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Abstract

Given two finite p-local finite groups and a fusion preserving morphism between their Sylow subgroups,
we study the question of extending it to a continuous map between their classifying spaces. The results
depend on the construction of the wreath product of p-local finite groups which is also used to study p-
local permutation representations.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

A fusion system F on a finite p-group P is a small category whose objects are the subgroups
of P and whose morphisms are group monomorphisms which include all those homomorphisms
obtained from conjugation by the elements of P . The idea of saturated fusion systems was
formulated in the early 1980s by Puig [19] who studied representations of finite groups. Every
block b of the group algebra kG, where k is an algebraically closed field of characteristic p,
gives rise to a saturated fusion system on its defect group P � G. The principal block of kG
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gives rise to the fusion system FS(G) whose objects are the subgroups of a Sylow p-subgroup S

of G and its morphisms are induced by conjugation in G. Not all fusion systems have the form
FS(G), see, e.g., [6, Examples 9.3, 9.4] or [11].

The significance of FS(G) in topology was recognized by Martino and Priddy in [14]. In [16,
17], Oliver shows that FS(G) determines the homotopy type of the p-completion (in the sense
of Bousfield and Kan [2]) of BG = K(G,1).

In order to understand self-homotopy equivalences of BG∧
p , Broto, Levi and Oliver consid-

ered in [5] a category LS(G) closely related to FS(G). This category was studied earlier by
Puig. Abstraction of this construction led them in [6] to the notion of a centric linking system
L associated to a saturated fusion system (S, F ). The triple (S, F , L) is called a p-local finite
group. Its classifying space is by definition the space |L|∧p , a terminology justified by the fact
that |LS(G)|∧p � BG∧

p [5, Lemma 1.2]. The spaces |L|∧p have many properties in common with
p-completed classifying spaces of finite groups. Thus, p-local finite groups provide an important
connection between group theory and topology via their linking systems.

This paper focuses on the following fundamental problem. In what way, if any, a fusion pre-
serving map (S, F ) → (S′, F ′), see details below, gives rise to a map |L|∧p → |L′|∧p between the
classifying spaces? A step forward is given in Theorem B below. It is related to the yet open
problem of defining the concept of morphisms between p-local finite groups in a way which is
compatible with maps between their classifying spaces. It also gives a new insight to the study
of maps between p-completed classifying spaces.

We will define a permutation representation of a p-local finite group (S, F , L) as a homo-
topy class of a map |L| → (BΣn)

∧
p where Σn is a symmetric-group. In Theorem C below we

will prove a p-local form of Cayley’s theorem, namely the existence of p-local regular repre-
sentations. We will then approach the notion of the homotopy-index of the Sylow subgroup S

in (S, F , L) through the regular representation. The index of a subgroup S in a finite group G

is the number of the orbits of S in its action by translation on G. In other words, restriction
of the regular representation of G to S results in |G : S| copies of the regular representation
of S. From the homotopy point of view, one could define the homotopy-index of S in L as the
minimal n for which there is a map |L| → (BΣn·|S|)∧p whose restriction to BS is homotopic to

the map BS
n·regS−−−→ (BΣn·|S|)∧p induced by n copies of the regular representation of S. But this

number is very difficult to compute, even for a p-local finite group associated to a finite group.
Instead, we will define the lower homotopy-index of S in L as the smallest number pk such
that the map BS → (BΣpk ·|S|)∧p induced by pk · regS can be extended up to homotopy to a map

|L| → (BΣpk ·|S|)∧p . This is a new invariant of p-local finite groups.

Let us now describe our results in greater detail. Suppose that (S, F , L) and (S′, F ′, L′) are p-
local finite groups. Given a group homomorphism ρ :S → S′ it is natural to ask if Bρ :BS → BS′
can be extended, up to homotopy, to a map f̃ : |L|∧p → |L′|∧p whose restriction to BS, namely

f̃ ◦ Θ , is homotopic to the composite BS
Bρ−−→ BS′ Θ ′−→ |L′|∧p where Θ and Θ ′ are the maps

described in 2.9.
Recall that ρ is called fusion preserving if for every ϕ ∈ F (P,Q) there exists some ϕ′ ∈

F ′(ρ(P ),ρ(Q)) such that ρ ◦ ϕ = ϕ′ ◦ ρ. Ragnarsson shows in [21] that stably, namely in the
homotopy category of spectra, the morphism f̃ above exists if and only if ρ is fusion preserving.
Unstably this is unknown.

The content of Theorem B below is that f̃ exists provided the target L′ is replaced with its
wreath product with Σn for some n, a construction which we now describe.
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The wreath product of a space X with a subgroup G � Σn, denoted X 	 G, is the homotopy
orbit space (Xn)hG where G acts by permuting the factors (see Definition 3.4). This construction
is equipped with a map Δ :X → X 	 G which factors through the diagonal map X → Xn. We
prove in 3.6 below that if H is a discrete groups then there is a homotopy equivalence (BH) 	G �
B(H 	 G) such that Δ :BH → (BH) 	 G is induced by the diagonal inclusion H � H 	 G. The
next result should be compared with [3, Theorems D and E].

Theorem A. Fix a p-local finite group (S, F , L) where S 
= 1. Let K be a subgroup of Σn and
let S′ be a Sylow p-subgroup of S 	 K . Then there exists a p-local finite group (S′, F ′, L′) which
is equipped with a homotopy equivalence |L| 	 K � |L′| such that the composite

BS′ B incl−−−→ B(S 	 K) � (BS) 	 K Θ	K−−−→ |L| 	 K � |L′|

is homotopic to the natural map Θ ′ :BS′ → |L′|. Moreover, (S′, F ′, L′) satisfying these proper-
ties is unique up to an isomorphism of p-local finite groups.

In Remark 5.3 we show that when Theorem A is applied to a p-local finite group (S, F , L) of
a finite group G then (S′, F ′, L′) is the p-local finite group of G 	 K . If S = 1 then |L| = ∗ and
we choose (S′, F ′, L′) to be the p-local finite group associated to K and the map Δ : |L| → |L′|
is any map ∗ → |L′|.

We prove Theorem A in Section 5 which is a technical section, however the remainder of the
paper is completely independent of its proof.

1.1. Definition. We call the p-local finite group (S′, F ′, L′) in the theorem above the wreath
product of (S, F , L) with K and denote its fusion system and linking system by F 	 K and
L 	 K , respectively. Let Δ : |L| → |L| 	 K � |L′| denote the diagonal inclusion followed by the
homotopy equivalence in Theorem A.

Theorem B. Let (S, F , L) and (S′, F ′, L′) be p-local finite groups. Suppose that ρ :S → S′
is a fusion preserving homomorphism. Then there exist some m � 0 and a map f̃ : |L|∧p →
|L′ 	 Σpm |∧

p
such that the diagram below commutes up to homotopy

BS
η◦Θ

Bρ

|L|∧p
f̃

BS′
η◦Θ ′ |L′|∧p

Δ∧
p

|L′ 	 Σpm |∧
p

In Theorem 7.3 below we prove a more elaborate result.
A permutation representation of a finite group G is a homomorphism ρ :G → Σn. The rank

of ρ is n. Throughout, we will call ρ simply a “representation.” Clearly G acts on itself by left
(or right) translations giving rise to Cayley’s embedding regG :G → Σ|G| which is called the
regular permutation representation of G.

Two representations ρ1, ρ2 :G → Σn are equivalent if they are conjugate in Σn, that is, if they
differ by an inner automorphism of Σn. The set of equivalence classes of representations of G of
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rank n is denoted Repn(G). There are obvious inclusions Σn×Σm � Σn+m and Σn×Σm � Σnm

obtained by taking the disjoint union and the product of sets of cardinality n and m. They give
rise to commutative, associative and unital binary operations + and × on the set

∐
n�0 Repn(G).

We shall write k · ρ for the k-fold sum ρ + · · · + ρ.
Let F be a fusion system on S. A representation ρ :S → Σn is called F -invariant if for every

P � S and every ϕ ∈ F (P,S) the representations ρ|P and ρ ◦ϕ of P are equivalent. Let Repn(F )

denote the subset of Repn(S) of all the equivalence classes of the F -invariant representations of
S of rank n. It is easy to see that

∐
n�0 Repn(F ) is closed under the operations + and × on∐

n�0 Repn(S).
We define the set of representations at p of rank n of a space X as the set Repn,p(X) =

[X, (BΣn)
∧
p ] of unpointed homotopy classes of unpointed maps. Since (BΣm)∧p × (BΣn)

∧
p �

(B(Σm × Σn))
∧
p (see [2, Theorem I.7.2]), the following maps (B(Σm × Σn))

∧
p → (BΣm+n)

∧
p

and (B(Σm × Σn))
∧
p → (BΣmn)

∧
p induced by the inclusions equip

∐
n�0 Repn,p(X) with com-

mutative and associative binary operations + and × such that + is distributive over ×.
If P is a finite p-group then there are bijections

Repn(P )
ρ �→Bρ−−−−→≈ [BP,BΣn] f �→η◦f−−−−−→≈

[
BP, (BΣn)

∧
p

]
where η :BΣn → (BΣn)

∧
p is the completion map. The first bijection is a classical result going

back to Hurewicz and the second was first shown by Mislin in [15, proof of the main theorem].
In light of these bijections we make the following definition.

1.2. Definition. Fix a p-local finite group (S, F , L). We say that a permutation representation

f : |L| → (BΣn)
∧
p is S-regular if n = m · |S| for some m � 0 and the composite BS

Θ−→ |L| f−→
(BΣn)

∧
p is homotopic to BS

B(m·regS)∧p−−−−−−−→ (BΣn)
∧
p .

We will deduce from Theorem B the following p-local form of Cayley’s theorem.

Theorem C. Every p-local finite group (S, F , L) admits an S-regular permutation representa-
tion f : |L| → (BΣpm)∧

p
.

Recall from [5, Definition 2.2] that a continuous map f :X → Y is a homotopy monomor-
phism at p if H ∗(X;Fp) is a finitely generated module over H ∗(Y ;Fp) via f ∗. In Proposi-
tion 7.13 we show that every S-regular permutation representation is a homotopy monomorphism
at p.

The reason we did not define permutation representations as maps |L| → BΣn (without p-
completing the target) is that Theorem C would fail completely. For example, the nerve of the
linking system of the Solomon p-local finite group, constructed by Levi and Oliver in [11],
was shown to be simply connected in [8] and therefore [23, Theorem 8.1.11] implies that
[|LSol|,BΣn] = ∗. In particular, the restriction of any f : |LSol| → BΣn to BS via Θ is induced
by the trivial representation ρ :S → Σn.

1.3. Definition. The ring Rep(|L|) of the virtual permutation representations of a p-local
finite group (S, F , L) is the Grothendieck group completion of the commutative monoid
(
∐

Repn,p(|L|),+).
n�0
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The ring Rep(F ) of the virtual F -invariant representations of S of a saturated fusion system
F on S is the Grothendieck group completion of the commutative monoid (

∐
n�0 Repn(F ),+).

Clearly Rep(F ) is a subring of Rep(S). In Section 8 we will construct a ring homomorphism
Φ : Rep(L) → Rep(F ) which sends a map f : |L| → (BΣn)

∧
p to the representation ρ :S → Σn

such that f ◦Θ � η◦Bρ where f and Θ are as in Definition 1.2. We shall also see that regS :S →
Σ|S| generates an ideal Repreg(F ) in Rep(F ) whose underlying group is isomorphic to Z.

The idea behind the next definition is that if H is a subgroup of index n in a finite group G

then regG|H � n · regH . Therefore the image of the restriction map Rep(G) → Rep(H) intersects
Repreg(H) := {k · regH }k∈Z in a subgroup of index divisible by n.

1.4. Definition. The lower p-local index of S in L, denoted Lindp(L :S), is the index of Im(Φ)∩
Repreg(F ) in Repreg(F ).

We will prove in Lemma 8.5 that Lindp(L :S) is always a p-power. We conjecture that it is
always equal to 1. A partial result is the theorem below.

Theorem D. Let (S, F , L) be a p-local finite group. Then Lindp(L :S) = 1 if either

(1) (S, F , L) is associated with a finite group.
(2) (S, F , L) is one of the exotic examples in [6, Examples 9.3 and 9.4] or in [22] or in [9] or in

[7, Example 5.3].

Notation. The following notation will be used through the paper:

• η :X → X∧
p is the Bousfield–Kan p-completion.

• If X is a G-space, κ :X → (X)hG = EG×GX is the map from X into the Borel construction.
• Given a map f :X → Y of spaces, let mapf (X,Y ) denote the path component of f in

map(X,Y ). By convention f is the basepoint of this space.
• If f :X × Y → Z, the adjoint map is denoted by f 
 :X → map(Y,Z).
• Θ :BS → |L| is the map from the Sylow subgroup introduced in 2.9.

2. Preliminaries on p-local finite groups

We start with the notion of a saturated fusion system which is due to Puig [19] (see also [6]).

2.1. Definition. A fusion system F on a finite p-group S is a category whose objects are the
subgroups of S and the set of morphisms F (P,Q) between two subgroups P , Q, satisfies the
following conditions:

(a) F (P,Q) consists of group monomorphisms and contains the set HomS(P,Q) of all the
homomorphisms cs :P → Q which are induced by conjugation by elements s ∈ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

In a fusion system F over a p-group S, we say that two subgroups P,Q � S are F -conjugate
if there is an isomorphism between them in F . Let Sylp(G) be the set of the Sylow p-subgroups
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of a group G. Given P � G and g ∈ G, cg ∈ Hom(P,G) is the monomorphism cg(x) = gxg−1.

We write OutF (P ) = AutF (P )/ Inn(P ).

2.2. Definition. Let F be a fusion system on a p-group S. A subgroup P � S is fully centralized
in F if |CS(P )| � |CS(P ′)| for all P ′ � S which is F -conjugate to P . A subgroup P � S is fully
normalized in F if |NS(P )| � |NS(P ′)| for all P ′ � S which is F -conjugate to P .

A fusion system F on S is saturated if:

(I) Each fully normalized subgroup P � S is fully centralized and AutS(P ) ∈ Sylp(AutF (P )).

(II) For P � S and ϕ ∈ F (P,S) set

Nϕ = {
g ∈ NS(P )

∣∣ ϕcgϕ
−1 ∈ AutS

(
ϕ(P )

)}
.

If ϕ(P ) is fully centralized then there is ϕ̄ ∈ F (Nϕ,S) such that ϕ̄|P = ϕ.

2.3. Definition. Let F be a fusion system on a p-group S. A subgroup P � S is F -centric if P

and all its F -conjugates contain their S-centralizers. A subgroup P � S is F -radical if OutF (P )

has no non-trivial normal p-subgroup.

2.4. Definition. (See [6].) Let F be a fusion system on a p-group S. A centric linking system
associated to F is a category L whose objects are the F -centric subgroups of S, together with a

functor π : L → F c and monomorphisms P
δP−→ AutL(P ) for each F -centric subgroup P � S,

which satisfy the following conditions:

(A) π is the identity on objects. For each pair of objects P,Q ∈ L, the action of Z(P ) on
L(P,Q) via precomposition and δP :P → AutL(P ) is free and π induces a bijection
L(P,Q)/Z(P )

∼=−→ F (P,Q).

(B) If P � S is F -centric then π(δP (g)) = cg ∈ AutF (P ) for all g ∈ P .
(C) For each f ∈ L(P,Q) and each g ∈ P , the following square commutes in L:

P
f

δP (g)

Q

δQ(π(f )(g))

P
f

Q

A p-local finite group (S, F , L) consists of a saturated fusion systems F on S together with
an associated linking system.

2.5. Definition. Let (S, F , L) be a p-local finite group. A system of lifts in L consists of functions
δP,Q :NS(P,Q) → L(P,Q), one for each pair P,Q � S of F -centric subgroups, such that:

(a) π(δP,Q(g)) = cg ∈ F (P,Q) for all g ∈ NS(P,Q).
(b) δP,P (g) = δP (g) for all g ∈ P , namely δP,P extends the structure map δP .
(c) If g ∈ NS(P,Q) and h ∈ NS(Q,R) then δP,R(hg) = δQ,R(h) ◦ δP,Q(g).
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For any P � Q set ι
Q
P = δP,Q(e) where e is the identity of S.

2.6. Remark. Any p-local finite group admits a system of lifts by [6, Proposition 1.11].

We will write ĝ for δP,Q(g). In this notation conditions (a) and (c) become π(ĝ) = cg and

ĥg = ĥ ◦ ĝ. Also ιRQ ◦ ι
Q
P = ιRP .

2.7. Remark. Every morphism in L is both a monomorphism and an epimorphism (but not neces-
sarily an isomorphism). This is shown in [6, remarks after Lemma 1.10] and [3, Corollary 3.10].
We shall use this fact repeatedly throughout.

The orbit category of a p-local finite group (S, F , L) is denoted by O(F ). This is the category
whose objects are the subgroups of S and whose morphisms are

O(F )(P,Q) = RepF (P,Q)
def= Inn(Q) \F (P,Q).

