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0. THE PITCH 

The object of this paper is to treat the following old question of 
Montgomery and Samelson [8] and some of its consequences: 

Which groups act smoothly on a closed homotopy sphere with exactly one 
fixed point and what are the isotropy representations of G which occur on the 
tangent space at the fixed point? 

The first and only previously existing example of such an action was given 
by Stein for the group SL(2, Z,) [ 141. A related question was solved by 
Oliver 161: Which groups act smoothly on a disk without fixed points? A 
group which acts on a sphere with one fixed point acts on a disk without 
fixed points. In ( II] the author announced: 

THEOREM A. These groups act smoothly on a homotopy sphere with 
exactly one fixed point: 

(i) S3, SO,, 
(ii) SL(2, F), PSL(2, F) with characteristic F odd, 

(iii) any odd order abelian group having at least three non-cyclic 
Sylow subgroups. 

This paper provides the proof of this theorem in case (iii) and identifies some 
of the isotropy representations which occur. These are the representations 
occurring in the set .5F0 defined in (1.1). Let G satisfy (iii). 

THEOREM 0. Given any integer n > 0 and R E .9P0, there is a closed 
smooth homotopy G sphere Z such that ZG consists of n points and the 
isotropy representation at each is R. 

THEOREM C. If M is an-v smooth G manifold and p E MG is a point 
whose isotropJ1 representation R lies in 9,,, there is a smooth G manifold M’ 
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having the same homotopy type as M, M’” = M” -p U (p, ,...,p,} and the 
isotropWv representation at each pi is R. 

In [lo] we use Theorem B to construct smooth actions of G on a 
homotopy sphere E such that EG is two points with distinct isotropy 
representations. Compare [ 1, 7 1. In ]9] we treat Theorem A(i). Of course 
isotropy representations are just one aspect of the equivariant tangent 
bundle. The relation between the equivariant tangent bundle and the fixed set 
of an action on a sphere is an interesting one. In addition to the above 
references, see also [3, 121 regarding this relation. 

The main tools used in A and B are Theorems (2.2) and (2.8). The latter 
uses equivariant transversality to construct a manifold and map satisfying 
the hypothesis of (2.2). The transversality construction is used in conjunction 
with the equivariant cohomology theory w,$(.). Starting from any represen- 
tation R E 5P,, and an x E w:(Y), where Y is the unit sphere of R 0 iR, we 
use (2.8) to construct a G map f: X + Y. Here R is the trivial one dimen- 
sional representation of G. The properties of (X,f) depend on x and Y. All 
the following lemmas are involved with establishing the relation among 
(XJ), x and Y and showing the existence of an x such that X” is one point 
and (XJ) satisfies the hypothesis of (2.2). Then (2.2) gives A(iii). The 
Burnside ring of G plays a role because w,%(.) is a module over the Burnside 
ring and it is used to express one of the conditions of (2.2). 

1. THE SETUP 

Throughout this paper G is an odd order abelian group which has at least 
three non-cyclic Sylow subgroups and .F is a family of subgroups of G. 
These examples of .F are used: *y--the family of groups of prime power 
order, .p-the family of hyperelementary groups which here are the product 
of a cyclic group and a p group of relatively prime order and 

R= (HcGIG/H@.9}. 

Observe that Z 3 .B ~~3. 
Let X be a G space and G, the isotropy group of x E X. Then Iso is 

the set of G, for x E X. We say X satisfies the Gap hypothesis if dim X” < 
f dim X” whenever K 2 H and XK # XH provided dim X” # 0. Towards 
identifying the isotropy representations of one fixed point actions on spheres, 
we define a set .R of complex G modules (alias complex representations of 
G). The set of realifications of representations in 2 is denoted by :ffO. 

DEFINITION (1.1). A complex G module V is in .2 if: 
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(a) V’=O. 

(b) V satisfies the Gap hypothesis. 

(c) Iso(V- 0) =.x. 

(d) dim, VH > 2 for H E .Z. 

(e) dim, VP>3 for PE.P. 

