Nuclearity of semigroup C^{*}-algebras and the connection to amenability

Xin Li
Department of Mathematics, Westfälische Wilhelms-Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
Received 25 August 2012; accepted 24 May 2013
Available online 15 June 2013
Communicated by Alain Connes

Abstract

We study C^{*}-algebras associated with subsemigroups of groups. For a large class of such semigroups including positive cones in quasi-lattice ordered groups and left Ore semigroups, we describe the corresponding semigroup C^{*}-algebras as C^{*}-algebras of inverse semigroups, groupoid C^{*}-algebras and full corners in associated group crossed products. These descriptions allow us to characterize nuclearity of semigroup C^{*}-algebras in terms of faithfulness of left regular representations and amenability of group actions. Moreover, we also determine when boundary quotients of semigroup C^{*}-algebras are UCT Kirchberg algebras. This leads to a unified approach to Cuntz algebras and ring C^{*}-algebras.

(C) 2013 Elsevier Inc. All rights reserved.

MSC: primary 46L05; secondary 20Mxx; 43A07

Keywords: Semigroup C^{*}-algebra; Nuclearity; Amenability

1. Introduction

We continue the project started in [21] about C^{*}-algebras associated with semigroups. The study of such semigroup C^{*}-algebras goes back to L . Coburn $[5,6]$ and was continued in for example [12,25-28]. While there is a canonical reduced version for the semigroup C^{*}-algebra, namely the C^{*}-algebra generated by the left regular representation of the (left cancellative)

[^0]semigroup, G. Murphy showed in [28] that the most obvious candidate for the full semigroup C^{*}-algebra is intractable even for very simple (for instance abelian) semigroups. So one of the main difficulties was to find a good full version of semigroup C^{*}-algebras, given by generators and relations, which could be viewed as the analogue of full group C^{*}-algebras.

Building on the ideas of A. Nica [30], a new definition of such full semigroup C^{*}-algebras was proposed in [21, Section 3]. It was shown in [21] and also [32] that this new full version is well-suited for studying amenability of semigroups. However, amenability is a strong property which interesting examples fail to have. One of the most striking examples is probably the n-fold free product $\mathbb{N}_{0}^{* n}$ of the natural numbers, due to A . Nica. The full semigroup C^{*}-algebra of $\mathbb{N}_{0}^{* n}$ is by definition the universal C^{*}-algebra generated by n isometries with pairwise orthogonal range projections, so it is (isomorphic to) the canonical extension of the Cuntz algebra \mathcal{O}_{n}. Hence it follows that this full semigroup C^{*}-algebra is nuclear and that it coincides with the reduced semigroup C^{*}-algebra of $\mathbb{N}_{0}^{* n}$. At the same time, the semigroup $\mathbb{N}_{0}^{* n}$ is certainly not amenable. The main goal of this paper is to give an explanation how such a highly non-amenable semigroup like $\mathbb{N}_{0}^{* n}$ can still lead to nuclear semigroup C^{*}-algebras and have a faithful left regular representation.

For this purpose, it turns out to be very convenient to write semigroup C^{*}-algebras as full corners in group crossed products. The standard way of doing this would be to describe semigroup C^{*}-algebras as semigroup crossed products (by endomorphisms) first and then to apply dilation theory. The idea of dilation goes back to J. Cuntz in his work on the Cuntz algebras. Later on, dilation theory has been fully developed, in the probably most general setting, by M. Laca in [17]. He shows that one can use inductive limit procedures to dilate isometries to unitaries and endomorphisms to automorphisms so that in the end, semigroup crossed products can be embedded as full corners into group crossed products. This means that questions about semigroup crossed products translate into questions about group crossed products which have already been intensively studied. However, this dilation theory as described here only works for left Ore semigroups, and the question remains what to do for semigroups like $\mathbb{N}_{0}^{* n}$ which do not satisfy the left Ore condition.

Now, in the present paper, our main observation is that for semigroup C^{*}-algebras in the sense of [30] or [21], the left Ore condition is not essential for embedding semigroup C^{*}-algebras as full corners into group crossed products.

More precisely, for a subsemigroup P of a group G, we show that under two conditions, the full and reduced semigroup C^{*}-algebras of P embed as full corners into full and reduced crossed products by G. The underlying $\left(C^{*}\right.$-)dynamical system is the same for both the full and reduced versions. It is in a canonical way built out of the inclusion $P \subseteq G$ and a distinguished commutative subalgebra of the semigroup C^{*}-algebras. The two conditions we have to impose are that the constructible right ideals of P are independent and that $P \subseteq G$ satisfies the so-called Toeplitz condition. The first condition was introduced in [21] and guarantees that the canonical commutative subalgebras of the full and reduced semigroup C^{*}-algebras coincide. This condition also plays a crucial role in [10]. The second condition is new. It basically says that the procedure of compressing operators on $\ell^{2}(G)$ to $\ell^{2}(P)$ is well-behaved. We show that this condition is satisfied in typical examples. In particular, it holds for positive cones in quasi-lattice ordered groups and left Ore semigroups. Our main point is that we do not need the left Ore condition, only the two conditions described above to embed full semigroup C^{*}-algebras as full corners into group crossed products. The idea is to write both semigroup C^{*}-algebras and the group crossed products into which we would like to embed as groupoid C^{*}-algebras. The underlying groupoids are equivalent more or less by construction, so that we can use the observation by [23]
that equivalences of groupoids give rise to explicit imprimitivity bimodules of the corresponding groupoid C^{*}-algebras. This allows us to show that certain universal norms coincide. We point out that we work with the full version of semigroup C^{*}-algebras introduced in Section 3 in [21].

As an application, we give equivalent characterizations for nuclearity of semigroup C^{*} algebras. For instance, we see that nuclearity can be expressed in terms of amenability of group actions. Moreover, nuclearity of semigroup C^{*}-algebras implies faithfulness of the corresponding left regular representations. This result, applied to the special case of the free semigroup $\mathbb{N}_{0}^{* n}$, yields the desired explanation why the C^{*}-algebras of $\mathbb{N}_{0}^{* n}$ have nice properties although the semigroup is highly non-amenable.

In addition, we extend existing results about induced ideals and boundary quotients from the quasi-lattice ordered case to our more general setting. This leads to a unified approach to specific constructions like Cuntz algebras or ring C^{*}-algebras. As a second application of our main observation, we obtain a general explanation why these examples are UCT Kirchberg algebras. In the special case of $\mathbb{N}_{0}^{* n}$, the boundary quotient is the Cuntz algebra \mathcal{O}_{n}, and our result gives a description of \mathcal{O}_{n} as a full corner in a crossed product of a commutative C^{*}-algebra by the free group \mathbb{F}_{n}. To the author's knowledge, such a description was not known before. With the help of this new description, nuclearity of \mathcal{O}_{n} follows from the well-known fact that the free group \mathbb{F}_{n} acts amenably on its Gromov boundary.

So we see that the present paper gives a unified and systematic explanation for previously known results. At the same time, it sets the ground for new work on semigroup C^{*}-algebras and allows us to study many more examples of semigroups and their C^{*}-algebras. For instance, a third application of our main observation is presented in [11] which constitutes a vast generalization of the K-theoretic results in [10]. Furthermore, the reader may find a list of examples of semigroups in [11] which might be interesting to study.

The present paper is structured as follows.
In the first preliminary section, we describe the setting (Section 2.1) and analyze commutative C^{*}-algebras generated by independent commuting projections (Sections 2.2, 2.3).

We then consider semigroup C^{*}-algebras and the more general notion of semigroup crossed products by automorphisms (the semigroup C^{*}-algebra is the crossed product for the trivial action on the complex numbers). We first look at reduced versions (Section 3). We find conditions when reduced semigroup crossed products by automorphisms embed as full corners into group crossed products. This leads us to the Toeplitz condition mentioned above. It is introduced and briefly discussed in Section 4.

In Section 5, we then describe reduced and full semigroup crossed products by automorphisms as crossed products by partial automorphisms of inverse semigroups and groupoid crossed products. Here we need to assume that the constructible right ideals of our semigroup are independent. The first main observation is that the Toeplitz condition is precisely what we need to embed full semigroup crossed products by automorphisms as full corners into the corresponding full group crossed products (see Theorem 5.24).

As a consequence of our first main result, we determine equivalent characterizations of nuclearity for reduced and full semigroup C^{*}-algebras in Section 6.

In Section 7, we study induced ideals of semigroup C^{*}-algebras. We first extend our results on embeddability into full corners and nuclearity to the situation of ideals and quotients (see Section 7.1). Induced ideals are obtained from invariant subsets of the spectrum of the canonical commutative subalgebra of the semigroup C^{*}-algebra. Therefore, we explicitly describe this spectrum in Section 7.2. Moreover, we extend the notion of the boundary from [16] to our
general setting. We analyze the boundary action in Section 7.3 and find a necessary and sufficient criterion when the boundary quotient is a UCT Kirchberg algebra.

Finally, we turn to examples in Section 8. For quasi-lattice ordered groups, we prove that the analysis from [18] may be extended to obtain the stronger property of nuclearity of the corresponding semigroup C^{*}-algebras (see Section 8.1). We also treat the case of the free product $\mathbb{N}_{0}^{* n}$ in Section 8.2. The boundary quotient in this case is the Cuntz algebra \mathcal{O}_{n}, and an application of our results yields a description of \mathcal{O}_{n} - up to Morita equivalence - as a crossed product associated with the action of the free group \mathbb{F}_{n} on the "positive part" of its Gromov boundary. Another class of examples is provided by left Ore semigroups (see Section 8.3). It turns out that ring C^{*}-algebras are the boundary quotients of the semigroup C^{*}-algebras of the corresponding $a x+b$-semigroups. This explains why several aspects of the structure of ring C^{*}-algebras are very similar to those of the Cuntz algebras.

In Section 9, we discuss a few open questions which may be interesting for future research.

2. Preliminaries

2.1. The setting

Throughout this paper, let P be a subsemigroup of a group G. We assume that P contains the unit element e of G. All the semigroups in this paper will be unital, and all semigroup homomorphisms shall preserve the units. Moreover, we point out that we are only looking at discrete semigroups and discrete groups.

As explained in [21], the right ideal structure of P plays an important role in the construction and analysis of the semigroup C^{*}-algebras of P. By a right ideal of P, we mean a subset X of P which is closed under right multiplication, i.e. for all $x \in X$ and $p \in P$, the product $x p$ lies in X. Given a subset (for example a right ideal) X of P and a semigroup element p, we can form the left translate of X by p, i.e. $p X:=\{p x: x \in X\}$, and also the pre-image of X under left multiplication by p, i.e. $p^{-1} X:=\{y \in P: p y \in X\}$. Since G also acts on itself by left translations, we can also translate a subset X by a group element g. We denote the translation by $g \cdot X:=\{g x: x \in X\}$. We have for p in P and $X \subseteq P$ that $p X=p \cdot X$, but $p^{-1} X \neq p^{-1} \cdot X$ in general. Instead, we have the relation $p^{-1} X=\left(p^{-1} \cdot X\right) \cap P$.

The following family of right ideals was introduced in [21].
Definition 2.1. Let \mathcal{J} be the smallest family of right ideals of P such that

- $\emptyset, P \in \mathcal{J}$;
- \mathcal{J} is closed under left multiplication and pre-images under left multiplication $(X \in \mathcal{J}, p \in$ $\left.P \Rightarrow p X, p^{-1} X \in \mathcal{J}\right)$.

Elements in \mathcal{J} are called constructible right ideals of P.
As observed in Section 3 in [21], the family \mathcal{J} is automatically closed under finite intersections.
In our situation of a subsemigroup of a group, it is also important to consider the following.
Definition 2.2. Let \mathcal{J}_{P}^{G} be the smallest family of subsets of G which contains \mathcal{J} and which is closed under left translations by group elements $\left(Y \in \mathcal{J}_{P}^{G}, g \in G \Rightarrow g \cdot Y \in \mathcal{J}_{P}^{G}\right)$ and finite intersections.

It is immediate from the definitions that \mathcal{J} consists of \emptyset and all right ideals of the form $q_{1}^{-1} p_{1} \ldots q_{n}^{-1} p_{n} P\left(p_{i}, q_{i} \in P\right)$. Moreover, \mathcal{J}_{P}^{G} is given by all finite intersections of subsets of the form $g \cdot X$, for $g \in G$ and $X \in \mathcal{J}$. Actually, \mathcal{J}_{P}^{G} consists of \emptyset and all finite intersections of subsets of G of the form $g \cdot P$ (for $g \in G$).

2.2. Semigroups of commuting projections

We will be interested in the following situation: let $D=C^{*}(E)$ be a C^{*}-algebra generated by a multiplicative semigroup E of pairwise commuting projections. Given projections e_{1}, \ldots, e_{n} in E, let $\bigvee_{i=1}^{n} e_{i}$ be the smallest projection in D which dominates all the $e_{i}(1 \leq i \leq n)$.

Definition 2.3. We say that E is independent in D if for all e, e_{1}, \ldots, e_{n} in E, the equation $e=\bigvee_{i=1}^{n} e_{i}$ implies that $e=e_{i}$ for some $1 \leq i \leq n$.

Following ideas which appeared in the proof of Proposition 2.24 in [21], we obtain the following.

Proposition 2.4. The following are equivalent:

(i) E is independent in D,
(ii) whenever T is a C^{*}-algebra and $\varphi: E \rightarrow \operatorname{Proj}(T)$ is a semigroup homomorphism sending 0 to 0 if $0 \in E$, then there exists a (unique) homomorphism $D \rightarrow T$ given by $e \mapsto \varphi(e)$ for all $e \in E$,
(iii) $\{e \in E: e \neq 0\}$ is linearly independent in D.

Proof. We start with "(i) \Rightarrow (ii)". The idea is to write D as an inductive limit of finite dimensional subalgebras. For every finite subset F of E such that $F \cup\{0\}$ is multiplicatively closed, set $D_{F}=C^{*}(F)=\operatorname{span}(F)$. As all the projections $e \in F$ commute, we may orthogonalize them in D_{F} : for every $0 \neq e \in F$, form the projection $e_{F, D}:=e-\bigvee_{e \geq e^{\prime} \in F} e^{\prime}$. As E is independent, all these projections $e_{F, D}$ are non-zero (for $0 \neq e \in F$). Moreover, these projections are pairwise orthogonal, and they generate D_{F}. Thus we obtain $D_{F}=\bigoplus_{0 \neq e \in F} \mathbb{C} \cdot e_{F, D}$. Similarly, form $e_{F, T}^{\varphi}:=\varphi(e)-\bigvee_{\varphi(e)>f \in \varphi(F)} f$ in T. These projections $e_{F, T}^{\varphi}$ are pairwise orthogonal by construction. Thus there exists by the universal property of $\bigoplus_{0 \neq e \in F} \mathbb{C} \cdot e_{F, D} \cong \mathbb{C}^{|F \backslash\{0\}|}$ a homomorphism $D_{F} \rightarrow T$ defined by $e_{F, D} \mapsto e_{F, T}^{\varphi}$. By construction, $e=\sum_{e \geq e^{\prime} \in F} e_{F, D}^{\prime}$ is sent to $\sum_{e \geq e^{\prime} \in F} e_{F, T}^{\prime \varphi}=\varphi(e)$. Therefore, these homomorphisms $\left\{D_{F} \rightarrow T\right\}_{F}$ are compatible with the canonical inclusions $D_{F} \hookrightarrow D_{\tilde{F}}$ for $F \subseteq \tilde{F}$. Hence they define a homomorphism $D=\overline{\bigcup_{F} D_{F}} \rightarrow T$ which sends $e \in D$ to $\varphi(e) \in T$ for all $e \in E$, as desired.

For "(ii) \Rightarrow (iii)", note that by (ii), there exists a homomorphism $D \rightarrow D \otimes D, e \mapsto e \otimes e$. As D is commutative, it does not matter which tensor product we choose. Restricting to $D^{\text {alg }}:=\operatorname{span}(E)$, we obtain a homomorphism

$$
\begin{equation*}
D^{\mathrm{alg}} \rightarrow D^{\mathrm{alg}} \odot D^{\mathrm{alg}}, \quad e \mapsto e \otimes e \tag{1}
\end{equation*}
$$

As $D^{\text {alg }}$ is spanned by E, we can choose a subset E^{\prime} of E such that E^{\prime} is a \mathbb{C}-basis of $D^{\text {alg }}$. Now take $e \in E$. We can write e as a finite sum $e=\sum_{i} \lambda_{i} e_{i}^{\prime}$ for some $e_{i}^{\prime} \in E^{\prime}$. The homomorphism from (1) sends e to $e \otimes e=\sum_{i, j} \lambda_{i} \lambda_{j} e_{i}^{\prime} \otimes e_{j}^{\prime}$ and $\sum_{i} \lambda_{i} e_{i}^{\prime}$ to $\sum_{i} \lambda_{i} e_{i}^{\prime} \otimes e_{i}^{\prime}$. But e and $\sum_{i} \lambda_{i} e_{i}^{\prime}$ coincide, so they have to be sent to the same element. We conclude that

$$
\begin{equation*}
\sum_{i, j} \lambda_{i} \lambda_{j} e_{i}^{\prime} \otimes e_{j}^{\prime}=\sum_{i} \lambda_{i} e_{i}^{\prime} \otimes e_{i}^{\prime} \tag{2}
\end{equation*}
$$

As E^{\prime} is a \mathbb{C}-basis for $D^{\text {alg }},\left\{e^{\prime} \otimes e^{\prime \prime}: e^{\prime}, e^{\prime \prime} \in E^{\prime}\right\}$ is a \mathbb{C}-basis for $D^{\text {alg }} \odot D^{\text {alg }}$. Thus we can compare coefficients in (2) and deduce $\lambda_{i} \lambda_{j}=0$ if $i \neq j$ and $\lambda_{i}^{2}=\lambda_{i}$. It follows that there can at most be one non-zero coefficient λ_{i} which must be 1 . Thus either $e=0$ or $e=e_{i}^{\prime} \in E^{\prime}$. We deduce that $E^{\prime}=E \backslash\{0\}$. But this means that $\{e \in E: e \neq 0\}$ is a \mathbb{C}-basis of $D^{\text {alg }}$, hence linearly independent.

To see "(iii) \Rightarrow (i)", we observe that $\bigvee_{i=1}^{n} e_{i}=\sum_{\emptyset \neq F \subseteq\{1, \ldots, n\}}(-1)^{|F|-1} \prod_{i \in F} e_{i}$. Thus an equation of the form $e=\bigvee_{i=1}^{n} e_{i}$ with $e \ngtr e_{i}$ for all $1 \leq i \leq n$ would give us a non-trivial relation contradicting linear independence.

2.3. Families of subsets

Let us now specialize to a situation which will appear later on in this paper. Let \mathfrak{P} be a discrete set and \mathfrak{J} be a family of subsets of \mathfrak{P}. We assume that $\emptyset \in \mathfrak{J}$ and that \mathfrak{J} is closed under finite intersections.

Definition 2.5. \mathfrak{J} is called independent if for all X, X_{1}, \ldots, X_{n} in \mathfrak{J}, we have that $X_{i} \subsetneq X$ for all $1 \leq i \leq n$ implies $\bigcup_{i=1}^{n} X_{i} \subsetneq X$.

In other words, \mathfrak{J} is independent if whenever $X=\bigcup_{i=1}^{n} X_{i}$ for X, X_{1}, \ldots, X_{n} in \mathfrak{J}, then there must be an index $1 \leq i \leq n$ such that $X=X_{i}$. This independence condition was introduced in [21].

For a subset X of \mathfrak{P}, we write $\mathbb{1}_{X}$ for the characteristic function of X defined on \mathfrak{P}. We view $\mathbb{1}_{X}$ as an element of $\ell^{\infty}(\mathfrak{P})$ and let $\ell^{\infty}(\mathfrak{P})$ act on $\ell^{2}(\mathfrak{P})$ by multiplication operators. Let E_{X} be the multiplication operator corresponding to $\mathbb{1}_{X}$.

Definition 2.6. We set $D:=C^{*}\left(\left\{E_{X}: X \in \mathfrak{J}\right\}\right) \subseteq \ell^{\infty}(\mathfrak{P}) \subseteq \mathcal{L}\left(\ell^{2}(\mathfrak{P})\right)$.
It is easy to see that \mathfrak{J} is independent if and only if $\left\{E_{X}: X \in \mathfrak{J}\right\}$ is independent in D in the sense of Definition 2.3. Thus, Proposition 2.4 yields in our present setting.

Corollary 2.7. The following are equivalent:
(i) \mathfrak{J} is independent,
(ii) whenever T is a C^{*}-algebra and $e_{X}, X \in \mathfrak{J}$, are projections in T satisfying $e_{\emptyset}=0$ and $e_{X_{1} \cap X_{2}}=e_{X_{1}} e_{X_{2}}$ for all $X_{1}, X_{2} \in \mathfrak{J}$, then there exists a (unique) homomorphism $D \rightarrow T$ given by $E_{X} \mapsto e_{X}$ for all $X \in \mathfrak{J}$,
(iii) $\left\{E_{X}: X \neq \emptyset\right\}$ is linearly independent in D.

From now on, we always assume that \mathfrak{J} is independent. Let us describe the spectrum of D.
Corollary 2.8. For every function $\phi: \mathfrak{J} \rightarrow\{0,1\}$ with $\phi(\emptyset)=0$ and $\phi\left(X_{1} \cap X_{2}\right)=$ $\phi\left(X_{1}\right) \phi\left(X_{2}\right)$ for all $X_{1}, X_{2} \in \mathfrak{J}$, there exists a unique homomorphism $D \rightarrow \mathbb{C}$ determined by $E_{X} \mapsto \phi(X)$.

Proof. Just set $T=\mathbb{C}$ in item (ii) of Corollary 2.7.
Let us call a subset \mathcal{F} of \mathfrak{J} satisfying

- $X_{1} \subseteq X_{2} \in \mathfrak{J}, X_{1} \in \mathcal{F} \Rightarrow X_{2} \in \mathcal{F}$,
- $X_{1}, X_{2} \in \mathcal{F} \Rightarrow X_{1} \cap X_{2} \in \mathcal{F}$,
- $\emptyset \notin \mathcal{F}$,
a \mathfrak{J}-valued filter.

Corollary 2.9. We can identify Spec D with the set Σ of all non-empty \mathfrak{J}-valued filters via Spec $D \ni \chi \mapsto\left\{X \in \mathfrak{J}: \chi\left(E_{X}\right)=1\right\}$.

Proof. The inverse of this map is given by sending a non-empty \mathfrak{J}-valued filter to the character χ of D uniquely determined by $\chi\left(E_{X}\right)=1$ if $X \in \mathcal{F}$ and $\chi\left(E_{X}\right)=0$ if $X \notin \mathcal{F}$. Such a character exists by Corollary 2.8.

The topology of pointwise convergence on Spec D corresponds under the bijection

$$
\begin{equation*}
\operatorname{Spec} D \ni \chi \mapsto\left\{X \in \mathfrak{J}: \chi\left(E_{X}\right)=1\right\} \in \Sigma \tag{3}
\end{equation*}
$$

to the following topology on Σ : for X, X_{1}, \ldots, X_{n} in \mathfrak{J}, let

$$
U\left(X ; X_{1}, \ldots, X_{n}\right):=\left\{\mathcal{F} \in \Sigma: X \in \mathcal{F}, X_{i} \notin \mathcal{F} \text { for all } 1 \leq i \leq n\right\}
$$

Then a basis for the topology on Σ induced by the one on $\operatorname{Spec} D$ is given by the open sets

$$
\begin{equation*}
\left\{U\left(X ; X_{1}, \ldots, X_{n}\right): n \in \mathbb{Z}_{\geq 0}, X, X_{1}, \ldots, X_{n} \in \mathfrak{J}\right\} \tag{4}
\end{equation*}
$$

Finally, we call a \mathfrak{J}-valued filter which is maximal (in Σ) with respect to inclusion a \mathfrak{J}-valued ultrafilter.