Also, O(F c) is the full subcategory of O(F ) whose objects are the F -centric subgroups of S.

2.8. Proposition. (See [6, Proposition 2.2].) Let (S, F , L) be a p-local finite group. There exists
a functor B̃ : O(F c) → Top which is isomorphic in the homotopy category of spaces to the
functor P �→ BP , and such that there is a homotopy equivalence

hocolim
O(F c)

B̃
�−→ |L|.

2.9. Notation. For a finite group G, let BG denote the category with one object •G and G as
its set of automorphisms. For an F -centric P � S the monomorphism δP gives rise to a functor
BP → L which, by abuse of notation, we denote by δP . For P = S, upon taking nerves of
categories, we obtain a map

Θ :BS → |L|

and we write Θ|BQ for Θ ◦ B inclSQ.
If Q is F -centric, then the natural isomorphism of functors in Proposition 2.8 shows that

Θ|BQ is homotopic to BQ � B̃(Q) → hocolimO(F c) B̃ = |L|. Therefore, for any F -centric
Q � S and any morphism ρ :Q → S in F we have Θ ◦Bρ � Θ|BQ. In particular, Θ|BQ′ ◦Bψ �
Θ|BQ for any ψ ∈ IsoF (Q,Q′). It follows from Alperin’s fusion theorem for saturated fusion
systems [6, Theorem A.10] that:

2.10. Proposition. For any Q,Q′ � S and any ρ ∈ F (Q,Q′) the maps Θ|BQ and Θ|BQ′ ◦ Bρ

are homotopic.

The following proposition on mapping spaces will be needed in Section 7. Here and elsewhere
in this paper we use the letter η for the p-completion map X → X∧

p .

2.11. Proposition. Fix a p-local finite group (S, F , L) and let P be a finite p-group. Given a
homomorphism ρ :P → S, set Q = ρ(P ) � S. Then:
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(a) There is a homotopy equivalence

mapη◦Θ◦Bρ
(
BP, |L|∧p

) � mapη◦Θ|BQ
(
BQ, |L|∧p

)
,

and this space is the p-completed classifying space of a p-local finite group.
(b) After p-completion, the map

mapΘ|BQ
(
BQ, |L|) η∗−→ mapη◦Θ|BQ

(
BQ, |L|∧p

)
induces a split surjection on homotopy groups.

Proof. (a) First of all, we can choose a fully centralized subgroup Q′ � S in F and an iso-

morphism ψ :Q → Q′ in F . Let ρ′ :P → S denote the composite P
ρ−→ Q

ψ−→ Q′ � S. By
Proposition 2.10 observe that

(1) Θ|BQ � Θ|BQ′ ◦ Bψ.

Hence, Θ ◦Bρ � Θ ◦Bρ′. It follows from [6, Theorem 6.3] that there are homotopy equivalences

mapη◦Θ◦Bρ
(
BP, |L|∧p

) � mapη◦Θ◦Bρ′(
BP, |L|∧p

) � mapη◦Θ|BQ′ (BQ′, |L|∧p
)

� mapη◦Θ|BQ
(
BQ, |L|∧p

)
where the first equivalence is implied by Eq. (1) and the third one follows since Bψ :BQ → BQ′
is a homotopy equivalence. Also by [6, Theorem 6.3], this space is homotopy equivalent to the
classifying space of a p-local finite group |CL(Q′)|∧p .

(b) We can assume from (1), by replacing Q with Q′ if necessary, that Q is fully centralized
in F . In [6, p. 822] a functor

Γ :CL(Q) × BQ → L

is constructed where CL(Q) is the centralizer linking system [6, Definition 2.4] of Q in F . By
p-completing the geometric realization of Γ and taking adjoints we obtain a commutative square
in which the bottom row is a homotopy equivalence by [6, Theorem 6.3]

(2)

|CL(Q)| |Γ |#

η

mapΘ|BQ(BQ, |L|)
η∗

|CL(Q)|∧p
(|Γ |∧p )#

� mapη◦Θ|BQ(BQ, |L|∧p)

Since |CL(Q)| is p-good by [6, Proposition 1.12], upon p-completion of the diagram (2), we
see that the vertical arrow on the left becomes an equivalence and therefore the composite
(η∗)∧p ◦ (|Γ |#)∧p is a homotopy equivalence. In particular (η∗)∧p is split surjective on homotopy
groups. �

We end this section with a description of the product of p-local finite groups.
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2.12. Let Fi be a saturated fusion system on a finite p-group Si for i = 1, . . . , n. Define S =∏n
i=1 Si and consider the product category

∏n
i=1 Fi . Its objects are the subgroups of S of the form∏

i Pi where Pi � Si , and morphisms have the form
∏

i Pi

∏
i ϕi−−−→ ∏

i Qi where ϕi ∈ Fi (Pi,Qi).

2.13. Notation. For P � S = ∏n
i=1 Si , we denote by P (i) the image of P under the projection

p(i) :S → Si . Clearly P �
∏n

i=1 P (i).

Let F be the fusion system on S generated by
∏

i Fi . Thus, every morphism ϕ ∈ F (P,Q) is

given by the restriction of a morphism
∏

i P
(i)

∏
i ϕi−−−→ ∏

i Q
(i) in

∏
i Fi . The ϕi ’s are unique in

the sense that they are completely determined by ϕ because p(i)|P :P → P (i) are by definition
surjective and p(i)|Q ◦ϕ = ϕi ◦p(i)|P . We see that ϕ �→ (ϕi)

n
i=1 induces an inclusion F (P,Q) ⊆∏

i Fi (P
(i),Q(i)). In particular,

∏
i Fi is a full subcategory of F .

We shall write×n

i=1 Fi for the fusion system F just defined and we call it the product fusion
system of the Fi ’s.

2.14. Lemma. With the notation above, (S, F ) is a saturated fusion system. If P � S is F -centric
then all the groups P (i) are Fi -centric for i = 1, . . . , n.

The assignment P �→ ∏
i P

(i) and the inclusions F (P,Q) ⊆ ∏
i Fi (P

(i),Q(i)) give rise to a
functor r : F c → ∏

i F c
i which is a retraction of the inclusion

∏
i F c

i ⊆ F c.

Proof. It is shown in [6, Lemma 1.5] that F =×i
Fi is a saturated fusion system on S.

The assignments P �→ ∏
i P

(i) and ϕ �→ ∏
ϕi give rise to a functor r : F → ∏

i Fi which by
inspection is a retraction to the inclusion j :

∏
i Fi → F . It remains to show that j and r restrict

to
∏

i F c
i and F c.

Observe that CS(P ) = ∏
i CSi

(P (i)) for any P � S. If P is F -centric then

(1)

n∏
i=1

CSi

(
P (i)

) = CS(P ) � P �
n∏

i=1

P (i).

Therefore CSi
(P (i)) � P (i) for all i. Now, if Qi are Fi -conjugate to P (i) via isomorphisms

ϕi ∈ Fi (P
(i),Qi) then (ϕ1 × · · · × ϕn)|P is an F -isomorphism onto some Q � S such that

Q(i) = Qi . By definition Q is also F -centric and applying (1) to Q we obtain that CSi
(Qi) � Qi

for all i. We deduce that P (i) are Fi -centric.
Assume now that Pi � Si are Fi -centric for all i = 1, . . . , n. Then P = ∏

i Pi is F -centric
because if Q is F -conjugate to P then it has the form

∏
i Qi where Qi are Fi -conjugate to Pi

and therefore CS(Q) = ∏
i CSi

(Qi) � Q. �
The construction of the product of saturated fusion systems appears in [6], but we were unable

to find a reference for the product of p-local finite groups.

2.15. Definition. Let (Si, Fi , Li ) be p-local finite groups for i = 1, . . . , n. Their product×n
(Si, Fi , Li ) is the p-local finite group (S, F , L) where S = ∏n

Si and F =×n Fi .
i=1 i=1 i=1
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The centric linking system L =×n

i=1 Li is defined as the following pullback of small categories
where r is defined in Lemma 2.14

×n

i=1 Li

rL

π

∏n
i=1 Li

∏n
i=1 πi

(×n

i=1 Fi )
c

r

∏n
i=1 F c

i

The functor π : L → F is defined by the pullback and the monomorphisms δP :P → AutL(P )

are defined by the composites

P �
∏
i

P (i)

∏
i δ

P (i)−−−−−→
∏
i

AutLi

(
P (i)

)
.

We need to prove that axioms (A)–(C) of Definition 2.4 hold.

Proof. For any F -centric subgroups P,Q � S the set L(P,Q) is the pullback

(1)

L(P,Q)

π

∏n
i=1 Li (P

(i),Q(i))

∏
i π

×n

i=1 Fi (P ,Q)
r ∏n

i=1 Fi (P
(i),Q(i))

We start by proving that the monomorphisms δP are well defined. That is, given g = (gi) ∈ P � S

where P is F -centric,
∏

i δP (i) (gi) ∈ AutL(P ). The pullback diagram (1) shows that it is enough
to check that

∏
πi(δP (i) (gi)) ∈ r((×n

i=1 Fi )
c). It follows from the fact that πi(δP (i) (gi)) =

cgi
∈ AutFi

(P (i)) and r(cg) = ∏
cgi

. This also shows that axiom (B) holds since π(δP (g)) =∏
πi(δP (i) (gi))|P = cg|P .
We continue to prove that (S, F , L) satisfies axioms (A) and (C). It follows from the definition

that π is the identity on objects. Observe that
∏

i CSi
(P (i)) acts transitively and freely on the

fibre of the right-hand arrow in (1) because axiom (A) holds in (Si, Fi , Li ). Now, axiom (A) for
(S, F , L) follows from the fact that CS(P ) = ∏

i CSi
(P (i)) and that diagram (1) is a pullback

square so the fibres of the vertical arrows are isomorphic.
Finally, axiom (C) for (S, F , L) follows by applying axiom (C) to each component of a mor-

phism f ∈ L(P,Q) and each g ∈ P �
∏

i P
(i). �

2.16. Remark. Using the notation of Definition 2.15, if {δi
P,Q} are systems of lifts in Li ,

there results a system of lifts in
∏

i Li as follows. If P,Q � S are F -centric, then δP,Q is∏
i δP (i),Q(i) :

∏
i NSi

(P (i),Q(i)) → ∏
i Li (P

(i),Q(i)).

2.17. Proposition. Given p-local finite groups (Si, Fi , Li ) for i = 1, . . . , n, the category
∏

i Li

is a full subcategory of×i
Li and the inclusion j :

∏
i Li →×i

Li induces a homotopy equiva-
lence on nerves. In particular,

∏n |Li | � |×n Li |.
i=1 i=1
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Proof. Set L =×n

i=1 Li . The category
∏

i Li is a full subcategory of L by Definition 2.15
and the fact that

∏
i Fi is a full subcategory of ×i

Fi . The assignment P �→ ∏
i P

(i) and
the inclusion L(P,Q) ⊆ ∏n

i=1 Li (P
(i),Q(i)) give rise to a functor rL : L → ∏n

i=1 Li (see the
pullback diagram in Definition 2.15) which is a retract to the inclusion j by Lemma 2.14.
Also there is a natural transformation Id → j ◦ r which is defined on an object P ∈ L by
ι
r(P )
P :P → r(P ) = ∏n

i=1 P (i) (see Remark 2.16 and Definition 2.5). This shows that |r| is a
homotopy inverse to |j | :

∏
i |Li | → |L|. �

2.18. Remark. Given a p-local finite group (S, F , L), Definition 2.15 allows us to consider its n-
fold product with itself denoted (S×n, F ×n, L×n). By construction, the action of the symmetric
group Σn on S×n extends to an action on the fusion system F ×n and the linking system L×n by
permuting the factors. Moreover, the functor π : L×n → F ×n and the distinguished monomor-
phisms δP :P → AutL×n(P ) for every F ×n-centric P � S×n are Σn-equivariant from the con-

struction in Definition 2.15. Therefore, also the inclusion BS×n
δS×n−−−→ B AutL×n(S×n) → L×n is

Σn-equivariant and so is the induced map Θ :BS×n → |L×n| � |L|×n.
The choice of δP,Q in L×n made in Remark 2.16 is easily seen to be equivariant with respect

to the action of Σn as well.
Finally, the functor j and the homotopy equivalence in Proposition 2.17 are also equivariant

with respect to the action of Σn by permuting coordinates.

3. The wreath product of spaces

Let G be a finite group and X a G-space. The Borel construction XhG is the orbit space of
EG × X where EG is a contractible space on which G acts freely on the right. Recall from 2.9
that BG is the small category with one object and G as a morphism set. Then X can be viewed
as a functor X : BG → Top and the Borel construction is a model for hocolimBG X. There is a
natural map XhG → X/G to the orbit space of X induced by the map EG → ∗.

A standard model for EG is the geometric realization of the simplicial set E G whose set of
n-simplices is the (n + 1)-fold product G × · · · × G with face and degeneracy maps defined
using deletion and duplication and where G acts diagonally via right translations. The identity
element of G equips EG with a natural choice of a basepoint (which is not invariant under G).
This basepoint provides an augmentation map κ(X) :X → XhG which is an inclusion map and
it fits into the fibration sequence

X
κ(X)−−−→ XhG → BG. (3.1)

We will tend to simply write κ instead of κ(X) whenever X is understood from the context.
A fixed point x ∈ X corresponds to a G-map ∗ → X and gives rise to a section s :BG → XhG

for this fibration.
Now assume that G is a semidirect product H � N . Consider spaces, namely, simplicial sets

X,Y and Z such that X has a left action of G and Z has a right action of H . Assume further that
Y has a left action of H and a right action of N such that h · (y · n) = (h · y) · (hnh−1) for all
y ∈ Y , h ∈ H and n ∈ N . Note that the actions of N and H on Y do not commute. Then Z × Y

admits a right G-action defined by (z, y) · (h,n) = (z · h, (h · y) · n) where g = hn ∈ H � N and
(z, y) ∈ Z × Y . Moreover, by inspection, there is a homeomorphism

(Z × Y) ×G X ∼= Z ×H (Y ×N X).
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Taking Z = EH and Y = EN where the left H -action on EN is via conjugation, we obtain a
homeomorphism

(EH × EN) ×G X
≈−→ EH ×H (EN ×N X). (3.2)

Moreover there is an obvious isomorphism of simplicial sets

E H × E N
≈−→ E G

which in turn induces a homeomorphism EH × EN ≈ EG of G-spaces. It now becomes clear
that

X
κ−→ XhN

κ−→ (XhN)hH −→≈ XhG is equal to X
κ−→ XhG. (3.3)

3.4. Definition. The wreath product of a space X with a subgroup G of Σk is the space

X 	 G := (
X×k

)
hG

where G acts by permuting the factors of X×k . The diagonal map ΔX :X → X×k together with
κ :X×k → X 	 G give rise to a natural map

Δ(X) :X → X 	 G.

We shall use a left normed notation for iteration of the wreath product construction. That is,
by convention, X 	 G1 	 G2 	 · · · 	 Gn denotes (· · · ((X 	 G1) 	 G2) 	 · · ·) 	 Gn. Applying (3.2) and
(3.3) iteratively it is left as an easy exercise to prove

3.5. Proposition. Given permutation groups Gi � Σki
where i = 1, . . . , n, there is a homeomor-

phism

αn :X 	 G1 	 G2 	 · · · 	 Gn
≈−→ X 	 (G1 	 G2 	 · · · 	 Gn)

which is natural in X. Moreover, the composite

X
Δ−→ X 	 G1

Δ−→ (X 	 G1) 	 G2
Δ−→ · · · Δ−→ X 	 G1 	 G2 	 · · · 	 Gn

αn−→≈ X 	 (G1 	 G2 	 · · · 	 Gn)

is equal to Δ :X → X 	 (G1 	 G2 	 · · · 	 Gn) via the above homeomorphism.

3.6. Remark. Clearly Σk fixes all the points in the image of the diagonal map X → Xk . If
X 
= ∅, then the fibre sequence (3.1) Xk → X 	 G → BG splits for any G � Σk and the long
exact sequence in homotopy groups gives rise to isomorphisms

π1(X 	 G) ∼= (π1X) 	 G and

πi(X 	 G) ∼= (πiX)k for all i � 2.

Moreover, κ :Xk → X 	 G induces inclusions
∏

k π∗X � π∗(X 	 G) on which G � π1(X 	 G)

acts on higher homotopy groups by permuting the factors.
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In particular, if X = BH for a discrete group H , there is a homotopy equivalence (BH) 	G �
B(H 	G) and Δ :BH → (BH) 	G � B(H 	G) is homotopic to the map induced by the diagonal
inclusion H � H 	 G.

Let Y be a G-space. For any space X, map(X,Y ) becomes a G-space, and the evaluation map
X × map(X,Y )

ev−→ Y is clearly G-equivariant. Therefore, applying the Borel construction, it
gives rise to a map evhG :X × map(X,Y )hG → YhG whose adjoint is denoted

(evhG)# : map(X,Y )hG → map(X,YhG).