LEMMA (1.2). .2 is not empty. 

Proof: Let C(G) be the complex regular representation of G. 1 the trivial 
representation and p(G) = C(G) - 1. As G is abelian, G = n Pi is the 
product of its Sylow subgroups Pj. The projection of G on Pi makes any 
complex Pj module a complex G module. Set V = p(G) - C p(P,). We claim 
V E 9’. The verification is left to the reader. Note: (i) H c G is in Iso( V) iff 
dim VH > dim I”” whenever H’ strictly contains H. (ii) The complex 
dimension of C(G)H is ICI 1 HI-‘. Here ICI denotes the order of G. (iii) If 
H c G, H = n Hi, H,i c Pj. (iv) p(Pj)” = p(Py). 

LEMMA (1.3). If V, and V, are in 9, V, 0 Vz is in .R. If S is a 
complex G module and Iso(S - 0) c,F, there is a WE .i such that 
W@SE.9. 

Proof: For any W and S, Iso(W@S)={HC’IK~HEISO(W), KE 
Iso(S Thus if Iso(S - 0) C <x and Iso( w - 0) = L?K 
Iso( W @ S - 0) =LP. This remark is the essential observation in the first 
statement. The reader may then verify that nV @ S E .R for n large and V as 
in (1.2). 

The Burnside ring of G, R(G), is the Grothendieck group of equivalence 
classes of compact G spaces with addition defined by disjoint union and X 
equivalent to Y if the Euler characteristics x(X”) and x(Y”) are equal for all 
H c G. See, e.g., [6]. The class of a space X in Q(G) is written IX]. The 
multiplication is defined by [Xl . [ YI = [XX Y]. The identity 1 is 1 pj for 
any point p. Q(G) is the free abelian group generated by the classes [G/HI 
as H runs over conjugacy classes of subgroups of G. The subgroup generated 
by ( (G/H] I H E 9-7) is denoted by fi(G,.Ir). It is an ideal when .;7 is closed 
under taking subgroups. There is a homomorphism 

xH: L?(G) --t Z 

defined by x,[X] =x(X”). 
Formally extend the definition of R(G) to fl(U, G) = OCr 0(G) for any 

finite set U with trivial G action. Define a function 

p: Q(G) + O(G) 
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by ,u(C a,]G/H]) = C 1 a,] [ G/H], where 1 a,] is the absolute value of the 
integer aH. Extend ,u to Q(U, G) coordinate wise. Define cr: 0(U, G) + R(G) 

bY 4@xw E.J = CXE”P(EX). 
Let H c G. Then Res, denotes restriction of G data to H data. This is 

used in several contexts, e.g., to define the ideal 

d(x) = n Ker(Res,: Q(G) -+ 4(H)) 
HCF 

in Q(G) associated to the family of subgroups .7 of G. To be more specific, 
Res, here is the homomorphism defined by Res,[X] = [Res,, X], where 
Res, X means to view the G space X as an H space. Set 

A(G) = A@) 

and for E = f 1 set 

The former is an ideal in Q(G). 

LEMMA (1.4). A’ is not empty. 

Proof. Since Res, S and xc(S) are multiplicative as a function of S in 
0(G), it suffices to exhibit for each cyclic group C which is not of prime 
power order an element X=X(C) E n(C) with xc(X) = 1 and x,(X) = 0. 
Then S = n HEzi$X(CH) E A’, where iH: G + C, is a surjective 
homomorphism onto a cyclic group C,, not of prime power order such that 
the kernel of i, contains H. 

If C is cyclic of order pq, (p,q) = 1, take x = (1 + alC/H] -t bIC/Kj + 
d] C I), where H and K are cyclic subgroups of C of orders p and q, respec- 
tively, and a, b and d are integers. Since (p, q) = 1, the equations xc(X) = 1 
and x,(X) = 0 are solvable for a, b and d. 

LEMMA (1.5). For an-v S E A’, there is a U in L)(G) such that E = Us S 
isinA”undp(l-E)r(l-E)modfl(G,.T). 