Definition 2.10. We let $\Sigma_{\max }$ be the set of all \mathfrak{J}-valued ultrafilters. The subset of $\operatorname{Spec} D$ corresponding to $\Sigma_{\max }$ under the identification (3) is denoted by $(\operatorname{Spec} D)_{\max }$. Moreover, we set $\partial \Sigma:=\overline{\Sigma_{\max }} \subseteq \Sigma$ and denote the closed subset of $\operatorname{Spec} D$ corresponding to $\partial \Sigma$ under the homeomorphism (3) by $\partial \operatorname{Spec} D$.

Remark 2.11. Note that $\mathcal{F} \in \Sigma$ lies in $\Sigma_{\text {max }}$ if and only if for all $X \in \mathfrak{J}, X \notin \mathcal{F}$ there is $X^{\prime} \in \mathcal{F}$ with $X \cap X^{\prime}=\emptyset$.

3. A first look at the reduced case

Let us first of all define reduced semigroup C^{*}-algebras and reduced crossed products by automorphisms (see [21]). We start with reduced semigroup C^{*}-algebras. Recall that P is a subsemigroup of a group G. Let $\left\{\varepsilon_{x}: x \in P\right\}$ be the canonical orthonormal basis of $\ell^{2}(P)$. For every $p \in P$, the formula $V_{p} \varepsilon_{x}=\varepsilon_{p x}$ extends to an isometry on $\ell^{2}(P)$. Now the reduced semigroup C^{*}-algebra of P is simply given by the sub- C^{*}-algebra of $\mathcal{L}\left(\ell^{2}(P)\right)$ generated by these isometries $\left\{V_{p}: p \in P\right\}$. We denote this concrete C^{*}-algebra by $C_{r}^{*}(P)$, i.e. we set the following.

Definition 3.1. $C_{r}^{*}(P):=C^{*}\left(\left\{V_{p}: p \in P\right\}\right) \subseteq \mathcal{L}\left(\ell^{2}(P)\right)$.
As we have done in Section 2.3, we denote by $E_{X} \in \mathcal{L}\left(\ell^{2}(P)\right)$ the orthogonal projection onto $\ell^{2}(X) \subseteq \ell^{2}(P)$ for every subset X of P. We then set the following.

Definition 3.2. $D_{r}:=C^{*}\left(\left\{E_{X}: X \in \mathcal{J}\right\}\right)$.
As explained in [21], D_{r} is a commutative sub- C^{*}-algebra of $C_{r}^{*}(P)$.
Now we turn to crossed products. Let A be a C^{*}-algebra which we will always think of as a non-degenerate sub- C^{*}-algebra of $\mathcal{L}(\mathcal{H})$ for some Hilbert space \mathcal{H}. Assume that we are given a G-action α on A. Define for every a in A the operator $a_{\left(\left.\alpha\right|_{P)}\right.} \in \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(P)\right)$ by setting $a_{\left(\left.\alpha\right|_{P}\right)}\left(\xi \otimes \varepsilon_{x}\right)=\left(\alpha_{x}^{-1}(a) \xi\right) \otimes \varepsilon_{x}$ for all $\xi \in \mathcal{H}, x \in P$.

Definition 3.3. The reduced automorphic crossed product of A by P is given by $A \rtimes_{\alpha, r}^{a} P:=$ $C^{*}\left(\left\{a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes V_{p}\right): a \in A, p \in P\right\}\right) \subseteq \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(P)\right)$ where $I_{\mathcal{H}}$ is the identity operator on \mathcal{H}.

Of course, we can canonically identify $\mathbb{C} \rtimes_{\mathrm{tr}, r}^{a} P$ with $C_{r}^{*}(P)$.
We now discuss the question whether $A \rtimes_{\alpha, r}^{a} P$ can be embedded as a full corner into an ordinary (reduced) group crossed product. Let $\lambda: G \rightarrow \mathcal{U}\left(\ell^{2}(G)\right)$ be the left regular representation of G. The group G acts on $\ell^{\infty}(G)$ by left translations. We call this action τ, and we denote the action of G on the multiplication operators on $\ell^{2}(G)$ corresponding to $\ell^{\infty}(G)$ by τ as well. It is clear that τ is spatially implemented by λ. As before, for a subset Y of G, we let $E_{Y} \in \mathcal{L}\left(\ell^{2}(G)\right)$ be the orthogonal projection onto $\ell^{2}(Y) \subseteq \ell^{2}(G)$. In particular, E_{P} is the orthogonal projection onto $\ell^{2}(P) \subseteq \ell^{2}(G)$.

Definition 3.4. We let D_{P}^{G} be the smallest sub- C^{*}-algebra of $\ell^{\infty}(G) \subseteq \mathcal{L}\left(\ell^{2}(G)\right)$ which is τ invariant and contains E_{P}.

Lemma 3.5. With \mathcal{J}_{P}^{G} from Definition 2.2, we have $D_{P}^{G}=\overline{\operatorname{span}}\left(\left\{E_{Y}: Y \in \mathcal{J}_{P}^{G}\right\}\right)$.
Proof. Every Y in \mathcal{J}_{P}^{G} is of the form $\bigcap_{i=1}^{n} g_{i} \cdot X_{i}$ for $g_{i} \in G, X_{i} \in \mathcal{J}$. Thus $E_{Y}=\prod_{i=1}^{n} \tau_{g_{i}}\left(E_{X_{i}}\right)$ lies in D_{P}^{G}. This proves " \supseteq ". Conversely, the set $\left\{E_{Y}: Y \in \mathcal{J}_{P}^{G}\right\}$ is multiplicatively closed as \mathcal{J}_{P}^{G} is closed under finite intersections. Moreover, this set is τ-invariant and contains E_{P}. Thus " \subseteq " holds as well.

As in the construction of reduced crossed products, we define for $a \in A$ the operator $a_{(\alpha)} \in \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G)\right)$ by $a_{(\alpha)}\left(\xi \otimes \varepsilon_{x}\right)=\left(\alpha_{x}^{-1}(a) \xi\right) \otimes \varepsilon_{x}$ for all ξ in \mathcal{H} and x in G. The following is just Proposition 2.5.1 in [10] with general coefficients.

Lemma 3.6. The homomorphism $A \otimes D_{P}^{G} \rightarrow \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G)\right)$ determined by $a \otimes d \mapsto a_{(\alpha)}\left(I_{\mathcal{H}} \otimes d\right)$ and the group homomorphism $G \rightarrow \mathcal{U}\left(\mathcal{H} \otimes \ell^{2}(G)\right), g \mapsto I_{\mathcal{H}} \otimes \lambda_{g}$ define a covariant representation of $\left(A \otimes D_{P}^{G}, G, \alpha \otimes \tau\right)$ on $\mathcal{H} \otimes \ell^{2}(G)$. The corresponding representation of $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$ is faithful. It sends $(a \otimes d) U_{g}$ to $a_{(\alpha)}\left(I_{\mathcal{H}} \otimes d\right)\left(I_{\mathcal{H}} \otimes \lambda_{g}\right)$.
Note that since D_{P}^{G} is commutative, it does not matter which tensor product $A \otimes D_{P}^{G}$ we take.
Proof. An obvious computation shows that the maps described in the lemma define a covariant representation. Let us show that it gives rise to a faithful representation of the reduced crossed product.

By replacing \mathcal{H} by $\mathcal{H} \otimes \ell^{2}(G)$ and $a \in A$ by $a_{(\alpha)}$, we may without loss of generality assume that the G-action α on A is spatially implemented. This means that there exists a group homomorphism $G \rightarrow \mathcal{U}(\mathcal{H}), g \mapsto W_{g}$ such that $\operatorname{Ad}\left(W_{g}\right)(a)=\alpha_{g}(a)$. We realize the reduced crossed product $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$ as the sub- C^{*}-algebra of $\mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G) \otimes \ell^{2}(G)\right)$ generated by $\left\{(a \otimes d)_{\alpha \otimes \tau}\left(I_{\mathcal{H} \otimes \ell^{2}(G)} \otimes \lambda_{g}\right): a \in A, d \in D_{P}^{G}, g \in G\right\}$ with $(a \otimes d)_{\alpha \otimes \tau}\left(\xi \otimes \zeta \otimes \varepsilon_{x}\right)=$ $\left(\alpha_{x}^{-1}(a) \xi\right) \otimes\left(\tau_{x}^{-1}(d) \zeta\right) \otimes \varepsilon_{x}$. Now define the unitary

$$
\begin{aligned}
& W: \mathcal{H} \otimes \ell^{2}(G) \otimes \ell^{2}(G) \rightarrow \mathcal{H} \otimes \ell^{2}(G) \otimes \ell^{2}(G) \\
& \xi \otimes \varepsilon_{x} \otimes \varepsilon_{y} \mapsto W_{x^{-1}} \xi \otimes \varepsilon_{y x} \otimes \varepsilon_{x}-1
\end{aligned}
$$

A similar computation as in [10, Proposition 2.5.1] shows

$$
\begin{aligned}
& W\left((a \otimes d)_{\alpha \otimes \tau}\right) W^{*}=\left(a_{(\alpha)}\left(I_{\mathcal{H}} \otimes d\right)\right) \otimes I_{\ell^{2}(G)}, \\
& W\left(I_{\mathcal{H} \otimes \ell^{2}(G)} \otimes \lambda_{g}\right) W^{*}=\left(I_{\mathcal{H}} \otimes \lambda_{g}\right) \otimes I_{\ell^{2}(G)} .
\end{aligned}
$$

Thus $\operatorname{Ad}(W)$ identifies $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$ with a sub- C^{*}-algebra of $\mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G)\right) \otimes I_{\ell^{2}(G)}$. Identifying $\mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G)\right) \otimes I_{\ell^{2}(G)}$ with $\mathcal{L}\left(\mathcal{H} \otimes \ell^{2}(G)\right)$ in the obvious way, we obtain the desired faithful representation.

Definition 3.7. Let $A \rtimes_{\alpha, r}(P \subseteq G)$ be the image of $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$ under the representation from the last lemma. If $A=\mathbb{C}$, then we set $C_{r}^{*}(P \subseteq G):=\mathbb{C} \rtimes_{\mathrm{tr}, r}(P \subseteq G)$.

In the sequel, we denote for $d \in D_{P}^{G}$ the canonical multiplier associated with d by $1 \otimes d \in$ $M\left(A \otimes D_{P}^{G}\right) \subseteq M\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$.

Lemma 3.8. $1 \otimes E_{P}$ yields the full corner $\left(1 \otimes E_{P}\right)\left(\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)\left(1 \otimes E_{P}\right)$.
Proof. We have to show that span $\left(\left(\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)\left(1 \otimes E_{P}\right)\left(\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)\right)$ is dense in $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$.

For every $Y=\bigcap_{i=1}^{n} g_{i} \cdot X_{i} \in \mathcal{J}_{P}^{G}\left(g_{i} \in G, X_{i} \in \mathcal{J}\right), a \in A$ and $g \in G$, the operator $(a \otimes$ $\left.E_{Y}\right) U_{g}=\left(a \otimes E_{Y}\right)\left(\prod_{i=1}^{n} U_{g_{i}}\left(1 \otimes E_{X_{i}}\right) U_{g_{i}}^{*}\right) U_{g}=\left(a \otimes E_{Y}\right)\left(\prod_{i=1}^{n} U_{g_{i}}\left(1 \otimes E_{X_{i}}\right)\left(1 \otimes E_{P}\right) U_{g_{i}}^{*}\right) U_{g}$ lies in $\left(\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)\left(1 \otimes E_{P}\right)\left(\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)$. Here U_{g} are the canonical unitaries implementing the G-action.

In the sequel, we do not distinguish between $\mathcal{H} \otimes \ell^{2}(P)$ and the subspace $\left(I_{\mathcal{H}} \otimes E_{P}\right)(\mathcal{H} \otimes$ $\left.\ell^{2}(G)\right)$ of $\mathcal{H} \otimes \ell^{2}(G)$. In this way, operators on $\mathcal{H} \otimes \ell^{2}(P)$ act on $\mathcal{H} \otimes \ell^{2}(G)$ (on the orthogonal complement of $\left(I_{\mathcal{H}} \otimes E_{P}\right)\left(\mathcal{H} \otimes \ell^{2}(G)\right)$, they are simply 0$)$. For instance, the operator $a_{(\alpha \mid P)}$ is the same as $\left(I_{\mathcal{H}} \otimes E_{P}\right) a_{(\alpha)}\left(I_{\mathcal{H}} \otimes E_{P}\right)$ and $I_{\mathcal{H}} \otimes V_{p}$ is nothing else but $\left(I_{\mathcal{H}} \otimes E_{P}\right)\left(I_{\mathcal{H}} \otimes \lambda_{p}\right)\left(I_{\mathcal{H}} \otimes E_{P}\right)$ for all $p \in P$. As $A \rtimes_{\alpha, r}^{a} P$ is the C^{*}-algebra generated by $a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes V_{p}\right)(a \in A, p \in P)$, we see that $A \rtimes_{\alpha, r}^{a} P$ is (or can be, in the way explained above, canonically identified with) a sub- C^{*}-algebra of the full corner $\left(I_{\mathcal{H}} \otimes E_{P}\right)\left(A \rtimes_{\alpha, r}(P \subseteq G)\right)\left(I_{\mathcal{H}} \otimes E_{P}\right)$. We now address the question when these two C^{*}-algebras are actually the same.

Lemma 3.9. The following statements are equivalent:
(i) we have $A \rtimes_{\alpha, r}^{a} P=\left(I_{\mathcal{H}} \otimes E_{P}\right)\left(A \rtimes_{\alpha, r}(P \subseteq G)\right)\left(I_{\mathcal{H}} \otimes E_{P}\right)$ for every C^{*}-dynamical system (A, G, α),
(ii) $C_{r}^{*}(P)=E_{P} C_{r}^{*}(P \subseteq G) E_{P}$,
(iii) for all $g \in G, E_{P} \lambda_{g} E_{P}$ lies in $C_{r}^{*}(P)$; and either of these statements implies
(iv) $D_{r} \supseteq E_{P} D_{P}^{G} E_{P}$.

Proof. "(i) \Rightarrow (ii)" is trivial.
"(ii) \Rightarrow (iii)": $E_{P} \lambda_{g} E_{P}=E_{P}\left(E_{P} \lambda_{g}\right) E_{P} \in E_{P} C_{r}^{*}(P \subseteq G) E_{P}=C_{r}^{*}(P)$.
"(iii) \Rightarrow (iv)": By Lemma 3.5 and the definition of \mathcal{J}_{P}^{G} from Section 2.1, it suffices to prove that $E_{P} E_{g \cdot X} E_{P}$ lies in D_{r} for all $g \in G$ and $X \in \mathcal{J}$. First of all, $E_{P} E_{g \cdot X} E_{P}=$ $E_{P} \lambda_{g} E_{X} \lambda_{g}^{*} E_{P}=\left(E_{P} \lambda_{g} E_{P}\right) E_{X}\left(E_{P} \lambda_{g} E_{P}\right)^{*}$ lies in $C_{r}^{*}(P)$ by (iii). Moreover, $E_{P} E_{g \cdot X} E_{P}$ is obviously contained in $\ell^{\infty}(P)$ viewed as multiplication operators on $\ell^{2}(P)$. Thus $E_{P} E_{g \cdot X} E_{P}$ lies in $C_{r}^{*}(P) \cap \ell^{\infty}(P)$, and $C_{r}^{*}(P) \cap \ell^{\infty}(P)=D_{r}$ by Remark 3.12 in [21].
"(iii) and (iv) \Rightarrow (i)": We have to show that for every $a \in A, Y \in \mathcal{J}_{P}^{G}$ and $g \in G,\left(I_{\mathcal{H}} \otimes\right.$ $\left.E_{P}\right)\left(a_{(\alpha)}\left(I_{\mathcal{H}} \otimes E_{Y}\right)\left(I_{\mathcal{H}} \otimes \lambda_{g}\right)\right)\left(I_{\mathcal{H}} \otimes E_{P}\right)$ lies in $A \rtimes_{\alpha, r}^{a} P$. We have

$$
\begin{aligned}
& \left(I_{\mathcal{H}} \otimes E_{P}\right)\left(a_{(\alpha)}\left(I_{\mathcal{H}} \otimes E_{Y}\right)\left(I_{\mathcal{H}} \otimes \lambda_{g}\right)\right)\left(I_{\mathcal{H}} \otimes E_{P}\right) \\
& \quad=\left(I_{\mathcal{H}} \otimes E_{P}\right) a_{(\alpha)}\left(I_{\mathcal{H}} \otimes E_{P}\right)\left(I_{\mathcal{H}} \otimes E_{P} E_{Y} \lambda_{g} E_{P}\right) \\
& \quad=a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes\left(E_{P} E_{Y} E_{P}\right)\left(E_{P} \lambda_{g} E_{P}\right)\right)
\end{aligned}
$$

But $E_{P} E_{Y} E_{P}$ lies in D_{r} by (iv) and $E_{P} \lambda_{g} E_{P}$ is in $C_{r}^{*}(P)$ by (iii). Since $a_{(\alpha \mid P)}\left(I_{\mathcal{H}} \otimes C_{r}^{*}(P)\right)$ lies in $A \rtimes_{\alpha, r}^{a} P$, we are done.

Let us now summarize what we have obtained so far. Combining Lemmas 3.6, 3.8 and 3.9, we obtain the following.

Corollary 3.10. If $P \subseteq G$ satisfies one of the equivalent conditions (i), (ii) or (iii) from Lemma 3.9, then the homomorphism $A \rtimes_{\alpha, r}^{a} P \rightarrow\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$ determined by $a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes\right.$ $\left.V_{p}\right) \mapsto\left(a \otimes E_{P}\right)\left(1 \otimes E_{P}\right) U_{p}\left(1 \otimes E_{P}\right)$ identifies $A \rtimes_{\alpha, r}^{a} P$ with the full corner $\left(1 \otimes E_{P}\right)((A \otimes$ $\left.\left.D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G\right)\left(1 \otimes E_{P}\right)$ of $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G$.

Remark 3.11. Our C^{*}-algebra $C_{r}^{*}(P \subseteq G)$ is called the C^{*}-algebra of Wiener-Hopf operators in [22,29-31].

4. The Toeplitz condition

We now introduce a condition on the inclusion $P \subseteq G$ which is (at least a priori) stronger than (iii) from Lemma 3.9.

Definition 4.1. We say that $P \subseteq G$ satisfies the Toeplitz condition (or simply that $P \subseteq G$ is Toeplitz) if for every $g \in G$ with $E_{P} \lambda_{g} E_{P} \neq 0$, there exist $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$ in P such that $E_{P} \lambda_{g} E_{P}=V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}$.

This Toeplitz condition will play an important role in the next section, when we consider full versions. Moreover, we will see that in examples, the Toeplitz condition will naturally appear. In addition, it has the following consequences.

Lemma 4.2. If $P \subseteq G$ is Toeplitz, then
(i) for all g in G and X in $\mathcal{J}, P \cap(g \cdot X)$ lies in \mathcal{J},
(ii) $\mathcal{J}_{P}^{G}=\{g \cdot X: g \in G, X \in \mathcal{J}\}$ (i.e. intersections are not needed).

If \mathcal{J} is independent and $P \subseteq G$ is Toeplitz, then
(iii) \mathcal{J}_{P}^{G} is independent.

Proof. Given $g \in G$ with $E_{P} \lambda_{g} E_{P} \neq 0$, the Toeplitz condition says that there exist $p_{1}, q_{1}, \ldots, p_{n}, q_{n}$ in P such that $E_{P} \lambda_{g} E_{P}=V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}$. This implies that

$$
\begin{aligned}
E_{P \cap(g \cdot X)} & =\left(E_{P} \lambda_{g} E_{P}\right) E_{X}\left(E_{P} \lambda_{g} E_{P}\right)^{*}=V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}} E_{X} V_{q_{n}}^{*} V_{p_{n}} \ldots V_{q_{1}}^{*} V_{p_{1}} \\
& =E_{\left[p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n} X\right]} .
\end{aligned}
$$

Thus we deduce $P \cap(g \cdot X)=p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n} X \in \mathcal{J}$. If $E_{P} \lambda_{g} E_{P}=0$, then the computation shows that $P \cap(g \cdot X)=\emptyset$ lies in \mathcal{J}. This proves (i). To prove (ii), we just have to show that the right hand side in (ii) is closed under finite intersections. Take g_{1}, g_{2} in G and X_{1}, X_{2} in \mathcal{J}. Then $\left(g_{1} \cdot X_{1}\right) \cap\left(g_{2} \cdot X_{2}\right)=g_{1} \cdot\left(X_{1} \cap\left(\left(g_{1}^{-1} g_{2}\right) \cdot X_{2}\right)\right)=g_{1} \cdot(X_{1} \cap \underbrace{P \cap\left(g_{1}^{-1} g_{2}\right) \cdot X_{2}}_{\in \mathcal{J} \text { by (i) }})$ is of the desired form by (i).

Now let us prove (iii) assuming that \mathcal{J} is independent and that $P \subseteq G$ is Toeplitz. By (ii), it suffices to prove that given g, g_{1}, \ldots, g_{n} in G and X, X_{1}, \ldots, X_{n} in \mathcal{J} such that $g \cdot X=\bigcup_{i=1}^{n} g_{i} \cdot X_{i}$, we must have $g \cdot X=g_{i} \cdot X_{i}$ for some i. Now $g \cdot X=\bigcup_{i=1}^{n} g_{i} \cdot X_{i}$
implies $X=\bigcup_{i=1}^{n}\left(g^{-1} g_{i}\right) \cdot X_{i}$. In particular, since $X \subseteq P$, we must have $\left(g^{-1} g_{i}\right) \cdot X_{i} \subseteq P$ for all $1 \leq i \leq n$. Therefore $\left(g^{-1} g_{i}\right) \cdot X_{i}=P \cap\left(\left(g^{-1} g_{i}\right) \cdot X_{i}\right)$ lies in \mathcal{J} by (i). As \mathcal{J} is independent, there exists i such that $X=\left(g^{-1} g_{i}\right) \cdot X_{i}$. Thus $g \cdot X=g_{i} \cdot X_{i}$.

5. Various descriptions of semigroup crossed products by automorphisms

5.1. The full versions

We now turn to full semigroup C^{*}-algebras and full crossed products by automorphisms. We work with the version of full semigroup C^{*}-algebras from [21], Section 3. Recall that P is a subsemigroup of the group G.

Definition 5.1. Let $C_{s}^{*}(P)$ be the universal C^{*}-algebra generated by isometries $\left\{v_{p}: p \in P\right\}$ and projections $\left\{e_{X}: X \in \mathcal{J}\right\}$ satisfying the following relations:
I. $v_{p} v_{q}=v_{p q}$ for all p, q in P,
II. $e_{\emptyset}=0$,
III. whenever $p_{1}, q_{1}, \ldots, p_{n}, q_{n} \in P$ satisfy $p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}=e$ in G, then

$$
v_{p_{1}}^{*} v_{q_{1}} \ldots v_{p_{n}}^{*} v_{q_{n}}=e_{\left[q_{n}^{-1} p_{n} \ldots q_{1}^{-1} p_{1} P\right]} .
$$

We set $D:=C^{*}\left(\left\{e_{X}: X \in \mathcal{J}\right\}\right) \subseteq C_{s}^{*}(P)$.
These relations are satisfied in $C_{r}^{*}(P)$ by [21, Lemma 3.1]. Therefore we obtain a homomorphism, the left regular representation, $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ given by $v_{p} \mapsto V_{p}$ and $e_{X} \mapsto E_{X}$. As observed in [21, Lemma 3.3], the map $\mathcal{J} \ni X \mapsto e_{X} \in C_{s}^{*}(P)$ is a spectral measure, i.e. $e_{P}=1$ and $e_{X_{1} \cap X_{2}}=e_{X_{1}} e_{X_{2}}$.