If the component mapf (X,Y ) of some f :X → Y is invariant under the G-action then inspection
of the adjunction shows that (evhG)# restricts to

(evhG)# : mapf (X,Y )hG → mapκ(Y )◦f (X,YhG).

Moreover, the composite

mapf (X,Y )
κ−→ mapf (X,Y )hG

(evhG)#−−−−→ mapκ◦f (X,YhG) (3.7)

coincides with the natural map induced by Y
κ(Y )−−−→ YhG.

3.8. Proposition. Fix a map f :A → X and G � Σk . Denote the adjoint of

A × (
mapf (A,X) 	 G) = A × mapΔX◦f (

A,Xk
)
hG

evhG−−−→ (
Xk

)
hG

= X 	 G

by γ : mapf (A,X) 	 G → mapΔ(X)◦f (A,X 	 G). Then:

(a) The triangle below is commutative:

mapf (A,X)

Δ
map(A,Δ(X))

mapf (A,X) 	 G
γ

mapΔ(X)◦f (A,X 	 G)

(b) If A is a non-empty path connected CW-complex then γ is a homotopy equivalence.

Proof. (a) Note that
∏

k mapf (A,X) = mapΔX◦f (A,Xk) and that this component is invariant
under the action of G � Σk . The commutativity of the triangle follows from (3.7) and Defini-
tion 3.4.

(b) First, we check that the evaluation ev : mapc(A,BG) → BG at some a ∈ A is a ho-
motopy equivalence where the domain is the path component of the null-homotopic maps.
Since this map between connected spaces has a section const :BG → mapc(A,BG), its homo-
topy fibre mapc∗(A,BG) is connected. But it is in fact contractible because Ω map∗(A,BG) �
map∗(A,G) � ∗. Then the section is also a homotopy equivalence.
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Now consider the following ladder in which the rows are fibre sequences and π∗ is induced
by X → ∗:

(1)

mapf (A,X)k

incl

mapf (A,X) 	 G
γ

BG

� const

F mapΔ(X)◦f (A,X 	 G)
π∗

mapc(A,BG)

It commutes because the right-hand square commutes as a consequence of the commutativity of
the following square and adjunction

A × mapΔX◦f (A,Xk)hG

evhG

A × map(A,∗)hG

proj= evhG

(X×k)hG π
∗hG = BG

Now, F is a union of path components of map(A,Xk) because it is the fibre of the fibration
map(A,X 	 G) → map(A,BG) over the component of the constant map. Moreover, F clearly
contains the component mapΔX◦f (A,Xk) and inspection of γ shows that the map between the
fibres is simply the inclusion. Comparison of the long exact sequences in homotopy of the fibre
sequences in (1) shows that F is connected, whence F = mapf (A,X)×k . Application of the five
lemma to the exact sequences in homotopy now yields the result. �
4. Killing homotopy groups

The aim of this section is to study the effect on homotopy groups of the composite map

X
Δ(X)−−−→ X 	 Σk

η−→ (X 	 Σk)
∧
p where Δ(X) was defined in the last section and η is the

p-completion map.

4.1. Proposition. Let X be a pointed space. Then the kernel of π∗X → π∗(X∧
p ) contains all the

elements whose order is prime to p.

Proof. Let [Θ] ∈ π∗(X) be an element of order k prime to p. Then the map Θ :Sn → X factors
through the Moore space M(Z/k,n), which is a nilpotent space with the mod p homology of a
point. It follows that η ◦ Θ :Sn → X∧

p factors through M(Z/k,n)∧p � ∗ (see [2, Chapter VI.5]),
and therefore is null-homotopic. �

An element of exponent n in a group G is an element whose order divides n. For the proof
of the next result, recall that for any space, π1(X) acts on the groups π∗X, see, e.g. [23, Corol-
lary 7.3.4] or [25, Chapter III]. We write αω for the image of the action of ω ∈ π1X on α ∈ πnX.

4.2. Lemma. Fix an integer n � 3 and a pointed space X. Then the kernel of

π∗X
Δ(X)∗−−−−→ π∗(X 	 Σn)

η∗−→ π∗
(
(X 	 Σn)

∧
p

)
contains all the elements of exponent n in π∗X.
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Proof. We recall from Remark 3.6 that

π1(X 	 Σn) = (π1X) 	 Σn,

πi(X 	 Σn) =
⊕

n

πiX for i � 2.

Furthermore, κ :
∏

n X → X 	 Σn induces the inclusion
∏

n π∗X � π∗(X 	 Σn). The section
s :BΣn → X 	 Σn defined by the fixed point (∗, . . . ,∗) ∈ Xn induces the group inclusion
Σn � π1(X 	 Σn) which acts by permuting the factors of π∗(Xn) � π∗(X 	 Σn).

We can choose elements ωk ∈ Σn whose order is prime to p and ωk(1) = k for all k =
1, . . . , n. Indeed, if p > 2 we can choose the involutions ωk = (1, k). If p = 2 we can choose
ωk to be 3-cycles (note that n � 3). In both cases we choose ω1 = id.

For every k = 1, . . . , n let jk :X → ∏
n X denote the inclusion into the kth factor with respect

to the basepoint of X. Note that ΔX :X → Xn induces (ΔX)∗(θ) = (θ, . . . , θ) ∈ ∏
n π∗X. By

inspection of the action of ωk ∈ π1(X 	 Σn), it follows that for any θ ∈ πiX, (κ ◦ jk)∗(θ) =
((κ ◦ j1)∗(θ))ωk ∈ πi(X 	 Σn). Now fix some θ ∈ πiX of exponent n. Since Δ(X) is defined as

the composite X
ΔX−−→ ∏

n X
κ−→ X 	 Σn, we have

Δ(X)∗(θ) =
n∏

k=1

(κ ◦ jk)∗(θ) =
n∏

k=1

(
(κ ◦ j1)∗(θ)

)ωk .

Now consider the p-completion map X 	 Σn
η−→ (X 	 Σn)

∧
p and note that it maps ωk to the trivial

element by Proposition 4.1. By applying η∗ and using the naturality of the action of the funda-
mental group we see that

(
η ◦ Δ(X)

)
∗(θ) =

n∏
k=1

η∗
((

(κ ◦ j1)∗(θ)
)ωk

) =
n∏

k=1

η∗
(
(κ ◦ j1)∗(θ)

)η∗(ωk)

= (
η∗

(
(κ ◦ j1)∗(θ)

))n = η∗
(
(κ ◦ j1)∗

(
θn

)) = 0. �
4.3. Lemma. Fix some k � 3 and consider a map f :X → Y . Assume that every element of
πi mapf (X,Y ) has exponent k and that mapη◦Δ(Y)◦f (X, (Y 	 Σk)

∧
p) is p-complete. Then the

homomorphism

πi mapf (X,Y )
map(X,η◦Δ(Y))∗−−−−−−−−−−→ πi mapη◦Δ(Y)◦f (

X, (Y 	 Σk)
∧
p

)
is trivial.

Proof. According to Proposition 3.8(a) the triangle in the diagram below commutes up to ho-
motopy:

mapf (X,Y )
Δ(Y )∗

Δ

mapΔ◦f (X,Y 	 Σk)
η∗

mapη◦Δ◦f (X, (Y 	 Σk)
∧
p)

mapf (X,Y ) 	 Σk

γ

η
(mapf (X,Y ) 	 Σk)

∧
p
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Since mapη◦Δ(Y)◦f (X, (Y 	 Σk)
∧
p) is p-complete, the map (η∗ ◦ γ )∧p gives rise to a choice of

a map for the dotted arrow so that the square is homotopy commutative. We can now apply
Lemma 4.2 to the diagonal arrow Δ and the bottom arrow η. �
5. The wreath product of p-local finite groups

Given a finite group G, the space (BG) 	 Σk is the classifying space of the group G 	 Σk

(see 3.6). In this section we prove an analogous result for p-local finite groups.
Recall that a p-local finite group (S, F , L) admits an S-system of lifts {δP,Q}, see Defini-

tion 2.5 and the remarks below it. Thus, an element s ∈ S permutes the set of all morphisms L, by
either pre-composition with ŝ−1 (i.e. ϕ �→ ϕ ◦ ŝ−1) or by post-composition with ŝ (i.e. ϕ �→ ŝ ◦ϕ)
where s ∈ NS(Q, sQs−1). These assignments form a left and right action of S on L and we ob-
tain an action of S on L by conjugation of the subgroups P � S and by conjugation of morphisms
ϕ �→ ŝ ◦ ϕ ◦ ŝ−1.

5.1. Definition. The action of a group G on S is called fusion preserving if the image of G
τ−→

Aut(S) consists of fusion preserving automorphisms, that is, for every ϕ ∈ F (P,Q) and every
g ∈ G the composite τg ◦ ϕ ◦ τ−1

g belongs to F (τg(P ), τg(Q)).

In this section we prove Theorem 5.2 which is a variant of [3, Theorem 4.6]. While condition
(2) of Theorem 5.2 offers some simplifications, we relax the assumption imposed in [3] that G

is a finite p-group. The main idea of the proof remains the same but some new arguments were
needed. We also felt that some details are missing in [3] and we therefore decided to present a
complete proof of Theorem 5.2.

5.2. Theorem. Let G be a finite group which acts on the centric linking system L0 of a p-local
finite group (S0, F0, L0). The action of g ∈ G on ϕ ∈ Mor(L0) is denoted by ϕ �→ g · ϕ · g−1.
Assume that S0 � G and let S be a Sylow p-subgroup of G. Assume further that:

(1) Each g ∈ G acts on Ob(L) by sending P to gPg−1. For each g ∈ G and each ϕ ∈ L0(P,Q),
π0(gϕg−1) = cg ◦ π0(ϕ) ◦ cg−1 ∈ F0(gPg−1, gQg−1).

(2) If P0 � S0 is F0-centric and if a homomorphism cg :P0 → S0 for some g ∈ G belongs to F0,
then g ∈ S0.

(3) The action of G on L0 extends the conjugation action of S0 on L0.

(4) There is a G-equivariant system of lifts in L0, that is, g · ŝ · g−1 = ĝsg−1 for any g ∈ G and
any s ∈ NS0(P,Q).

(5) If Q � S0 is not F0-centric but Q̄ := NS0(Q) is F0-centric, then there exists ϕ̃ ∈ L0(Q̄, S0)

such that π0(ϕ̃)(Q) does not contain its S0-centralizer and moreover, for any x ∈ NS(Q)

there exists some s ∈ S0 such that xϕ̃x−1 = ŝ ◦ ϕ̃.

Then, there exists a p-local finite group (S, F , L) with the following properties:

(a) There are inclusions F0 ⊆ F , F c
0 ⊆ F c and L0 ⊆ L in such a way that the distinguished

monomorphisms δP in L extend the ones in L0. The map i : |L0| → |L| induced by the
inclusion fits in a homotopy fibre sequence

|L0| i−→ |L| → B(G/S0).
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Moreover, if S0 has a complement K in G, that is G = S0 � K , then:

(b) There is a homotopy equivalence |L0|hK
�−→ |L| such that the composite |L0| → |L0|hK �

|L| is homotopic to |L0| i−→ |L| and such that Θ :BS → |L| is homotopic to the composite

BS
B incl−−−→ BG � (BS0)hK

(Θ0)hK−−−−→ |L0|hK � |L|.

(c) Up to isomorphism (S, F , L) is the unique p-local finite group with the properties in (b).

As a corollary we obtain the proof of Theorem A in Section 1.

Proof of Theorem A. By Remark 2.18 there is an action of Σn on the n-fold product
(S0, F0, L0) = (S×n, F ×n, L×n) by permuting the factors.

The action of S0 on L0 by conjugation clearly extends to an action of S0 � Σn because S0 =
S×n acts on every coordinate of L0 = L×n and Σn acts by permuting the factors of L0 and the
factors of S0 = S×n. Set G = S 	 K = S0 � K . We shall now show that the action of G on L0

satisfies hypotheses (1)–(5) of Theorem 5.2.
Hypothesis (1) is clearly satisfied because K acts on S0 by permuting the factors which is

an automorphism of F0 = F ×n. Note that π : L0 → F0 is Σn-equivariant and it is also S0-
equivariant since π(ŝ) = cs for any s ∈ S. Hypothesis (3) holds by the definition of the action of
G = S0 � K on L0. For hypothesis (4) choose a system of lifts {δP,Q} in L (see Remark 2.6)
and use Remarks 2.16 and 2.18 together with the obvious fact that the system {δP,Q} is S0-
equivariant.

We now check hypothesis (2). Fix an F0-centric subgroup P0 � S0 and let P
(i)
0 be defined

as in 2.13. Since P
(i)
0 are F -centric for i = 1, . . . , n by Lemma 2.14 and S 
= 1, it follows that

P
(i)
0 
= 1 whence Z(P

(i)
0 ) 
= 1 for all i = 1, . . . , n. Also note that

∏
i Z(P

(i)
0 ) = ∏

i CS(P
(i)
0 ) =

CS0(P0) � P0 because P0 is F0-centric. Fix some g = (s1, . . . , sn;σ) ∈ G = S 	 K and assume
that g /∈ S0, namely σ 
= 1. Without loss of generality we can assume that σ(1) = 2. Choose
1 
= z1 ∈ CS(P

(1)
0 ) and consider (z1,1, . . . ,1; id) ∈ ∏n

i=1 Z(P i
0) � P0. Then

cg

(
(z1,1, . . . ,1; id)

) = (s1, . . . , sn;σ)(z1,1, . . . ,1; id)
(
s−1
σ−1(1)

, . . . , s−1
σ−1(n)

;σ−1)
= (

1, s2z1s
−1
2 ,1, . . . ,1; id

)
.

Therefore cg /∈ F0(P0, S0) because it cannot be a restriction of a morphism in
∏

n F .
Finally we prove that hypothesis (5) is satisfied. Assume that Q � S0 is not F0-centric but

Q̄ := NS0(Q) is F0-centric. Observe that NS(Q(i)) are all F -centric because NS0(Q)(i) are all
F -centric by Lemma 2.14 and NS0(Q)(i) � NS(Q(i)).

For every i we choose a morphism ϕi ∈ L(NS(Q(i)), S) such that π(ϕ)(Q(i)) is fully F -
centralized (see [6, A.2(b)]), and define a morphism (ϕ1, . . . , ϕn) ∈ L0(

∏
i NS(Q(i)), S0). Let

ϕ̃ ∈ L0(Q̄, S0) be its restriction to Q̄. Then π(ϕ̃)(Q) is fully centralized since π0(ϕ̃)(Q)(i) =
π(ϕi)(Q

(i)) are fully centralized for all i. By assumption Q is not F0-centric, hence π0(ϕ̃)(Q)

does not contain its S0-centralizer.
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It remains to show that for any g ∈ NG(Q) there exists some s ∈ S0 such that gϕ̃g−1 = ŝ ◦ ϕ̃.
Set W = NG(Q)/NS0(Q) � Σn. Choose uσ ∈ NG(Q) where u ∈ ∏

i NS(Q)(i) and σ ∈ W and
assume that σ(i) = j . Given x ∈ Q(i), choose x ∈ Q �

∏
i Q

(i) with xi = x. Note that

uσ · x · σ−1u−1 = u · (xσ(i)) · u−1.

Thus, ujxu−1
j ∈ Q(j). It follows then that ujQ

(i)u−1
j ⊆ Q(j), that is, Q(i) is S-conjugate to a

subgroup of Q(j). By symmetry Q(i) and Q(j) are S-conjugate. Thus, after conjugating by an
appropriate element in S0 we may assume that Q(i) = Q(j) whenever σ(i) = j for some σ ∈ W .
Note that this does not change W . Moreover, in the definition of ϕ̃, we can take ϕi = ϕj if
σ(i) = j for some σ ∈ W . Finally, for any g ∈ NG(Q) we can write g = yσ for some σ ∈ W

and y ∈ NS0(Q) ⊆ ∏
i NS(Q(i)). By the choice of the morphisms ϕi , it is clear that σ ϕ̃σ−1 = ϕ̃,

hence

gϕ̃g−1 = yσ ϕ̃σ−1y−1 = yϕ̃y−1 = ŷ ◦ ϕ̃ ◦ ŷ−1 = ŷ ◦ ˜̂ϕ(
y−1

) ◦ ϕ̃ = ŝ ◦ ϕ̃

where s ∈ S0.
Now we apply Theorem 5.2(b) to conclude that there exists a p-local finite group (S′, F ′, L′)

with (|L0|)hK � |L′| such that

(1) BS′ B incl−−−→ BG � (BS0)hK
(Θ0)hK−−−−→ |L0|hK � |L′|

is homotopic to Θ ′ :BS′ → |L′|. Also observe that the horizontal arrows in

(BS)×n

Θ×n

BS0

Θ0

|L|×n
� |L0|

form a Σn-equivariant map of the vertical arrows. It follows that the composite in (1) is homo-
topic to the map

BS′ B incl−−−→ BG � (BS) 	 K Θ	K−−−→ |L| 	 K � |L′|
which is therefore homotopic to Θ ′ :BS′ → |L′|. The uniqueness of (S′, F ′, L′) with this prop-
erty is guaranteed by part (c) of Theorem 5.2. �
5.3. Remark. If the p-local finite group in Theorem A is associated with a finite group G then
(S′, F ′, L′) satisfies |L′|∧p � (|L|∧p 	 K)

∧
p

� (BG∧
p 	 K)

∧
p

� B(G 	 K)∧p . Those equivalences fol-

low from the Serre spectral sequence associated to |L|n ×K EK and [2, Lemma I.5.5] since the
spaces involved are p-good [6, Proposition 1.12]. Thus, L′ is the linking system associated to
G 	 K .