Proof. First we find a U in Q(G) such that xF(U) = 1 and the coefficients 
of [G/K] in U + S have prescribed signs whenever G # K &A?. This is done 
by induction. 

Let .x be the set of subgroups not in Z; so K E 3 iff G/K E 2. Say .iT 
is closed if Kc K’ and K EL7 implies K’ E3. E.g., .A? is closed. Express 
S as 1 +X+ Y, where X=x KEIR^-tG, u,[G/K] and YE Q(G,Z). Let 
.3 ’ c .Z be closed. Suppose uK has given sign whenever K E.3 ‘. Let 
H E .Z - .fl’ be a maximal group in this set. Set .?? ” = .Z’ U H. Then .x ” 
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is closed; so Q(G,,P”‘) is an ideal for 2F”’ = (H 6?.2?“}. We compute 
modulo a(G, 2V”). 

Let b, be an integer to be determined. Then T = (1 + bH[ G/H]). S is 
congruent to 1 + C K+rs.H 4Wl+ (b, + aH + hi . C.w QR IGI~I)~GI~l. 
This uses the fact that [G/H] . [G/K] = a,,,[ G/H n K]; so H n K E P” 
unless H=HnK and if K contains H, aH,,=lGIIKI-‘. Since H@.@‘, 
G/HE 9; so the order of G/H is a power of p for some p. Then p divides 
each 1 G/K/ whenever K 3 H and K # G. This means Cc;,, IH aK I G/K I is 
never -1. Now it is evident that b, can be chosen so that the coefticient of 
[G/H] in T has a prescribed sign. The coefficients of [G/K] in T and S are 
the same for K E 2 ‘. Since xc is a ring homomorphism and xG(U) = 1 for 
U= 1 f b,[G/H] h w enever H # G, it follows that xG(T) = 1; so T E A ‘. 

Thus there is a U’ so that U’ . S = E’ E A’ and the coefficients of [G/K] 
in E are negative for K in 2 - (G}. There is a U” so that U” . S E A’ and 
these coefficients are positive. Then E” = -U” . S E A -’ and these coef- 
ficients are negative. The lemma is satisfied with E = E’ when F = 1 and 
U = E” when E = -1. 

Let M be a real G module, F = F(M) the space of proper self maps of M 
and [Y, FIG the G homotopy classes of maps of Y to F. Then 

w;(.)=l& [.,F(M)]” 
41 

is the zeroth term of an equivariant cohomology theory WC*(.) [ 13 J. Let M 
denote the G vector bundle Y x A4 over Y. As the base space Y of this vector 
bundle is omitted from the notation, it must be determined by context. Any 
proper self G map w of M which is properly G homotopic to a fiber 
preserving map determines a class [CO] E w:(Y) and any element of this 
group is represented this way for some M. Actually w:(Y) is a ring with unit 
1 represented by the identity map of M. When YH is connected, there is a 
homomorphism 

deg,,: wi( Y) + Z 

obtained by setting deg,[w] equal to the fiber degree of CO)‘: M”+ M”. In 
the special case of a point p, we abbreviate o:(p) by CO: and note that 
w:(Y) is an CO: module. 

Reference [ 13 1 asserts CO: and O(G) are naturally isomorphic. In fact 
there are inverse isomorphisms @ and IC/ giving a commutative diagram 
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See [ 11, 6.2 and 6.81. These extend to isomorphisms again called @ and w 
between o:(U) and R(G, U) for any finite set U with trivial G action. Define 
a function 

0: o;(U) --t Q(G) 

Localization provides an important relation among d(F), w:(Y) and 
wE(Y”) when Iso(Y - u”) CF. Let S E d(sT), s = Q(S) and t be the set of 
powers of s. This is a multiplicative set in 0: so t-‘o:(Y) is defined. Let i 
be the inclusion of p in Y. As in [2]: 

LEMMA (1.6). ZfIso(Y- p)c.F, t-‘i*:t-‘want-‘cob is an 
isomorphism. 