We now define full crossed products by automorphisms. Let A be a C^{*}-algebra and α a G action on A. In a certain sense, we now form a universal model of the reduced crossed product $A \rtimes_{\alpha, r}^{a} P$.

Definition 5.2. The full crossed product of (A, P, α) is a C^{*}-algebra $A \rtimes_{\alpha, s}^{a} P$ which comes with two homomorphisms $\iota: A \rightarrow A \rtimes_{\alpha, s}^{a} P$ and $\overline{(\cdot)}: C_{s}^{*}(P) \rightarrow M\left(A \rtimes_{\alpha, S}^{a} P\right), x \mapsto \bar{x}$, with $\iota\left(\alpha_{p}(a)\right) \overline{v_{p}}=\overline{v_{p}} \iota(a)$ for all $p \in P, a \in A$, such that the following universal property holds.

Whenever T is a C^{*}-algebra, $\iota^{\prime}: A \rightarrow T$ and $(\cdot)^{\prime}: C_{s}^{*}(P) \rightarrow M(T), x \mapsto x^{\prime}$, are homomorphisms satisfying

$$
\begin{equation*}
\iota^{\prime}\left(\alpha_{p}(a)\right) v_{p}^{\prime}=v_{p}^{\prime} \iota^{\prime}(a) \quad \text { for all } p \in P, a \in A, \tag{5}
\end{equation*}
$$

then there exists a unique homomorphism $\iota^{\prime} \rtimes(\cdot)^{\prime}: A \rtimes_{\alpha, S}^{a} P \rightarrow T$ sending $\iota(a) \bar{x}$ to $\iota^{\prime}(a) x^{\prime}$ for all $a \in A$ and $x \in C_{s}^{*}(P)$.
The existence of $\left(A \rtimes_{\alpha, S}^{a} P, \iota, \overline{(\cdot)}\right)$ follows from the existence of Murphy's crossed product (see [26, Section 1]) and the observation that our construction is - in a canonical way - a quotient of Murphy's. Moreover, it is clear that $\left(A \rtimes_{\alpha, S}^{a} P, \iota, \overline{(\cdot)}\right)$ is unique up to canonical isomorphism.

The homomorphisms $A \rightarrow A \rtimes_{\alpha, r}^{a} P, a \mapsto a_{\left(\left.\alpha\right|_{P}\right)}$ and $C_{s}^{*}(P) \rightarrow M\left(A \rtimes_{\alpha, r}^{a} P\right), x \mapsto$ $I_{\mathcal{H}} \otimes \lambda(x)$ satisfy the covariance relation (5). Thus, by the universal property of $A \rtimes_{\alpha, s}^{a} P$, there exists a homomorphism $\lambda_{(A, P, \alpha)}: A \rtimes_{\alpha, S}^{a} P \rightarrow A \rtimes_{\alpha, r}^{a} P$ sending $\iota(a) \bar{x}$ to $a_{(\alpha \mid P)}\left(I_{\mathcal{H}} \otimes \lambda(x)\right)$.

Of course, in case $A=\mathbb{C}$ we can canonically identify $\mathbb{C} \rtimes_{\mathrm{tr}, S}^{a} P$ with $C_{S}^{*}(P)$ so that $\lambda_{(\mathbb{C}, P, \mathrm{tr})}$ becomes the left regular representation λ.

5.2. Inverse semigroups of partial isometries

Definition 5.3. Let S be the multiplicative subsemigroup of $C_{s}^{*}(P)$ generated by the isometries v_{q} and their adjoints v_{p}^{*}, i.e.

$$
S:=\left\{v_{p_{1}}^{*} v_{q_{1}} \ldots v_{p_{n}}^{*} v_{q_{n}}: n \in \mathbb{Z}_{\geq 0} ; p_{i}, q_{i} \in P\right\} \cup\{0\} \subseteq C_{s}^{*}(P)
$$

Also, in the reduced case, let S_{r} be the corresponding subsemigroup of $C_{r}^{*}(P)$, i.e.

$$
S_{r}:=\left\{V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}: n \in \mathbb{Z}_{\geq 0} ; p_{i}, q_{i} \in P\right\} \cup\{0\}=\lambda(S) \subseteq C_{r}^{*}(P)
$$

It is clear that S and S_{r} are $*$-invariant semigroups of partial isometries with commuting range and source projections, hence inverse semigroups.

Lemma 5.4. The map $g_{r}: S_{r} \backslash\{0\} \rightarrow G, V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}} \mapsto p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}$ is well-defined. For $0 \neq V \in S_{r}, g_{r}(V)$ is determined by the property that for every $x \in P, V \varepsilon_{x} \neq 0 \Rightarrow V \varepsilon_{x}=$ $\varepsilon_{g_{r}(V) x}$. Moreover, we have $g_{r}\left(V^{*}\right)=\left(g_{r}(V)\right)^{-1}$ for $0 \neq V \in S_{r}$ and $g_{r}\left(V_{1} V_{2}\right)=g_{r}\left(V_{1}\right) g_{r}\left(V_{2}\right)$ for V_{1}, V_{2} in S_{r} such that $V_{1} V_{2} \neq 0$.

Proof. For every $0 \neq V \in S_{r}$, we obviously have for every $x \in P$ that $V \varepsilon_{x}$ is either 0 or of the form $\varepsilon_{p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n} x}$ if $V=V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}$.

This lemma allows the following.
Definition 5.5. We set $g:=g_{r} \circ \lambda: S \backslash\{0\} \rightarrow G, v_{p_{1}}^{*} v_{q_{1}} \ldots v_{p_{n}}^{*} v_{q_{n}} \mapsto p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}$.
Lemma 5.6. If \mathcal{J} is independent, then $\lambda: S \rightarrow C_{r}^{*}(P), s \mapsto \lambda(s)$ is injective, or in other words, λ identifies S with S_{r}.

Proof. Take two elements s_{1}, s_{2} from S with $s_{1} \neq s_{2}$, and assume without loss of generality $s_{1} \neq 0$, hence $s_{1}^{*} s_{1} \neq 0$. As $g\left(s_{1}^{*} s_{1}\right)=e, s_{1}^{*} s_{1}$ lies in D by relation III in Definition 5.1. As \mathcal{J} is independent, λ is injective on D by [21, Corollary 3.4]. Thus $\lambda\left(s_{1}^{*} s_{1}\right) \neq 0$, hence also $\lambda\left(s_{1}\right) \neq 0$. So if $s_{2}=0$, we conclude that $\lambda\left(s_{1}\right) \neq \lambda\left(s_{2}\right)$. We may now assume that $s_{1} \neq 0$ and $s_{2} \neq 0$. We start with the case $g\left(s_{1}\right) \neq g\left(s_{2}\right)$. There exists $x \in P$ such that $\lambda\left(s_{1}\right) \varepsilon_{x}=\varepsilon_{g\left(s_{1}\right) x}$. As $\lambda\left(s_{2}\right) \varepsilon_{x}$ is either 0 or equal to $\varepsilon_{g\left(s_{2}\right) x} \neq \varepsilon_{g\left(s_{1}\right) x}$, we have $\lambda\left(s_{1}\right) \neq \lambda\left(s_{2}\right)$. If $g\left(s_{1}\right)=g\left(s_{2}\right)$, then $\left(s_{1}-s_{2}\right)^{*}\left(s_{1}-s_{2}\right)$ lies in D by relation III in Definition 5.1. As λ is injective on $D(\mathcal{J}$ is assumed to be independent) and $s_{1} \neq s_{2}$ by assumption, we conclude that $\lambda\left(\left(s_{1}-s_{2}\right)^{*}\left(s_{1}-s_{2}\right)\right) \neq 0$, hence $\lambda\left(s_{1}-s_{2}\right) \neq 0$.

Remark 5.7. We mention that both S and S_{r} can be identified (up to 0) with the left inverse hull of P (see [32]). This gives a purely algebraic description of these inverse semigroups in terms of P.

5.3. Crossed products by partial automorphisms

Our goal is to describe $A \rtimes_{\alpha, S}^{a} P$ as a crossed product of $A \otimes D$ by S. The reader may consult [35] for the general construction of crossed products associated with partial actions of inverse semigroups.

First of all, it is easy to see that for every $s \in S$, we have an automorphism

$$
\beta_{s}: A \otimes s^{*} D s \rightarrow A \otimes s D s^{*}, \quad a \otimes d \mapsto \alpha_{g(s)}(a) \otimes s d s^{*}
$$

(For $s=0$, we let β_{0} be the zero map $\{0\} \rightarrow\{0\}$.) Moreover, we have $s^{*} D s=s^{*} s s^{*} D s \subseteq$ $s^{*} s D=s^{*} s D s^{*} s \subseteq s^{*} D s$ so that $s^{*} D s=s^{*} s D$ is an ideal of D. In this way, S acts on $A \otimes D$ by partial automorphisms, i.e. we have a semigroup homomorphism $S \rightarrow \operatorname{PAut}(A \otimes D), s \mapsto \beta_{s}$.

Proposition 5.8. We can identify $A \rtimes_{\alpha, S}^{a} P$ and $(A \otimes D) \rtimes_{\beta} S$ by mutually inverse homomorphisms

$$
\begin{array}{ll}
A \rtimes_{\alpha, s}^{a} P \rightarrow(A \otimes D) \rtimes_{\beta} S, & \iota(a) \bar{s} \mapsto\left(a \otimes s s^{*}\right) \delta_{s}, \\
(A \otimes D) \rtimes_{\beta} S \rightarrow A \rtimes_{\alpha, s}^{a} P, & \left(a \otimes s s^{*}\right) \delta_{s} \mapsto \iota(a) \bar{s} .
\end{array}
$$

Proof. We use the universal properties of these two crossed products to show the existence of these homomorphisms. To construct the homomorphism $A \rtimes_{\alpha, S}^{a} P \rightarrow(A \otimes D) \rtimes_{\beta} S$, represent $(A \otimes D) \rtimes_{\beta} S$ faithfully and non-degenerately on a Hilbert space H. Proposition 4.7 in [35] yields representations of $A \otimes D$ and S on H such that (5) is satisfied. By the universal property of $A \rtimes_{\alpha, S}^{a} P$, these representations give rise to the desired homomorphism $A \rtimes_{\alpha, S}^{a} P \rightarrow$ $(A \otimes D) \rtimes_{\beta} S, \iota(a) \bar{s} \mapsto\left(a \otimes s s^{*}\right) \delta_{s}$.

In the reverse direction, the homomorphisms $A \otimes D \rightarrow A \rtimes_{\alpha, S}^{a} P, a \otimes d \mapsto \iota(a) \bar{d}$ and $S \rightarrow M\left(A \rtimes_{\alpha, s}^{a} P\right), s \mapsto \bar{s}$, form a covariant representation of $(A \otimes D, S, \beta)$ in the sense of [35], Definition 3.4 (having represented $A \rtimes_{\alpha, s}^{a} P$ faithfully and non-degenerately on a Hilbert space). Then the universal property of $(A \otimes D) \rtimes_{\beta} S$ (see [35, Proposition 4.8]) gives the desired homomorphism $(A \otimes D) \rtimes_{\beta} S \rightarrow A \rtimes_{\alpha, s}^{a} P$ sending $\left(a \otimes s s^{*}\right) \delta_{s}$ to $\iota(a) \bar{s}$.

Finally, it is immediate that these homomorphisms are mutual inverses.
We can also consider reduced versions. Let us first define the left regular representation of S. Set $S^{\times}=S \backslash\{0\}$ and let $\left\{\varepsilon_{x}: x \in S^{\times}\right\}$be the canonical orthonormal basis of $\ell^{2}\left(S^{\times}\right)$. Define for every $s \in S$ the partial isometry $\lambda_{S}(s)$ on $\ell^{2}\left(S^{\times}\right)$by

$$
\lambda_{S}(s) \varepsilon_{x}= \begin{cases}\varepsilon_{s x} & \text { if } x=s^{*} s x \\ 0 & \text { else }\end{cases}
$$

Moreover, for every $a \in A$, let $a_{\alpha, S}$ be the operator on $\mathcal{H} \otimes \ell^{2}\left(S^{\times}\right)$given by $a_{\alpha, S}\left(\xi \otimes \varepsilon_{x}\right)=$ $\alpha_{g(x)}^{-1}(a) \xi \otimes \varepsilon_{x}$. The homomorphisms $A \otimes D \ni a \otimes s^{*} s \mapsto a_{\alpha, S} \cdot\left(I_{\mathcal{H}} \otimes \lambda_{S}\left(s^{*} s\right)\right) \in \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}\left(S^{\times}\right)\right)$ and $S \ni s \mapsto I_{\mathcal{H}} \otimes \lambda_{S}(s) \in \mathcal{L}\left(\mathcal{H} \otimes \ell^{2}\left(S^{\times}\right)\right)$form a covariant representation of $(A \otimes D, S, \beta)$ in the sense of Definition 3.4 in [35]. So we obtain a representation of $(A \otimes D) \rtimes_{\beta} S$ on $\mathcal{H} \otimes \ell^{2}\left(S^{\times}\right)$. Its image is the sub- C^{*}-algebra of $\mathcal{L}\left(\mathcal{H} \otimes \ell^{2}\left(S^{\times}\right)\right)$generated by $a_{\alpha, S} \cdot\left(I_{\mathcal{H}} \otimes \lambda_{S}(s)\right)(a \in A, s \in S)$, and we denote this C^{*}-algebra by $(A \otimes D) \rtimes_{\beta, r} S$.

Definition 5.9. $(A \otimes D) \rtimes_{\beta, r} S:=C^{*}\left(\left\{a_{\alpha, S} \cdot\left(I_{\mathcal{H}} \otimes \lambda_{S}(s)\right): a \in A, s \in S\right\}\right) \subseteq \mathcal{L}(\mathcal{H} \otimes$ $\ell^{2}\left(S^{\times}\right)$).

Lemma 5.10. There is a canonical homomorphism $(A \otimes D) \rtimes_{\beta, r} S \rightarrow A \rtimes_{\alpha, r}^{a} P$ sending $a_{\alpha, S} \cdot\left(I_{\mathcal{H}} \otimes \lambda_{S}(s)\right)$ to $a_{\left(\left.\alpha\right|_{P}\right)} \lambda(s)$. If \mathcal{J} is independent, then this homomorphism is an isomorphism.

Proof. This is just the analogue of Corollary 3.2.13 and Theorem 3.2.14 from [32] for general coefficients. The same proof as in [32] works here as well.

5.4. Groupoids associated with inverse semigroups

To every inverse semigroup belongs a groupoid. The reader may consult [33], Section 4.3 or [14] for the general construction. Note that all the groupoids in this paper will be r-discrete (also called étale) and Hausdorff. We assume in the rest of this section (Section 5) that \mathcal{J} is independent (see Definition 2.5) and that $P \subseteq G$ satisfies the Toeplitz condition (see Definition 4.1).

Let us now explain how to construct the groupoid for our specific inverse semigroup S. Set $E:=\left\{s^{*} s: s \in S\right\}$, this is the set of idempotents of S. In our case, $E=\left\{e_{X}: X \in \mathcal{J}\right\}$. The unit space of the groupoid of S is given by the semicharacters on E. This unit space can be canonically identified with $\operatorname{Spec} D$. As \mathcal{J} is independent, we can identify D and D_{r} using Corollary 3.4 from [21]. Thus λ induces an identification of $\operatorname{Spec} D$ with $\Omega:=\operatorname{Spec}\left(D_{r}\right)$.

To form the groupoid of S, we take $\hat{S}:=\left\{(s, \chi) \in S \times \Omega: \chi\left(\lambda\left(s^{*} s\right)\right)=1\right\}$ equipped with the subspace topology of $S \times \Omega$. Here S is viewed as a discrete set, and Ω carries the usual topology of pointwise convergence. Next we define an equivalence relation \sim on \hat{S} by setting

$$
\left(s_{1}, \chi_{1}\right) \sim\left(s_{2}, \chi_{2}\right): \Leftrightarrow \chi_{1}=\chi_{2} \text { and there is } e \in E \text { with } \chi_{1}(\lambda(e))=1 \text { and } s_{1} e=s_{2} e .
$$

Then the groupoid of S is defined by $\mathcal{G}(S):=\hat{S} / \sim$ with the quotient topology induced from \hat{S}. We write $[s, \chi]$ for the equivalence class of $(s, \chi) \in \hat{S}$. The groupoid structure of $\mathcal{G}(S)$ is given as follows. First, for $(s, \chi) \in \hat{S}$, let $s \cdot \chi$ be the character $\chi\left(\lambda\left(s^{*} \sqcup s\right)\right)=\chi \circ \operatorname{Ad}\left(\lambda(s)^{*}\right)$. Two elements [$\left.s_{1}, \chi_{1}\right]$ and $\left[s_{2}, \chi_{2}\right]$ of $\mathcal{G}(S)$ are composable if $s_{2} \cdot \chi_{2}=\chi_{1}$, and in that case, the product is given by $\left[s_{1}, \chi_{1}\right]\left[s_{2}, \chi_{2}\right]=\left[s_{1} s_{2}, \chi_{2}\right]$. The inverse map is given by $[s, \chi]^{-1}=\left[s^{*}, s \cdot \chi\right]$. Moreover, the range and source maps are $r: \mathcal{G}(S) \rightarrow \Omega,[s, \chi] \mapsto s \cdot \chi$ and $d: \mathcal{G}(S) \rightarrow \Omega,[s, \chi] \mapsto \chi$.

Let us now compare this groupoid with another one. Namely, we have a canonical transformation groupoid associated with the dynamical system $\left(D_{P}^{G}, G, \tau\right)$ since D_{P}^{G} is commutative. Set $\Omega_{P}^{G}:=\operatorname{Spec}\left(D_{P}^{G}\right)$. The group G acts on Ω_{P}^{G} from the right by $\chi g=\chi \circ \tau_{g}$ (this is just the transpose of τ). The corresponding transformation groupoid is denoted by $\mathcal{G}:=\Omega_{P}^{G} \rtimes G$. As a topological space, \mathcal{G} is simply the product space $\Omega_{P}^{G} \times G$. Two elements $\left(\chi_{1}, g_{1}\right)$ and $\left(\chi_{2}, g_{2}\right)$ are composable if $\chi_{1} g_{1}=\chi_{2}$, and in this case we have $\left(\chi_{1}, g_{1}\right)\left(\chi_{2}, g_{2}\right)=$ $\left(\chi_{1}, g_{1} g_{2}\right)$. The inverse map is given by $(\chi, g)^{-1}=\left(\chi g, g^{-1}\right)$. Furthermore, the range and source maps are given by $r: \mathcal{G} \rightarrow \Omega_{P}^{G},(\chi, g) \mapsto \chi$ and $d: \mathcal{G} \rightarrow \Omega_{P}^{G},(\chi, g) \mapsto \chi g$.

Now we restrict \mathcal{G} to a subset of Ω_{P}^{G}. By our assumption that $P \subseteq G$ is Toeplitz, we know that $D_{r}=E_{P} D_{P}^{G} E_{P}$ by Lemma 3.9. Therefore we can define a surjective homomorphism $c: D_{P}^{G} \rightarrow$ $D_{r}, x \mapsto E_{P} x E_{P}$. This homomorphism induces an embedding $c^{*}: \Omega \rightarrow \Omega_{P}^{G}, \chi \mapsto \chi \circ c$. We set $N:=c^{*}(\Omega)$.

Lemma 5.11. We have $N=\left\{\chi \in \Omega_{P}^{G}: \chi\left(E_{P}\right)=1\right\}$.
Proof. " \subseteq ": $(\chi \circ c)\left(E_{P}\right)=\chi\left(E_{P}\right)=1$ for all $\chi \in \Omega$ as E_{P} is the unit of D_{r}.
$" \supseteq ":$ If $\chi \in \Omega_{P}^{G}$ satisfies $\chi\left(E_{P}\right)=1$, then $\chi(x)=\chi\left(E_{P}\right) \chi(x) \chi\left(E_{P}\right)=(\chi \circ c)(x)$ for all $x \in D_{P}^{G}$. Thus $\chi=\left(\left.\chi\right|_{D_{r}}\right) \circ c \in N$.

Corollary 5.12. N is clopen in Ω_{P}^{G} and $c^{*}: \Omega \rightarrow \Omega_{P}^{G}$ is open.
Proof. The first assertion is immediate from the previous lemma. To see our second claim, observe that $\left.c^{*}\right|^{N}: \Omega \rightarrow N$ is a homeomorphism, being a continuous bijection between compact Hausdorff spaces. Now given an open subset $U \subseteq \Omega, c^{*}(U)$ is open in N, hence also in Ω_{P}^{G} as N is open.

We now form the groupoid

$$
\begin{equation*}
\mathcal{G}_{N}^{N}:=r^{-1}(N) \cap d^{-1}(N) . \tag{6}
\end{equation*}
$$

\mathcal{G}_{N}^{N} inherits from \mathcal{G} the structure of a topological groupoid by taking the subspace topology and restricting the product and the inverse map.

The next observation tells us that restricting to N does not lead so far away.
Lemma 5.13. N meets every orbit in $\mathcal{G}^{(0)}$, i.e. for every $\chi \in \mathcal{G}^{(0)}=\Omega_{P}^{G}$, there exists $g \in G$ such that $d(\chi, g)$ lies in N. Moreover, the restricted range and source maps $\left.r\right|_{d^{-1}(N)}: d^{-1}(N) \rightarrow \Omega_{P}^{G}$ and $\left.d\right|_{d^{-1}(N)}: d^{-1}(N) \rightarrow N$ are open.

Proof. For every $\chi \in \Omega_{P}^{G}$ there exists $Y \in \mathcal{J}_{P}^{G}$ such that $\chi\left(E_{Y}\right)=1$. This subset Y of G must be of the form $Y=\bigcap_{i=1}^{n} g_{i} \cdot X_{i}$ for some $n \geq 1, g_{i} \in G$ and $X_{i} \in \mathcal{J}$. Thus $\chi\left(E_{Y}\right)=1$ implies $\chi\left(E_{g_{1} \cdot X_{1}}\right)=1$, hence $\left(\chi g_{1}\right)\left(E_{X_{1}}\right)=1$. As $E_{X_{1}} \leq E_{P}$, we conclude that $\left(\chi g_{1}\right)\left(E_{P}\right)=1$, which means that $d\left(\chi, g_{1}\right)=\chi g_{1}$ lies in N by Lemma 5.11.

To see that the restricted range and source maps are open, take an open subset U of \mathcal{G}. Then $r\left(U \cap d^{-1}(N)\right)$ is open as U and $d^{-1}(N)$ are open (recall that N is open) and r is an open map from \mathcal{G} to $\mathcal{G}^{(0)}$. Also, $d\left(U \cap d^{-1}(N)\right)=d(U) \cap N$ is open in N as U is open and d is an open map $\mathcal{G} \rightarrow \mathcal{G}^{(0)}$.

Setting $\mathcal{G}_{N}:=d^{-1}(N)$, we have the following.
Corollary 5.14. \mathcal{G}_{N} together with the restricted range and source maps and the left \mathcal{G}-action and the right \mathcal{G}_{N}^{N}-action induced by the product in \mathcal{G} is a $\left(\mathcal{G}, \mathcal{G}_{N}^{N}\right)$-equivalence in the sense of [23].

Proof. This follows from the previous lemma using Example 2.7 in [23].
Now we return to the groupoid $\mathcal{G}(S)$ and compare it with \mathcal{G}_{N}^{N}.
Proposition 5.15. Under our standing assumptions that \mathcal{J} is independent and $P \subseteq G$ is Toeplitz, we can identify $\mathcal{G}(S)$ with \mathcal{G}_{N}^{N} as topological groupoids via

$$
\Phi: \mathcal{G}(S) \rightarrow \mathcal{G}_{N}^{N}, \quad[s, \chi] \mapsto\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right) .
$$

Proof. First of all, Φ is well-defined: namely, $\left(s_{1}, \chi\right) \sim\left(s_{2}, \chi\right)$ implies that there exists $X \in \mathcal{J}$ such that $\chi\left(E_{X}\right)=1$ and $s_{1} e_{X}=s_{2} e_{X}$. Thus $\chi\left(\lambda\left(e_{X} s_{1}^{*} s_{1} e_{X}\right)\right)=1$, and we conclude that $s_{1} e_{X}=s_{2} e_{X}$ is not zero. Using Lemma 5.4, we see that $g\left(s_{1}\right)=g\left(s_{1} e_{X}\right)=g\left(s_{2} e_{X}\right)=g\left(s_{2}\right)$. Therefore, $\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)$ really only depends on the equivalence class of $(s, \chi) \in \hat{S}$.