In the remainder of this section we will prove Theorem 5.2. From now on, the hypotheses and
notation set up in Theorem 5.2 are in force. Its proof, namely the construction of (S, F , L), is
obtained in a sequence of Definitions and Lemmas 5.4–5.16. Their proofs are given after 5.16.
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5.4. Definition. Let H0 denote the set of all the F0-centric subgroups of S0. Fix once and for all
a Sylow p-subgroup S of G and for every P � S let P0 denote P ∩ S0.

The action of G on the set of all subgroups of S0 by conjugation restricts to an action on the
set H0 of all the F0-centric subgroups of S0 because G acts via fusion preserving automorphisms
of S0 by hypothesis (1).

5.5. Definition. Let F1 be the fusion system on S0 generated by F0 and AutG(S0). Define a
category L1 whose object set is H0 and

Mor(L1) = (
G × Mor(L0)

)/
(gs,ϕ) ∼ (g, ŝ ◦ ϕ) (s ∈ S0).

The morphism set L1(P0,Q0) where P0,Q0 ∈ H0 consists of the equivalence classes [g : ϕ]
such that g ∈ G and ϕ ∈ L0(P0,Q

g

0). Composition is given by the formula

[g : ϕ] ◦ [h : ψ] = [
gh : (h−1ϕh

) ◦ ψ
]
,

and identities are the elements of the form [1 : idP0]. We check later that composition is well
defined.

Define a functor π1 : L1 → F1 which is the identity on the set of objects and

π1
([g : ϕ]) = cg ◦ π0(ϕ).

We also define functions δ̂P0,Q0 :NG(P0,Q0) → L1(P0,Q0) by g �→ [g : ι
Q

g
0

P0
] and denote the

image of g by ĝ.

We will prove the following properties relating L1 and L0.

5.6. Lemma. The category L1 satisfies the following properties:

(a) There is an inclusion functor j : L0 → L1 which is the identity on objects and ϕ �→ [1 : ϕ]
on morphisms.

(b) Every morphism in L1 has the form ĝ ◦ ϕ where ϕ is a morphism in L0 ⊆ L1. If ϕ ∈
L0(P0,Q0) and x ∈ NG(P0), then ϕ ◦ x̂ = x̂ ◦ (x−1ϕx).

(c) There is a homotopy fibre sequence

|L0| |j |−→ |L1| → B(G/S0).

If S0 admits a complement K in G then there is a homotopy equivalence |L0|hK � |L1| such
that the composite |L0| → |L0|hK � |L1| is homotopic to the map induced by the inclusion j .
Moreover, the composite

BG � (BS0)hK
(Θ0)hK−−−−→ |L0|hK � |L1|

is homotopic to the map BG → |L1| induced by the functor k : BG → L1 with k(•G) = S0
and k(g) = [g : 1S0].



N. Castellana, A. Libman / Advances in Mathematics 221 (2009) 1302–1344 1321
The next step in our construction is to define the following category.

5.7. Definition. Define a category L2 whose object set is

H = {P � S: P0 = P ∩ S0 ∈ H0}

and whose morphism sets are defined by

L2(P,Q) = {
ψ ∈ L1(P0,Q0): ∀x ∈ P ∃y ∈ Q s.t. (ψ ◦ x̂ = ŷ ◦ ψ)

}
.

By construction L2(P,Q) ⊆ L1(P0,Q0) and composition of morphisms is obtained by com-
posing them in L1. Identities idP have the form [1 : idP0 ]. Also define the following maps

δ̂P ,Q :NG(P,Q) → L2(P,Q) by g �→ [g : ιQ
g
0

P0
] and denote the image of g by ĝ.

The main properties of the category L2 and its relation to the previously defined L1 are con-
tained in next two lemmas.

5.8. Lemma. The category L1 is the full subcategory of L2 on the objects H0 and the inclusion
j : L1 → L2 induces a homotopy equivalence on nerves.

5.9. Lemma. Let P,Q � S. The category L2 satisfies the following properties:

(a) For every morphism ψ ∈ L2(P,Q) there exists a unique monomorphism π2(ψ) :P → Q

which satisfies ψ ◦ x̂ = ̂π2(ψ)(x) ◦ ψ in L2 for all x ∈ P . Moreover, π2(ψ)|P0 = π1(ψ).

(b) π2(idP0) = idP and π2(λ) ◦ π2(ψ) = π2(λ ◦ ψ) for every P
ψ−→ Q

λ−→ R in L2.
(c) For every ĝ ∈ L2(P,Q) with g ∈ NG(P,Q), we have π2(ĝ) = cg .
(d) Given ψ ∈ L2(P,Q), if π2(ψ) is an isomorphism of groups then ψ is an isomorphism in L2.

Lemma 5.9 justifies the following definition.

5.10. Definition. Let F2 be the category whose object set is H, see Definition 5.7, and
whose morphism sets F2(P,Q) are the set of group monomorphisms π2(L2(P,Q)) defined
by Lemma 5.9. By the properties shown in this lemma, there results a projection functor
π2 : L2 → F2 which is the identity on objects.

5.11. Lemma. The category F2 satisfies the following properties:

(a) For every P,Q ∈ H, HomG(P,Q) ⊆ F2(P,Q). In particular, F2 contains all the inclusions
P � Q of groups in H.

(b) Every morphism in F2 factors as an isomorphism in F2 followed by an inclusion. In partic-
ular, every isomorphism of groups f :P → Q in F2 is an isomorphism in F2.

Thus, F2 falls short of being a fusion system on S only because its set of objects H need not
contain all the subgroups of S.

5.12. Definition. Let F denote the fusion system on S generated by F2.
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5.13. Lemma. The fusion system F satisfies the following properties:

(a) F2 is the full subcategory of F generated by the objects in H.
(b) Every P ∈ H is F -centric. In particular, H0 ⊆ F c.
(c) Every morphism f ∈ F (P,Q) restricts to a morphism f |P0 ∈ F (P0,Q0).

5.14. Lemma. The functor π2 : L2 → F satisfies all the axioms of a centric linking system on the
object set H.

Finally, the last step in the proof is to show that the fusion system (S, F ) defined in 5.12 is
saturated and that L2 can be extended to a unique centric linking system L associated to F .

5.15. Lemma. F is a saturated fusion system on S.

5.16. Lemma. There exists a p-local finite group (S, F , L) such that L2 is a full subcategory
of L and π2 : L2 → F is the restriction of π : L → F . Moreover, δ̂P :P → AutL2(P ) are the
distinguished monomorphisms of (S, F , L) for all P ∈ H, and the inclusion L2 ⊆ L induces a
homotopy equivalence on nerves.

Assuming Definitions and Lemmas 5.4–5.16, we can now prove Theorem 5.2.

Proof of Theorem 5.2. The p-local finite group (S, F , L) is constructed in Lemma 5.16. To-
gether with Lemma 5.8 we obtain inclusions of full subcategories L1 ⊆ L2 ⊆ L which induce
homotopy equivalences on nerves. By Lemma 5.6(c), there results the homotopy fibre sequence
of part (a).

Now assume that S0 has a complement K in G and we prove points (b) and (c). Lemma 5.6(c)
shows that there are homotopy equivalences |L0|hK � |L1| � |L| such that |L0| → |L0|hK � |L|
is homotopic to the map induced by the inclusion L0 ⊆j L1 ⊆ L. Moreover the map

BS
B incl−−−→ BG � (BS0)hK

(Θ0)hK−−−−→ |L0|hK � |L|

is induced by the functor Λ0 : BS → L which sends •S to S0 and defined on morphisms by s �→
[s : 1S0 ] = ŝ ∈ AutL(S0) (see Lemmas 5.16, 5.6 and Definition 5.7). The map Θ :BS → |L| is
the realization of the functor Λ1 : BS → B AutL(S) → L where s �→ ŝ ∈ AutL(S), then the lift of
the inclusion ιSS0

∈ L(S0, S) provides a natural transformation Λ0 → Λ1 because ŝ ◦ ιSS0
= ιSS0

◦ ŝ,
see Definition 2.5. Therefore |Λ0| and |Λ1| are homotopic and the proof of point (b) is complete.

Now assume that (S, F ′, L′) is another p-local finite group which satisfies the properties in
point (b). Let λ denote the composite BS → BG = (BS0)hK → |L0|hK . By assumption there is
a homotopy commutative diagram

BS

Θ
λ

Θ ′

|L| |L0|hK� � |L′|

The isomorphism of (S, F , L) and (S, F ′, L′) follows from [6, Theorem 7.7]. �
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In the rest of the section we fill in the details needed for the construction in 5.5–5.16.

Proof that Definition 5.5 makes L1 a small category and makes π1 :L1 → F1 a functor. The
verification that composition of morphisms is well defined is similar to the one in [3, Theo-
rem 4.6]. Specifically, for any g0, h0 ∈ S0

[gg0 : ϕ] ◦ [hh0 : ψ] = [
gg0hh0 : (h−1

0 h−1ϕhh0
) ◦ ψ

] = by hypothesis (3),[
gg0h : (h−1ϕh

) ◦ ĥ0 ◦ ψ
] = [

gh : ĥ−1g0h ◦ (
h−1ϕh

) ◦ ĥ0 ◦ ψ
] = by hypothesis (4),[

gh : h−1(ĝ0 ◦ ϕ)h ◦ ĥ0 ◦ ψ
] = [g : ĝ0 ◦ ϕ] ◦ [h : ĥ0 ◦ ψ].

Associativity is straightforward as well as checking that the morphisms [1 : 1P0 ] are identity
morphisms P0 → P0.

It is evident from the definition that π1 maps identity morphisms in L1 to identities in F1. It
also respects compositions by the following calculation which uses hypothesis (1) in the third
equality

π1
([g : ϕ]) ◦ π1

([h : ψ]) = cg ◦ π0(ϕ) ◦ ch ◦ π0(ψ) = cgh ◦ (
ch−1 ◦ π0(ϕ) ◦ ch

) ◦ π0(ψ)

= cgh ◦ π0
(
h−1ϕh

) ◦ π0(ψ) = cgh ◦ π0
(
h−1ϕh ◦ ψ

)
= π1

([
gh : h−1ϕh ◦ ψ

]) = π1
([g : ϕ] ◦ [h : ψ]). �

Proof of Lemma 5.6. (a) By Definition 5.5 we have [1 : ϕ] ◦ [1 : ϕ′] = [1 : ϕ ◦ ϕ′] so j is clearly
associative and unital. It is an inclusion functor because [1 : ϕ] = [1 : ϕ′] if and only if ϕ = ϕ′ by
the definition of morphisms in L1.

(b) Clearly, every morphism ψ in L1 has the form [g : ϕ] = [g : 1] ◦ [1 : ϕ] = ĝ ◦ ϕ. Given ϕ

and x as in the statement, by Definition 5.5

ϕ ◦ x̂ = [1 : ϕ] ◦ [x : 1] = [
x : x−1ϕx

] = [x : 1Qx
0
] ◦ [

1 : x−1ϕx
] = x̂ ◦ x−1ϕx.

(c) Set Ḡ = G/S0 and denote its elements by ḡ = gS0. There is a functor Π : L1 → B(Ḡ)

which sends every object of L1 to •Ḡ and maps [g : ϕ] �→ ḡ.
Now, consider the comma category (•Ḡ ↓ Π). Its objects are pairs (ḡ,P0) and morphisms

(ḡ,P0) → (h̄,Q0) are morphisms [x : λ] ∈ L1(P0,Q0) such that x̄ = h̄ḡ−1. We can easily check
that ĝ :P g

0 → P0 provides an isomorphism (ē,P
g

0 ) → (ḡ,P0) in (•Ḡ ↓ Π). Therefore, the set of
objects of the form (ē,P0) form a skeletal full subcategory of (•Ḡ ↓ Π), that is, it contains an
element from every isomorphism class of objects. This subcategory is clearly isomorphic to L0
and moreover the composite L0 ⊆ (•Ḡ ↓ Π) → L1 is the inclusion j in part (a).

Moreover, any morphism ḡ ∈ BḠ clearly induces an automorphism of the category (•Ḡ ↓ Π).
Therefore, Quillen’s theorem B [20] applies in this situation to show that the sequence
|(•Ḡ ↓ Π)| → |L1| → |B(G/S0)| is a homotopy fibre sequence. Finally, using the homotopy

equivalence |j | we obtain the homotopy fibre sequence |L0| |j |−→ |L1| |Π |−−→ BG/S0.
Now suppose that S0 has a complement K in G. Recall that G acts on the category L0 and

we view the restriction of this action to K as a functor BK → Cat. Let TrK(L0) denote the
transporter category (or Grothendieck construction) of this functor; see, e.g. [24]. The object
set of TrK(L0) is H0, and the morphisms P0 → Q0 are pairs (k,ϕ) where ϕ ∈ L0(

kP0,Q0).
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Composition is given by the following formula: (k2, ϕ2)◦ (k1, ϕ1) = (k2k1, ϕ2 ◦k2ϕ1k
−1
2 ). Define

a functor Φ : TrK(L0) → L1 which is the identity on objects and

Φ : TrK(L0)(P0,Q0) → L1(P0,Q0) is defined by (k,ϕ) �→ [
k : k−1ϕk

]
.

It is clear that Φ(1, id) = [1 : id] and for any pair of composable morphisms (k2, ϕ2) and (k2, ϕ2)

in TrK(L0),

Φ(k2, ϕ2) ◦ Φ(k1, ϕ1) = [
k2 : k−1

2 ϕ2k2
] ◦ [

k1 : k−1
1 ϕ1k1

]
= [

k2k1 : k−1
1 k−1

2 ϕ2k2k1 ◦ k−1
1 ϕ1k1

] = Φ
(
k2k1, ϕ2 ◦ k2ϕ1k

−1
2

)
.

By definition Φ is bijective on the object set. It is bijective on morphism sets because K ∩S0 = 1
so every morphism in L1(P0,Q0) has a unique representative of the form [k : ϕ] where k ∈ K

and ϕ ∈ L0.

Thomason [24] constructed a homotopy equivalence |L0|hK
β−→ |TrK(L0)| such that the map

|L0| → |L0|hK � |TrK(L0)| is homotopic to the map induced by the inclusion L0 ⊆ TrK(L0)

via ϕ �→ [ē : ϕ]. Furthermore, by inspection Φ carries the subcategory of L0 in TrK(L0) onto
L0 ⊆ L1 via the identity map. We deduce that |Φ| ◦ β is a homotopy equivalence |L0|hK →
|L1| whose composition with |L0| → |L0|hK is homotopic to the map induced by the inclusion
j : L0 → L1.

To complete the proof we now consider the subcategory BS0 of B AutL0(S0) ⊆ L0 via the
monomorphism δS0 :S0 → AutL0(S0) and observe that it is invariant under the action of K by hy-
pothesis (4). Thus, there is an inclusion of subcategories TrK BS0 ⊆ TrK L0 induced by TrK(δS0).
By inspection there is an isomorphism of categories TrK BS0 ∼= BG via the functor (k, s) �→ sk

such that the composite

BG ∼= TrK(BS0) ⊆ TrK(L0)
Φ−→ L1

is the functor which sends •G to S0 and g �→ [g : 1] ∈ AutL1(S0). �
Here are more properties of L1 that we will need later in order to study the properties of the

category L2.

5.17. Lemma. Let P0,Q0,R0 ∈ H0. Then

(a) For every g ∈ NG(P0,Q0) and h ∈ NG(Q0,R0) the equality ĥ ◦ ĝ = ĥg holds in L1.
(b) Fix ψ ∈ L1(P0,Q0) of the form [g : ϕ]. Then, for every x ∈ NG(P0) there exists at most

one y ∈ NG(Q0) such that ψ ◦ x̂ = ŷ ◦ ψ . In this case y = gxg−1s0 for a unique s0 ∈ S0.
Moreover, if x ∈ P0 then y = π1(ψ)(x) satisfies ψ ◦ x̂ = ŷ ◦ ψ .

(c) Every morphism in L1(P0,Q0) is both a monomorphism and an epimorphism.
(d) Fix ψ ∈ L1(P0,Q0) such that π1(ψ)(P0) � R0 for some R0 � Q0. Then there exists λ ∈

L1(P0,R0) such that ψ = ι ◦ λ where ι = ê ∈ L1(R0,Q0).
(e) If π1(ψ) = π1(ψ

′) where ψ,ψ ′ ∈ L1(P0,Q0) then ψ ′ = ψ ◦ ẑ for a unique z ∈ Z(P0).
(f) Fix P0 ∈ H0 and set H := {g ∈ G | gP0g

−1 is F0-conjugate to P0}. Then H is a subgroup
of G which contains S0 and |AutL1(P0) : AutL0(P0)| = |H : S0|.

