in H
H Y D,

and let n be its degree. Then the B(N )#H -module W ′

i := B(N ) · M ′

i is a Z-graded subobject

of Wi in B(N )#H
B(N )#H Y D, the homogeneous components of W ′

i have degrees ≥ n, and the degree n
component of W ′

i coincides with M ′

i since B(N )(0) = k and deg N = 1. Thus the irreducibility
of Wi implies that Mi = M ′

i is irreducible and it is the homogeneous component of Wi of
minimal degree.

Finally, for all i ∈ I and n ∈ N0,

deg(N n
· Mi ) = n + deg Mi ,

since the multiplication map B(N )#H ⊗ Wi → Wi is graded. It follows that Wi = ⊕n≥0 N n
· Mi

for all i . �

Proposition 8.8. Let N ∈
H
H Y D and W ∈

B(N )#H
B(N )#H Y D. Assume that W is a semi-simple object

in the category of Z-graded left Yetter–Drinfeld modules over B(N )#H. Let K = B(W ) be the
Nichols algebra of W in B(N )#H

B(N )#H Y D, and define M = W (H). Then there is a unique isomorphism

K #B(N ) ∼= B(M ⊕ N )

of braided Hopf algebras in H
H Y D which is the identity on M ⊕ N.

Proof. Let ⊕i∈I Wi be a decomposition of W into irreducible objects in the category of Z-graded
left Yetter–Drinfeld modules over B(N )#H . For all i ∈ I , let Mi = Wi ∩ M . By Lemma 8.7(2),
we can define a new Z-grading on W by

deg(N n
· Mi ) = n + 1
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for all n ∈ N0, i ∈ I . Then W is a Z-graded object in B(N )#H
B(N )#H Y D. Because of Lemma 8.4(1), and

since W = K (1), we know that K is a Z-graded braided Hopf algebra with this new Z-grading
on K (1). Thus by Lemma 8.4(2) and (3), K #(B(N )#H) is a Z-graded Hopf algebra, and

R := K #B(N ) = (K #(B(N )#H))co H

is a Z-graded braided Hopf algebra in H
H Y D with k1 as degree 0 part and with M ⊕ N as degree

1 part.
Let m ∈ M and b ∈ B(N ). Then

b · m = b(1)(b(2)(−1) · m)SB(N )(b
(2)
(0)) (8.1)

in the algebra R = K #B(N ). Since K is generated as an algebra by K (1), and since K (1) =

B(N ) · M , we conclude from (8.1) that R is generated as an algebra by R(1) = M ⊕ N . Thus R
is a pre-Nichols algebra of M ⊕ N .

By the universal property of the Nichols algebra B(M ⊕ N ), there is a surjective
homomorphism

ρ : R → B(M ⊕ N ), ρ | M ⊕ N = id,

of N0-graded Hopf algebras in H
H Y D. Then

ρ#id : R#H → B(M ⊕ N )#H

is a surjective map of Hopf algebras. Let K ′
= (B(M⊕N )#H)co B(N )#H . Since the multiplication

maps

R#H → K #(B(N )#H), K ′#(B(N )#H) → B(M ⊕ N )#H

are bijective maps of Hopf algebras, the map ρ#id defines a surjective map of Hopf algebras

ρ′
: K #(B(N )#H) → K ′#(B(N )#H), ρ′

| (M ⊕ N ) = id.

The action of B(N )#H on K is the adjoint action in K #(B(N )#H). Since the algebras K and K ′

are generated by (adB(N ))(M) on both sides, ρ′ induces a map

ρ1 : K → K ′, ρ1 | M = id,

of N0-graded braided Hopf algebras in B(N )#H
B(N )#H Y D, and a map

ρ2 : B(N ) · M → (adB(N ))(M), ρ2 | M = id,

in B(N )#H
B(N )#H Y D. Since (adB(N ))(Mi ) is irreducible in B(N )#H

B(N )#H Y D for all i ∈ I , it follows that ρ2
is bijective. Hence ρ1 is bijective by the universal property of the Nichols algebra K = B(W ).
Thus ρ = ρ1#idB(N ) is bijective. �

We now apply Corollary 7.2 to Nichols algebras. Let N ∈
H
H Y D be finite-dimensional. Then

the dual vector space N∗
= Hom(N ,k) is an object in H

H Y D with

⟨h · ξ, x⟩ = ⟨ξ,S(h) · x⟩,

ξ (−1)⟨ξ (0), x⟩ = S −1(x (−1))⟨ξ, x (0)⟩

for all ξ ∈ N∗, x ∈ N , h ∈ H , where ⟨, ⟩ : N∗
⊗ N → k is the evaluation map. The Nichols

algebras of the finite-dimensional Yetter–Drinfeld modules N∗ and N have finite-dimensional
N0-homogeneous components, and there is a canonical pairing ⟨, ⟩ : B(N∗) ⊗ B(N ) → k
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extending the evaluation map such that the conditions (2.3)–(2.7) and (2.12) hold, see for
example [2, Proposition 1.10]. Let

(ΩN , ωN ) :
B(N )#H
B(N )#H Y Drat →

B(N∗)#H
B(N∗)#H Y Drat

be the functor of Corollary 7.2 with respect to the canonical dual pairing.

Theorem 8.9. Let n ≥ 1, and let M1, . . . ,Mn, N be finite-dimensional objects in H
H Y D. Assume

that for all 1 ≤ i ≤ n, Mi is irreducible in H
H Y D, and that (adB(N ))(Mi ) is a finite-

dimensional subspace of B(⊕n
i=1 Mi ⊕ N ). For all i let Vi = Fµ

0 (adB(N ))(Mi ), and let
K = B(⊕n

i=1 Mi ⊕ N )co B(N ).

(1) The modules V1, . . . , Vn are irreducible in H
H Y D, ΩN (K ) is a braided Hopf algebra in

B(N∗)#H
B(N∗)#H Y Drat, and there is a unique isomorphism

ΩN (K )#B(N∗) ∼= B(
n
⊕

i=1
Vi ⊕ N∗)

of braided Hopf algebras in H
H Y D which is the identity on ⊕

n
i=1 Vi ⊕ N∗.

(2) For all 1 ≤ i ≤ n, let mi = max{m ∈ N0 | (adN )m(Mi ) ≠ 0}, and Wi = (adB(N ))(Mi ).
Then

Wi =
mi
⊕

n=0
(adN )n(Mi ), Vi = (adN )mi (Mi ),

ΩN (Wi ) ∼=
mi
⊕

n=0
(adN∗)n(Vi ), Mi ∼= (adN∗)mi (Vi )

for all i .

Proof. (1) Let W = (adB(N ))(M). By Lemma 8.5(2), W1, . . . ,Wn are irreducible objects in
B(N )#H
B(N )#H Y D, W = ⊕

n
i=1 Wi , and for all 1 ≤ i ≤ n, Mi is the Z-homogeneous component of

Wi of minimal degree. By Proposition 7.3, the Yetter–Drinfeld modules V1, . . . , Vn ∈
H
H Y D

are irreducible. By Proposition 8.6, K is isomorphic to the Nichols algebra of W in B(N )#H
B(N )#H Y D.

Since (adB(N ))(M) is a finite-dimensional and Z-graded object in B(N )#H
B(N )#H Y D, it is a rational

B(N )-module. Therefore ΩN (B(W )) ∼= B(ΩN (W )) by Corollary 8.2.
Hence there is a unique isomorphism ΩN (K ) ∼= B(ΩN (W )) of braided Hopf algebras in

B(N∗)#H
B(N∗)#H Y Drat which is the identity on ΩN (W ). Recall that

ΩN (W )(H) = F δ
0ΩN (W ) = Fµ

0 W =
n
⊕

i=1
Vi

by Corollary 7.2(3). Then by Proposition 8.8 there is a unique isomorphism

ΩN (K )#B(N∗) ∼= B(
n
⊕

i=1
Vi ⊕ N∗)

of braided Hopf algebras in H
H Y D which is the identity on ⊕

n
i=1 Vi ⊕ N∗ which proves (1).