To see that $\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)$ lies in \mathcal{G}_{N}^{N}, we have to check that the range and source of $\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)$ lie in N. For the source this is obvious. To see that $r\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)=$ $\left(c^{*} \chi\right) g(s)^{-1}$ lies in N, we show

$$
\begin{equation*}
c^{*}(s \cdot \chi)=\left(c^{*} \chi\right) g(s)^{-1} \quad \text { for all }(s, \chi) \in \hat{S} . \tag{7}
\end{equation*}
$$

Write $s=v_{p_{1}}^{*} v_{q_{1}} \ldots v_{p_{n}}^{*} v_{q_{n}}$. For Y in \mathcal{J}_{P}^{G}, we compute that $\lambda\left(s^{*}\right) E_{P} E_{Y} E_{P} \lambda(s)=$ $E_{q_{n}^{-1} p_{n} \ldots q_{1}^{-1} p_{1}(Y \cap P)}=\stackrel{p_{n}}{\left(g(s)^{-1} . Y\right) \cap P} E_{q_{n}^{-1} p_{n} \ldots q_{1}^{-1} p_{1} P}$. Thus we deduce $c^{*}(s \cdot \chi)\left(E_{Y}\right)=$ $\chi\left(\lambda\left(s^{*}\right) E_{P} E_{Y} E_{P} \lambda(s)\right)=\chi\left(E_{P} \tau_{g(s)^{-1}}\left(E_{Y}\right) E_{P}\right) \chi\left(\lambda\left(s^{*} s\right)\right)=\left(\left(c^{*} \chi\right) g(s)^{-1}\right)\left(E_{Y}\right)$. This proves (7).

It is clear that (7) implies $\left(c^{*} \chi\right) g(s)^{-1} \in N$. So far, we have shown that Φ is well-defined.

To show that Φ is injective, take $\left[s_{1}, \chi_{1}\right]$ and $\left[s_{2}, \chi_{2}\right]$ from $\mathcal{G}(S)$. Assume that $\Phi\left(\left[s_{1}, \chi_{1}\right]\right)=$ $\Phi\left(\left[s_{2}, \chi_{2}\right]\right)=(\chi, g)$. Then we must have $g\left(s_{1}\right)=g\left(s_{2}\right)=g$. Moreover, $c^{*} \chi_{1}$ and $c^{*} \chi_{2}$ must coincide with χg. The equality $c^{*} \chi_{1}=c^{*} \chi_{2}$ implies $\chi_{1}=\chi_{2}$ as c^{*} is injective. Finally, to prove $\left[s_{1}, \chi_{1}\right]=\left[s_{2}, \chi_{2}\right]$, we observe that $(\chi g)\left(\lambda\left(s_{1}^{*} s_{1}\right)\right)=(\chi g)\left(\lambda\left(s_{2}^{*} s_{2}\right)\right)=1$ implies $(\chi g)\left(\lambda\left(s_{1}^{*} s_{1} s_{2}^{*} s_{2}\right)\right)=1$. Now set $e:=s_{1}^{*} s_{1} s_{2}^{*} s_{2}$. This projection e is of the form $e=e_{X}$ for some $X \in \mathcal{J}$. We now claim that $\lambda\left(s_{1} e\right)=\lambda\left(s_{2} e\right)$. First of all, we have $\lambda(e)=E_{X}$. For $x \in X, \lambda\left(s_{1} e\right) \varepsilon_{x}=\varepsilon_{g x}$ as e is dominated by the support projection $s_{1}^{*} s_{1}$ of s_{1}. Similarly, $\lambda\left(s_{2} e\right) \varepsilon_{x}=\varepsilon_{g x}$ for all $x \in X$. Since we clearly have $\lambda\left(s_{1} e\right) \varepsilon_{y}=\lambda\left(s_{2} e\right) \varepsilon_{y}=0$ for $y \notin X$, we have shown $\lambda\left(s_{1} e\right)=\lambda\left(s_{2} e\right)$. But λ is injective on S by Lemma 5.6, so that $s_{1} e=s_{2} e$. Hence by definition of the equivalence relation on \hat{S}, we conclude that $\left[s_{1}, \chi_{1}\right]=\left[s_{2}, \chi_{2}\right]$.

To prove surjectivity of Φ, take $(\chi, g) \in \mathcal{G}_{N}^{N} . r(\chi, g)=\chi \in N$ and $d(\chi, g)=\chi g \in N$ imply that $\chi\left(E_{P \cap(g . P)}\right)=\chi\left(E_{P}\right)(\chi g)\left(E_{P}\right)=1$. As $P \subseteq G$ is Toeplitz, there exists $s \in S$ such that $E_{P} \lambda_{g} E_{P}=\lambda(s)$. Thus $(\chi g)\left(\lambda\left(s^{*} s\right)\right)=\chi\left(\tau_{g}\left(E_{P} \lambda_{g^{-1}} E_{P} \lambda_{g} E_{P}\right)\right)=\chi\left(\tau_{g}\left(E_{\left(g^{-1} \cdot P\right) \cap P}\right)\right)=$ $\chi\left(E_{P \cap(g . P)}\right)=1$. Thus $\left(s,\left.(\chi g)\right|_{D_{r}}\right)$ lies in \hat{S}. Since $g(s)=g$, we obtain $\Phi\left(\left[s,\left.(\chi g)\right|_{D_{r}}\right]\right)=$ $\left(c^{*}\left(\left.(\chi g)\right|_{D_{r}}\right) g^{-1}, g\right)=(\chi, g)$.

Let us now prove that Φ is compatible with the groupoid structures. [$\left.s_{1}, \chi_{1}\right]$ and $\left[s_{2}, \chi_{2}\right]$ are composable if and only if

$$
\begin{align*}
s_{2} \cdot \chi_{2} & =\chi_{1} \Leftrightarrow c^{*} \chi_{1}=c^{*}\left(s_{2} \cdot \chi_{2}\right) \stackrel{(7)}{=}\left(c^{*} \chi_{2}\right) g\left(s_{2}\right)^{-1} \\
& \Leftrightarrow\left(\left(c^{*} \chi_{1}\right) g\left(s_{1}\right)^{-1}\right) g\left(s_{1}\right)=\left(c^{*} \chi_{2}\right) g\left(s_{2}\right)^{-1} . \tag{8}
\end{align*}
$$

But this last equation is precisely the condition for composability of $\Phi\left(\left[s_{1}, \chi_{1}\right]\right)=$ $\left(\left(c^{*} \chi_{1}\right) g\left(s_{1}\right)^{-1}, g\left(s_{1}\right)\right)$ and $\Phi\left(\left[s_{2}, \chi_{2}\right]\right)=\left(\left(c^{*} \chi_{2}\right) g\left(s_{2}\right)^{-1}, g\left(s_{2}\right)\right)$. If (8) is satisfied, then

$$
\begin{aligned}
\Phi\left(\left[s_{1}, \chi_{1}\right]\left[s_{2}, \chi_{2}\right]\right) & =\Phi\left(\left[s_{1} s_{2}, \chi_{2}\right]\right) \\
& =\left(\left(c^{*} \chi_{2}\right) g\left(s_{1} s_{2}\right)^{-1}, g\left(s_{1} s_{2}\right)\right) \\
& =\left(\left(c^{*} \chi_{2}\right) g\left(s_{2}\right)^{-1} g\left(s_{1}\right)^{-1}, g\left(s_{1}\right) g\left(s_{2}\right)\right) \\
& \stackrel{(8)}{=}\left(\left(c^{*} \chi_{1}\right) g\left(s_{1}\right)^{-1}, g\left(s_{1}\right) g\left(s_{2}\right)\right) \\
& =\left(\left(c^{*} \chi_{1}\right) g\left(s_{1}\right)^{-1}, g\left(s_{1}\right)\right)\left(\left(c^{*} \chi_{2}\right) g\left(s_{2}\right)^{-1}, g\left(s_{2}\right)\right) \\
& =\Phi\left(\left[s_{1}, \chi_{1}\right]\right) \Phi\left(\left[s_{2}, \chi_{2}\right]\right) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\Phi\left([s, \chi]^{-1}\right) & =\Phi\left(\left[s^{*}, s \cdot \chi\right]\right)=\left(c^{*}(s \cdot \chi) g\left(s^{*}\right)^{-1}, g\left(s^{*}\right)\right) \\
& \stackrel{(7)}{=}\left(\left(c^{*} \chi\right) g(s)^{-1} g(s), g(s)^{-1}\right)=\left(c^{*} \chi, g(s)^{-1}\right) \\
& =\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)^{-1}=(\Phi([s, \chi]))^{-1}
\end{aligned}
$$

Finally, Φ is continuous by definition of the quotient topology as $\hat{S} \rightarrow \mathcal{G}_{N}^{N},(s, \chi) \mapsto$ $\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)$ is continuous. In addition, Φ is open as well. Namely, let $\pi: \hat{S} \rightarrow \mathcal{G}(S)$ be the canonical projection, and take an open subset U of $\mathcal{G}(S)$. Then $\pi^{-1}(U)$ is open in \hat{S}. As $\hat{S}=\bigcup_{s \in S}\{s\} \times \Omega$, we must have that $\pi^{-1}(U) \cap(\{s\} \times \Omega)$ is open for every $s \in S$. In other words, for every s in S there exists an open subset U_{s} of Ω such that $\pi^{-1}(U)=\bigcup_{s \in S}\{s\} \times U_{s}$. Hence $\Phi(U)=\bigcup_{s \in S}\left(c^{*}\left(U_{s}\right) g(s)^{-1}\right) \times\{g(s)\}$ is open in \mathcal{G} as c^{*} is open by Corollary 5.12.

Remark 5.16. In particular, Proposition 5.15 shows that $\mathcal{G}(S)$ is Hausdorff.

5.5. Groupoid crossed products

We follow [34,15] and describe $(A \otimes D) \rtimes_{\beta} S$ as a groupoid crossed product by $\mathcal{G}(S)$.
First of all, we think of S as a subsemigroup of $\mathcal{G}(S)^{\text {op }}$, the inverse semigroup of open $\mathcal{G}(S)$ sets, via the embedding

$$
S \rightarrow \mathcal{G}(S)^{\mathrm{op}}, \quad s \mapsto O_{s}:=\pi\left(\{s\} \times\left\{\chi \in \Omega: \chi\left(\lambda\left(s^{*} s\right)\right)=1\right\}\right)
$$

where π is the canonical projection $\pi: \hat{S} \rightarrow \mathcal{G}(S)$. This embedding is explained in [15], directly after Theorem 6.5.

Let us now define a groupoid dynamical system $(A \times \Omega, \mathcal{G}(S), \alpha(S))$ in the sense of [24, Section 4.1]. We let $A \times \Omega$ be the trivial C^{*}-bundle over Ω with constant fibres A. Consider for every $[s, \chi] \in \mathcal{G}(S)$ the automorphism

$$
\alpha(S)_{[s, \chi]}: A \times\{\chi\} \rightarrow A \times\{s \cdot \chi\}, \quad(a, \chi) \mapsto\left(\alpha_{g(s)}(a), s \cdot \chi\right)
$$

It is straightforward to check that this family $\left(\alpha(S)_{[s, \chi]}\right)_{[s, \chi] \in \mathcal{G}(S)}$ gives rise to the desired groupoid dynamical system in the sense of [24, Section 4.1]. Moreover, it is also easy to see that the dynamical systems $(A \otimes D, S, \beta)$ and ($A \times \Omega, \mathcal{G}(S), \alpha(S)$) correspond to one another in the sense of [34, Theorem 5.3]. In such a situation, we may apply Theorem 7.2 of [34] and deduce the following.

Proposition 5.17. The map $\left(a \otimes s d s^{*}\right) \delta_{s} \mapsto\left[[t, \psi] \mapsto\left\{\begin{array}{l}\psi(\lambda(d)) a \text { if }[t, \psi] \in O_{s} \\ 0 \text { else }\end{array}\right]\right.$ extends to an isomorphism $(A \otimes D) \rtimes_{\beta} S \cong(A \times \Omega) \rtimes_{\alpha(S)} \mathcal{G}(\bar{S})$.

To proceed, we describe the full and reduced crossed products of ($A \otimes D_{P}^{G}, G, \alpha \otimes \tau$) as groupoid crossed products. We just have to follow Example 4.8 in [24] and Section 6 of [36].

The action of the transformation groupoid $\mathcal{G}=\Omega_{P}^{G} \rtimes G$ on the trivial C^{*}-bundle $A \times \Omega_{P}^{G}$ over Ω_{P}^{G} is given by the automorphisms $\left(\alpha \times \Omega_{P}^{G}\right)_{(\chi, g)}: A \times\{\chi g\} \rightarrow A \times\{\chi\},(a, \chi g) \mapsto\left(\alpha_{g}(a), \chi\right)$. Identifying $A \otimes D_{P}^{G}$ with $C_{0}\left(\Omega_{P}^{G}, A\right)$ in the canonical way, we obtain from Example 4.8 in [24] and Section 6 of [36] the following.

Proposition 5.18. The map $C_{c}\left(G, A \otimes D_{P}^{G}\right) \ni f \mapsto[(\chi, g) \mapsto f(g)(\chi)] \in\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}$ extends to an isomorphism $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau} G \cong\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}$.

Similarly, the map $C_{c}\left(G, A \otimes D_{P}^{G}\right) \ni f \mapsto[(\chi, g) \mapsto f(g)(\chi)] \in\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}$ extends to an isomorphism $\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G \cong\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}$.

Let us now restrict the \mathcal{G}-action $\alpha \times \Omega_{P}^{G}$ to \mathcal{G}_{N}^{N}. We obtain an action $\alpha \times N$ of \mathcal{G}_{N}^{N} on the sub-C^{*}-bundle $A \times N$ (i.e. just the trivial C^{*}-bundle over N with constant fibres A). The following observation links the two groupoid dynamical systems we are considering.

Lemma 5.19. The dynamical systems $(A \times \Omega, \mathcal{G}(S), \alpha(S))$ and $\left(A \times N, \mathcal{G}_{N}^{N}, \alpha \times N\right)$ are isomorphic. More precisely, the identifications id $\times c^{*}: A \times \Omega \cong A \times N$ and $\Phi: \mathcal{G}(S) \rightarrow$ $\mathcal{G}_{N}^{N},[s, \chi] \mapsto\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)$ transport the action $\alpha(S)$ to $\alpha \times N$, in the sense that for every $[s, \chi] \in \mathcal{G}(S)$ and $(a, \chi) \in A \times \Omega$, we have $(\alpha \times N)_{\Phi([s, \chi])}\left(\left(\mathrm{id} \times c^{*}\right)(a, \chi)\right)=$ $\left(\mathrm{id} \times c^{*}\right)\left(\alpha(S)_{[s, \chi]}(a, \chi)\right)$.

Proof. We just have to compute that

$$
\begin{aligned}
(\alpha \times N)_{\Phi([s, \chi])}\left(\left(\operatorname{id} \times c^{*}\right)(a, \chi)\right) & =(\alpha \times N)_{\left(\left(c^{*} \chi\right) g(s)^{-1}, g(s)\right)}\left(a, c^{*} \chi\right) \\
& =\left(\alpha_{g(s)}(a),\left(c^{*} \chi\right) g(s)^{-1}\right) \stackrel{(7)}{=}\left(\alpha_{g(s)}(a), c^{*}(s \cdot \chi)\right) \\
& =\left(\operatorname{id} \times c^{*}\right)\left(\alpha_{g(s)}(a), s \cdot \chi\right) \\
& =\left(\operatorname{id} \times c^{*}\right)\left(\alpha(S)_{[s, \chi]}(a, \chi)\right) .
\end{aligned}
$$

Corollary 5.20. The map $C_{c}(\mathcal{G}(S), A) \ni f \mapsto f \circ \Phi^{-1} \in C_{c}\left(\mathcal{G}_{N}^{N}, A\right)$ extends to isomorphisms

$$
\begin{aligned}
& (A \times \Omega) \rtimes_{\alpha(S)} \mathcal{G}(S) \xrightarrow{\cong}(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}, \\
& (A \times \Omega) \rtimes_{\alpha(S), r} \mathcal{G}(S) \xrightarrow{\cong}(A \times N) \rtimes_{\alpha \times N, r} \mathcal{G}_{N}^{N} .
\end{aligned}
$$

We now want to see that the $\left(\mathcal{G}, \mathcal{G}_{N}^{N}\right)$-equivalence \mathcal{G}_{N} of Corollary 5.14 gives rise to an equivalence between $\left(A \times \Omega_{P}^{G}, \mathcal{G}, \alpha \times \Omega_{P}^{G}\right)$ and $\left(A \times N, \mathcal{G}_{N}^{N}, \alpha \times N\right)$.

Lemma 5.21. Equip the trivial Banach-bundle $A \times \mathcal{G}_{N}$ with the fibrewise imprimitivity bimodule structure given by the inner products

$$
\begin{aligned}
& A \times\{r(\gamma)\}\left\langle\left(a_{1}, \gamma\right),\left(a_{2}, \gamma\right)\right\rangle=\left(a_{1} a_{2}^{*}, r(\gamma)\right) \in A \times \Omega_{P}^{G}, \\
& \left\langle\left(a_{1},(\chi, g)\right),\left(a_{2},(\chi, g)\right)\right\rangle_{A \times\{d(\gamma)\}}=\left(\alpha_{g}^{-1}\left(a_{1}^{*} a_{2}\right), \chi g\right) \in A \times N
\end{aligned}
$$

and the left and right actions

$$
\begin{aligned}
& \left(a_{l}, r(\gamma)\right) \cdot(a, \gamma)=\left(a_{l} a, \gamma\right) \quad \text { for }\left(a_{l}, r(\gamma)\right) \in A \times \Omega_{P}^{G}, \\
& (a,(\chi, g)) \cdot\left(a_{r}, \chi g\right)=\left(a \alpha_{g}\left(a_{r}\right),(\chi, g)\right) \quad \text { for }\left(a_{r}, \chi g\right) \in A \times N .
\end{aligned}
$$

Moreover, let \mathcal{G} act from the left on $A \times \mathcal{G}_{N}$ by $\left(\chi_{l}, g_{l}\right) \cdot(a, \gamma)=\left(\alpha_{g_{l}}(a),\left(\chi_{l}, g_{l}\right) \gamma\right)$ and let \mathcal{G}_{N}^{N} act from the right on $A \times \mathcal{G}_{N}$ by $(a, \gamma) \cdot \gamma_{r}=\left(a, \gamma \gamma_{r}\right)$.

Then in this way, $A \times \mathcal{G}_{N}$ becomes an equivalence between $\left(A \times \Omega_{P}^{G}, \mathcal{G}, \alpha \times \Omega_{P}^{G}\right)$ and $\left(A \times N, \mathcal{G}_{N}^{N}, \alpha \times N\right)$ in the sense of Definition 5.1 in [24].

Proof. Just verify by straightforward computations that the axioms for an equivalence in Definition 5.1 from [24] are satisfied.

The reason why this is interesting for us is the following consequence of Theorem 5.5 in [24] and Corollary 19 from [36].

Lemma 5.22. The canonical inclusion $C_{c}\left(\mathcal{G}_{N}^{N}, A\right) \hookrightarrow C_{c}(\mathcal{G}, A)$ extends to (isometric!) embeddings

$$
\begin{aligned}
& (A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N} \hookrightarrow\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G} \\
& (A \times N) \rtimes_{\alpha \times N, r} \mathcal{G}_{N}^{N} \hookrightarrow\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}
\end{aligned}
$$

Proof. As N is clopen, \mathcal{G}_{N}^{N} is a clopen subset of \mathcal{G}, so that we really have $C_{c}\left(\mathcal{G}_{N}^{N}, A\right) \subseteq C_{c}(\mathcal{G}, A)$. As \mathcal{G}_{N} is clopen as well, we actually have $C_{c}\left(\mathcal{G}_{N}^{N}, A\right) \subseteq C_{c}\left(\mathcal{G}_{N}, A\right) \subseteq C_{c}(\mathcal{G}, A)$.

Let us first treat the full crossed products. Take a function $f \in C_{c}\left(\mathcal{G}_{N}^{N}, A\right)$. All we have to show is that

$$
\begin{equation*}
\|f\|_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}}=\|f\|_{\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}} . \tag{9}
\end{equation*}
$$

We denote by $*$ the convolution product in $\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}$, and observe that its restriction to $C_{c}\left(\mathcal{G}_{N}^{N}, A\right)$ coincides with the convolution product coming from $(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}$. We certainly have

$$
\begin{align*}
& \|f\|_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}}^{2}=\left\|f^{*} * f\right\|_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}}, \\
& \|f\|_{\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}}^{2}=\left\|f * f^{*}\right\|_{\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}} . \tag{10}
\end{align*}
$$

But now comes the crucial observation, namely that

$$
\begin{equation*}
f_{1}^{*} * f_{2}=\left\langle\left\langle f_{1}, f_{2}\right\rangle\right\rangle_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}} \quad \text { and } \quad f_{1} * f_{2}^{*}={ }_{\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}}\left\langle\left\langle f_{1}, f_{2}\right\rangle\right\rangle \tag{11}
\end{equation*}
$$

for all f_{1}, f_{2} in $C_{c}\left(\mathcal{G}_{N}, A\right)$. Here $\langle\langle\cdot, \cdot\rangle\rangle$ are the inner products defined in Theorem 5.5 in [24]. The verification of (11) is a straightforward computation. In particular, we have for our function f

$$
\begin{equation*}
f^{*} * f=\langle\langle f, f\rangle\rangle_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}} \quad \text { and } \quad f * f^{*}={ }_{\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}}\langle\langle f, f\rangle\rangle . \tag{12}
\end{equation*}
$$

By Theorem 5.5 in [24], $C_{c}\left(\mathcal{G}_{N}, A\right)$ is a $\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}-(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}$ pre-imprimitivity bimodule. Therefore, we conclude that

$$
\begin{equation*}
\left.\left\|\langle\langle f, f\rangle\rangle_{(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}}\right\|=\|\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}\langle f, f\rangle\right\rangle \|, \tag{13}
\end{equation*}
$$

where we take the norm in $(A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N}$ on the left hand side and the norm in ($A \times$ $\left.\Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}$ on the right hand side. Inserting (12) and (10) into (13), we obtain (9), as desired.

To treat reduced crossed products, just use Theorem 14 or rather Corollary 19 of [36] instead of Theorem 5.5 in [24].

Corollary 5.23. The inclusion $C_{c}\left(\mathcal{G}_{N}^{N}, A\right) \hookrightarrow C_{c}(\mathcal{G}, A)$ extends to isomorphisms

$$
\begin{aligned}
& (A \times N) \rtimes_{\alpha \times N} \mathcal{G}_{N}^{N} \cong \mathbb{1}_{N}\left(\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}\right) \mathbb{1}_{N} \\
& (A \times N) \rtimes_{\alpha \times N, r} \mathcal{G}_{N}^{N} \cong \mathbb{1}_{N}\left(\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}\right) \mathbb{1}_{N}
\end{aligned}
$$

Here $\mathbb{1}_{N}$ is the characteristic function of $N \subseteq \mathcal{G}$, viewed in a canonical way as a multiplier of $\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}$ and $\left(A \times \bar{\Omega}_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}$, respectively. Moreover, $\mathbb{1}_{N}\left(\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G}\right) \mathbb{1}_{N}$ and $\mathbb{1}_{N}\left(\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G}\right) \mathbb{1}_{N}$ are full corners in the corresponding full and reduced crossed products.