Proof. (a) ĥ ◦ ĝ = [h : ê] ◦ [g : ê] = [hg : ê] = ĥg by Definition 5.5 and hypothesis (4).
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(c) Every morphism [g : ϕ] factors as [g : 1] ◦ [1 : ι
Q0
ϕ(P0)

] ◦ [1 : ϕ′] for some isomorphism
ϕ′ :P0 → ϕ(P0) in L0. Since [g : 1] and [1 : ϕ′] are isomorphisms it is enough to show that
morphisms of the form [1 : ι

Q0
P0

] ∈ L1(P0,Q0), which we denote by ι, are monomorphisms and
epimorphisms.

Consider morphisms [h : ϕ], [h′ : ϕ′] ∈ L1(R0,P0) and assume that ι ◦ [h : ϕ] = ι ◦ [h′ : ϕ′].
Then [h, ê ◦ ϕ] = [h′ : ê ◦ ϕ′] and therefore h′ = hs for some s ∈ S0 and ê ◦ ϕ = ê ◦ ŝ ◦ ϕ′
where ê ∈ L0(ϕ(P0), hQ0h−1). Since ê is a monomorphism in L0 it follows that ϕ = ŝ ◦ ϕ′ and
therefore [h : ϕ] = [h′ : ϕ′]. This shows that ι is a monomorphism.

If [h : ϕ]◦ ι = [h′ : ϕ′]◦ ι then a direct calculation shows that [h : ϕ ◦ ê] = [h′ : ϕ′ ◦ ê]. A similar
argument to the one above using the fact that ê is an epimorphism in L0 shows that h′ = hs and
ϕ = ŝ ◦ ϕ′, whence [h : ϕ] = [h′ : ϕ′].

(b) If y exists then it is unique because by part (c), ψ is an epimorphism. Since we have
ψ ◦ x̂ = [gx : x−1ϕx] and ŷ ◦ ψ = [yg : ϕ] we see that there is a unique s ∈ S0 such that gx =
ygs−1, whence y = gxg−1 · gsg−1.

If x ∈ P0 then axiom (C) satisfied by L0, see Definition 2.4, implies that

ψ ◦ x̂ = [g : ϕ] ◦ [x : 1] = [
gx : x̂−1 ◦ ϕ ◦ x̂

] = [g : ϕ ◦ x̂] = [
g : ̂π0(ϕ)(x) ◦ ϕ

]
= [

cg

(
π0(ϕ)(x)

) · g : ϕ] = ̂cg

(
π0(ϕ)(x)

) · g ◦ ψ = π1(ψ)(x) ◦ ψ.

(d) Write ψ = [g : ϕ] for some ϕ ∈ L0(P0,Q
g

0). Then ϕ = ê◦ ϕ̄ for some ϕ̄ ∈ L0(P0, gR0g
−1)

and e ∈ NS0(P0, gR0g
−1). By inspection ψ = [1 : ê] ◦ [g : ϕ̄].

(e) Write ψ = [g : ϕ] and ψ ′ = [g′ : ϕ′] in L1(P0,Q0). By assumption and Definition 5.5,
cg ◦ π0(ϕ) = cg′ ◦ π0(ϕ

′), whence π0(ϕ) = cg−1g′ ◦ π0(ϕ
′). Since π0(ϕ),π0(ϕ

′) ∈ F0, we obtain
that cg−1g′ ∈ F0(P0,P0) so hypothesis (2) implies that g−1g′ ∈ S0, namely g′ = gs for some
s ∈ S0. Then π0(ϕ) = cs ◦ π0(ϕ

′) implies that ŝ ◦ ϕ′ = ϕ ◦ ẑ for some z ∈ Z(P0). Therefore,
ψ ◦ ẑ = [g : ϕ ◦ ẑ] = [g : ŝ ◦ ϕ′] = [g′ : ϕ′] = ψ ′.

(f) By hypothesis (1) in Theorem 5.2, if Q0 is F0-conjugate to Q′
0 then gQ0g

−1 is F0-
conjugate to gQ′

0g
−1 for any g ∈ G. This implies that H is a subgroup of G and it contains S0

because FS0(S0) ⊆ F0.
Let g1, . . . , gn be representatives for the cosets of S0 in H . By Definition 5.5 every ele-

ment ψ ∈ AutL1(P0) can be written uniquely as ψ = [gi : ϕ] for some i = 1, . . . , n where
ϕ ∈ L0(P0,

gi P0). Also note that |L0(P0,
gi P0)| = |AutL0(P0)| because gi P0 is F0-conjugate

to P0. This shows that |AutL1(P0)| = n · |AutL0(P0)| = |H : S0| · |AutL0(P0)|. �
We now turn to the study of the properties of the category L2.

Proof that Definition 5.7 makes L2 a small category. Given morphisms ψ ∈ L2(P,Q) and
ρ ∈ L2(Q,R), we leave it as an easy exercise to check that ρ ◦ ψ ∈ L1(P0,R0) belongs to
L2(P,R). Thus, composition of morphisms in L2 is well defined. It is easily seen to be unital
and associative because this is the case in L1.

Since S0 � G it follows that NG(P,Q) ⊆ NG(P0,Q0). Now fix some g ∈ NG(P,Q) and
x ∈ P and set y = gxg−1 ∈ Q. It follows from Lemma 5.17(a) that ĝ ◦ x̂ = ĝx = ŷg = ŷ ◦ ĝ.
Therefore ĝ ∈ L2(P,Q). �

We are now ready to prove Lemmas 5.8 and 5.9.
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Proof of Lemma 5.8. By construction L2(P0,Q0) ⊆ L1(P0,Q0) for any P0,Q0 ∈ H0. For
every x ∈ P0 and every ψ = [g : ϕ] ∈ L1(P0,Q0), it follows from Lemma 5.17(b) that there is
an equality ψ ◦ x̂ = ŷ ◦ ψ in L1 where y = π1(ψ)(x) ∈ Q0. Therefore ψ ∈ L2(P0,Q0) and we
conclude that L1(P0,Q0) = L2(P0,Q0).

The inclusion functor j : L1 → L2 has a left inverse r : L2 → L1 which maps an object P to
P0 and maps morphisms via the inclusions L2(P,Q) ⊆ L1(P0,Q0). Observe that r ◦ j = IdL1

because L2(P0,Q0) = L1(P0,Q0).
By Lemma 5.17(b) we see that L2(P0,P ) contains [e : 1P0 ] = ê. These morphisms define a

natural transformation j ◦ r → Id. This is because we recall that [e : 1P0 ] and [e : 1Q0] are the
identities of P0 and Q0 in L1 and for any ψ ∈ L2(P,Q) ⊆ L1(P0,Q0)

ψ ◦ [e : 1P0] = [e : 1Q0] ◦ ψ.

Then it follows that j and r yield homotopy equivalences on nerves. �
Proof of Lemma 5.9. (a) By Definition 5.7, for every x ∈ P there exists some y ∈ Q such that
ψ ◦ x̂ = ŷ ◦ ψ . Since P � NG(P0) and Q � NG(Q0), Lemma 5.17(b) implies that y is unique.
There results a well-defined function π2(ψ) :P → Q defined by π2(ψ)(x) = y. In addition, since
x̂ and ŷ = ̂π2(ψ)(x) are morphisms in L2 (see Definition 5.7) and L2(P,Q) ⊆ L1(P0,Q0), we
deduce that the equation ψ ◦ x̂ = ̂π2(ψ)(x) ◦ ψ holds in L2. Moreover, π2(ψ) :P → Q is the
unique function that satisfies this equality for all x ∈ P . The fact that π2(ψ)|P0 = π1(ψ) follows
from the last assertion in Lemma 5.17(b).

Given x, x′ ∈ P , set y = π2(ψ)(x) and y′ = π2(ψ)(x′). Then, by Lemma 5.17(a)

ψ ◦ x̂x′ = ψ ◦ x̂ ◦ x̂′ = ŷ ◦ ψ ◦ x̂′ = ŷ ◦ ŷ′ ◦ ψ = ŷy′ ◦ ψ.

This shows that π2(ψ) is a homomorphism. If x ∈ kerπ2(ψ) then ψ ◦ x̂ = 1̂ ◦ ψ = ψ . Since ψ

is a monomorphism by Lemma 5.17(c), we deduce that x̂ = id, hence x = 1. Therefor π2(ψ) is
a monomorphism.

(b) Clearly π2([e : 1P0 ]) = IdP0 . Now given P
ψ−→ Q

λ−→ R in L2, set y = π2(ψ)(x) and
z = π2(λ)(y). Then ψ ◦ x̂ = ŷ ◦ ψ and λ ◦ ŷ = ẑ ◦ λ so λ ◦ ψ ◦ x̂ = ẑ ◦ λ ◦ ψ whence, by the
uniqueness statement in Lemma 5.17(b), we conclude that z = π2(λ ◦ ψ)(x).

(c) This follows from Lemma 5.17(a) because for any x ∈ P we have ĝ ◦ x̂ = ĝx = ĉg(x)g =
ĉg(x) ◦ ĝ in L1 so π2(ĝ) = cg .

(d) Write ψ = [g : ϕ]. Observe that π2(ψ)(P0) = π1(ψ)(P0) � Q0 by statement (a). Since
π2(ψ) :P → Q is an isomorphism, for every y0 ∈ Q0 � Q there exists some x ∈ P such that
π2(ψ)(x) = y0, namely ψ ◦ x̂ = ŷ0 ◦ψ . By Lemma 5.17(b) we know that y0 = gxg−1s0 for some
s0 ∈ S0. We deduce then that x ∈ S0 ∩P = P0 because S0 �G. This shows that π2(ψ)(P0) = Q0
and therefore π1(ψ) is an isomorphism of groups.

Since π1(ψ) is an isomorphism, ϕ is an isomorphism in L0 and therefore ψ is an isomorphism
in L1. Given any y ∈ Q there is a unique x ∈ P with ψ ◦ x̂−1 = ŷ−1 ◦ ψ because π2(ψ) is
an isomorphism. By taking inverses one sees that ψ−1 belongs to L2 so ψ is an isomorphism
in L2. �

For later use we also need the following technical lemma.
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5.18. Lemma. Fix P ∈ H and consider NS(P0) as a subgroup of AutL1(P0) via the monomor-
phism δ̂P0,P0 :NS(P0) → AutL1(P0). Let Q � NS(P0) and assume that Q = ψPψ−1 for some
ψ ∈ AutL1(P0). Then P0 = Q0 and ψ is an isomorphism in L2 from P to Q.

Proof. Recall from Lemma 5.8 that AutL1(P0) = AutL2(P0). For x ∈ P0 set ŷ = ψx̂ψ−1 ∈ Q.
Thus ψ ◦ x̂ = ŷ ◦ ψ and by Definition 5.10, y = π2(ψ)(x) ∈ P0. This shows that P0 = ψP0ψ

−1

and, in particular, P0 � Q0.
Since P0 � Q0, we may consider ι := ê ∈ L1(P0,Q0) where e ∈ G is the identity element,

and define λ = ι ◦ ψ ∈ L1(P0,Q0). For every x ∈ P , set ŷ = ψx̂ψ−1. By definition y ∈ Q. Note
that P0 � Q because P0 � P . So Lemma 5.17(a) implies

λ ◦ x̂ = ι ◦ ψ ◦ x̂ = ι ◦ ŷ ◦ ψ = ŷ ◦ ê ◦ ψ = ŷ ◦ ψ.

We conclude from Definition 5.7 that λ ∈ L2(P,Q). Furthermore, π2(λ) is an isomorphism
because it is a monomorphism by Lemma 5.9(a) and |P | = |Q|. Lemma 5.9(d) now shows that λ

is an isomorphism in L2 and, in particular, it is an isomorphism of the objects P0 and Q0 in L1.
In particular |P0| = |Q0| and therefore λ = ψ . �

We now check the main properties of the category F2.

Proof of Lemma 5.11. (a) This is immediate from Lemma 5.9(c). By taking e ∈ NG(P,Q) for
any inclusion P � Q in H we obtain inclQP ∈ F2(P,Q).

(b) Fix a homomorphism f :P → Q in F2 and set R = f (P ). By definition, f = π2(ψ)

for some ψ ∈ L2(P,Q). Also note that every y ∈ R must normalize f (P0) because f is an
isomorphism and that by Lemma 5.9(a), f (P0) = π1(ψ)(P0).

Write ψ = [g : ϕ]. Then there is an isomorphism ϕ̄ in L0 such that ψ = [1 : ιQ0
f (P0)

] ◦ [g : ϕ̄].
Since ψ ∈ L2, for every x ∈ P there exists y ∈ R such that

[
1 : ιQ0

f (P0)

] ◦ [g : ϕ̄] ◦ x̂ = ŷ ◦ [
1 : ιQ0

f (P0)

] ◦ [g : ϕ̄] = [
1 : ιQ0

f (P0)

] ◦ ŷ ◦ [g : ϕ̄].

By Lemma 5.17(c), [1 : ιQ0
f (P0)

] is a monomorphism and we deduce that [g : ϕ̄] is an isomorphism

P → R in L2. Also f = inclQR π2([g : ϕ̄]). This completes the proof. �
5.19. Lemma. Consider P � S such that P0 ∈ H0. Then CG(P ) = CS0(P ) = Z(P0)

P where P

acts on Z(P0) by conjugation.

Proof. If g ∈ CG(P ) then cg|P0 = idP0 ∈ AutF0(P0). By hypothesis (2), g ∈ S0, and it follows
that CG(P ) = CS0(P ). Now, CS0(P ) � CS0(P0) = Z(P0) because P0 is F0-centric. Therefore,
CG(P ) = CZ(P0)(P ) = Z(P0)

P. �
Lemmas 5.13 and 5.14 state the main properties of the fusion system F .

Proof of Lemma 5.13. (a) Clearly H is closed to taking supergroups because H0 is closed to
taking supergroups in S0. Since F is generated by inclusions and restriction of homomorphisms
in F2, Lemma 5.11 shows that for any P,Q ∈ H the inclusion F2(P,Q) ⊆ F (P,Q) is an
equality.
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(b) By definition, P0 ∈ H0. By Lemma 5.19, CS(P ) = Z(P0)
P � P . Assume that Q is F -

conjugated to P . By part (a) there exists some ψ ∈ L2(P,Q) such that π2(ψ)(P ) = Q. Parts (a)
and (d) of Lemma 5.9 imply that ψ is an isomorphism in L2. From Definition 5.7 it is clear
that ψ is an isomorphism in L1(P0,Q0) and in particular Q0 ∈ H0, namely Q0 is F0-centric. It
follows from Lemma 5.19 that CS(Q) = Z(Q0)

Q ∼= Z(P0)
P , whence P is F -centric.

(c) For any f ∈ F (P,Q) where P,Q ∈ H, part (a) implies that f = π2(ψ) for some ψ ∈
L2(P,Q) ⊆ L2(P0,Q0). The result follows from Lemma 5.9(a) which shows that f |P0 = π1(ψ)

whose image is contained in Q0 by Definition 5.5. �
Proof of Lemma 5.14. The monomorphisms δP :P → AutL2(P ) are the restrictions of the maps
δ̂P ,Q :NG(P,Q) → L2(P,Q), i.e. δP (g) = [g : 1P0 ].

To verify axiom (A) in [6, Definition 1.7], see also 2.4, we need to show that for any
P,Q ∈ H the set π−1

2 (f ) where f ∈ F (P,Q) admit a transitive free action of CS(P ) via
δP :NS(P ) → AutL2(P ). Note that F (P,Q) = F2(P,Q) by Lemma 5.13. Consider ψ,ψ ′ ∈
L2(P,Q) ⊆ L1(P0,Q0) such that π2(ψ) = π2(ψ

′). By restriction to P0, Lemma 5.9(a) shows
that π1(ψ) = π1(ψ

′). Lemma 5.17(f) shows that there exists z ∈ Z(P0) such that ψ ′ = ψ ◦ ẑ

in L1. Note that ẑ ∈ AutL2(P0) by Definition 5.5 so the equality ψ ′ = ψ ◦ ẑ also holds in L2.
Furthermore, Lemma 5.17(c) implies that

π2(ψ) = π2(ψ
′) = π2(ψ ◦ ẑ) = π2(ψ) ◦ cz.

As a consequence z ∈ CS(P ) and we conclude that CS(P ) acts transitively on the fibres of
π2 : L2(P,Q) → F (P,Q). The action is free by Lemma 5.19 and the uniqueness assertion in
Lemma 5.17(e).

Axiom (B) holds by Lemma 5.9(c). To verify axiom (C) we fix a morphism ψ ∈ L2(P,Q)

and an element g ∈ P . Set f = π2(ψ) ∈ F (P,Q). By the definition of the morphisms in L2, see
Lemma 5.9(a) we have ψ ◦ ĝ = f̂ (g) ◦ ψ , which is what we need. �
Notation. We shall write P �F Q for the statement that P,Q � S are F -conjugate.