ProoJ s . w,*(Y, p) = 0 because Res, s = 0 for all H E x and Y is 
obtained from p up to G homotopy equivalence by adding G cells of type 
D’ x G/H, H E 3. Note o,*(G/H x (D’, Sip’)) z w$(Di, S’-I). 

Let x E w:(Y). Then Res,x = 1, means Res, x is the identity of w:(Y) 
for all H E SF. 

LEMMA (1.7). Suppose YG consists of two points p and q and 
Iso( Y - Y”) CR. Then there is an x E w:(Y) and an E E A” with 
~(l-E)~(l-E)modB(G,~)suchthati*x=~(l,l-E),Res~x=l~ 
and xc e(i*x) = 2 - E. 

Proof. w:(F) = w:(p) @ w:(q). Let s = Q(S), where S E A’. 
Lemma (1.6) supplies a z in the ideal SW:(Y) with i*z = (0, s”) for some A. 
Since Sa E A ‘, there is a U in R(G) such that E = U. Sa E A’ and 
,~(l -E) = (1 -E) mod R(G,Z) (1.5). Let u = Q(U) E W: and x = 1 - UZ. 
Then i*x = @( 1, 1 -E) and Res,x = lx. The last statement follows from 
B(i*x) = 1 + ,u( 1 - E) and xG(E) = E. 

2. THE STING 

For any G space X, G acts on the partially ordered set 

H(X) = LJ 71()(X”). 
HCG 

An element a of n(X) labels a component X, of XH for some H. This is 
expressed by p(a) = H. It gives a function p from n(X) to the set of 
subgroups of G. Set a </I if X, c X, and p@) cp(a). Let G, = 
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{ g E G 1 ga = a}. When { is a G vector bundle over X, define a G, vector 
bundle n,< over X, by 

The collection rrt = (n, < / a E ZZ(X)} is called a ZZ bundle over X. The most 
important example comes from the G tangent bundle TX of a G manifold X. 
In that case xTX is denoted by vX. Let E< denote either < or n<. The 
stabilization of et is defined to be 

s(&C;) = c(tO M) 

for some G module M. 
Note that any H vector bundle isomorphism a: (lx, + <’ IX,, p(u) = H, 

splits as a = uH 0 a,. A n vector bundle isomorphism b: x5+ n<’ is a 
collection of G, vector bundle isomorphisms b,: rr, c -+ n,r’ such that 
b, Ixg = (bo)” whenever /I < a. In particular a G vector bundle isomorphism 
a: r + c’ defines a n bundle isomorphism n(a): rtr + nc’. The stabilization of 
a G or n vector bundle isomorphism b: et+ cr’ is defined to be 

s(b) = b @ E( lM): s(E{) --) s(E~‘). 

Let X be a smooth G manifold and R a real G module whose dimension is 
dim X. 

(2.1) An R structure on X consists of a G vector bundle isomorphism 
b: sTX * sR and a n vector bundle isomorphism c: VX + rrR such that 
n(b) = s(c). 

When X has an R structure for some R, we say X is framed. If X is the 
boundary of W and W has an R @ R structure which restricts to the R 
structure on X, we say X is the framed boundary of W. Here m is the trivial 
one dimensional G module. If in addition each component of W” has a non- 
empty boundary for all H c G, we write X = ap W. We say X and X’ are 
framed cobordant if X U X’ is the framed boundary of some manifold W and 
Iso = Iso = Iso( W). They are framed cobordant rel boundary if aX = 
X n X’ = 8X’. The framed cobordism is rely if WK is X” x I, I = [0, 1 ] 
for K E .F. These definitions extend in an obvious way to pairs (XJ), where 
f: X + Y. For example, (XJ) = a,( W, F) if X = aP W, Y = 3Z and F: W + Z 
extendsJ Let Y=aZ,f:X+Yand (W,,F,,)=((W,,F,)IHE.~}. Each 
W, is an H manifold and FH: W, -+ Z is an H map. Then 3,(W,, Fs) = 
Res&X,f) means dP( W,, FH) = Res,(X,f) for all H E Y. 