Proof. It is easy to see that $C_{c}\left(\mathcal{G}_{N}^{N}, A\right)=\mathbb{1}_{N} * C_{c}(\mathcal{G}, A) * \mathbb{1}_{N}$. Thus the first part of the corollary follows from the previous lemma. We also have $C_{c}\left(\mathcal{G}_{N}, A\right)=C_{c}(\mathcal{G}, A) * \mathbb{1}_{N}$. Using this observation and also (11) from the proof of the previous lemma, the second part of our assertion follows from [24, Theorem 5.5] in the case of full crossed products and from [36, Corollary 19] in the reduced case.

Let us summarize what we have obtained so far.

Theorem 5.24. Let P be a subsemigroup of a group G. Assume that \mathcal{J} is independent (see Definition 2.5) and that $P \subseteq G$ satisfies the Toeplitz condition from Definition 4.1. Then the following diagram commutes:

Moreover, $\mathbb{1}_{N}$ and $1 \otimes E_{P}$ give rise to full corners in the full and reduced crossed products associated with $\left(A \times \Omega_{P}^{G}, \mathcal{G}, \alpha \times \Omega_{P}^{G}\right)$ and $\left(A \otimes D_{P}^{G}, G, \alpha \otimes \tau\right)$.

And finally, the square at the bottom of diagram (14) is obtained by restricting the commutative diagram

$$
\begin{array}{ccc}
\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}} \mathcal{G} & \longrightarrow\left(A \times \Omega_{P}^{G}\right) \rtimes_{\alpha \times \Omega_{P}^{G}, r} \mathcal{G} \\
\vdots \cong & \cong \downarrow \tag{15}\\
\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau} G & \longrightarrow\left(A \otimes D_{P}^{G}\right) \rtimes_{\alpha \otimes \tau, r} G
\end{array} .
$$

In all these diagrams, the horizontal arrows are given by the canonical projections (the regular representations), and the vertical maps are the isomorphisms we have explicitly constructed before.

Proof. We just have to collect what we have proven. The first commuting square from the top is given by Proposition 5.8 and Lemma 5.10. Proposition 5.17 tells us that on the left hand side, the second vertical arrow from the top is an isomorphism. The third square and its commutativity are provided by Corollary 5.20. The fourth square and its commutativity are given by Corollary 5.23. And Proposition 5.18 gives the square at the bottom of (14) and that it is the restriction of the commutative diagram (15). Using Corollary 3.10, we can fill in the vertical arrow on the right hand side of the second square so that it commutes as well. That $\mathbb{1}_{N}$ gives rise to full corners is shown in Corollary 5.23, and it corresponds to $1 \otimes E_{P}$ under the isomorphism from Proposition 5.18. This completes the proof.

6. Nuclearity

Using our results from the previous section, we obtain equivalent characterizations for nuclearity of semigroup C^{*}-algebras.

Theorem 6.1. Let P be a subsemigroup of a group G. Assume that \mathcal{J} is independent (see Definition 2.5) and that $P \subseteq G$ satisfies the Toeplitz condition from Definition 4.1. Then the following are equivalent.
(i) $C_{s}^{*}(P)$ is nuclear.
(ii) $C_{r}^{*}(P)$ is nuclear.
(iii) Whenever given a G-action α on a C^{*}-algebra A, the canonical homomorphism $\lambda_{(A, P, \alpha)}$: $A \rtimes_{\alpha, s}^{a} P \rightarrow A \rtimes_{\alpha, r}^{a} P$ is an isomorphism.
(iv) The groupoid \mathcal{G}_{N}^{N} is amenable.
(v) The groupoid \mathcal{G} is amenable.

Here \mathcal{G} is the transformation groupoid $\Omega_{P}^{G} \rtimes G$ from Section 5.4, and the groupoid \mathcal{G}_{N}^{N} is the restriction of \mathcal{G} also introduced in Section 5.4.

Of course, amenability of \mathcal{G} just means that G acts amenably on Ω_{P}^{G}.
Proof. We prove "(ii) \Leftrightarrow (iv) \Leftrightarrow (v)" and "(iv) \Rightarrow (iii) \Rightarrow (i) \Rightarrow (ii)".
To see "(ii) \Leftrightarrow (iv)", plug in $A=\mathbb{C}$ in diagram (14). Moreover, using that $(\mathbb{C} \times N) \rtimes_{\operatorname{tr} \times N, r} \mathcal{G}_{N}^{N}$ is canonically isomorphic to the reduced groupoid C^{*}-algebra $C_{r}^{*}\left(\mathcal{G}_{N}^{N}\right)$ by Example 10 in [36], we see that $C_{r}^{*}(P) \cong C_{r}^{*}\left(\mathcal{G}_{N}^{N}\right)$. Since \mathcal{G}_{N}^{N} is an r-discrete (also called étale) groupoid, it is known that $C_{r}^{*}\left(\mathcal{G}_{N}^{N}\right)$ is nuclear if and only if \mathcal{G}_{N}^{N} is amenable (see for instance [4, Chapter 5, Theorem 6.18]).

For "(iv) $\Leftrightarrow(\mathrm{v})$ ", recall that we have proven that \mathcal{G} is equivalent to \mathcal{G}_{N}^{N} in Corollary 5.14. As amenability is invariant under equivalences of groupoids by Theorem 2.2.17 in [1], we have proven "(iv) \Leftrightarrow (v)".

To see "(iv) \Rightarrow (iii)", note that amenability of \mathcal{G}_{N}^{N} implies that the fourth (counted from the top) horizontal map in diagram (14) is an isomorphism by [1, Proposition 6.1.10]. By commutativity of (14), we deduce that $\lambda_{(A, P, \alpha)}$ must be an isomorphism.

For "(iii) \Rightarrow (i)", first apply (iii) to $A=\mathbb{C}$ to deduce that $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ is an isomorphism. Now use an argument as in the proof of Theorem 4.3, 3 $\Rightarrow 4$ in [4], Chapter 4: by the definition of semigroup crossed products by automorphisms, it is easily seen that for trivial actions, we can canonically identify $A \rtimes_{\mathrm{tr}, s}^{a} P$ with $A \otimes_{\max } C_{s}^{*}(P)$ and $A \rtimes_{\mathrm{tr}, r}^{a} P$ with $A \otimes_{\min } C_{r}^{*}(P) \stackrel{\text { id } \otimes_{\min } \lambda^{-1}}{\cong} A \otimes_{\min } C_{s}^{*}(P)$ such that the diagram

$$
\begin{array}{ccc}
A \rtimes_{\mathrm{tr}, S}^{a} P & \xrightarrow{\lambda_{(A, P, \alpha)}} & A \rtimes_{\mathrm{tr}, r}^{a} P \\
\downarrow \cong & \cong \\
A \otimes_{\max } C_{S}^{*}(P) & \longrightarrow & A \otimes_{\min } C_{S}^{*}(P)
\end{array}
$$

commutes. The horizontal map at the bottom is the canonical homomorphism, and it must be an isomorphism since $\lambda_{(A, P, \alpha)}$ is one by (iii). This means that $C_{s}^{*}(P)$ is nuclear.

Finally, to go from (i) to (ii), just observe that $C_{r}^{*}(P)$ is a quotient of $C_{s}^{*}(P)$ and apply [3, Corollary IV.3.1.13].

Remark 6.2. In particular, we see that in the situation of Theorem 6.1, nuclearity of $C_{s}^{*}(P)$ (or $C_{r}^{*}(P)$) implies that the left regular representation $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ is faithful.

Remark 6.3. It certainly suffices to consider unital A in (iii) of Theorem 6.1.
For later purposes, we derive the following consequence.
Corollary 6.4. Let P be a subsemigroup of a group G. Assume that \mathcal{J} is independent and that $P \subseteq G$ satisfies the Toeplitz condition. If $C_{r}^{*}(P)$ is nuclear, then there exists a net of completely positive contractions $\Theta_{i}: C_{r}^{*}(P) \rightarrow C_{r}^{*}(P)$ such that

1. $\lim _{i} \Theta_{i}(x)=x$ for all $x \in C_{r}^{*}(P)$,
2. for every i there is a finitely supported function $d_{i}: G \rightarrow D_{r}, g \mapsto d_{i}(g)$ such that $\Theta_{i}(V)=d_{i}\left(g_{r}(V)\right) V$ for all $0 \neq V \in S_{r}$.
(S_{r} and g_{r} were introduced in Section 5.2 and Lemma 5.4.)
Proof. As $C_{r}^{*}(P)$ is nuclear, $\mathcal{G}=\Omega_{P}^{G} \rtimes G$ is amenable by the previous theorem. Thus combining Theorem 6.18 and Proposition 6.16 from Chapter 5 in [4], we obtain a net $h_{i} \in C_{c}(\mathcal{G})$ such that $h_{i} \longrightarrow_{i} 1$ uniformly on compact subsets and $C_{c}(\mathcal{G}) \ni f \mapsto h_{i} \cdot f \in C_{c}(\mathcal{G})$ extends to a completely positive contraction on $C_{r}^{*}(\mathcal{G})$. Under the canonical identification $D_{P}^{G} \rtimes_{\tau, r} G \cong$ $C_{r}^{*}(\mathcal{G})$, we obtain a net of completely positive contractions m_{i} such that $m_{i}(x) \longrightarrow_{i} x$ for all $x \in D_{P}^{G} \rtimes_{\tau, r} G$ and for every i, there exists a finitely supported function $\tilde{h}_{i}: G \rightarrow D_{P}^{G}$ with $m_{i}\left(d U_{g}\right)=\tilde{h}_{i}(g) d U_{g}$ for all $d \in D_{P}^{G}$ and $g \in G$. To be precise, $\tilde{h}_{i}(g)$ is given by $\chi \mapsto h_{i}(\chi, g)$. Now, let Θ_{i} be the composition $C_{r}^{*}(P) \cong E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P} \subseteq D_{P}^{G} \rtimes_{\tau, r} G \xrightarrow{m_{i}} D_{P}^{G} \rtimes_{\tau, r} G$. Here we have used Lemma 3.9. We have

$$
\begin{aligned}
\Theta_{i}\left(V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}\right) & =m_{i}\left(E_{p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n} P} U_{p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}}\right) \\
& =\left(E_{P} \tilde{h}_{i}\left(p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}\right) E_{P}\right) E_{p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n} P} U_{p_{1}^{-1} q_{1} \ldots p_{n}^{-1} q_{n}} .
\end{aligned}
$$

Set $d_{i}(g)=E_{P} \tilde{h}_{i}(g) E_{P}$. Then d_{i} lies in D_{r} by the Toeplitz condition. Moreover, we see that Θ_{i} has image in $E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$, so that identifying this corner back again with $C_{r}^{*}(P)$, we obtain the desired net of completely positive contractions.

This observation will be used in the next section when we study induced ideals of semigroup C^{*}-algebras. Now let us show that the existence of such completely positive contractions Θ_{i} on $C_{s}^{*}(P)$ implies nuclearity of $C_{s}^{*}(P)$. First, we set $D_{g}:=\operatorname{span}(\{s \in S: g(s)=g\}) \subseteq C_{s}^{*}(P)$, and for a map Θ on $C_{s}^{*}(P)$, we let the d-support of Θ be d-supp $(\Theta)=\left\{g \in G:\left.\Theta\right|_{D_{g}} \neq 0\right\}$. By Theorem 6.1, we know that under the assumptions of Corollary 6.4, $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ is an isomorphism. Thus Corollary 6.4 gives us completely positive contractions Θ_{i} on $C_{s}^{*}(P)$ $\left(\cong C_{r}^{*}(P)\right)$ such that $\lim _{i} \Theta_{i}(x)=x$ for all $x \in C_{s}^{*}(P)$ and $\left|\mathrm{d}-\operatorname{supp}\left(\Theta_{i}\right)\right|<\infty$ for all i. The following result shows that the existence of such Θ_{i} already implies nuclearity of $C_{s}^{*}(P)$.

Proposition 6.5. Let P be a subsemigroup of a group G. Assume that \mathcal{J} is independent. Moreover, assume that there exists a net of completely positive contractions $\Theta_{i}: C_{s}^{*}(P) \rightarrow$ $C_{s}^{*}(P)$ such that

$$
\begin{align*}
& \lim _{i} \Theta_{i}(x)=x \quad \text { for all } x \in C_{s}^{*}(P), \tag{16}\\
& \left|\mathrm{d}-\operatorname{supp}\left(\Theta_{i}\right)\right|<\infty \quad \text { for all } i . \tag{17}
\end{align*}
$$

Then for every C^{*}-algebra $A, \lambda_{(A, P, \mathrm{tr})}: A \rtimes_{\mathrm{tr}, S}^{a} P \rightarrow A \rtimes_{\mathrm{tr}, r}^{a} P$ is an isomorphism. In particular, $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ is an isomorphism and $C_{s}^{*}(P)$ is nuclear.

Note that we do not assume that $P \subseteq G$ is Toeplitz.
Proof. The proof is just the same as the one for " $(5) \Rightarrow(6)$ " in [21, Section 4], but for arbitrary coefficients. For the sake of completeness, we write out the proof.

Let \mathcal{E}_{s}^{A} be the composite $A \rtimes_{\mathrm{tr}, s}^{a} P \xrightarrow{\lambda_{(A, P, \text { tr })}} A \rtimes_{\alpha, r}^{a} P \cong A \otimes_{\min } C_{r}^{*}(P) \xrightarrow{\mathrm{id} \otimes \mathcal{E}_{r}} A \otimes$ $D_{r} \xrightarrow{\mathrm{id} \otimes\left(\lambda| |^{-1}\right.} A \otimes D \rightarrow A \rtimes_{\mathrm{tr}, S}^{a} P$. Here \mathcal{E}_{r} is the conditional expectation $C_{r}^{*}(P) \rightarrow D_{r}$ from [21, Section 3.2]. Moreover, we used that $\left.\lambda\right|_{D}: D \rightarrow D_{r}$ is an isomorphism as \mathcal{J} is independent. The last homomorphism is given by $A \otimes D \rightarrow A \rtimes_{\mathrm{tr}, s}^{a} P, a \otimes d \mapsto \iota(a) \bar{d}$. Now set $D_{g}^{A}:=\operatorname{span}\left(\left\{\iota(a) \bar{x}: a \in A, x \in D_{g}\right\}\right) \subseteq A \rtimes_{\mathrm{tr}, s}^{a} P$. Obviously the algebraic sum $\sum_{g \in G} D_{g}^{A}$ is dense in $A \rtimes_{\mathrm{tr}, s}^{a} P$. Moreover, we have by construction that $\left.\mathcal{E}_{s}^{A}\right|_{D_{e}^{A}}=\mathrm{id}_{D_{e}^{A}}$ and $\left.\mathcal{E}_{s}^{A}\right|_{D_{g}^{A}}=0$ if $g \neq e$.

Given a positive functional ϕ on $A \rtimes_{\alpha, s}^{a} P$, set d-supp $(\phi)=\left\{g \in G:\left.\phi\right|_{D_{g}^{A}} \neq 0\right\}$. If $|\mathrm{d}-\operatorname{supp}(\phi)|<\infty$, then we have for all $x \in A \rtimes_{\mathrm{tr}, S}^{a} P$:

$$
\begin{equation*}
|\phi(x)|^{2} \leq|\mathrm{d}-\operatorname{supp}(\phi)|\|\phi\| \phi\left(\mathcal{E}_{s}^{A}\left(x^{*} x\right)\right) . \tag{18}
\end{equation*}
$$

To prove (18), let d-supp $(\phi)=\left\{g_{1}, \ldots, g_{n}\right\}$. As $\sum_{g \in G} D_{g}^{A}$ is dense in $A \rtimes_{\mathrm{tr}, s}^{a} P$, it suffices to prove (18) for $x \in \sum_{g \in G} D_{g}^{A}$. Take such an element x and a finite subset $F \subseteq G$ such that d-supp $(\phi) \subseteq F$ and $x=\sum_{g \in F} x_{g}$ with $x_{g} \in D_{g}^{A}$. Then the same computation as in the proof of Lemma 4.8 in [21] yields

$$
\begin{aligned}
|\phi(x)|^{2} & =\left|\sum_{i=1}^{n} \phi\left(x_{g_{i}}\right)\right|^{2} \leq n \sum_{i=1}^{n}\left|\phi\left(x_{g_{i}}\right)\right|^{2} \leq n\|\phi\| \sum_{i=1}^{n} \phi\left(x_{g_{i}}^{*} x_{g_{i}}\right) \\
& \leq n\|\phi\| \phi\left(\sum_{g \in F} x_{g}^{*} x_{g}\right)=n\|\phi\| \phi\left(\mathcal{E}_{s}^{A}\left(\sum_{g, h \in F} x_{g}^{*} x_{h}\right)\right) \\
& =|\operatorname{d}-\operatorname{supp}(\phi)|\|\phi\| \phi\left(\mathcal{E}_{s}^{A}\left(x^{*} x\right)\right) .
\end{aligned}
$$

This proves (18).
Now take $x \in \operatorname{ker}\left(\lambda_{(A, P, \operatorname{tr})}\right), x \geq 0$, and a positive functional ϕ on $A \rtimes_{\mathrm{tr}, S}^{a} P$. Let ϕ_{i} be the composition $A \rtimes_{\operatorname{tr}, s}^{a} P \cong A \otimes_{\max } C_{s}^{*}(P) \xrightarrow{\mathrm{id} \otimes \Theta_{i}} A \otimes_{\max } C_{s}^{*}(P) \cong A \rtimes_{\mathrm{tr}, s}^{a} P \xrightarrow{\phi} \mathbb{C}$. These positive functionals ϕ_{i} satisfy $\lim _{i} \phi_{i}(x)=\phi(x)$ and $\left|\mathrm{d}-\operatorname{supp}\left(\phi_{i}\right)\right|<\infty$. As $\lambda_{(A, P, \text { tr) }}(x)=0$, we must have $\mathcal{E}_{s}^{A}\left(x^{*} x\right)=0$ by construction of \mathcal{E}_{s}^{A}. Thus by (18), we conclude that $\phi_{i}(x)=0$ for all i. Therefore $\phi(x)=\lim _{i} \phi_{i}(x)=0$. As ϕ was arbitrary, we conclude that $x=0$. Hence $\lambda_{(A, P, \operatorname{tr})}$ is faithful, and we have proven the first part of our proposition. To see that $\lambda: C_{s}^{*}(P) \rightarrow C_{r}^{*}(P)$ is an isomorphism, just set $A=\mathbb{C}$. And finally, to see that $C_{s}^{*}(P)$ is nuclear, just proceed as in the proof of Theorem 6.1, "(iii) \Rightarrow (i)".

Under the (rather strong) assumption of left amenability, such Θ_{i} always exist.
Lemma 6.6. If P is cancellative and left amenable, then there exists a net Θ_{i} as in Proposition 6.5 satisfying (16) and (17).

Proof. First of all, P embeds into a group if it is cancellative and left amenable (see for instance [21, Corollary 4.5]), so that we can form $C_{s}^{*}(P)$. As (5) in [21, Section 4.1] holds if P is left cancellative and left amenable, we can form the states $\varphi_{i}: C_{s}^{*}(P) \rightarrow$ $\mathbb{C}, x \mapsto\left\langle\lambda(x) \xi_{i}, \xi_{i}\right\rangle$ with the ξ_{i} from (5) of Section 4.1 in [21]. Let Θ_{i} be the composition $C_{s}^{*}(P) \xrightarrow{\Delta} C_{s}^{*}(P) \otimes_{\max } C_{s}^{*}(P) \xrightarrow{\varphi_{i} \otimes i d} C_{s}^{*}(P)$, where Δ is given by (36) in [21]. By construction, we have $\Theta_{i}(s)=\varphi_{i}(s) s \longrightarrow_{i} s$ for all $0 \neq s \in S$ by (5) in [21, Section 4.1]. Therefore the Θ_{i} satisfy (16). As the ξ_{i} have finite support (see [21, Sections 4.1, (5)]), it follows that $\left|\mathrm{d}-\operatorname{supp}\left(\Theta_{i}\right)\right|<\infty$ for all i (compare also [21, Section 4.2, "(5) \Rightarrow (6)"]).
As a consequence, we obtain the following converse of Proposition 4.17 in [21].
Corollary 6.7. If P is cancellative, left amenable and if \mathcal{J} is independent, then $C_{s}^{*}(P)$ is nuclear.

This result was also obtained independently in [32] using different methods.

7. Ideals induced from invariant spectral subsets

In this section, we always assume that \mathcal{J} is independent and that $P \subseteq G$ satisfies the Toeplitz condition. In this situation, we have seen that the full and reduced semigroup C^{*} algebras of P can be described up to Morita equivalence as full or reduced crossed products by G. So in principle, this reduces questions about the ideal structure of semigroup C^{*}-algebras to corresponding questions about certain crossed products by G. However, in our concrete situation, there are certain induced ideals which play a distinguished role. We first of all show that nuclearity allows us to describe induced ideals in a satisfactory way. Moreover, building on our results from Section 5, we describe induced ideals (and their quotients) as crossed products by G up to Morita equivalence. As these induced ideals correspond to (closed) invariant subsets of the spectrum Ω of the diagonal sub- C^{*}-algebra D_{r} (or D), we take a closer look at this spectrum. Using our observations from Section 2.3, we describe it in terms of \mathcal{J}. Finally, we turn to the boundary of the spectrum and investigate the corresponding boundary action.

7.1. Induced ideals

Let I_{r} be an ideal of D_{r}, the diagonal sub- C^{*}-algebra of $C_{r}^{*}(P)$. Restricting the canonical conditional expectation $\mathcal{L}\left(\ell^{2}(P)\right) \rightarrow \ell^{\infty}(P)$, we obtain a conditional expectation $\mathcal{E}_{r}: C_{r}^{*}(P) \rightarrow$ D_{r} (compare [21, Section 3.2]). Following [30], we define the induced ideal

$$
\text { Ind } I_{r}:=\left\{x \in C_{r}^{*}(P): \operatorname{Ad}(V) \mathcal{E}_{r}\left(x^{*} x\right) \in I_{r} \text { for all } V \in S_{r}\right\} .
$$

As A. Nica explains, the name "induced ideal" is justified because we could have obtained Ind I_{r} by an induction process as described in [30, Section 6.1].

For the purpose of inducing ideals, it suffices to consider invariant ideals of D_{r}.
Definition 7.1. An ideal I_{r} of D_{r} is called invariant if $\operatorname{Ad}(V)\left(I_{r}\right) \subseteq I_{r}$ for all $V \in S_{r}$.
The reason why we only need to consider invariant ideals is that given an ideal I_{r} of D_{r}, we obtain the invariant ideal $I_{r}^{(\text {inv })}:=\left\{d \in D_{r}: \operatorname{Ad}(V)(d) \in I_{r}\right.$ for all $\left.V \in S_{r}\right\}$. And just as in [30], we have Ind $I_{r}=\operatorname{Ind} I_{r}^{(\text {inv })}=\left\{x \in C_{r}^{*}(P): \mathcal{E}_{r}\left(x^{*} x\right) \in I_{r}^{(\text {inv })}\right\}$.

We observe that the induction process is an injective map from the set of invariant ideals of D_{r} to the set of ideals of $C_{r}^{*}(P)$.

Lemma 7.2. Every invariant ideal I_{r} of D_{r} satisfies $\left(\operatorname{Ind} I_{r}\right) \cap D_{r}=\mathcal{E}_{r}\left(\operatorname{Ind} I_{r}\right)=I_{r}$.
Proof. (Ind $\left.I_{r}\right) \cap D_{r}$ is contained in $\mathcal{E}_{r}\left(\right.$ Ind $\left.I_{r}\right)$ as $\left.\mathcal{E}_{r}\right|_{D_{r}}=\mathrm{id}_{D_{r}}$.
To see $\mathcal{E}_{r}\left(\right.$ Ind $\left.I_{r}\right) \subseteq I_{r}$, take $x \in \operatorname{Ind} I_{r}$. Then $\mathcal{E}_{r}(x)$ lies in D_{r} and we have $\mathcal{E}_{r}(x)^{*} \mathcal{E}_{r}(x) \leq$ $\mathcal{E}_{r}\left(x^{*} x\right) \in I_{r}$. Thus $\mathcal{E}_{r}(x)^{*} \mathcal{E}_{r}(x)$ lies in I_{r}, and this implies $\mathcal{E}_{r}(x) \in I_{r}$.