The next step is to prove Lemma 5.15 which shows that F is a saturated fusion system.
Clearly S0 acts on H0 by conjugation and [P0]S0 denotes the orbit of P0, i.e. the conjugacy

class of P0 in S0. Since G acts via fusion preserving automorphisms, it acts on the set H0/F0
of the F0-conjugacy classes of the subgroups P0 ∈ H0 which we denote [P0]F0 . The stabilizer
of [P0]F0 under this action of G is denoted, as usual, by G[P0]F0

. Now, G[P0]F0
acts on the set

[P0]F0 ⊆ H0. Clearly, S0 � G[P0]F0
because FS0(S0) ⊆ F0. Moreover, since S0 � G, this action

induces an action of G[P0]F0
on the set P of all the S0-conjugacy classes of the subgroups of S0

that are F0-conjugate to P0.

5.20. Lemma. For every P ∈ H there exist P̄ ,P ′ ∈ H such that:

(a) P̄ = aP for some a ∈ G and P̄ �F P ′, whence P �F P ′, and
(b) P ′

0 is fully F0-normalized and P ′
0 �F0 P̄0.

In addition, S̄ := NS(P ′
0)S0 is a Sylow p-subgroup of G[P̄0]F0

and S̄/S0 fixes the S0-conjugacy

class [P ′]S .
0 0



N. Castellana, A. Libman / Advances in Mathematics 221 (2009) 1302–1344 1329
Proof. The argument follows the one in the proof of step 3 in [3, Theorem 4.6].
Clearly S0 ·P � G[P0]F0

because P � NG(P0) and FS0(S0) ⊆ F0. Choose S′ ∈ Sylp(G[P0]F0
)

which contains S0 ·P . By Sylow’s theorems, there exists some a ∈ G such that S′ = G[P0]F0
∩Sa .

Set P̄ = aP and observe that

P̄ = aP � a
(
G[P0]F0

∩ Sa
)
� S.

Also P̄0 = aP0 ∈ H0, so P̄ ∈ H. In addition, G[P̄0]F0
= a(G[P0]F0

). It follows that

S̄ := S ∩ G[P̄0]F0
= a(S′) ∈ Sylp(G[P̄0]F0

).

Consider now the set Pf n of all the S0-conjugacy classes of the fully F0-normalized subgroups
R � S0 which are F0-conjugate to P̄0. Since G normalizes S0 and it is fusion preserving, it
carries fully F0-normalized subgroups of S0 to ones, and therefore G[P̄0]F0

acts on Pf n.

We now restrict the action of G[P̄0]F0
on Pf n to S̄. By [3, Proposition 1.16] we know that

|Pf n| 
= 0 mod p. Therefore S̄/S0 must have some fixed point [R0]S0 . Thus, R0 is fully F0-
normalized and is F0-conjugate to P̄0. For every g ∈ S̄ � S we have gR0g

−1 �S0 R0 so S̄ �
NS(R0)S0. On the other hand S0NS(R0) � G[R0]F0

= G[P̄0]F0
and S̄ is a Sylow p-subgroup of

the latter group, hence

S̄ = S0 · NS(R0).

It remains to find some P ′ ∈ H such that P ′ �F P̄ and such that P ′
0 = R0. Now, since P̄ � S̄,

it must stabilize [R0]S0 . We conclude that P̄ /P̄0 acts on

X := {[f ] ∈ RepF0
(P̄0, S0): Imf is S0-conjugate to R0

}
via [f0] �→ [cg ◦ f0 ◦ cg−1]. Clearly X is not empty because by construction P̄0 �F0 R0. Choose
some f ∈ F0(P̄0,R0). Then every element of X has the form [α ◦ f ] for some α ∈ AutF0(R0).
Moreover [α ◦ f ] = [β ◦ f ] if and only if α−1β ∈ AutS0(R0). Therefore

|X| = |AutF0(R0)|
|AutS0(R0)| 
= 0 mod p

because R0 is fully F0-normalized. Since P̄ is a finite p-group, there is some [f0] ∈ XP̄ where
f0 ∈ F0(P̄0, S0) and Imf0 = R0. Let ψ0 ∈ L0(P̄0, S0) be a lift of f0.

Recall from Lemma 5.6(a) that we may consider ψ0 as a morphism in L1(P̄0, S0) via an
inclusion L0 ⊆ L1. Fix some x ∈ P̄ . Since P̄ fixes [f0], there exists some s ∈ S0 such that

c−1
x ◦ f0 ◦ cx = cs ◦ f0.

Lifting to L0 and using hypothesis (1), we see that there exists a unique z ∈ CS0(P̄0) = Z(P̄0)

such that

(1) x−1ψ0x = ŝ ◦ ψ0 ◦ ẑ = ŝf0(z) ◦ ψ0 in L0.
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Set y := xsf0(z) and note that y ∈ P̄ · S0 · Z(R0) � S. Lemma 5.6(c), Eq. (1) and the properties
of S-systems of lifts (see Definition 2.5) imply that

ψ0 ◦ x̂ = x̂ ◦ (
x−1ψ0x

) = x̂ ◦ ŝf0(z) ◦ ψ0 = ŷ ◦ ψ0.

Therefore, by definition, ψ0 ∈ L2(P̄ , S). Consider f = π2(ψ0) ∈ F (P̄ , S) and set P ′ = f (P̄ ).
By Lemmas 5.13(a) and 5.11(b), f restricts to an isomorphism f : P̄ → P ′ in F . By Lem-
mas 5.9(a) and 5.6(a) we see that f |P̄0

= π0(ψ0) = f0 ∈ F0(P̄0,R0). Since f ∈ F (P̄ ,P ′) is an

isomorphism we deduce from Lemma 5.13(c) that P ′
0 = f (P̄0) = R0. This completes the proof

since f is an F -isomorphism between P̄ and P ′ which restricts to an F0-isomorphism f0 be-
tween P̄0 and R0 = P ′

0. �
5.21. Lemma. If P � S is F -centric but P /∈ H, then there exists P ′ � S which is F -conjugate
to P such that

OutS(P ′) ∩ Op

(
OutF (P ′)

) 
= 1.

Proof. The argument is almost repeated from step 4 in the proof of [3, Theorem 4.6] if we find a
subgroup P̂ � S which is F -conjugate to P and such that P̂0 does not contain its S0-centralizer.

Assume to the contrary that there is some P which is F -centric, P0 is not F0-centric, and for
which there does not exist P̂ as above. Choose P � S so that P0 has the maximal possible order.
If NS0(P0) is F0-centric we choose ϕ̃ ∈ L0(NS0(P0), S0) as in hypothesis (5) of Theorem 5.2.
Then ϕ̃ represents a morphism NS(P0) → S in L2 because for any x ∈ NS(P0)

ϕ̃ ◦ x̂ = [1 : ϕ̃] ◦ [x : 1] = [
x : x−1ϕ̃x

] = [x : ŝ ◦ ϕ̂] = [xs : ϕ̃] = [xs : 1] ◦ [1 : ϕ̃] = x̂s ◦ ϕ̃.

Thus, π2(ϕ̃) is a morphism f :NS(P0) → S in F whose restriction to P gives rise to an F -
conjugate P̂ and by Lemmas 5.13(c) and 5.9(a), P̂0 = f (P0) does not contain its S0-centralizer.
This is a contradiction, hence NS0(P0) cannot be F0-centric.

Now, P must normalize NS0(P0) and we consider Q := PNS0(P0). Clearly Q0 = NS0(P0).
By the maximality of |P0| we deduce that Q is F -conjugate to some Q̂ such that Q̂0 does not
contain its S0-centralizer. By restriction to P � Q we see that P is F -conjugate to some P̂ � Q̂

and P̂0 cannot contain its S0-centralizer because Q̂0 � P̂0 does not contain its S0-centralizer.
This is again a contradiction.

Finally, our notation was chosen in such a way that the argument in step 4 in [3, proof of
Theorem 4.6] can be now read verbatim to complete the proof. �
Proof of 5.15. By [4, Theorem 2.2] and Lemma 5.21, F is saturated if the saturation axioms of
Definition 2.2 hold for all subgroups in H. To show this, we slightly modify the argument in [3,
Theorem 4.6].

Condition I. Fix P ∈ H which is fully F -normalized. We have to show that it is fully F -
centralized and that AutS(P ) is a Sylow p-subgroup of AutF (P ). By Lemma 5.13(b) we know
that P is F -centric and in particular fully F -centralized.
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Consider P̄ and P ′ as in Lemma 5.20. Recall that S̄ = NS(P ′
0)S0 is a Sylow p-subgroup

of G[P̄0]F0
. Lemma 5.6(a) shows that AutL0(P̄0) � AutL1(P̄0) and by Lemmas 5.17(f), 5.11

and 5.13 ∣∣AutL1

(
P ′

0

) : AutL0

(
P ′

0

)∣∣ = |G[P̄0]F0
: S0|. (5.22)

By definition NS0(P
′
0) = S0 ∩ NS(P ′

0) so

∣∣NS

(
P ′

0

)
/NS0

(
P ′

0

)∣∣ = ∣∣NS

(
P ′

0

)
S0/S0

∣∣ = |S̄/S0|. (5.23)

Now, P ′
0 is fully F0-normalized and is F0-centric so∣∣AutL0

(
P ′

0

) : NS0

(
P ′

0

)∣∣ 
= 0 mod p. (5.24)

Since |G[P ′
0]F0

: S̄| 
= 0 mod p, we deduce from (5.22), (5.23) and (5.24) that

∣∣AutL1

(
P ′

0

) : NS

(
P ′

0

)∣∣ = |AutL1(P
′
0)|

|AutL0(P
′
0)|

· |AutL0(P
′
0)|

|NS0(P
′
0)|

· |NS0(P
′
0)|

|NS(P ′
0)|


= 0 mod p,

namely NS(P ′
0) ∈ Sylp(AutL1(P

′
0)).

Fix ψ ∈ AutL1(P
′
0) such that

ψ−1NS

(
P ′

0

)
ψ ⊇ R ∈ Sylp

(
NAutL1 (P ′

0)
(P ′)

)
(5.25)

and set

P ′′ = ψP ′ψ−1 � NS

(
P ′

0

)
.

Lemma 5.18 shows that P ′
0 = P ′′

0 and that ψ ∈ L2(P
′,P ′′) is an isomorphism. In particular, P ′′

is F -conjugate to P ′, hence also to P because P ′ = aP for some a ∈ G and â ∈ L2(P,P ′) is an
isomorphism. We now claim that

(i) AutL2(P
′′) = NAutL1 (P ′

0)
(P ′′) and (ii) NS(P ′′) = NNS(P0)(P

′′).

Clearly (i) follows from the definition of the morphisms in L2 because

λ ∈ AutL2(P
′′) ⇐⇒ ∀x ∈ P ′′∃y ∈ P ′′(λ ◦ x̂ ◦ λ−1 = ŷ

)
⇐⇒ λ ∈ NAutL1 (P ′

0)
(P ′′).

For (ii), note that P ′′ ⊆ NS(P ′
0) ⊆ AutL1(P

′
0) so by the choice of ψ in Eq. (5.25),

NNS(P ′
0)

(P ′′) = NS

(
P ′

0

) ∩ NAutL1 (P ′
0)

(P ′′) ∈ Sylp
(
NAutL1 (P ′

0)
(P ′′)

)
.

On the other hand,

NN (P ′)(P
′′) � NS(P ′′) � NAut (P ′)(P

′′),

S 0 L1 0
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hence NS(P ′′) = NNS(P ′
0)

(P ′′). We deduce that NS(P ′′) ∈ Sylp(AutL2(P
′′). Finally, AutL2(P ) ∼=

AutL2(P
′′) because P ′′ and P are isomorphic in L2 (via ψ ◦ â). Also, |NS(P )| � |NS(P ′′)| be-

cause P is fully F -normalized. Therefore NS(P ) ∈ Sylp(AutL2(P )) and Lemma 5.14 implies
that AutS(P ) is a Sylow p-subgroup of AutF (P ).

Condition II. Fix P ∈ H and f ∈ F (P,S). Parts (a) and (b) of Lemma 5.13 show that f (P ) ∈ H
and that f (P ) is F -centric and in particular it is fully F -centralized. We have to prove that f

extends to some morphism Nf → S in F where

Nf = {
g ∈ NS(P ): f ◦ cg = cs ◦ f for some s ∈ S

}
.

Note that s in the definition of Nf belongs to NS(Imf ). Set Q = Nf . We observe that

Q � NS(Q0) and Q � NS(P ) � NS(P0). (5.26)

By construction of F2, there exists ϕ ∈ L2(P,S) such that f = π2(ϕ). Now ϕ in a morphism
in L1(P0, S0) and we write ϕ = [g : ϕ0]. By definition of Q = Nf , for any q ∈ Q there exists
t ∈ S such that f ◦ cq = ct ◦ f . Lemma 5.13(c) and (5.26) imply that f0 ◦ cq = ct ◦ f0 where
f0 :P0 → S0 is the restriction of f . By Lemma 5.17(b), f0 = π1(ϕ) so part (e) of that lemma
implies that ϕ ◦ q̂ = t̂ ◦ ϕ ◦ ẑ for some z ∈ Z(P0). Part (b) of that lemma applies again to show
that ϕ ◦ q̂ = ŝq ◦ ϕ for some sq ∈ S.

Now, if q ∈ Q0 then ϕ ◦ q̂ = [gq : q−1ϕ0q] and ŝq ◦ ϕ = [sqg : ϕ0]. Therefore there is s ∈ S0
such that

gqs = sqg and ŝ ◦ ϕ0 = q̂−1 ◦ ϕ0 ◦ q̂.

In particular sq ∈ S0 and π0(ϕ0) ◦ cq = cqs ◦ π0(ϕ0). This shows that Q0 ⊆ Nπ0(ϕ0) and we may
extend ϕ0 to some ψ0 ∈ L0(Q0, S0) because Q0 ⊇ P0 which is F0-centric. Define ψ = [g : ψ0]
and note that ϕ = ψ ◦ [1 : ιQ0

P0
]. From (5.26), for any q ∈ Q

ψ ◦ q̂ ◦ [
1 : ιQ0

P0

] = ψ ◦ [
1 : ιQ0

P0

] ◦ q̂ = ϕ ◦ q̂ = ŝq ◦ ϕ = ŝq ◦ ψ ◦ [
1 : ιQ0

P0

]
.

Since [1 : ι
Q0
P0

] is an epimorphism in L1 by Lemma 5.17(c), we deduce that ψ ∈ L2(Q,S). Fi-

nally, f = π2(ϕ) = π2(ψ) ◦ inclQP . This completes the proof. �
Proof of Lemma 5.16. Our notation was chosen in such a way that the argument in [3, Theo-
rem 4.6, step 7] can be read verbatim and we shall therefore avoid reproducing it. �
6. Maps from a homotopy colimit

Let C be a small category, and X : C → Top be a diagram of spaces over C . The values taken
by the functor will be denoted by X(c) and X(ϕ) where c ∈ C , ϕ ∈ MorC (c, c′). The homotopy
colimit of the diagram X is the space

hocolimC X =
( ∐ ∐

c →···→c

X(c0) × Δn

)
/ ∼
n�0 0 n
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where we divide by the usual face and degeneracy identifications [2, Chapter XII].
There is a filtration of hocolimC X by spaces FnX where FnX is the image of the union of

X(c) × Δm in hocolimC X for all m � n. Notice that F0X is just
∐

c∈C X(c) and F1X is the
union of the mapping cylinders of all ϕ ∈ Mor(C). Observe that a map f1 :F1X → Y is the same
as a set of maps f1(c) :X(c) → Y together with homotopies f1(c

′) ◦ X(ϕ) � f1(c) for every
ϕ ∈ C(c, c′). Equivalently, these are paths f (c) � f1(c

′) ◦ X(ϕ) in mapf (c)(X(c),Y ). A set of

maps X(-)
f (-)−−→ Y which admits such homotopies is called a system of homotopy compatible

maps and it gives rise to an element in the set lim←−C [X(c),Y ].
Fix a system of homotopy compatible maps X(-)

f (-)−−→ Y . By the remark above it gives rise
to a map f1 :F1X → Y where f1|X(c) = f (c). Wojtkowiak [26] addressed the question whether
f1 can be extended, up to homotopy, to a map f̃ : hocolimC X → Y . The method is to extend f1
by induction on the spaces FnX.

Given a map f̃n :FnX → Y whose restriction to X(c) is homotopic to f (c), Wojtkowiak
developed an obstruction theory for extending it to Fn+1X without changing it on Fn−1X.
The existence of such an extension depends on the vanishing of a certain obstruction class in
lim←−

n+1
C πn(mapf (c)(X(c),Y )). The extension from F1X to F2X involves in general a functor

into the category of groups and representations, whose lim←−
2 term is described in Wojtkowiak’s

work. Fortunately, if these groups are abelian then Wojtkowiak’s definition of lim←−
2 coincides

with the usual one from homological algebra. Once the map has been extended to F2X, there
are homotopies between the paths f1(c) � f1(c

′′) ◦ X(ψ ◦ ϕ) and f (c) � f1(c
′) ◦ X(ϕ) �

f1(c
′′) ◦ X(ψ) ◦ X(ϕ) for all c

ϕ−→ c′ ψ−→ c′′. Thanks to these homotopies there are functors
c �→ πn(mapf (c)(X(c),Y )) into Ab for all n > 1.