Let j7 be a family of subgroups of G with the property that if H E.7 and 
K c H. then K E.F. Suppose j7 contains all hyperelementary subgroups of 
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G and that G is an odd order abelian group. The following theorem is the 
key tool used in Theorems A and B. 

THEOREM (2.2) [5, 2.61. Let X and Y be smooth closed even dimensional 
G manifolds and f: X+ Y a G map. Suppose 

(i) degreef = 1, X has an R structure and satisj?es the Gap 
hypothesis. 

(ii) Y = aZ. ZH and YH are 1 connected whenever HE 9. 

(iii) For all HE 9, each component of XH has a point whose isotropy 
group is H and dim XH = dim YH > 6. 

(iv> Res&',f)=a,(l+'~,1;9). 
(v) For all H E .7, dim X” > 3 and Iso x.7. 

(vi) 1 Y] - [X] E d(G) + 2Q(G,y). 

Then (X,f) is framed cobordant to (X’,f ‘) rel(K E G ) K 6? -;t) with f’ a 
homotopy equivalence. In particular XG = XtG and TpX = R for all p E X”. 

A smooth G manifold Y is a unique fixed point dimension manifold 
(abbreviated UFD) if the dimension of each component of Y” only depends 
on H for all H s G. 

LEMMA (2.3). If Y is a UFD, K E Iso rydim Y” < dim Y’ whenever 
H strict!v contains K. The converse is true if Y’ is connected. 

Proof: K E Iso iff Y” strictly contains Y” when H > K, e.g., when 
dim YH < dim YK. If YK is connected, strict containment implies inequality. 
This happens for a smooth G manifold iff dim Y” ( dim Y’. 

LEMMA (2.4). If Y is a UFD, each component of Yti has a point whose 
isotropy group is K whenever dim YK > dim YH for all H > K. 

ProoJ Let Y, be a component of Y’ and H the intersection of the 
isotropy groups of points of Y,. If there is no point in Y, whose isotropy 
group is K, H > K and Y, = Yn for some component YD of Yn. Then 
dim Y, = dim YK > dim YH = dim Y,. 

LEMMA (2.5). If Y has an R structure, Y is a UFD. 

Proof: For any component Y, of Y* dim Y, = dim R”. 

LEMMA (2.6). Suppose X and Y have R structures and f: X - Y is a G 
map. Then Iso 3 {H E Iso ( Y” is connected and X” # 0} = .F. If 
I E x, each component of X’ has a point whose isotropy group is I. 
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Proof: If I E 7, dim Y” < dim Y’ if K > I, by (2.3) and (2.5). Since X’ 
is not empty dim X’ = dim Y’ > dim Y’ > dim XH; so I E Iso by (2.3) 
and each component of X’ has a point whose isotropy group is 1 by (2.4). 

LEMMA (2.7). Suppose F: (W, aW) + (Z, aZ) is a G map, W and 2 
have R structures and Iso contains I. If 2’ is connected and dim Z’ > 0, 
( W, F) is framed cobordant rel 3 W and rel(K not contained in I} to ( W’, F’ ), 
where W” is connected. 

ProoJ: If W’ is empty, there is nothing to prove; so suppose W’ # 0. By 
(2.6) each component of W’ has a point whose isotropy group is I; 
moreover, dim W’ = dim Z’ > 0. The conclusion follows from [4, Sect. 9). 

We review the G transversality construction of (4, 1 I] in the special case 
dealing with w:(Y). Let w: M + M be a proper G map representing an 
element ]u ] of u:(Y). Define M, via Res, M = M” 0 M,. The normal 
derivative of w at x E w-‘(Y) is the H = G, endomorphism of MI, defined 
as (n dw, i),,: MH + M,, where rr dw, i is the composition 

THEOREM (2.8) 14, 111. Let A c Y be a closed invariant set. Suppose w  
is transverse to Y c M on MIA such that for each x E MIA n to-‘(Y), the 
normal derivative at x is the identity. Then w  is properly G homotopic 
rel M], to a map w’ transverse to Y such that the normal derivative of w’ is 
the identity for all x E w’ ’ (Y). 