For the last conclusion we have to check the assumptions of Proposition 8.8, that is, ΩN (W ) ∈
B(N∗)#H
B(N∗)#H Y Drat is a semi-simple Z-graded Yetter–Drinfeld module. By Corollary 7.2(2), ΩN (W )

is Z-graded, and it is semi-simple since W is semi-simple by Lemma 8.5 and ΩN is an
isomorphism by Corollary 7.2.
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(2) Let i ∈ {1, . . . , n}. The first equation follows from the definition of Wi and the second from
Proposition 7.3 for R = B(N ) with deg N = 1 and deg(adN )n(Mi ) = 1 + n for all n ≥ 0. By
Corollary 7.2, ΩN (Wi ) = Wi is Z-graded with homogeneous components (adN )n(Mi ) of degree
−n − 1. Moreover, Vi = F δ

0ΩN (Wi ) by the proof of (1), and hence ΩN (Wi ) = ⊕
mi
n=0(N

∗)n Vi
since ΩN (Wi ) is irreducible. In particular, Mi = (N∗)mi Vi . These equations imply the remaining
claims of (2). �

Remark 8.10. Theorem 8.9 still holds if we replace the canonical pairing in the definition of
(ΩN , ωN ) by any dual pairing ⟨, ⟩ : B(N∗)⊗ B(N ) → k satisfying (2.3)–(2.7) and (2.12).

The definition of the Weyl groupoid of a Nichols algebra of a semi-simple Yetter–Drinfeld
module over H is based on [2, Theorem 3.12], see also [2, Section 3.5] and [6, Theorem 6.10,
Section 5]. To see that Theorem 8.9 can be considered as an alternative approach to the definition
of the Weyl groupoid, we introduce some notations.

Let θ ≥ 1 be a natural number. Let Fθ denote the class of all families M = (M1, . . . ,Mθ ),
where M1, . . . ,Mθ ∈

H
H Y D are finite-dimensional irreducible Yetter–Drinfeld modules. If

M ∈ Fθ , we define

B(M) = B(M1 ⊕ · · · ⊕ Mθ ).

For families M,M ′
∈ Fθ , we write M ∼= M ′, if M j ∼= M ′

j in H
H Y D for all j .

For 1 ≤ i ≤ θ and M ∈ Fθ , we say that the i-th reflection Ri (M) is defined if for all j ≠ i

there is a natural number mM
i j ≥ 0 such that (adMi )

mM
i j (M j ) is a non-zero finite-dimensional

subspace of B(M), and (adMi )
mM

i j +1
(M j ) = 0. Assume that Ri (M) is defined. Then we set

Ri (M) = (V1, . . . , Vθ ), where

V j =


V ∗

i , if j = i,

(adMi )
mM

i j (M j ), if j ≠ i.

For all j ≠ i , let aM
i j = −mM

i j . By [2, Lemma 3.22], (aM
i j ) with aM

ii = 2 for all i is a generalized
Cartan matrix.

The next Corollary follows from a restatement of Theorem 8.9. Thus we obtain a new proof
of [2, Theorem 3.12(2)] which allows to define the Weyl groupoid of M ∈ Fθ .

Corollary 8.11 ([2, Theorem 3.12(2)]). Let M ∈ Fθ , and 1 ≤ i ≤ θ . Assume that Ri (M) is
defined. Then Ri (M) ∈ Fθ , R2

i (M) is defined, R2
i (M)

∼= M, and aM
i j = aRi (M)

i j for all 1 ≤ j ≤ θ .

In the situation of the last Corollary, let K M
i = B(M)co B(Mi ) with respect to the projection

B(M) → B(Mi ). Then

K M
i #B(Mi ) ∼= B(M)

by bosonization, and

Ω(K M
i )#B(M∗

i )
∼= B(Ri (M))

by Theorem 8.9.
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