Given two maps f̃1, f̃2 : hocolimC X → Y whose restrictions to X(c) are homotopic to f (c)

for all c ∈ C , Wojtkowiak also studies an obstruction theory for the construction of a homotopy

f̃1 � f̃2. Clearly, f̃1 and f̃2 give rise to a homotopy f̃1|F0X

H0� f̃2|F0X . The idea is to extend the

homotopy H0 inductively to I ×FnX. Given a homotopy f̃1|Fn−1X

Hn−1� f̃2|Fn−1X , the possibility

of extending it to a homotopy f̃1|FnX

Hn� f̃2|FnX without changing it on Fn−2X, depends on the
vanishing of an obstruction class in lim←−

n πn(mapf (c)(X(c),Y )).

6.1. Definition. (See [6, Definition 3.3].) Fix a prime p. A small category C has p-height d if
for every functor F : C → Z(p)-mod the groups lim←−

i
C F vanish for all i > d . The p-height of C is

infinite if no such d exists and it is finite otherwise.

6.2. Theorem. Let C be a finite category of p-height d < ∞. Consider a sequence of maps
Y0

g0−→ Y1
g1−→ · · · gd−→ Yd+1 and let yi = gi ◦ · · · ◦ g0 :Y0 → Yi+1. Given a functor X : C → Top

and a system of homotopy compatible maps f (-) :X(-) → Y0, define new systems of homotopy
compatible maps fi(-) = yi ◦ f (-) :X(-) → Yi+1 for all i = 0, . . . , d . Assume that

(i) For every c ∈ C and every i = 1, . . . , d the induced map

πi mapfi−1(c)
(
X(c),Yi

) (gi )∗−−−→ πi mapfi(c)
(
X(c),Yi+1

)
is the trivial homomorphism between abelian groups.

(ii) The groups π∗>0 mapfi(c)(X(c),Yi) are Z(p)-modules for all c ∈ C and all i.
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Then

(a) There exists a map f̃ : hocolimC X → Yd which renders the following square homotopy com-
mutative for all c ∈ C ,

X(c)
f (c)

ι(c)

Y0

yd−1

hocolimC X
f̃

Yd

(b) If f̃1, f̃2 : hocolimC X → Y0 satisfy f̃1|X(c) � f̃2|X(c) � f (c) for all c ∈ C then the compos-

ites hocolimC X
f̃1,f̃2−−−→ Y0

yd−→ Yd+1 are homotopic.

Proof. (a) We will define by induction maps f̃i :FiX → Yi for all i = 1, . . . , d such that
f̃i |X(c) � fi−1(c) for all c ∈ C .

Note that, by definition of a system of homotopy compatible maps, we can construct a map
f̃0 :F1X → Y0. Let f̃1 = g0 ◦ f̃0 Assume by induction that f̃i :FiX → Yi with f̃i |X(c) � fi−1

has been constructed for some 1 � i < d . The obstruction class Θ ′
i+1 for the extension of f̃i to

Fi+1X is mapped by the homomorphism

lim←−
C op

i+1πi mapfi−1(c)
(
X(c),Yi

) (gi )∗−−−→ lim←−
C op

i+1πi mapfi(c)
(
X(c),Yi+1

)

to the obstruction class Θi+1 for the extension of gi ◦ f̃i to Fi+1X. When i � 1, by hypothe-
sis (i) the groups are abelian and this homomorphism is trivial, whence Θi+1 = 0. Wojtkowiak’s
obstruction theory guarantees the existence of a map f̃i+1 :Fi+1X → Yi+1 which agrees with
gi ◦ f̃i on Fi−1X and such that f̃i+1|X(c) � gi ◦ fi−1(c) = fi(c). This completes the induction
step.

Hypothesis (ii) and the assumption on C imply that the groups

lim←−
C op

iπi−1 mapfd−1
(
X(c),Yd

)

are trivial for all i � d + 1. Thus, the obstructions to the extension of f̃d to FiX where i > d

must all vanish. We can therefore construct by induction on i � d + 1 maps f̃i :FiX → Yd such
that f̃i |X(c) � fd−1(c) for all c ∈ C and such that f̃i+1 agrees with f̃i on Fi−1X. We can finally
define f̃ : hocolimC X = ⋃

i FiX → Yd with the required properties. In fact, f̃ |FnX = f̃n+1|FnX

for all n > d .

(b) First, we construct by induction homotopies yi ◦ f̃1|FiX

Hi� yi ◦ f̃2|FiX for all i = 0, . . . , d .
Recall that F0X = ∐

c∈C X(c) and we define H0 as the sum of the homotopies y0 ◦ f̃1|X(c) �
y0 ◦ f̃2|X(c).
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Assume by induction that Hi :yi ◦ f̃1|FiX�yi ◦ f̃2|FiX has been constructed where 0 � i < d .
The obstruction Υ ′

i for the extension of Hi to a homotopy yi ◦ f̃1|Fi+1X � yi ◦ f̃2|Fi+1X is mapped
by the homomorphism

lim←−
C op

i+1πi+1 mapfi(c)
(
X(c),Yi+1

) (gi+1)∗−−−−→ lim←−
C op

i+1πi+1 mapfi+1(c)
(
X(c),Yi+2

)
to the obstruction class Υi for the extension of gi+1 ◦ Hi : I × FiX → Yi+2 to I × Fi+1X. This
homomorphism is trivial by hypothesis (i). Therefore Υi = 0, and by Wojtkowiak’s theory there

is a homotopy yi+1 ◦ f̃1|Fi+1X

Hi+1� yi+1 ◦ f̃2|Fi+1X . This completes the induction step.
Now, the hypothesis on C together with (ii) imply that the groups

lim←−
C op

iπi mapfd (c)
(
X(c),Yd+1

)
are trivial for all i � d + 1. We can therefore construct by induction on i � d + 1 homotopies

yd ◦ f̃1|FiX

Hi� yd ◦ f̃2|FiX such that Hi+1 and Hi agree on I × Fi−1X. There results a homotopy
yd ◦ f̃1 � yd ◦ f̃2. �
7. Maps between p-local finite groups

7.1. Definition. Let (S, F ) be a fusion system. A map f :BS → X is called F -invariant, if for

every ϕ ∈ F (P,S) the composite BP
Bϕ−−→ BS

f−→ X is homotopic to f |BP = f ◦ B inclSP .

7.2. Example. Let (S, F , L) be a p-local finite group. The map Θ :BS → |L| of 2.9 is F -
invariant by Proposition 2.10.

Given a p-local finite group (S, F , L), the question we address in this section is when an
F -invariant map f :BS → X can be extended to a map |L| → X. Here is the main result of this
section which uses the constructions in Section 3.

7.3. Theorem. Let (S, F , L) and (S′, F ′, L′) be p-local finite groups and consider an F -
invariant map f :BS → |L′|∧p . Then:

(a) There exists m � 0 and a map f̃ : |L| → (|L′| 	 Σpm)∧p which renders the following square
homotopy commutative

BS
f

Θ

|L′|∧p
Δ∧

p

|L|
f̃

(|L′| 	 Σpm)∧p

(b) There exists e > 0 such that for any two maps f̃1, f̃2 : |L| → |L′|∧p with f̃1 ◦Θ � f̃2 ◦Θ � f ,

the composites |L| f̃1,f̃2−−−→ |L′|∧p
Δ∧

p−−→ (|L′| 	 Σpe)
∧ are homotopic.

p
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7.4. Example. If f = Θ :BS → |L| then f̃ can be chosen as the identity on |L|∧p .

The main tool for proving Theorem 7.3 is Theorem 6.2 but we will need some preliminary
facts about the homotopy groups of mapping spaces and p-completion of wreath products of
spaces.

Consider a group G. Its abelianization is denoted by Gab. Its maximal p-perfect sub-
group [2, Chapter VII.3] is denoted by Op(G). This is the maximal subgroup of K such that
H1(K;Fp) = 0. It is clearly characteristic in G. It is also clear that Op(G) contains every el-
ement of G with finite order prime to p. In particular, if G is finite then G/Op(G) is a finite
p-group. For a finite abelian group A, set A(p) = A ⊗ Z(p); this is the set of p-power order
elements in A.

7.5. Proposition. Set H = G 	 Σk for some group G. If either p > 2 and k � 2 or if p = 2 and
k � 3 then H/Op(H) is an abelian p-group. In particular, if G is finite then H/Op(H) is a
finite abelian p-group.

Proof. Note that H contains G×k as a normal subgroup and we will write g(i) for the element
(1, . . . ,1, g,1, . . . ,1) ∈ H with g ∈ G in the ith position. To prove the result it suffices to show
that Op(H) contains all the elements of the form g(1)g

−1
(i) for all i > 1, all the elements of the

form g
(1)

where g ∈ [G,G] is a commutator in G and that it contains Ak � Σk . Indeed, the
quotient of H by the normal subgroup generated by the elements of the first and second type is
Gab × Σk , so throwing in Ak would guarantee that the quotient H/Op(H) is abelian.

If p > 2 then clearly the involutions τ = (1, i) ∈ Σk belong to Op(H). Therefore, for
any g ∈ G also g(1)τg−1

(1) belongs to Op(H). As a consequence we also have g(1)τg−1
(1) τ

−1 =
g(1)g

−1
(i) ∈ Op(H). These are the elements of the first type.

Now, given a, b ∈ G we observe that

{
a−1
(1)

a(2)

} · {b−1
(1)

b(2)

} · {(ab)(1)(ab)−1
(2)

} = (
a−1b−1ab

)
(1)

,

so Op(H) contains all the elements of the form g(1) with g ∈ [G,G]. Finally, since Σk is gener-
ated by involutions, Σk is also contained in Op(H). This completes the proof in this case.

If p = 2 and k � 3, consider some g ∈ G and a 3-cycle (1, i, j). By inspection [g(1), τ ] =
g(1)g

−1
(i) so Op(H) contains all the elements of the first type. Also Op(H) contains all the ele-

ments of the second type, namely g(1) ∈ H where g ∈ [G,G] by the same argument we used for
odd p. Finally, Op(H) contains all the 3-cycles in Σk , whence it contains Ak . �
7.6. Corollary. Let X be a p-good space, then π1((X 	 Σk)

∧
p) is abelian if k � 3. It is a finite

abelian p-group if π1(X
∧
p ) is finite.

Proof. We may replace X with X∧
p by next Lemma 7.7. Set Y = X 	 Σk and π = π1Y . By

Remark 3.6 and Proposition 7.5 we see that π/Op(π) is an abelian group and that it is a fi-
nite abelian p-group if π1X is finite. Let E → Y be the principal fibration obtained by pulling
back the covering map B(Op(π)) → Bπ along the first Postnikov section Y → Bπ . Clearly,
π1E = Op(π) and we obtain a fibre sequence E → Y → B(π/Op(π)). By [2, Chapter VII.3.2],
E is p-good and E∧ is simply connected. By fibrewise p-completion [2, Chapter I.8.3], there
p
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is a fibre sequence E∧
p → Ẏ∧

p → B(π/Op(π)) where Y → Ẏ∧
p is a mod-p equivalence be-

cause E is p-good. We deduce that π1(Ẏ
∧
p ) = π/Op(π) which is abelian. The description in

[1, Propositions 5.5, 5.6] of the fundamental group of the p-completion of a space implies that
π1(Y

∧
p ) = π1((Ẏ

∧
p )

∧
p
) is the p-adic completion of π/Op(π) which is also an abelian group. It is

an abelian finite p-group if π1(X) is finite (see [1, 5.7(vi)]). �
7.7. Lemma. Let X be a p-good space. Then, for any G � Σn the diagram

X∧
p

Δ(X∧
p )

Δ(X)∧p

X∧
p 	 G

η

(X 	 G)∧p
�

(η	G)∧p
(X∧

p 	 G)
∧
p

is homotopy commutative where (η 	 G)∧p is a homotopy equivalence.

Proof. The first statement follows from the naturality of η and of - 	G. The map η 	G is a mod p

homology equivalence by a Serre spectral sequence argument, hence (η 	 G)∧p is a homotopy
equivalence by [2, Lemma I.5.5]. �
7.8. Proposition. Let (S, F , L) be a p-local finite group, let P be a finite p-group and consider
a map f :BP → |L|∧p . Then

(a) πi(|L|∧p) are finite p-groups for all i � 1.

(b) πi(mapη◦Δ◦f (BP, (|L|∧p 	 Σk)
∧
p
)) are finite p-groups for all i � 1 and k � 0. Moreover, if

k � 3, π1(mapη◦Δ◦f (BP, (|L|∧p 	 Σk)
∧
p
)) is abelian.

Proof. (a) The fundamental group π1(|L|∧p) is a finite p-group by [3, Theorem B]. Using a
Serre class argument (see [23, Chapter 9.6, Theorem 15]), we only need to show that the integral
homology is finite at each degree. In [21], it is proven that the suspension spectrum Σ∞|L|∧p is
a retract of Σ∞BS, hence its integral homology groups are finite abelian p-groups.

(b) If S = 1 then |L| = ∗ hence (|L|∧p 	 Σk)
∧
p

� (BΣk)
∧
p and η ◦ Δ ◦ f is null-homotopic.

Dwyer–Zabrodsky’s result [10] shows that the space under study is homotopy equivalent to
(BΣk)

∧
p and the result follows from Proposition 7.5 together with [5, Proposition A.2] and

part (a).
We now assume that S 
= 1. By [6, Theorem 4.4(a)] f is homotopic to

BP
Bρ−−→ BS

Θ−→ |L| η−→ |L|∧p

for some ρ :P → S. Denote f ′ = Θ ◦ Bρ. We may, and will, assume that f = η ◦ f ′. By The-
orem 1 there exists a p-local finite group (S′, F ′, L′) together with a homotopy equivalence
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ω : |L| 	 Σk
�−→ |L′|. Since |L| is p-good by [6, Proposition 1.12], Lemma 7.7 now implies that

(|L| 	 Σk)
∧
p � (|L|∧p 	 Σk)

∧
p

. The following diagram

mapΔ◦f ′
(BP, |L| 	 Σk)

(η∗)◦(η	Σk)∗

ω∗ �

mapη◦Δ◦f (BP, (|L|∧p 	 Σk)
∧
p
)

� (ω∧
p )∗

mapω◦Δ◦f ′
(BP, |L′|) η∗

mapη◦ω◦Δ◦f ′
(BP, |L′|∧p)

is homotopy commutative. By Proposition 2.11(b) both horizontal maps induce, after p-
completion, split surjections on all homotopy groups. Moreover note that the spaces at the
right-hand side of the diagram are p-complete by Proposition 2.11(a). Therefore it suffices to
prove that the homotopy groups of

(
mapΔ◦f (

BP, |L|∧p 	 Σk

))∧
p

(7.9)

are finite p-groups. It follows from Proposition 3.8(b) and Remark 3.6 that

π1 mapΔ◦f (
BP, |L|∧p 	 Σk

) ∼= π1
(
mapf

(
BP, |L|∧p

)) 	 Σk and

πi mapΔ◦f (
BP, |L|∧p 	 Σk

) ∼=
⊕

k

πi

(
mapf

(
BP, |L|∧p

))
for i > 1.

Since mapf (BP, |L|∧p) is the p-completed classifying space of a p-local finite group by Proposi-
tion 2.11(a), its homotopy groups are finite p-groups by (a). Now [2, Proposition VII.4.3] shows
that the homotopy groups of (7.9) are finite p-groups. Finally, if k � 3, Proposition 3.8(b) and
Corollary 7.6 show that the fundamental group is abelian. �
Proof of Theorem 7.3. First, we assume that S 
= 1, or else the result is a triviality. We begin
by constructing a sequence of spaces and maps Y0

g0−→ Y1
g1−→ · · · where Y0 = |L′|∧p with the

following properties:

(i) For every i � 0 there exists some mi+1 � 2 such that Yi+1 = (Yi 	 Σpmi+1 )
∧
p

and such that

gi is the composite Yi
Δ−→ Yi 	 Σpmi

η−→ Yi+1.
(ii) π∗>0 mapgi−1◦···◦g0◦f |BP (BP,Yi) are finite abelian p-groups for all i � 1.

(iii) The homomorphism

πi mapgi−1◦···◦g0◦f |BP (BP,Yi)
(gi )∗−−−→ πi mapgi◦···◦g0◦f |BP (BP,Yi+1)

is trivial for all i � 1 and all P � S in F c.