And finally, I_{r} is contained in Ind I_{r} (as $\left.\mathcal{E}_{r}\right|_{I_{r}}=\operatorname{id}_{I_{r}}$) and in D_{r} anyway.
Following ideas of [30], we deduce the following consequence of nuclearity.
Proposition 7.3. If \mathcal{J} is independent, if $P \subseteq G$ is Toeplitz and if $C_{r}^{*}(P)$ is nuclear, then $\operatorname{Ind} I_{r}$ coincides with the ideal $\left\langle I_{r}\right\rangle$ of $C_{r}^{*}(P)$ generated by I_{r}.

Proof. It is clear that Ind $I_{r} \supseteq\left\langle I_{r}\right\rangle$ as I_{r} is contained in Ind I_{r} by the previous lemma, and because Ind I_{r} is an ideal of $C_{r}^{*}(P)$.

To prove that Ind $I_{r} \subseteq\left\langle I_{r}\right\rangle$, first set, for $g \in G,\left(D_{r}\right)_{g}:=\overline{\operatorname{span}}\left(\left\{V \in S_{r}: g_{r}(V)=g\right\}\right)$. Moreover, let (Ind $\left.I_{r}\right)_{c}=$ Ind $I_{r} \cap\left(\sum_{g \in G}\left(D_{r}\right)_{g}\right)=\left\{x \in \sum_{g \in G}\left(D_{r}\right)_{g}: \mathcal{E}_{r}\left(x^{*} x\right) \in I_{r}\right\}$. Here $\sum_{g \in G}\left(D_{r}\right)_{g}$ means the algebraic sum (without taking the closure), i.e. the set of finite sums of the form $\sum_{g \in G} x_{g}$ with $x_{g} \in\left(D_{r}\right)_{g}$.

As a first step, let us prove (Ind $\left.I_{r}\right)_{c} \subseteq\left\langle I_{r}\right\rangle$: take $x=\sum_{g} x_{g} \in\left(\operatorname{Ind} I_{r}\right)_{c}$. This means that $\mathcal{E}_{r}\left(x^{*} x\right)=\sum_{g} x_{g}^{*} x_{g}$ lies in I_{r}. Hence (I_{r} is hereditary) all the $x_{g}^{*} x_{g}$ lie in I_{r}. By polar decomposition (see [3, Section II.3.2]), we deduce that $x_{g} \in\left\langle I_{r}\right\rangle$. Thus x lies in $\left\langle I_{r}\right\rangle$.

The second step is to prove Ind $I_{r} \subseteq \overline{\left(I n d I_{r}\right)_{c}}$. By Corollary 6.4, there exists a net Θ_{i} of completely positive contractions $C_{r}^{*}(P) \rightarrow C_{r}^{*}(P)$ satisfying 1 and 2 from Corollary 6.4. From 2, we deduce that for all $x \in C_{r}^{*}(P)$, we have $\mathcal{E}_{r}\left(\Theta_{i}(x)\right)=d_{i}(e) \mathcal{E}_{r}(x)$ as this formula obviously holds for $x \in \sum_{g \in G}\left(D_{r}\right)_{g}$ because of 2. Now take $x \in \operatorname{Ind} I_{r}$. Then $\Theta_{i}(x)$ lies in Ind I_{r} as well since $\mathcal{E}_{r}\left(\Theta_{i}(x)^{*} \Theta_{i}(x)\right) \leq \mathcal{E}_{r}\left(\Theta_{i}\left(x^{*} x\right)\right)=d_{i}(e) \mathcal{E}_{r}\left(x^{*} x\right) \in I_{r}$. Moreover, as the d_{i} in Corollary 6.4 have finite support, we have $\Theta_{i}(x) \in \sum_{g \in G}\left(D_{r}\right)_{g}$. Thus $\Theta_{i}(x)$ is in (Ind $\left.I_{r}\right)_{c}$. And finally, by 1 in Corollary 6.4, $x=\lim _{i} \Theta_{i}(x)$ lies in $\overline{\left(\operatorname{Ind} I_{r}\right)_{c}}$.

Just as in [30], we obtain the following characterization of induced ideals.
Corollary 7.4. If \mathcal{J} is independent, if $P \subseteq G$ is Toeplitz and if $C_{r}^{*}(P)$ is nuclear, then
$\left\{\right.$ Ind $\left.I_{r}: I_{r} \triangleleft D_{r}\right\}=\left\{J \triangleleft C_{r}^{*}(P): \mathcal{E}_{r}(J) \subseteq J\right\}$.
Proof. " \subseteq " holds by Lemma 7.2. To prove " \supseteq ", take an ideal J of $C_{r}^{*}(P)$ such that $\mathcal{E}_{r}(J) \subseteq J$. As J is an ideal of $C_{r}^{*}(P), \mathcal{E}_{r}(J)$ is an invariant ideal of D_{r}. Moreover, J is contained in Ind $\mathcal{E}_{r}(J)$ as for $x \in J, x^{*} x$ also lies in J, hence $\mathcal{E}_{r}\left(x^{*} x\right)$ lies in $\mathcal{E}_{r}(J)$. Thus by the last corollary, we have Ind $\mathcal{E}_{r}(J)=\left\langle\mathcal{E}_{r}(J)\right\rangle \subseteq J \subseteq \operatorname{Ind} \mathcal{E}_{r}(J)$.

At this point, we remark that associating $\left\langle I_{r}\right\rangle$ with an (invariant) ideal I_{r} of D_{r} is also a natural way of constructing ideals of $C_{r}^{*}(P)$ from those of D_{r}. Indeed, as we will see, this process is to a certain extent even more natural, at least for our purposes. But first, we observe that the assignment $I_{r} \rightarrow\left\langle I_{r}\right\rangle$ is also one-to-one (under the condition that I_{r} is invariant).

Lemma 7.5. Given an invariant ideal I_{r} of D_{r}, we have $\left\langle I_{r}\right\rangle \cap D_{r}=I_{r}$.
Proof. As we always have $\left\langle I_{r}\right\rangle \subseteq$ Ind I_{r}, our claim follows from $I_{r} \subseteq\left\langle I_{r}\right\rangle \cap D_{r} \subseteq\left(\right.$ Ind $\left.I_{r}\right) \cap$ $D_{r}=I_{r}$.

By our assumptions that \mathcal{J} is independent and that $P \subseteq G$ is Toeplitz, we know that $C_{r}^{*}(P)$ is isomorphic to the full corner $E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$ of the reduced crossed product $D_{P}^{G} \rtimes_{\tau, r} G$. Thus there is a one-to-one correspondence between ideals of $C_{r}^{*}(P)$ and ideals of $D_{P}^{G} \rtimes_{\tau, r} G$ given by $\left.D_{P}^{G} \rtimes_{\tau, r} G \triangleright J \mapsto J\right|_{P} \triangleleft C_{r}^{*}(P)$. Here $\left.J\right|_{P}$ is the ideal of $C_{r}^{*}(P)$ which corresponds to $E_{P} J E_{P}$ under the canonical identification $C_{r}^{*}(P) \cong E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$ provided by Corollary 3.10. But even more, we also know that $\left.J\right|_{P}$ is again isomorphic to a full corner of J, namely $E_{P} J E_{P}$.

Given an invariant ideal I_{r} of D_{r}, our present goal is to find a G-invariant ideal I_{P}^{G} of D_{P}^{G} such that $\left.\left(I_{P}^{G} \rtimes_{\tau, r} G\right)\right|_{P}=\left\langle I_{r}\right\rangle$. A natural candidate for I_{P}^{G} would be the smallest G-invariant ideal of D_{P}^{G} which contains I_{r}.

Definition 7.6. We set

$$
I_{P}^{G}:=\overline{\operatorname{span}}\left(\left\{\tau_{g_{1}}\left(x_{1}\right) \ldots \tau_{g_{n}}\left(x_{n}\right) \cdot d: n \in \mathbb{Z}_{\geq 1}, g_{i} \in G, x_{i} \in I_{r}, d \in D_{P}^{G}\right\}\right)
$$

We observe that it is an easy consequence of the construction of I_{P}^{G} that in Ω_{P}^{G}, we have $\operatorname{Spec}\left(I_{P}^{G}\right)=\left(\operatorname{Spec} I_{r}\right) \cdot G$. Here and in the sequel, we identify Ω with a subspace of Ω_{P}^{G} via the $\operatorname{map} c^{*}$ from Section 5.4.

Lemma 7.7. If $P \subseteq G$ is Toeplitz, then the following hold:
(i) $\left.\left(I_{P}^{G} \rtimes_{\tau, r} G\right)\right|_{P}=\left\langle I_{r}\right\rangle$,
(ii) $E_{P} I_{P}^{G} E_{P}=I_{r}$,
(iii) for all $g \in G, E_{P} \tau_{g}\left(I_{r}\right) E_{P} \subseteq I_{r}$,
(iv) $\operatorname{Spec} I_{r}=\operatorname{Spec} I_{P}^{G} \cap \Omega$,
(v) $\Omega_{P}^{G} \backslash \operatorname{Spec} I_{P}^{G}=\left(\Omega \backslash \operatorname{Spec} I_{r}\right) \cdot G$.

Proof. We first prove that these conditions are equivalent if $P \subseteq G$ is Toeplitz, and then we show that the Toeplitz condition for $P \subseteq G$ implies (iii).

To see "(i) \Rightarrow (ii)", note that $\left\langle I_{r}\right\rangle \cap D_{r}=I_{r}$ in $C_{r}^{*}(P)$ implies that we have $\left\langle I_{r}\right\rangle_{E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}} \cap D_{r}=I_{r}$ in $E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$. Thus if (i) holds, i.e. if E_{P} $\left(I_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}=\left\langle I_{r}\right\rangle_{E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}}$, then $I_{r} \subseteq E_{P} I_{P}^{G} E_{P} \subseteq E_{P}\left(I_{P}^{G} \rtimes_{\tau, r} G\right) E_{P} \cap D_{r}=I_{r}$.
"(ii) \Rightarrow (iii)" is clear as $\tau_{g}\left(I_{r}\right) \subseteq I_{P}^{G}$.
To prove "(iii) \Rightarrow (i)", we first observe that $\left.\left(I_{P}^{G} \rtimes_{\tau, r} G\right)\right|_{P} \supseteq\left\langle I_{r}\right\rangle$ always holds as $I_{P}^{G} \supseteq I_{r}$. It remains to prove that (iii) implies the reverse inclusion. Upon identifying $C_{r}^{*}(P)$ with $E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$, we have to prove, assuming (iii), that $E_{P}\left(I_{P}^{G} \rtimes_{\tau, r} G\right) E_{P} \subseteq$ $\left\langle I_{r}\right\rangle_{E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}}$. Take a generator of I_{P}^{G}, say $\tau_{g_{1}}\left(x_{1}\right) \ldots \tau_{g_{n}}\left(x_{n}\right) \cdot d$. Then for all $g \in$ $G, E_{P} \tau_{g_{1}}\left(x_{1}\right) \ldots \tau_{g_{n}}\left(x_{n}\right) \cdot d \cdot U_{g} E_{P}=\left(E_{P} \tau_{g_{1}}\left(x_{1}\right) E_{P}\right) \cdot\left(E_{P} \tau_{g_{2}}\left(x_{2}\right) \ldots \tau_{g_{n}}\left(x_{n}\right) \cdot d \cdot U_{g} E_{P}\right)$, and since $E_{P} \tau_{g_{1}}\left(x_{1}\right) E_{P}$ lies in I_{r} by (iii), we conclude $E_{P} \tau_{g_{1}}\left(x_{1}\right) \ldots \tau_{g_{n}}\left(x_{n}\right) \cdot d \cdot U_{g} E_{P} \in$ $\left\langle I_{r}\right\rangle_{E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}}$.
"(iii) \Rightarrow (iv)": We always have " \subseteq ". To prove " \supseteq ", take $\chi \in \Omega$ such that $\left.\chi\right|_{I_{P}^{G}} \neq 0$. Then we can find $g \in G$ and $x \in I_{r}$ with $\chi\left(\tau_{g}(x)\right) \neq 0$. Thus $\chi\left(E_{P} \tau_{g}(x) E_{P}\right) \neq 0$. As $E_{P} \tau_{g}(x) E_{P}$ lies in I_{r} by (iii), we conclude $\chi \in \operatorname{Spec} I_{r}$.
"(iv) \Rightarrow (v)": The inclusion " \subseteq " is easy to see. The other one (" \supseteq ") follows from (iv) and G-invariance of $\Omega_{P}^{G} \backslash \operatorname{Spec} I_{P}^{G}$.
"(v) \Rightarrow (iii)": We have to show that whenever $\chi \in \Omega_{P}^{G}$ satisfies $\left.\chi\right|_{I_{r}}=0$, then for all $g \in G,\left.\chi\right|_{E_{p} \tau_{g}\left(I_{r}\right) E_{P}}=0$ must hold as well. Take χ such that $\left.\chi\right|_{I_{r}}=0$. If $\chi\left(E_{P}\right)=0$, there is nothing to show. Hence we may assume $\chi\left(E_{P}\right)=1$, i.e. $\chi \in \Omega$. This means that $\chi \in \Omega \backslash \operatorname{Spec} I_{r}$. By (v), we conclude that $\chi \notin \operatorname{Spec}\left(I_{P}^{G}\right)$.

It remains to prove that the Toeplitz condition for $P \subseteq G$ implies (iii). Given $g \in G$ with $E_{P} \lambda_{g} E_{P} \neq 0$, the Toeplitz condition yields $p_{1}, q_{1}, \ldots, p_{n}, q_{n} \in P$ such that $E_{P} \lambda_{g} E_{P}=$ $V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}$. Then, for every invariant ideal I_{r} of D_{r}, we have

$$
E_{P} \tau_{g}\left(I_{r}\right) E_{P}=E_{P} \lambda_{g} E_{P} I_{r} E_{P} \lambda_{g}^{*} E_{P}=\operatorname{Ad}\left(V_{p_{1}}^{*} V_{q_{1}} \ldots V_{p_{n}}^{*} V_{q_{n}}\right)\left(I_{r}\right) \subseteq I_{r}
$$

as I_{r} is invariant. The case $E_{P} \lambda_{g} E_{P}=0$ is trivial.
Remark 7.8. In particular, if $P \subseteq G$ is Toeplitz, then $\left(\Omega \backslash \operatorname{Spec} I_{r}\right) \cdot G$ is closed in Ω_{P}^{G}.
Now, the same arguments used in the proof of Theorems 5.24 and 6.1 give us the following.
Proposition 7.9. Assume that \mathcal{J} is independent and that $P \subseteq G$ is Toeplitz. Let I_{r} be an invariant ideal of D_{r}, and let I be the corresponding ideal of D such that $\lambda(I)=I_{r}$. Then the ideal $\left\langle I_{r}\right\rangle$ of $C_{r}^{*}(P)$ generated by I_{r} is isomorphic to the full corner of $I_{P}^{G} \rtimes_{\tau, r} G$ determined by the characteristic function $\mathbb{1}_{\text {Spec } I_{r}}$ of $\operatorname{Spec} I_{r} \subseteq \operatorname{Spec}\left(I_{P}^{G}\right)$, and the ideal $\langle I\rangle$ of $C_{s}^{*}(P)$ generated by I is isomorphic to the full corner of $I_{P}^{G} \rtimes_{\tau} G$ given by $\mathbb{1}_{\text {Spec } I_{r}}$.

Moreover, the following are equivalent:
(ii) $\langle I\rangle_{C_{s}^{*}(P)}$ is nuclear,
(iii) $\left\langle I_{r}\right\rangle_{C_{r}^{*}(P)}$ is nuclear,
(iii I_{I}) the transformation groupoid $\operatorname{Spec}\left(I_{P}^{G}\right) \rtimes G=\left(\left(\operatorname{Spec} I_{r}\right) \cdot G\right) \rtimes G$ is amenable.
Either of these conditions implies that $\lambda:\langle I\rangle_{C_{s}^{*}(P)} \rightarrow\left\langle I_{r}\right\rangle_{C_{r}^{*}(P)}$ is faithful.
For the corresponding quotients, we have that $C_{s}^{*}(P) /\langle I\rangle$ is isomorphic to the full corner of $\left(D_{P}^{G} / I_{P}^{G}\right) \rtimes_{\tau} G \cong C_{0}\left(\Omega_{P}^{G} \backslash \operatorname{Spec}\left(I_{P}^{G}\right)\right) \rtimes_{\tau} G$ determined by the characteristic function $\mathbb{1}_{\Omega \backslash \operatorname{Spec} I_{r}}$ of $\Omega \backslash \operatorname{Spec} I_{r} \subseteq \Omega_{P}^{G} \backslash \operatorname{Spec}\left(I_{P}^{G}\right)$. Moreover, if the sequence $0 \rightarrow$ $C_{0}\left(\operatorname{Spec}\left(I_{P}^{G}\right)\right) \rtimes_{\tau, r} G \rightarrow C_{0}\left(\Omega_{P}^{G}\right) \rtimes_{\tau, r} G \rightarrow C_{0}\left(\Omega_{P}^{G} \backslash \operatorname{Spec}\left(I_{P}^{G}\right)\right) \rtimes_{\tau, r} G \rightarrow 0$ is exact, then also $C_{r}^{*}(P) /\left\langle I_{r}\right\rangle$ is isomorphic to the full corner of $\left(D_{P}^{G} / I_{P}^{G}\right) \rtimes_{\tau, r} G \cong C_{0}\left(\Omega_{P}^{G} \backslash\right.$ $\left.\operatorname{Spec}\left(I_{P}^{G}\right)\right) \rtimes_{\tau, r} G$ associated with $\mathbb{1}_{\Omega \backslash \text { Spec } I_{r}}$, and the following are equivalent:
$\left(\mathrm{i}_{Q}\right) C_{s}^{*}(P) /\langle I\rangle$ is nuclear,
(ii Q_{Q}) $C_{r}^{*}(P) /\left\langle I_{r}\right\rangle$ is nuclear,
(iii Q_{Q}) the transformation groupoid $\left(\Omega_{P}^{G} \backslash \operatorname{Spec}\left(I_{P}^{G}\right)\right) \rtimes G=\left(\left(\Omega \backslash\left(\operatorname{Spec} I_{r}\right)\right) \cdot G\right) \rtimes G$ is amenable; and either of these conditions implies that $\lambda: C_{s}^{*}(P) /\langle I\rangle \rightarrow C_{r}^{*}(P) /\left\langle I_{r}\right\rangle$ is faithful.

We also mention the following useful consequence.
Lemma 7.10. If $P \subseteq G$ satisfies the Toeplitz condition, then the maps $I_{r} \mapsto I_{P}^{G}$ and $E_{P} J E_{P} \hookleftarrow$ J are mutually inverse, inclusion-preserving bijections between the sets of invariant ideals of D_{r} and G-invariant ideals of D_{P}^{G}.
Proof. By the Toeplitz condition, we have $E_{P} I_{P}^{G} E_{P}=I_{r}$. To check $\left(E_{P} J E_{P}\right)_{P}^{G}=J$, note that $E_{P}\left(J \rtimes_{\tau, r} G\right) E_{P}=\left\langle E_{P} J E_{P}\right\rangle=E_{P}\left(\left(E_{P} J E_{P}\right)_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$. As E_{P} is a full projection in $D_{P}^{G} \rtimes_{\tau, r} G$, we conclude that $J \rtimes_{\tau, r} G=\left(E_{P} J E_{P}\right)_{P}^{G} \rtimes_{\tau, r} G$, hence $J=\left(E_{P} J E_{P}\right)_{P}^{G}$.

7.2. Invariant spectral subsets

As ideals of D_{r} correspond to subsets of $\Omega=\operatorname{Spec} D_{r}$, we now describe Ω explicitly in terms of the family of constructible ideals \mathcal{J}, and we also describe the action of P. This is just an application of our observations in Section 2.3 because of our standing assumption that \mathcal{J} is independent.

Let Σ be the set of non-empty \mathcal{J}-valued filters as introduced before Corollary 2.9, equipped with the topology introduced after Corollary 2.9.

Lemma 7.11. We can identify Ω with Σ via $\omega: \Omega \rightarrow \Sigma, \chi \mapsto\left\{X \in \mathcal{J}: \chi\left(E_{X}\right)=1\right\}$.
For all $p \in P$, the map $\Sigma \rightarrow \Sigma, \mathcal{F} \mapsto\left\{X: p^{-1} X \in \mathcal{F}\right\}=: p \mathcal{F}$ gives rise to a homeomorphism $\Sigma \cong p \Sigma=\{\mathcal{F} \in \Sigma: p P \in \mathcal{F}\}$. Let $p^{-1}: p \Sigma \rightarrow \Sigma, p \mathcal{F} \mapsto \mathcal{F}$ be its inverse. Define $\sigma_{p}: C(\Sigma) \rightarrow C(\Sigma), \sigma_{p}(d)(\mathcal{F})=d\left(p^{-1} \mathcal{F}\right)$ if \mathcal{F} lies in $p \Sigma$ and $\sigma_{p}(d)(\mathcal{F})=0$ if \mathcal{F} does not lie in $p \Sigma$; and $\sigma_{p^{*}}: C(\Sigma) \rightarrow C(\Sigma), \sigma_{p^{*}}(d)(\mathcal{F})=d(p \mathcal{F})$.

Then the homeomorphism $\omega: \Omega \rightarrow \Sigma$ induces an identification $\omega^{*}: C(\Sigma) \rightarrow D_{r}$ such that for every $p \in P$, the diagrams

$$
\begin{array}{ll}
C(\Sigma) \longrightarrow & D_{r} \\
\sigma_{p} \downarrow & \downarrow^{\operatorname{Ad}\left(V_{p}\right)} \\
C(\Sigma) \longrightarrow & D_{r}
\end{array}
$$

and

$$
\begin{array}{ll}
C(\Sigma) & D_{r} \\
\sigma_{p^{*}} \downarrow & \downarrow^{\operatorname{Ad}\left(V_{p}^{*}\right)} \\
C(\Sigma) \longrightarrow & D_{r}
\end{array}
$$

commute.
Proof. This is straightforward to check.
Corollary 7.12. An ideal I_{r} of D_{r} is invariant if and only if for all $p \in P$, we have $p \omega\left(\operatorname{Spec} I_{r}\right) \subseteq \omega\left(\operatorname{Spec} I_{r}\right)$ and $p^{-1}\left(\omega\left(\operatorname{Spec} I_{r}\right) \cap p \Sigma\right) \subseteq \omega\left(\operatorname{Spec} I_{r}\right)$.

Definition 7.13. A subset C of Σ is called invariant if for all $p \in P$, the conditions $p C \subseteq C$ and $p^{-1}(C \cap p \Sigma) \subseteq C$ are satisfied.

7.3. The boundary action

Finally, let us have a look at the boundary of Ω. Recall the definition of the boundary $\partial \Omega$ from Section 2.3.

Definition 7.14. Let $\Sigma_{\max }$ be the set of all \mathcal{J}-valued ultrafilters, and let $\partial \Sigma$ be the closure $\overline{\Sigma_{\max }}$ of $\Sigma_{\max }$ in Σ. We set $\Omega_{\max }=\omega^{-1}\left(\Sigma_{\max }\right)$ and $\partial \Omega=\omega^{-1}(\partial \Sigma)$.

We note that this definition is essentially the one from [16], extended from the case of quasilattice ordered groups to our situation.

Lemma 7.15. $\partial \Sigma$ is the minimal non-empty closed invariant subset of Σ.