Given ,Y E w:(Y), represent x as [w] for some w. Use (2.8) to produce ml 
transverse to Y and set 

where X = o’-’ (Y) and f = o’ Ix: X + Y. When Y has an R structure, X has 
an R structure and the framed cobordism class of r(x) is well defined. 

Suppose Y and Z are UFDs and Y = aZ. We record the properties of the 
transversality construction r(x) when x E o:(Y) and its relation to r(w) 
when w E w:;(Z) extends x. Let then M be Y x M and q be a proper self 
map of M representing x in (o”,(Y) or let M be Z x M and ?j a proper G self 
map of M which extends q. Set (X,f) = r(x) and (W, F) = 7(w). We 
emphasize that first q is made transverse to Y to produce 7(x). Then +j is 
made transverse to Z rel M Iy to produce t(w). In particular a( W, F) = (X,f). 
These further properties hold: 

(P.l) If Y has an R structure, X has an R structure. 

As pointed out in (4, Sect. S] the transversality construction T(X) provides 
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a G vector bundle isomorphism 6: sTX -f *STY and a I7 vector bundle 
isomorphism c: vX+f*vY which satisfy z(b) = s(c). These combine with an 
R structure on Y to produce an R structure on X. 

(P.2) rf the R structure on Y extends to an R @ IF? structure on Z, the R 
structure on X extends to an R @ IR structure on W. 

The isomorphisms b and c extend to B: sTW+ F*sTZ and C: VW-~ F*vZ. 

(P.3) degreef” = deg, x. 

Let v’ be properly G homotopic to 7 and be transverse to Y with 
X = q/-l(Y). Then q’H is transverse to YH for all H and XH = (r”‘))’ Y”. 
Since q’H is properly G homotopic to a fiber preserving self map of MH 
whose fiber degree is deg, x by definition and since f” = Y]“‘(~,,, degreef” = 
deg, x. 

(P.4) X is a UFD. Either dim XH = dim YH or XH is empty. The former 
surely occurs when deg,x # 0. Likewise W is a UFD and dim W” and 
dim ZH are so related. 

Since X has an R structure, Lemma (2.5) implies that X is a UFD. If 
deg,x# 0, degreefH # 0 by (P.3) so XH # 0. If X” # 0, dim X” = 
dim RH = dim YH. 

LEMMA (2.9). Suppose Y has an R structure, Y = a,Z, ZH is connected 
and dim Z” > 0 for all HE 3’ and Iso IGP. Zf x E o:(Y) and 
Reszx = l#, then 7(x) = (X,f) has these properties: X has an R structure, 
Iso 3 z and ResdX, f) = a,( W.?, FJ. 

Proof: When HE x let (W,, Fn) = 7(lH), where 1, is the identity in 
w:,(Z). Since Res, x extends to l,, a(W),, Fn) = Res,(X,f). By (P.l), X 
has an R structure. By (P.2), W, has a Res,(R @ iR) structure extending the 
Res, R structure on X. Since deg, x = 1 for all H E-X: (P.3) (P.4) and 
(2.4) imply that Iso contains ,p. 

Apply (2.7) with G replaced by H to produce a framed H cobordism rel X 
of (W,, F,) to (Wk, Fl,) with W;,’ connected for all 1 s H. Do this for each 
H E E Set ( W,, F?) = ((WA, F;,) ( H E fl) to complete the lemma. 

LEMMA (2.10). Suppose Y has an R structure, a,,Z = Y, ZN is connected 
for H E cy, Iso xx, dim YG = 0 and Y” = Yo whenever K 6? .X. Let 
x E w:(Y) with Resxx = l,?. Then t(x) = (X, f) has these properties: 

(a) X has an R structure and degree f = 1, 

(b) dim XH = dim Y”, HE 3, and dim X” < 0 for K @! 3, 

(c) Iso EJ Lfl, 
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(d) Resx(Xf) = a,( l-f’,, FA 
(e) the cardinality of Xc is xGB(i*x), i: YG --t Y, 

(f) [Xl = B(i*x) mod O(G, LX). 