Property (i) states explicitly how to construct the sequence from Y0 and the mi ’s. Since Y0 =
|L′|∧p , property (i) with Lemma 7.7 and Theorem A shows that for every i � 0 there is a homotopy
equivalence Yi � |Li |∧p for some p-local finite group (Si, Fi , Li ) with Si 
= 1. We assume this
fact from now on.
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To begin with, set L0 = L′ and Y0 = |L0|∧p and m1 = 2. Let g0 :Y0 → Y1 be the composite

Y0
η◦Δ−−→ (Y0 	 Σp2)∧

p
. Proposition 7.8 guarantees that (ii) holds for Y1 since pm1 = p2 > 3.

Assume by induction that we have constructed Y0
g0−→ · · · gk−1−−−→ Yk , where k � 1, for which

conditions (i)–(iii) hold. By hypothesis (ii) on Yk we can choose mk+1 � 2 such that pmk+1

annihilates every element in the abelian group

⊕
P∈F c

πk mapgk−1◦···◦g0◦f |BP (BP,Yk).

Define Yk+1 = (Yk 	 Σpmk+1 )
∧
p

and gk = η ◦ Δ(Yk). Thus, condition (i) holds for Yk
gk−→ Yk+1.

Proposition 7.8 implies that condition (ii) holds for i = k + 1 since pmk+1 � p2 > 3. It now fol-
lows from Proposition 2.11 that the mapping space mapgk◦···g0◦f |BP (BP,Yk+1) is p-complete
and we are in position to apply Lemma 4.3 (with Y = Yk and X = BP ) to deduce that condi-
tion (iii) holds for gk . This completes the inductive step of the construction.

We now prove inductively that for every k � 0 there is a homotopy equivalence Yk �
(|L′| 	 Gk)

∧
p , where Gk � Σpm1+···+mk , such that

(1) |L′|∧p gk−1◦···◦g0−−−−−−→ Yk � (|L′| 	 Gk

)∧
p

is homotopic to |L′|∧p
Δ(|L′|)∧p−−−−−→ (|L′| 	 Gk

)∧
p
.

This is a triviality when k = 0. We assume inductively for k � 1 that the left triangle in the
following diagram is homotopy commutative:

Yk

�

Δ(Yk)
Yk 	 Σpmk+1

�

η
Yk+1

�

|L′|∧p

gk−1◦···◦g0

(Δ(|L′|)∧p
(|L′| 	 Gk)

∧
p

Δ
(|L′| 	 Gk)

∧
p 	 Σpmk+1

η
((|L′| 	 Gk)

∧
p 	 Σpmk+1 )

∧
p

The composite at the top is gk ◦ · · · ◦ g0. By Theorem A and [6, Proposition 1.12], |L′| 	 Gk is
p-good. The induction step now follows from Lemma 7.7 and Proposition 3.5.

Now consider the category C = O(F c)op and the functor B̃ : C → Top recalled in 2.8. Clearly
f :BS → |L′|∧p gives rise to a system of homotopy compatible maps f0 : B̃(-) → |L′|∧p in the
sense described in Section 6. Recall from [6, Corollary 3.4] that C is a finite category with p-
height d < ∞ (see Definition 6.1). Theorem 6.2 applied to f0 and Y0

g0−→ Y1
g1−→ · · · shows that

there is a map f̃0 : |L| → Yd such that f̃0 ◦ Θ � gd−1 ◦ · · · ◦ g0 ◦ f . Part (a) of the theorem now
follows because the following diagram is homotopy commutative by (1):

BS
f

Θ

|L′|∧p
Δ(|L′|)∧p

Δ(|L′|)∧p

|L|
f̃0

Yd � (|L′| 	 Gd)
∧
p

(|L′| 	 Σpm1+···+md )
∧
p
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Part (b) of the theorem follows similarly: Given f̃1, f̃2 : |L| → Y0 such that f̃1 ◦Θ � f̃2 ◦Θ � f ,

we have gd ◦ · · · ◦ g0 ◦ f̃1 � gd ◦ · · · ◦ g0 ◦ f̃2 which implies that the composites |L| f̃1,f̃2−−−→
|L′|∧p

Δ∧
p−−→ Yd+1 � (|L′| 	 Σpm1+···+md+1 )

∧
p

are homotopic. �

Proof of Theorem B. The induced map BS
Bρ−−→ BS′ η◦Θ ′−−−→ |L′|∧p is clearly F -invariant because

BS′ → |L′|∧p is F ′-invariant by 7.2 and ρ is fusion preserving. The result is now a direct conse-
quence of Theorem 7.3 and Theorem A. �

We say that ρ :S → Σn is F -invariant if ρ|P and ρ ◦ ϕ are equivalent representations for
every P � S and ϕ ∈ F (P,S).

7.10. Proposition. Let (S, F , L) be a p-local finite group and let ρ :S → Σn be a homomor-
phism. Then the following statements are equivalent:

(1) ρ is F -invariant.
(2) Bρ :BS → BΣn is an F -invariant map.
(3) η ◦ Bρ :BS → (BΣn)

∧
p is an F -invariant map.

Proof. It follows immediately from a result of Mislin [15, proof of the main theorem] which
gives rise to bijections Rep(P,Σn) ≈ [BP,BΣn] η∗−→≈ [BP, (BΣn)

∧
p ] for all P � S. �

7.11. Proposition. The regular permutation representation of a finite p-group S induces an F -
invariant map B regS :BS → BΣ|S| for any fusion system F on S.

Proof. By Proposition 7.10, it is enough to check that regS :S → Σ|S| is F -invariant. Note that
S acts freely on S via regS :S → Σ|S|, that is all the isotropy subgroups are trivial. In particular,
any group monomorphism ϕ :P → S where P � S renders S a free P -set via regS ◦ϕ. Since
any two free P -sets of the same cardinality are equivalent, it follows that regS |P and regS ◦ϕ are
conjugate in Σn. �

By Example 7.2 and Proposition 7.10, every map f : |L| → (BΣn)
∧
p gives rise to an F -

invariant representation ρ of S of rank n where Bρ � f |BS . Not every F -invariant representation
of S arises necessarily in this way. However, the next proposition gives a partial answer to that
question.

7.12. Proposition. Let (S, F , L) be a p-local finite group.

(a) Given ρ ∈ Repn(F ), there exists some k � 0 and an element f̃ ∈ Reppkn(L) such that f̃ |BS

is homotopic to BS
B(pk ·ρ)−−−−−→ BΣpkn

η−→ (BΣpkn)
∧
p

.

(b) Consider f1, f2 ∈ Repn(L) such that f1|BS � f2|BS . Then there exists some e � 0 such that
pe · f1 = pe · f2 in Reppen(L).

Proof. Let (S, F , L) be the p-local finite group associated with Σn. Since |L| is p-good by [6,
Proposition 1.12], a standard Serre spectral sequence argument shows that
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(1) (BΣn)
∧
p � |L|∧p

Δ∧
p−−→ (|L|∧p 	 Σk

)∧
p

� (
(BΣn)

∧
p 	 Σk

)∧
p

B incl∧p−−−−→ (BΣnk)
∧
p and

(BΣn)
∧
p

(BΔ)∧p−−−−→ (BΣnk)
∧
p

where Δ :Σn � Σnk is the diagonal inclusion, are homotopic. Both (a) and (b) follow directly
from Proposition 7.10, Theorem 7.3 and (1) taking into account the definition of the operation +
in

∐
n�0 Repn(F ) and

∐
n�0 Repn(L). �

7.13. Proposition. Every S-regular permutation representation |L| f−→ (BΣn)
∧
p is a homotopy

monomorphism at p.

Proof. By [5, Lemma 2.3], H ∗(S;Fp) is a finitely generated module over the Noetherian Fp-
algebra H ∗(BΣm·|S|;Fp) via the homomorphism (m · regS)∗. Finally, H ∗(|L|;Fp) is a submod-
ule of H ∗(S;Fp) by [6, Theorem B], whence it is finitely generated. �
Proof of Theorem C. Apply Propositions 7.11 and 7.12(a) to obtain f ∈ Reppk ·|S|(L) such that
f |BS is homotopic to η ◦ B(pk · regS), that is, Φ(f ) = pk · regS . By Proposition 7.13, f is a
homotopy monomorphism at p . �
8. The p-local index of the Sylow subgroup

Let (S, F , L) be a p-local finite group and let f : |L| → (BΣn)
∧
p be a map. The restriction

f |BS = f ◦ Θ is F -invariant by Example 7.2 and is homotopic to (Bρ)∧p for a unique ρ ∈
Rep(S,Σn) which is F -invariant by Proposition 7.10 and [10]. There results maps Repn(L) →
Repn(F ) which are compatible with the operations + and × defined in Section 1. They give rise
to a ring homomorphism

Φ : Rep(L) → Rep(F ).

8.1. Proposition. Additively, ker(Φ) and coker(Φ) are p-torsion.

Proof. An element in ker(Φ) has the form f1 − f2 where f1, f2 ∈ Repn(L) for some n and
f1|BS � f2|BS . Proposition 7.12 implies that pe · (f1 − f2) = 0 in Rep(L) and it follows that
ker(Φ) is p-torsion.

An element of Rep(F ) has the form ρ1 − ρ2 for some ρ1 ∈ Repn1
(F ) and ρ2 ∈ Repn2

(F ).
By Proposition 7.12, the definition of Φ and the definition of the operations + in Rep(F ) and
Rep(L), we see that there exist integers k1, k2 � 0 and representations f1 ∈ Reppk1n1

(L) and f2 ∈
Reppk2n2

(L) such that Φ(f1) = pk1 · ρ1 and Φ(f2) = pk2 · ρ2. Then ω = pk2 · f1 − pk1 · f2 is an

element of Rep(L) such that Φ(ω) = pk1+k2(ρ1 −ρ2). It follows that coker(Φ) is p-torsion. �
By Proposition 7.11 the ring Rep(F ) contains regS :S → Σ|S| which generates an (additive)

infinite cyclic group Repreg(F ) := {n · regS}n∈Z in Rep(F ). Similarly let Repreg(L) denote the
additive subgroup of the ring Rep(L) generated by all the S-regular representations of (S, F , L)

(see Definition 1.2).
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It follows directly from the definitions that Φ restricts to a group homomorphism

Φreg : Repreg(L) → Repreg(F ).

8.2. Corollary. The cokernel of Φreg is a cyclic p-group. The kernel of Φreg is an abelian torsion
p-group and Repreg(L) is isomorphic to the direct sum of Z with an abelian p-torsion group.

Proof. This follows from Proposition 8.1 which in particular implies that the image of Φreg is
isomorphic to Z, whence it splits off from Repreg(L). �

Given a finite group G there is a natural one-to-one correspondence between equivalence
classes of permutation representations G → Σn and equivalence classes of G-sets of cardinal-
ity n. Sum and products of representations (as described in Section 1) correspond to disjoint
unions and products of the associated G-sets. Note that regG corresponds to a free G-set with
one orbit.

Let us return to discuss Rep(F ). Since the product of a free S-set with any other S-set is again
a free set, it follows that Repreg(F ) and Repreg(L) are in fact ideals in Rep(F ) and Rep(L) and
that Φreg is a ring homomorphism.

8.3. Example. Let (S, F , L) be the p-local finite group of a finite group G. The restriction of
(B regG)∧p : |L|∧p → (BΣ|G|)∧p to BS is homotopic to n · (B regS)∧p where n = |G : S| because
regG|S = n · regS . In particular (B regG)∧p is an element in Repreg(L) which is mapped by Φ to
n · regS . It follows that |G : S| ∈ Im(Φreg), whence | coker(Φreg)| divides |G : S|.

8.4. Definition. Let (S, F , L) be a p-local finite group. Define the upper and lower p-local index
of S in L by

Uindp(L : S) = ∣∣coker
(
Φreg)∣∣,

Lindp(L : S) = ∣∣Repreg(F ) : Repreg(F ) ∩ Im(Φ)
∣∣.

Clearly Lindp(L : S) divides Uindp(L :S) because Im(Φreg) � Im(Φ) ∩ Repreg(F ).

8.5. Lemma. Let (S, F , L) be a p-local finite group. Then Uindp(L : S) is a p-power. If there
exists a permutation representation ρ : |L| → (BΣn)

∧
p such that ρ|BS � B(n · regS) with n � 1

prime to p, then Uindp(L : S) = 1, and in particular also Lindp(L :S) = 1.

Proof. The first statement follows from Corollary 8.2. The existence of ρ shows that n ∈
Im(Φreg) hence, Uindp(L : S) = 1. �

The depth of a fusion system F on S is the largest number of elements in a chain of proper
inclusions of F -centric F -radical subgroups of S. This includes chains ending in S. Follow-
ing [22] we call these subgroups “F -Alperin.” Thus, if the depth of F is n then there exists no
chain P1 � · · · � Pn+1 of proper inclusions of F -Alperin subgroups.

8.6. Proposition. If the depth of a p-local finite group (S, F , L) is equal to 2 then
Uindp(L : S) = 1.
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Proof. Let R denote the collection of the F -Alperin subgroups of S. Fix representatives
S,P1, . . . ,Pn for the F -conjugacy classes in R where Pi are fully F -normalized. Consider the
poset s̄d R defined in [12, Definition 1.3]. Its objects are the F -conjugacy classes [P ] of ele-
ments P ∈ R and the F -conjugacy classes [P � S] of proper inclusion P � S in R. Here we use
the fact that F has depth 2. The only relations in s̄d R are [P � S] ≺ [P ] and [P � S] ≺ [S]. By
Alperin’s fusion theorem [6, Theorem A.10], if [Q] = [Pi] then [Q � S] = [Pi � S]. It follows
that s̄d R is isomorphic to the poset Cn whose objects are {c0, c

i
1, c

i
2 | i = 1, . . . , n} and whose

only relations are ci
1 ≺ c0 and ci

1 ≺ ci
2 for all i = 1, . . . , n. Specifically, c0 = [S], ci

2 = [Pi] and
ci

1 = [Pi � S]. We view Cn as a small category with an arrow x → y if x ≺ y.
In [12, Theorem A] a functor F : Cn → Top with the following properties is constructed.

The values of F are the classifying spaces of finite groups G0,G
i
1 and Gi

2 for i = 1, . . . , n and
the maps F(ci

1) → F(c0) and F(ci
1) → F(ci

2) are induced by inclusion of groups Gi
1 � G0

and Gi
1 � Gi

2. In addition S is a subgroup of G0 = AutL(S) of index prime to p. Also, the
numbers ki = |Gi

2 : Gi
1| are prime to p by [12, Theorem A] and the fact that Pi is fully

F -normalized, whence NS(Pi) is a Sylow p-subgroup of Gi
1 = AutL(P � S) which is a sub-

group of Gi
1 = AutL(Pi) by [12, Proposition 1.5]. Finally, the map Θ :BS → |L| factors up to

homotopy through BG0 � F(c0) → hocolimCn
F � |L|.

Set k = ∏n
1 ki and k0 = |G0| · k. Note that k0 is divisible by |Gi

1| and |Gi
2| for all i because

k0 = k · |G0| = k · |Gi
1| · |G0 : Gi

1| and ki divides k. Set �i = k0/|Gi
1| and mi = k0/|Gi

2|. Consider
the following permutation representations for i = 1, . . . , n

k · regG0
:G0 → Σk0 , �i · regGi

1
:Gi

1 → Σk0, mi · regGi
2

:Gi
2 → Σk0 .

Note that (k · regG0
)|Gi

1
and (mi · regGi

2
)|Gi

1
are equivalent to �i · regGi

1
because all of them give

the set {1, . . . , k0} the structure of a free Gi
1-set with �i orbits. By taking classifying spaces there

results a system of homotopy compatible maps F → BΣk0 . It can be replaced by a system of
compatible maps F → BΣk0 as follows. First, set the maps F(ci

1) → BΣk0 to be the composite
F(ci

1) → F(c0) → BΣk0 . Next, replace the maps F(ci
1) → F(c2

i ) by cofibrations and change
the maps F(ci

2) → BΣn up to homotopy to obtain a system of compatible maps F → BΣk0 .
There results a map f : |L| � hocolimF → BΣk0 such that the restriction to the Sylow

p-subgroup f |BS = f ◦ Bι
G0
S � k · |G0 : S| · B regS where k · |G0 : S| is prime to p. Now

Lemma 8.5 applies. �
We shall now prove Theorem D. In fact we prove the following stronger result.

8.7. Theorem. Let (S, F , L) be a p-local finite group. Then Uindp(L : S) = 1 if

(1) (S, F , L) is associated with a finite group, or
(2) (S, F , L) is one of the exotic examples in [6, Examples 9.3 and 9.4] or in [22] or in [9] or in

[7, Example 5.3].

Proof. (1) This follows from Lemma 8.5 and Example 8.3.
(2) We will apply Proposition 8.6. The p-local finite groups in [6, Examples 9.3, 9.4] as well

as the ones in [22] and in [9] were shown to have depth 2 in Examples 7.6, 7.7, 7.3 and 7.4
of [13], respectively. The information on the structure of the exotic p-local finite groups in
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[7, Example 5.3] implies quite directly that these fusion systems have depth 2. We leave the
straightforward details to the reader. �
8.8. Conjecture. For all p-local finite groups Uindp(L : S) = 1.
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