Proof. Choose $\mathcal{F} \in \Sigma_{\text {max }}$ and take $p \in P$.
We claim $p \mathcal{F} \in \Sigma_{\max }$. Assume that there exists $\mathcal{F}^{\prime} \in \Sigma$ such that $p \mathcal{F} \subseteq \mathcal{F}^{\prime}$. Then $p P \in \mathcal{F}^{\prime}$ so that $\mathcal{F}^{\prime} \in p \Sigma$. Thus $p^{-1} \mathcal{F}^{\prime}$ is an element of Σ such that $\mathcal{F}=p^{-1} p \mathcal{F} \subseteq p^{-1} \mathcal{F}^{\prime}$. As \mathcal{F} is maximal, this implies $\mathcal{F}=p^{-1} \mathcal{F}^{\prime}$. Hence $p \mathcal{F}=p p^{-1} \mathcal{F}^{\prime}=\mathcal{F}^{\prime}$.

Next we claim that $p^{-1} \mathcal{F} \in \Sigma_{\max }$ if \mathcal{F} lies in $p \Sigma$. If $p^{-1} \mathcal{F} \subseteq \mathcal{F}^{\prime}$ for some $\mathcal{F}^{\prime} \in \Sigma$, then $\mathcal{F}=p p^{-1} \mathcal{F} \subseteq p \mathcal{F}^{\prime}$ implies $\mathcal{F}=p \mathcal{F}^{\prime}$ and thus $p^{-1} \mathcal{F}=p^{-1} p \mathcal{F}^{\prime}=\mathcal{F}^{\prime}$.

Thus we have seen that $\Sigma_{\max }$ is invariant. As $\partial \Sigma$ is the closure of $\Sigma_{\max }$, we conclude that $p(\partial \Sigma) \subseteq \partial \Sigma$ for all $p \in P$. As we know that $p \Sigma$ is clopen in Σ, we also deduce $p^{-1}(\partial \Sigma \cap p \Sigma) \subseteq \partial \Sigma$. Therefore $\partial \Sigma$ is invariant.

To prove minimality, let $\emptyset \neq C$ be a closed invariant subset of Σ. Take $\mathcal{F} \in C$ arbitrary, and choose some $\mathcal{F}_{\text {max }} \in \Sigma_{\text {max }}$. For every $X \in \mathcal{F}_{\text {max }}$, choose $x \in X(X \neq \emptyset)$. Then $x P \in x \mathcal{F}$ implies that X lies in $x \mathcal{F}$ as $x P \subseteq X$ (X is a right ideal). Set $\mathcal{F}_{X}:=x \mathcal{F}$. Ordering elements in $\mathcal{F}_{\max }$ by inclusion (i.e. we set $X_{1} \geq X_{2}$ if $X_{1} \subseteq X_{2}$), we obtain a net $\left(\mathcal{F}_{X}\right)_{X \in \mathcal{F}_{\text {max }}}$ in C. As Σ is compact (Ω is compact), we may assume, after passing to a convergent subnet if necessary, that $\left(\mathcal{F}_{X}\right)_{X}$ converges to an element \mathcal{F}_{m} of Σ. As C is closed, \mathcal{F}_{m} must lie in C. Moreover, for every $X \in \mathcal{F}_{\text {max }}$, we have that $X^{\prime} \geq X$ implies $X \in \mathcal{F}_{X^{\prime}}$. Thus X lies in \mathcal{F}_{m}. We conclude $\mathcal{F}_{\max } \subseteq \mathcal{F}_{m}$, hence by maximality, $\mathcal{F}_{\max }=\mathcal{F}_{m}$ lies in C. Thus $\partial \Sigma=\overline{\Sigma_{\max }}$ lies in C, and we are done.

As immediate consequences, we obtain the following.
Corollary 7.16. $V_{r}(\partial \Omega)=\left\{d \in D_{r}: \chi(d)=0\right.$ for all $\left.\chi \in \partial \Omega\right\}$ is the maximal invariant proper ideal of D_{r}.

Proof. This is a direct consequence of minimality of $\partial \Omega$ and Corollary 7.12.
Corollary 7.17. If $P \subseteq G$ satisfies the Toeplitz condition, then the G-action on $(\partial \Omega) \cdot G$ is minimal.

Proof. This is a direct consequence of the previous corollary and Lemma 7.10.
Moreover, we deduce the analogue of [16, Proposition 4.3].
Corollary 7.18. Given a proper ideal J of $C_{r}^{*}(P)$ such that $\mathcal{E}_{r}(J) \subseteq J$, we always have $J \subseteq \operatorname{Ind} V_{r}(\partial \Omega)$.

Proof. As J is a proper ideal of $C_{r}^{*}(P)$ and since $\mathcal{E}_{r}(J) \subseteq J, \mathcal{E}_{r}(J)$ is an invariant proper ideal of D_{r}. Thus $\mathcal{E}_{r}(J) \subseteq V_{r}(\partial \Omega)$. Moreover, for every $x \in J$, we have $\mathcal{E}_{r}\left(x^{*} x\right) \in \mathcal{E}_{r}(J)$. Hence every element in J lies in $\left\{x \in C_{r}^{*}(P): \mathcal{E}_{r}\left(x^{*} x\right) \in V_{r}(\partial \Omega)\right\}=\operatorname{Ind} V_{r}(\partial \Omega)$.

Using similar ideas as in [16], we now investigate when the action of G on $(\partial \Omega) \cdot G \subseteq \Omega_{P}^{G}$ is topologically free and a local boundary action (the first notion is introduced in [2], and the second one is introduced in [19]).

First of all, we set

$$
G_{0}:=\left\{g \in G:(g \cdot P) \cap X \neq \emptyset \text { and }\left(g^{-1} \cdot P\right) \cap X \neq \emptyset \text { for all } \emptyset \neq X \in \mathcal{J}\right\} .
$$

Clearly, $G_{0}=\left\{g \in G:(g \cdot P) \cap(p P) \neq \emptyset\right.$ and $\left(g^{-1} \cdot P\right) \cap(p P) \neq \emptyset$ for all $\left.p \in P\right\}$. Moreover, we have the following.

Lemma 7.19. G_{0} is a subgroup of G.

Proof. Take g_{1}, g_{2} in G_{0}. Then for all $\emptyset \neq X \in \mathcal{J}$, we have $\left(\left(g_{1} g_{2}\right) \cdot P\right) \cap X=g_{1} \cdot\left(\left(g_{2} \cdot P\right) \cap\right.$ $\left.\left(g_{1}^{-1} \cdot X\right)\right) \supseteq g_{1} \cdot\left(\left(g_{2} \cdot P\right) \cap\left(g_{1}^{-1} \cdot X\right)\right) \cap\left(g_{1} \cdot P\right)=g_{1} \cdot\left(\left(g_{2} \cdot P\right) \cap\left(\left(g_{1}^{-1} \cdot X\right) \cap P\right)\right)$. Now $\left(g_{1}^{-1} \cdot X\right) \cap P=g_{1}^{-1} \cdot\left(X \cap\left(g_{1} \cdot P\right)\right) \neq \emptyset$. Thus there exists $x \in P$ such that $x \in\left(g_{1}^{-1} \cdot X\right) \cap P$. Hence $x P \subseteq\left(g_{1}^{-1} \cdot X\right) \cap P$. Thus $\emptyset \neq g_{1} \cdot\left(\left(g_{2} \cdot P\right) \cap(x P)\right) \subseteq\left(\left(g_{1} g_{2}\right) \cdot P\right) \cap X$.

Proposition 7.20. G acts topologically freely on $(\partial \Omega) \cdot G$ if and only if G_{0} acts topologically freely on $(\partial \Omega) \cdot G$.

Proof. " \Rightarrow " is clear. For " \Leftarrow ", assume that for $e \neq g \in G$, we have that the fix point set of $(\partial \Omega) \cdot G$ under g has non-empty interior, i.e. $\left[\operatorname{Fix}_{(\partial \Omega) \cdot G}(g)\right]^{\circ} \neq \emptyset$. Thus there exists an open subset U of $(\partial \Omega) \cdot G$ such that $U \subseteq \operatorname{Fix}_{(\partial \Omega) \cdot G}(g)$. As $\partial \Omega=\overline{\Omega_{\max }}$, we deduce $(\partial \Omega) \cdot G \subseteq \overline{\Omega_{\max } \cdot G}$. Therefore there exists $\chi \in\left(\Omega_{\max } \cdot G\right) \cap U$. Choose $h \in G$ such that χh lies in $\Omega_{\text {max }}$.

Now assume that G_{0} acts topologically freely on $(\partial \Omega) \cdot G$. Then for all $x \in G, x^{-1} g x$ cannot lie in G_{0} as $\operatorname{Fix}_{(\partial \Omega) \cdot G}\left(x^{-1} g x\right)=\operatorname{Fix}_{(\partial \Omega) \cdot G}(g) \cdot x^{-1}$. Now take any $X \in \mathcal{J}$ such that $(\chi h)\left(E_{X}\right)=1$. Moreover, let $x \in X$. Then $x^{-1} h^{-1} g h x$ does not lie in G_{0}. Thus there exists $p \in P$ such that $\left(\left(x^{-1} h^{-1} g h x\right) \cdot P\right) \cap(p P)=\emptyset$ or $\left(\left(x^{-1} h^{-1} g^{-1} h x\right) \cdot P\right) \cap(p P)=\emptyset$. In either case, we choose $\chi_{X} \in \Omega_{\max }$ such that $\chi_{X}\left(E_{x p} P\right)=1$. If $\left(\left(x^{-1} h^{-1} g h x\right) \cdot P\right) \cap(p P)=\emptyset$, then $(x p P) \cap\left(\left(h^{-1} g h x\right) \cdot P\right)=\emptyset$. This implies $\chi_{X}\left(E_{\left(h^{-1} g h x\right) \cdot P}\right)=0$. Thus $\chi_{X} \cdot\left(h^{-1} g h\right) \neq \chi_{X}$. Similarly, we obtain from $\left(\left(x^{-1} h^{-1} g^{-1} h x\right) \cdot P\right) \cap(p P)=\emptyset$ that $\chi_{X} \cdot\left(h^{-1} g^{-1} h\right) \neq \chi_{X}$. In any case, we obtain $\chi_{X} \cdot\left(h^{-1} g\right) \neq \chi_{X} h^{-1}$, hence $\chi_{X} h^{-1}$ does not lie in $\operatorname{Fix}_{(\partial \Omega) \cdot G}(g)$.

As against that, we have found for all $X \in \omega(\chi h)$ a character $\chi_{X} \in \Omega_{\max }$ with $\chi_{X}\left(E_{X}\right)=1$. Thus ordering $X \in \omega(\chi h)$ by inclusion as in the proof of Lemma 7.15, we obtain a net $\left(\chi_{X}\right)_{X}$ in $\Omega_{\max } \subseteq \Omega$. By passing over to a convergent subnet, we may assume that $\lim _{X} \chi_{X}=\tilde{\chi} \in \Omega$. Hence $\tilde{\chi}\left(E_{X}\right)=1$ for all $X \in \omega(\chi h)$. This implies $\omega(\chi h) \subseteq \omega(\tilde{\chi})$, hence $\tilde{\chi}=\chi h$ as χh lies in $\Omega_{\text {max }}$. The conclusion is that $\lim _{X} \chi_{X} h^{-1}=\chi$. But we have seen $\chi_{X} h^{-1} \notin \operatorname{Fix}_{(\partial \Omega) \cdot G}(g)$, and we also know $\chi \in\left[\operatorname{Fix}_{(\partial \Omega) \cdot G}(g)\right]^{\circ}$. This is a contradiction.

Proposition 7.21. If P is not left reversible, then the G-action on $(\partial \Omega) \cdot G$ is a local boundary action in the sense of [19].

Proof. We have to show that for every non-empty open subset U of $(\partial \Omega) \cdot G$, there exist an open subset $\Delta \subseteq U$ and an element $g \in G$ such that $\bar{\Delta} g \subsetneq \Delta$.

Let U be as above. As $\overline{\Omega_{\max }}=\partial \Omega$, we can find $\chi \in \Omega_{\max }$ and $h \in G$ such that $\chi h \in U$, i.e. $\chi \in\left(U h^{-1}\right) \cap \Omega$. As Ω is open in Ω_{P}^{G}, we can find X in \mathcal{J} and X_{1}, \ldots, X_{n} in \mathcal{J} such that $V=\left\{\psi \in(\partial \Omega) \cdot G: \psi\left(E_{X}\right)=1, \psi\left(E_{X_{i}}\right)=0\right.$ for all $\left.1 \leq i \leq n\right\}$ is contained in $U h^{-1}$ and that $\chi \in V$ (see (4)). The latter condition means that $\chi\left(E_{X}\right)=1$ and $\chi\left(E_{X_{i}}\right)=0$ for all $1 \leq i \leq n$. As χ lies in $\Omega_{\max }$, we conclude that for all $1 \leq i \leq n$, there must be X_{i}^{\prime} in \mathcal{J} such that $\chi\left(E_{X_{i}^{\prime}}\right)=1$ and $X_{i} \cap X_{i}^{\prime}=\emptyset$ (see Remark 2.11). Thus setting $\tilde{X}=X \cap\left(\bigcap_{i=1}^{n} X_{i}^{\prime}\right) \neq \emptyset$, we see that for any $\psi \in(\partial \Omega) \cdot G, \psi\left(E_{\tilde{X}}\right)=1$ implies $\psi \in U h^{-1}$. Choose $x \in \tilde{X}$. As P is not left reversible, we can find p and q in P such that $(p P) \cap(q P)=\emptyset$. Now set $\Delta^{\prime}=\left\{\psi \in(\partial \Omega) \cdot G: \psi\left(E_{x P}\right)=1\right\} . \Delta^{\prime}$ is clopen in $(\partial \Omega) \cdot G$. As $x P \subseteq \tilde{X}$, we conclude that $\Delta^{\prime} \subseteq U h^{-1}$. Set $g^{\prime}=x p^{-1} x^{-1} \in G$. Then $\psi^{\prime} \in \Delta^{\prime} g^{\prime}$ implies that there exists $\psi \in(\partial \Omega) \cdot G$ such that $\psi\left(E_{x P}\right)=1$ and $\psi^{\prime}=\psi g^{\prime}$. Thus $\psi^{\prime} \in(\partial \Omega) \cdot G$ and $\psi^{\prime}\left(E_{x p P}\right)=\psi\left(E_{g^{\prime} \cdot(x p P)}\right)=$ $\psi\left(E_{x P}\right)=1$. Thus $\psi^{\prime}\left(E_{x P}\right)=1$ as $x p P \subseteq x P$. Hence ψ^{\prime} lies in Δ^{\prime}. This shows $\Delta^{\prime} g^{\prime} \subseteq \Delta^{\prime}$. But we can now choose $\psi^{\prime} \in \Delta^{\prime}$ with $\psi^{\prime}\left(E_{x q} P\right)=1$. If ψ^{\prime} lies in $\Delta^{\prime} g^{\prime}$, then there exists $\psi \in \Delta$ such that $\psi^{\prime}=\psi g^{\prime}$. Then $\psi^{\prime}\left(E_{x p P}\right)=\psi^{\prime}\left(E_{g^{\prime} \cdot(x p P)}\right)=\psi^{\prime}\left(E_{x P}\right)=1$. But this contradicts
$(x q P) \cap(x p P)=x((q P) \cap(p P))=\emptyset$. Hence ψ^{\prime} does not lie in $\Delta^{\prime} g^{\prime}$, and we have proven $\Delta^{\prime} g^{\prime} \subsetneq \Delta^{\prime}$. Setting $\Delta:=\Delta^{\prime} h$ and $g=h^{-1} g^{\prime} h$, we are done.

Remark 7.22. Proposition 7.21 clarifies the final remark in [16], where it is pointed out that the boundary action should be "a boundary action in the sense generalizing that of [19]".

Corollary 7.23. Assume that G is countable, that \mathcal{J} is independent and that $P \subseteq G$ satisfies the Toeplitz condition. Let $V(\partial \Omega)$ be the ideal of D such that $\lambda(V(\partial \Omega))=V_{r}(\partial \Omega)$.

The boundary quotient $C_{s}^{*}(P) /\langle V(\partial \Omega)\rangle$ is a unital UCT Kirchberg algebra if and only if the following hold:

- $P \neq\{e\}$,
- G acts amenably on $(\partial \Omega) \cdot G$,
- G_{0} acts topologically freely on $(\partial \Omega) \cdot G$.

Proof. As G is countable, so is P. Thus $C_{0}((\partial \Omega) \cdot G) \rtimes_{\tau} G$ is separable. By Proposition 7.9, $C_{s}^{*}(P) /\langle V(\partial \Omega)\rangle$ and $C_{0}((\partial \Omega) \cdot G) \rtimes_{\tau} G$ are stably isomorphic. Hence $C_{s}^{*}(P) /\langle V(\partial \Omega)\rangle$ is a Kirchberg algebra if and only if $C_{0}((\partial \Omega) \cdot G) \rtimes_{\tau} G$ is a Kirchberg algebra. By [4, Chapter 5, Theorem 6.18] and the last corollary of [2], $C_{0}((\partial \Omega) \cdot G) \rtimes_{\tau} G$ is nuclear and simple if and only if G acts on $(\partial \Omega) \cdot G$ amenably and topologically freely. Here we have used Corollary 7.17 which tells us that the G-action on $(\partial \Omega) \cdot G$ is minimal. Topological freeness of the G-action is equivalent to topological freeness of the G_{0}-action by Proposition 7.20. To complete our proof, first observe that clearly, P has to be non-trivial if $C_{0}((\partial \Omega) \cdot G) \rtimes_{\tau} G$ is purely infinite. This settles the implication " \Rightarrow ". For the converse, we show that our assumptions that $P \neq\{e\}$ and that G_{0} acts topologically freely on $(\partial \Omega) \cdot G$ imply that P is not left reversible: if P were left reversible, i.e. if every non-empty X_{1}, X_{2} in \mathcal{J} have non-empty intersection, then $\partial \Omega$ would consist of only one point, namely the \mathcal{J}-valued ultrafilter \mathcal{J}^{\times}consisting of all non-empty elements in \mathcal{J}. Also, if P were left reversible, then we would have $P \subseteq G_{0}$. Since every element in P obviously leaves \mathcal{J}^{\times}fixed, and by our assumption that $P \neq\{e\}$, we conclude that G_{0} cannot act topologically freely on $(\partial \Omega) \cdot G$ if P were left reversible. Hence Proposition 7.21 implies that the G-action on $(\partial \Omega) \cdot G$ is a local boundary action. With the help of Theorem 9 from [19] and [38], this settles the reverse direction " \Leftarrow ".

8. Examples

8.1. Quasi-lattice ordered groups

Recall from [30] that a pair (G, P) consisting of a subsemigroup P of a group G is called quasi-lattice ordered if
(QL0) $P \cap P^{-1}=\{e\}$,
(QL1) for all $g \in G$, the intersection $P \cap(g \cdot P)$ is either empty or of the form $p P$ for some $p \in P$.

As observed in [7, Section 3 (Remark 8)], (QL1) implies
(QL2) For all p, q in P, the intersection $(p P) \cap(q P)$ is either empty or of the form $r P$ for some $r \in P$.

In the sequel, we will most of the time only use (QL1) and (QL2).

First of all, we observe that for every such $P \subseteq G$ satisfying (QL2), we have $\mathcal{J}=$ $\{p P: p \in P\} \cup\{\emptyset\}$. In this sense, the ideal structure (or rather the structure of the constructible right ideals) is very simple. It is immediate that \mathcal{J} is independent. Moreover, $P \subseteq G$ satisfies the Toeplitz condition (compare also [30, Section 2.4]). Namely, take $g \in G$. If $E_{P} \lambda_{g} E_{P} \neq 0$, then there exists $p \in P$ such that $P \cap(g \cdot P)=p P$ by (QL1). Thus there is $q \in P$ with $g q=p$, hence $g=p q^{-1}$. It then follows that $E_{P} \lambda_{g} E_{P}=E_{P \cap(g \cdot P)} \lambda_{p} \lambda_{q^{-1}} E_{P}=E_{p P} \lambda_{p} \lambda_{q^{-1}} E_{P}=$ $\left(E_{P} \lambda_{p} E_{P}\right)\left(E_{P} \lambda_{q^{-1}} E_{P}\right)=V_{p} V_{q}^{*}$. Therefore, all our results apply.

Quasi-lattice ordered groups and their semigroup C^{*}-algebras have been studied intensively, for instance in $[30,31,18,16,13,7,8]$. The full semigroup C^{*}-algebras have been described as semigroup crossed products by endomorphisms in [18]. Moreover, both full and reduced semigroup C^{*}-algebras can be described as partial crossed products of the corresponding groups. This gives yet another description which is not discussed here, but which is certainly closely related to Section 5. The induced ideals of reduced semigroup C^{*}-algebras have been studied in [30]. The Θ_{i} we introduced in Corollary 6.4 can be viewed as a substitute for the positive definite functions θ_{i} introduced in [30, Section 4.5]. And the reader will see that for Proposition 7.3, we have essentially adapted A. Nica's proof of the proposition in Section 6.1 of [30]. The boundary of the spectrum was introduced in [16] and studied in [16,8]. Our discussion of the boundary action in Section 7.3 is modelled after $[16,8]$.

Before we come to an explicit example, let us first show how the analysis in [18] can be extended. Namely, we obtain a strengthening of Proposition 6.6 in [18] with essentially the same proof as in [18]. We point out that the conclusion in this proposition should read "If \mathcal{G} is amenable, then (G, P) is amenable" (compare also Remark 17 in [7]). Let us start with the following.

Proposition 8.1 ([18, Lemma 4.1] for Arbitrary Coefficients). Let (G, P) and (H, Q) be quasilattice ordered. Assume that $\varphi: G \rightarrow H$ is a group homomorphism such that $\varphi(P) \subseteq Q$ and whenever x, y in P satisfy $(x P) \cap(y P) \neq \emptyset$, then

$$
\begin{align*}
& \varphi(x)=\varphi(y) \Leftrightarrow x=y \tag{19}\\
& \text { for } z \in P \text { such that }(x P) \cap(y P)=z P, \quad(\varphi(x) Q) \cap(\varphi(y) Q)=\varphi(z) Q . \tag{20}
\end{align*}
$$

Moreover, let α be a G-action on a C^{*}-algebra A.
Then $B:=\overline{\operatorname{span}}\left(\left\{\iota(a) \overline{v_{x} v_{y}^{*}}: a \in A ; x, y \in P\right.\right.$ with $\left.\left.\varphi(x)=\varphi(y)\right\}\right)$ is a sub- C^{*}-algebra of $A \rtimes_{\alpha, S}^{a} P$ such that $\left.\lambda_{(A, P, \alpha)}\right|_{B}: B \rightarrow A \rtimes_{\alpha, r}^{a} P$ is faithful.