Proof. Let x = [o], o: M + M. By the G homotopy extension theorem 
and Theorem (2.8) applied to i*w: i*M + i*M, we may suppose that i*w is 
transverse to YG as a submanifold of i*M; moreover by [ 11, (6.9)] we may 
suppose X’ = (i*w)-‘(Y”) represents B(i*x) in R(G). Note that w is 
automatically transverse to Y on i*M. 

Use Theorem (2.8) again with A = Y” to make LL) transverse to Y rel i*M. 
Call the resulting map again w and set X = w ~’ Y and f = w I,F so 
(X,f) = r(w). By Lemma (2.9), (c) and (d) are satisfied. Since deg, w = 1, 
degreef= 1 by (P.3) and X has an R structure by (P.l); so (a) holds while 
(b) is a consequence of (P.4) and the hypothesis on Y. Since Yh = Y” for 
K&F, it follows that (i*M)” = M’ for K gLF’ and this implies X’h =Xh 
for K @ ;)3”. Property (f) follows from this while property (e) follows from (f) 
and the fact that dim Xc is zero; so x(X”) is the cardinality of X”. 

LEMMA (2.11). Suppose in addition to the hypothesis of Lemma (2. lo), 
that YG consists of two points, i*x = @(I, 1 -E) for E E A(LZ‘J where 
~(l-E)r(l-E)modfi(G,.F), and [Y]=[YG]=2. Then IY]-[X]E 
A(G) + 2Q(G, up). 

Proof: By definition of 0. @i*x) = 1 + p( 1 - E); so the hypothesis and 
(2.10(f)) easily imply that [Y] - [X] = E t R for some R E SZ(G, OF). We 
claim Q E 2Q(G,.F). Since the order of G is odd, this statement is true iff 
x,(Q) = O(2) for all HE ,F. Since E E. A(W), x”(E) = 0 for all H E.I. 
Since XH and YH are boundaries for all HE F, their Euler characteristics 
are zero modulo 2; so x,(0) =x,/X] -xI,[ Y] is zero mod 2. Since .T c X, 
A(X’)cA(G) so EEA(G). 

THEOREM (2.12). For an)’ R E 9, and c = k 1. there is a smooth closed 
homotopv sphere C with ZG consisting of 2 - c points. In addition C has an 
R structure and Res~,C = ap W,for some family W yc. 

Proof Let Y. resp. Z, be the unit sphere, resp. disk, of R 0 F?. Then Y 
satisfies the hypothesis of (1.7). Let x E to:;(Y) be given by that lemma. Set 
r(x) = (X,f ). Then X” consists of 2 - E points by (2.10) and (1.7). We 
verify the hypothesis of (2.2) with ./7=~F. By (l.l), Y satisfies the Gap 
hypothesis. The hypotheses of (2.10) are satisfied. By (2.10(b)), X satisfies 
the Gap hypothesis. Then (2.10(a)) implies (2.2(i)) while (2.2(ii)) is obvious: 
(2.10(b,c)) plus (1.1) gives (2.2(iii,v)) while (2.10(d)) is a restatement of 
(2.2(iv)). Condition (2.2(vi)) follows from (2.11). Theorem (2.2) finishes the 
proof. 
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Proof of Theorems A. B and C. These are all corollaries of (2.12) and 
the fact that ~9~ # 0 (1.2). First note that (2.12) produces homotopy spheres 
Ci with Zy consisting of i points for i = 1 or 3 and the isotropy represen- 
tation at each is R. If M is any G manifold and p E MC has isotropy 
representation R, then M # C, = M’ has M’” = MC -p U (p, Up,} and the 
isotropy representations at p, and p2 are R. Of course this connected sum is 
taken at the point of M with isotropy representation R. Repeat this process 
to complete the proof of C. Theorems A and B are consequences of 
Theorem C. 
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