Proof. Let $F \subseteq Q$ be a finite subset such that whenever f_{1}, f_{2} in F and f_{3} in Q satisfy $\left(f_{1} Q\right) \cap\left(f_{2} Q\right)=f_{3} Q$, then f_{3} lies in F as well. The set

$$
\begin{equation*}
\left\{\iota(a) \overline{v_{x} v_{y}^{*}}: a \in A ; x, y \in P \text { with } \varphi(x)=\varphi(y) \in F\right\} \tag{21}
\end{equation*}
$$

is obviously $*$-invariant. Moreover, given $\iota\left(a_{1}\right) \overline{v_{x_{1}} v_{y_{1}}^{*}}$ and $\iota\left(a_{2}\right) \overline{v_{x_{2}} v_{y_{2}}^{*}}$ from this set, let $\left(y_{1} P\right) \cap$ $\left(x_{2} P\right)=z P$ with $z=y_{1} z_{1}=y_{2} z_{2}$ for some z_{1}, z_{2} in P. Then

$$
\begin{aligned}
\iota\left(a_{1}\right) \overline{v_{x_{1}} v_{y_{1}}^{*}} \iota\left(a_{2}\right) \overline{v_{x_{2}} v_{y_{2}}^{*}} & =\iota\left(a_{1} \alpha_{x_{1} y_{1}^{-1}}\left(a_{2}\right)\right) \overline{v_{x_{1}} v_{y_{1}}^{*}} \underbrace{\overline{v_{y_{1}} v_{y_{1}}^{*} v_{x_{2}} v_{x_{2}}^{*}}}_{=\overline{v_{z} v_{z}^{*}}} \overline{v_{x_{2}} v_{y_{2}}^{*}} \\
& =\iota\left(a_{1} \alpha_{x_{1} y_{1}^{-1}}\left(a_{2}\right)\right) \overline{v_{x_{1} z_{1}} v_{y_{2} z_{2}}^{*}} .
\end{aligned}
$$

Since $\varphi\left(x_{1} z_{1}\right)=\varphi\left(y_{1} z_{1}\right)=\varphi(z)=\varphi\left(x_{2} z_{2}\right)=\varphi\left(y_{2} z_{2}\right)$ lies in F by (20), we have seen that (21) is multiplicatively closed. Hence

$$
B_{F}:=\overline{\operatorname{span}}\left(\left\{\iota(a) \overline{v_{x} v_{y}^{*}}: a \in A ; x, y \in P \text { with } \varphi(x)=\varphi(y) \in F\right\}\right)
$$

is a sub- C^{*}-algebra of $A \rtimes_{\alpha, S}^{a} P$. As we can write $B=\overline{\bigcup_{F} B_{F}}$, we see that B is a sub- $C^{*}-$ algebra of $A \rtimes_{\alpha, S}^{a} P$. Moreover, it suffices to prove faithfulness of $\lambda_{(A, P, \alpha)}$ on B_{F} for every F. Let us first take $F=\{s\}$ and consider the representation $\lambda_{(A, P, \alpha)}$ of $B_{\{s\}}$ restricted to $\mathcal{H} \otimes \ell^{2}\left(P \cap \varphi^{-1}(\{s\})\right) \subseteq \mathcal{H} \otimes \ell^{2}(P)$. Take $\iota(a) \overline{v_{x} v_{y}^{*}} \in B_{\{s\}}$. For $z \in \varphi^{-1}(\{s\})$, either $z \notin y P$ which implies $a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes V_{x} V_{y}^{*}\right)\left(\xi \otimes \varepsilon_{z}\right)=0$ for all $\xi \in \mathcal{H}$, or z lies in $y P$. In the latter case, $(z P) \cap(y P) \neq \emptyset$ implies, since $\varphi(z)=\varphi(y)=s$ that $z=y$. Thus $a_{\left(\left.\alpha\right|_{P}\right)}\left(I_{\mathcal{H}} \otimes V_{x} V_{y}^{*}\right)\left(\xi \otimes \varepsilon_{z}\right)=$ $\delta_{y, z}\left(\alpha_{x}^{-1}(a) \xi\right) \otimes \varepsilon_{x}$. This means that we have a commutative diagram

where the left vertical arrow sends $A \otimes_{\max } \mathcal{K}\left(\ell^{2}\left(P \cap \varphi^{-1}(\{s\})\right)\right) \ni a \otimes e_{x, y}$ to $\alpha_{x}(a) \overline{v_{x} v_{y}^{*}} \in B_{\{s\}}$. The upper horizontal arrow is the canonical homomorphism which is an isomorphism as the algebra of compact operators is nuclear. Thus $\lambda_{(A, P, \alpha)}$ is faithful on $B_{\{s\}}$.

To go from $B_{\{s\}}$ to B_{F}, just proceed as in the proof of Lemma 4.1 in [18].
Corollary 8.2 (Proposition 6.6 of [18] Revisited). Assume that under the hypothesis of the previous proposition, the group H is amenable. Then for every (A, G, α) with A unital, the canonical homomorphism $\lambda_{(A, P, \alpha)}: A \rtimes_{\alpha, S}^{a} P \rightarrow A \rtimes_{\alpha, r}^{a} P$ is an isomorphism.

Proof. By [18, Proposition 6.1], we have a coaction $A \rtimes_{\alpha, s}^{a} P \rightarrow\left(A \rtimes_{\alpha, s}^{a} P\right) \otimes_{\max } C^{*}(H)$ sending $\iota(a) \overline{v_{x}}$ to $\iota(a) \overline{v_{x}} \otimes u_{\varphi(x)}$. Here we used that $A \rtimes_{\alpha}^{a} P \stackrel{\alpha}{\cong} A \rtimes_{\alpha, S}^{a} P$ (see [21, Section 3.1]) and the crossed product description of $A \rtimes_{\alpha}^{a} P$ from [21, Lemma 2.15]. Thus, as explained in [18] after Definition 6.3, there exists a conditional expectation $\Psi_{\delta}: A \rtimes_{\alpha, s}^{a} P \rightarrow B$ sending $\iota(a) \overline{v_{x} v_{y}^{*}}$ to $\delta_{\varphi(x), \varphi(y) \iota}(a) \overline{v_{x} v_{y}^{*}}$. And by [18, Lemma 6.5], this conditional expectation Ψ_{δ} is faithful if H is amenable. Now let $\mathcal{E}_{r}^{(A, P, \alpha)}: A \rtimes_{\alpha, r}^{a} P \rightarrow A \otimes D_{r}$ be the canonical faithful conditional expectation. Then it is straightforward to see that $\mathcal{E}_{r}^{(A, P, \alpha)} \circ \lambda_{(A, P, \alpha)}=\mathcal{E}_{r}^{(A, P, \alpha)} \circ\left(\left.\lambda_{(A, P, \alpha)}\right|_{B}\right) \circ$ Ψ_{δ}. As the right hand side is faithful by the previous proposition, $\lambda_{(A, P, \alpha)}$ must be faithful.

Combining this with Theorem 6.1 (see also Remark 6.3), and using Proposition 19 of [7], we obtain the following.

Corollary 8.3. Let (G, P) be a quasi-lattice ordered group which admits a map φ as in Proposition 8.1 such that H is amenable. Then $C_{s}^{*}(P)\left(\cong C_{r}^{*}(P)\right)$ is nuclear.

In particular, if (G, P) is the graph product of a family of quasi-lattice orders whose underlying groups are amenable, then $C_{s}^{*}(P)\left(\cong C_{r}^{*}(P)\right)$ is nuclear.

8.2. Yet another description of Cuntz algebras

To give an explicit example, consider for $n \geq 2$ the semigroup $\mathbb{N}_{0}^{* n}$, the n-fold free product of the natural numbers. Let p_{1}, \ldots, p_{n} be the canonical generators of $\mathbb{N}_{0}^{* n}$. The semigroup $\mathbb{N}_{0}^{* n}$ sits
inside the free group \mathbb{F}_{n} in a canonical way. This is an example of a quasi-lattice ordered group. It is due to [30].

Let us now describe Ω and $\partial \Omega$. As $\mathcal{J}=\left\{p \mathbb{N}_{0}^{* n}: p \in \mathbb{N}_{0}^{* n}\right\} \cup\{\emptyset\}, \Omega$ can be identified with the set of all, finite or infinite, (reduced) words in the generators p_{1}, \ldots, p_{n}. Note that we do not allow inverses of the p_{i} in these words. The topology is the usual restricted product topology. Moreover, the boundary $\partial \Omega$ is precisely the closed subset of all infinite words. $\Omega \backslash(\partial \Omega)$ is then given by the open subset of all finite words. The semigroup $\mathbb{N}_{0}^{* n}$ acts by shifting from the left. The corresponding group action of \mathbb{F}_{n} is given as follows: $\Omega \cdot \mathbb{F}_{n}$ is given by $\mathbb{F}_{n} \cup\left(\partial \mathbb{F}_{n}\right)_{+}$where $\left(\partial \mathbb{F}_{n}\right)_{+}$is the set of all infinite words which in reduced form only contain finitely many inverses of the generators p_{1}, \ldots, p_{n}. The topology is obtained by restricting the canonical one from $\mathbb{F}_{n} \cup\left(\partial \mathbb{F}_{n}\right)$. The free group \mathbb{F}_{n} acts by left translations. Moreover, the boundary $(\partial \Omega) \cdot \mathbb{F}_{n}$ is given by $\left(\partial \mathbb{F}_{n}\right)_{+}$.

Let us now turn to the corresponding C^{*}-algebras. Since \mathbb{F}_{n} acts amenably on $\Omega \cdot \mathbb{F}_{n}=$ $\mathbb{F}_{n} \cup\left(\partial \mathbb{F}_{n}\right)_{+}$(this can be proven for instance as in [4, Chapter 5, Section 1]), we do not have to distinguish between full and reduced versions. From the definition, it is clear that $C^{*}\left(\mathbb{N}_{0}^{* n}\right)$ is the universal C^{*}-algebra generated by n isometries v_{1}, \ldots, v_{n} whose range projections are orthogonal. Therefore $C^{*}\left(\mathbb{N}_{0}^{* n}\right)$ is nothing else but the canonical extension of the Cuntz algebra \mathcal{O}_{n}. Moreover, it is not difficult to see that $\operatorname{Ind} V(\partial \Omega)=\langle V(\partial \Omega)\rangle$ is the ideal of $C^{*}\left(\mathbb{N}_{0}^{* n}\right)$ generated by the defect projection $1-\sum_{i=1}^{n} v_{i} v_{i}^{*}$. Therefore the boundary quotient $C^{*}\left(\mathbb{N}_{0}^{* n}\right) /\langle V(\partial \Omega)\rangle$ is canonically isomorphic to \mathcal{O}_{n}. Passing over to the group crossed products, we obtain

$$
\begin{aligned}
& C^{*}\left(\mathbb{N}_{0}^{* n}\right) \sim_{M} C_{0}\left(\mathbb{F}_{n} \cup\left(\partial \mathbb{F}_{n}\right)_{+}\right) \rtimes \mathbb{F}_{n}, \\
& \langle V(\partial \Omega)\rangle \sim_{M} C_{0}\left(\mathbb{F}_{n}\right) \rtimes \mathbb{F}_{n} \cong \mathcal{K}\left(\ell^{2}\left(\mathbb{F}_{n}\right)\right), \\
& C^{*}\left(\mathbb{N}_{0}^{* n}\right) /\langle V(\partial \Omega)\rangle \sim_{M} C_{0}\left(\left(\partial \mathbb{F}_{n}\right)_{+}\right) \rtimes \mathbb{F}_{n} .
\end{aligned}
$$

The last line gives a description of \mathcal{O}_{n} as an ordinary group crossed product by \mathbb{F}_{n} up to Morita equivalence.

Moreover, the group G_{0} from Proposition 7.20 is the trivial group in this particular case. Hence Corollary 7.23 says that $C^{*}\left(\mathbb{N}_{0}^{* n}\right) /\langle V(\partial \Omega)\rangle$ is a (unital) UCT Kirchberg algebra. Of course, since we have already observed $C^{*}\left(\mathbb{N}_{0}^{* n}\right) /\langle V(\partial \Omega)\rangle \cong \mathcal{O}_{n}$, this is not surprising. The point we would like to make is that we did not use anything we already knew about \mathcal{O}_{n} to prove all this. So in a way, we have obtained an independent proof of the fact that \mathcal{O}_{n} is a UCT Kirchberg algebra (though one has to admit that the proof of pure infiniteness in [19] is really just the original argument of J . Cuntz).

A similar analysis for the free product $\mathbb{N}_{0}^{* \infty}$ of countably infinitely many copies of the natural numbers yields that $C^{*}\left(\mathbb{N}_{0}^{* \infty}\right) \cong \mathcal{O}_{\infty}$ is a UCT Kirchberg algebra. In this case, the boundary is everything (i.e. $\Omega=\partial \Omega$) as observed in Remark 3.9 of [16].

8.3. Left Ore semigroups

Another class of examples is given by left Ore semigroups. Recall that a semigroup P is left Ore if and only if it can be embedded into a group G such that $G=P^{-1} P$. For a left Ore semigroup P with enveloping group $G=P^{-1} P, P \subseteq G$ always satisfies the Toeplitz condition. Namely, take $g \in G$ and write $g=p^{-1} q$ for p, q in P. Then $E_{P} \lambda_{g} E_{P}=E_{P} \lambda_{p^{-1}} \lambda_{q} E_{P}=$ $\left(E_{P} \lambda_{p^{-1}} E_{P}\right)\left(E_{P} \lambda_{q} E_{P}\right)=V_{p}^{*} V_{q}$. However, it is not clear whether \mathcal{J} is always independent. So we have to assume this.

We remark that setting $\mathcal{J}^{\prime}:=\left\{\cap_{i=1}^{n} p_{i} P: n \in \mathbb{Z}_{\geq 1}, p_{i} \in P\right\} \cup\{\emptyset\}$, we have $\mathcal{J}=$ $\left\{q^{-1} X: q \in P, X \in \mathcal{J}^{\prime}\right\}$. Thus independence of \mathcal{J} is equivalent to independence of \mathcal{J}^{\prime}. Moreover, in the construction of full semigroup C^{*}-algebras, it actually suffices to consider \mathcal{J}^{\prime} instead of \mathcal{J}. This is why in [20], only this smaller family \mathcal{J}^{\prime} of right ideals is considered.

Normal subsemigroups of groups form a particular class of left Ore semigroups. These semigroups have been discussed in [22, Section 3]. To see that these semigroups are left Ore, note that normality of P in G (condition (iv) from [22, Section 3.1]) implies that $P p=p P$ for all $p \in$ P. Hence, for all p and q in P, we have $p q \in p P \cap P q=P p \cap P q$ and therefore $P p \cap P q \neq \emptyset$. As observed in Remark 3.11, the C^{*}-algebra of Wiener-Hopf operators $\mathcal{W}(P)$ is just our C^{*} algebra $C_{r}^{*}(P \subseteq G)$ from Definition 3.7. And Theorem 3.7 in [22] is just our identification $C_{r}^{*}\left(\mathcal{G}_{N}^{N}\right) \cong E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}\left(\cong C_{r}^{*}(P \subseteq G)\right)$ from Theorem 5.24, for $A=\mathbb{C}$ and the trivial G-action on \mathbb{C}. It is straightforward to identify our groupoid \mathcal{G} (see Section 5.4) with the transformation groupoid $Y \times G$ from [22, Section 3], and our subspace $N \subseteq \mathcal{G}^{(0)}$ corresponds to the space X from [22, Section 3]. For the identification $C_{r}^{*}\left(\mathcal{G}_{N}^{N}\right) \cong E_{P}\left(D_{P}^{G} \rtimes_{\tau, r} G\right) E_{P}$, we do not need that \mathcal{J} is independent. That is why the independence condition does not appear in [22].

Concrete examples of left Ore semigroups are for instance listed in [17]. Let us briefly discuss the case of $a x+b$-semigroups. Given an integral domain $R \neq\{0\}$, we form the semidirect product $R \rtimes R^{\times}$, where $R^{\times}=R \backslash\{0\}$ acts on the additive group $(R,+)$ by left multiplication. This semigroup is left Ore and its enveloping group of left quotients is given by $Q(R) \rtimes Q(R)^{\times}$, where $Q(R)$ is the quotient field of R. In the case where R is the ring of integers in a number field, the semigroup C^{*}-algebra of $R \rtimes R^{\times}$has been studied intensively in [9].

Let us now assume that $R \rtimes R^{\times}$satisfies the condition that \mathcal{J} is independent. We then observe that since $Q(R) \rtimes Q(R)^{\times}$is solvable, the semigroup C^{*}-algebra $C^{*}\left(R \rtimes R^{\times}\right)$is nuclear, and full and reduced versions coincide. The boundary quotient of $C^{*}\left(R \rtimes R^{\times}\right)$is canonically isomorphic to the ring C^{*}-algebra $\mathfrak{A}[R]$ introduced in [20] (compare also [37] for concrete examples). Moreover, in this case, the group G_{0} from Proposition 7.20 coincides with the group of invertible elements in $R \rtimes R^{\times}$, i.e. $G_{0}=R \rtimes R^{*}$ where R^{*} is the group of units of R. If R is not a field, then it is easy to see that $R \rtimes R^{*}$ acts topologically freely on $(\partial \Omega) \cdot G$. And by our assumption that $R \neq\{0\}, R \rtimes R^{\times}$is not trivial. Therefore, we can again apply Corollary 7.23 and deduce that the boundary quotient of $C^{*}\left(R \rtimes R^{\times}\right)$is a UCT Kirchberg algebra. As this boundary quotient is nothing else but $\mathfrak{A}[R]$, we have reproven [20, Corollary 8] (for $\mathcal{F}=\emptyset$).

9. Open questions and future research

Of course, one obvious question is how restrictive our assumptions are. It would be interesting to see which semigroups have independent constructible right ideals, and when the Toeplitz condition is satisfied. Is there an intrinsic characterization in terms of the semigroup when a semigroup embeds into a group such that the Toeplitz condition holds? In this context, it would certainly be desirable to study more examples.

In this paper, we have only considered the case of subsemigroups of groups, and one might wonder what to do in the general case of left cancellative semigroups. Recent work in [32] and also our results in Sections 5.2 and 5.3 suggest that one should look at left inverse hulls.

One could also try to interpret our results in terms of geometric group theory: given a subsemigroup P of a group G, what is the relationship between nuclearity of the semigroup C^{*}-algebra(s) of P and exactness of G ? Of course, it would be necessary to impose conditions on $P \subseteq G$. Otherwise, one could take the trivial subsemigroup, and the corresponding semigroup C^{*}-algebra is always nuclear. This just reflects the fact that every group acts amenably on itself.

But if one asks for the condition that P generates G, the problem of relating nuclearity of $C_{s}^{*}(P)$ and exactness of G maybe becomes more interesting.

Our main result on nuclearity of semigroup C^{*}-algebras tells us that nuclearity implies faithfulness of the left regular representation. A natural question would be: What about the converse? In other words, can we replace general coefficients by the trivial coefficient algebra \mathbb{C} in Theorem 6.1?

One could also study semigroup C^{*}-algebras and their ideals and quotients from the perspective of classification. An interesting question in this context would be which UCT Kirchberg algebras arise as the boundary quotients of semigroup C^{*}-algebras.

Acknowledgments

I would like to thank M. Laca for bringing $[7,8]$ to my attention. I also thank J. Cuntz for pointing me towards [14,15]. Moreover, I thank R. Meyer who brought inverse semigroups to my mind. Furthermore, I would like to thank the referee for drawing my attention to [22,29] (see also Remark 3.11 and Section 8.3).

References

[1] C. Anantharaman-Delaroche, J. Renault, Amenable groupoids, in: Monographies de L'Enseignement Mathématique, in: L'Enseignement Mathématique, vol. 36, Genève, 2000.
[2] R.J. Archbold, J.S. Spielberg, Topologically free actions and ideals in discrete C^{*}-dynamical systems, Proc. Edinb. Math. Soc. 37 (1993) 119-124.
[3] B. Blackadar, Operator Algebras, Theory of C^{*}-Algebras and von Neumann Algebras, in: Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, Heidelberg, New York, 2006.
[4] N.P. Brown, N. Ozawa, C^{*}-Algebras and Finite-Dimensional Approximations, in: Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008.
[5] L.A. Coburn, The C^{*}-algebra generated by an isometry I, Bull. Amer. Math. Soc. 73 (1967) 722-726.
[6] L.A. Coburn, The C^{*}-algebra generated by an isometry II, Trans. Amer. Math. Soc. 137 (1969) 211-217.
[7] J. Crisp, M. Laca, On the Toeplitz algebras of right-angled and finite-type Artin groups, J. Aust. Math. Soc. 72 (2002) 223-245.
[8] J. Crisp, M. Laca, Boundary quotients and ideals of Toeplitz algebras of Artin groups, J. Funct. Anal. 242 (2007) 127-156.
[9] J. Cuntz, C. Deninger, M. Laca, C^{*}-algebras of Toeplitz type associated with algebraic number fields, Math. Ann. 355 (2013) 1383-1423.
[10] J. Cuntz, S. Echterhoff, X. Li, On the K-theory of the C^{*}-algebra generated by the left regular representation of an Ore semigroup, J. Eur. Math. Soc. (accepted for publication).
[11] J. Cuntz, S. Echterhoff, X. Li, On the K-theory of crossed products by automorphic semigroup actions, arXiv:1205.5412v1.
[12] R.G. Douglas, On the C^{*}-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972) 143-151.
[13] R. Exel, M. Laca, J. Quigg, Partial dynamical systems and C^{*}-algebras generated by partial isometries, J. Oper. Theory 47 (2002) 169-186.
[14] M. Khoshkam, G. Skandalis, Regular representation of groupoid C^{*}-algebras and applications to inverse semigroups, J. Reine Angew. Math. 546 (2002) 47-72.
[15] M. Khoshkam, G. Skandalis, Crossed products of C^{*}-algebras by groupoids and inverse semigroups, J. Oper. Theory 51 (2004) 255-279.
[16] M. Laca, Purely infinite simple Toeplitz algebras, J. Operator Theory 41 (1999) 421-435.
[17] M. Laca, From endomorphisms to automorphisms and back: dilations and full corners, J. Lond. Math. Soc. 61 (2000) 893-904.
[18] M. Laca, I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139 (1996) 415-440.
[19] M. Laca, J.S. Spielberg, Purely infinite C^{*}-algebras from boundary actions of discrete groups, J. Reine Angew. Math. 480 (1996) 125-139.
[20] X. Li, Ring C^{*}-algebras, Math. Ann. 348 (2010) 859-898.
[21] X. Li, Semigroup C^{*}-algebras and amenability of semigroups, J. Funct. Anal. 262 (2012) 4302-4340.
[22] P.S. Muhly, J.N. Renault, C^{*}-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982) 1-44.
[23] P.S. Muhly, J.N. Renault, D.P. Williams, Equivalence and isomorphism for groupoid C^{*}-algebras, J. Oper. Theory 17 (1987) 3-22.
[24] P.S. Muhly, D.P. Williams, Renault's equivalence theorem for groupoid crossed products, New York J. Math. Mono. 3 (2008).
[25] G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987) 303-326.
[26] G.J. Murphy, Ordered groups and crossed products of C^{*}-algebras, Pacific J. Math. 2 (1991) 319-349.
[27] G.J. Murphy, Crossed products of C^{*}-algebras by semigroups of automorphisms, Proc. Lond. Math. Soc. 3 (1994) 423-448.
[28] G.J. Murphy, C^{*}-algebras generated by commuting isometries, Rocky Mountain J. Math. 26 (1996) 237-267.
[29] A. Nica, Some remarks on the groupoid approach to Wiener-Hopf operators, J. Oper. Theory 18 (1987) 163-198.
[30] A. Nica, C^{*}-algebras generated by isometries and Wiener-Hopf operators, J. Oper. Theory 27 (1992) 17-52.
[31] A. Nica, On a groupoid construction for actions of certain inverse semigroups, Internat. J. Math. 5 (1994) 349-372.
[32] M.D. Norling, Inverse semigroup C^{*}-algebras associated with left cancellative semigroups, arXiv:1202.5977v1.
[33] A.T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Birkhäuser, Boston, 1999.
[34] J. Quigg, N. Sieben, C^{*}-actions of r-discrete groupoids and inverse semigroups, J. Aust. Math. Soc. 66 (1999) 143-167.
[35] N. Sieben, C^{*}-crossed products by partial actions and actions of inverse semigroups, J. Aust. Math. Soc. 63 (1997) 32-46.
[36] A. Sims, D.P. Williams, An equivalence theorem for reduced Fell bundle C^{*}-algebras, arXiv:1111.5753v1.
[37] S. Sundar, Cuntz-Li relations, inverse semigroups and groupoids, Münster J. Math. 5 (2012) 151-181.
[38] J.-L. Tu, La conjecture de Baum-Connes pour les feuilletages moyennables, K-Theory 17 (3) (1999) 215-264.

[^0]: ${ }^{4}$ Research supported by the ERC through AdG 267079.
 E-mail address: xinli.math @uni-muenster.de.

