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Abstract

Given an n-tuple of positive real numbers α we consider the hyperpolygon space X (α), the hyperkähler
quotient analogue to the Kähler moduli space of polygons in R3. We prove the existence of an isomorphism
between hyperpolygon spaces and moduli spaces of stable, rank-2, holomorphically trivial parabolic Higgs
bundles over CP1 with fixed determinant and trace-free Higgs field. This isomorphism allows us to prove
that hyperpolygon spaces X (α) undergo an elementary transformation in the sense of Mukai as α crosses
a wall in the space of its admissible values. We describe the changes in the core of X (α) as a result of this
transformation as well as the changes in the nilpotent cone of the corresponding moduli spaces of parabolic
Higgs bundles. Moreover, we study the intersection rings of the core components of X (α). In particular,
we find generators of these rings, prove a recursion relation in n for their intersection numbers and use it
to obtain explicit formulas for the computation of these numbers. Using our isomorphism, we obtain sim-
ilar formulas for each connected component of the nilpotent cone of the corresponding moduli spaces of
parabolic Higgs bundles thus determining their intersection rings. As a final application of our isomorphism
we describe the cohomology ring structure of these moduli spaces of parabolic Higgs bundles and of the
components of their nilpotent cone.
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1. Introduction

In this work we study two families of manifolds: hyperpolygon spaces and moduli spaces of
stable, rank-2, holomorphically trivial parabolic Higgs bundles over CP1 with fixed determinant
and trace free Higgs field, proving the existence of an isomorphism between them. This relation-
ship connecting two different fields of study allows us to benefit from techniques and ideas from
each of these areas to obtain new results and insights. In particular, using the study of variation
of moduli spaces of parabolic Higgs bundles over a curve, we describe the dependence of hyper-
polygon spaces X (α) and their cores on the choice of the parameter α. We study the chamber
structure on the space of admissible values of α and show that, when a wall is crossed, the hyper-
polygon space suffers an elementary transformation in the sense of Mukai. Working on the side
of hyperpolygons, we take advantage of the geometric description of the core components of a
hyperpolygon space to study their intersection rings. We find homology cycles dual to genera-
tors of these rings and prove a recursion relation that allows us to decrease the dimension of the
spaces involved. Based on this relation we obtain explicit expressions for the computation of the
intersection numbers of the core components of hyperpolygon spaces. Using our isomorphism
we can obtain similar formulas for the nilpotent cone components of the moduli space of rank-2,
holomorphically trivial parabolic Higgs bundles over CP1 with fixed determinant and trace-free
Higgs field. To better understand these results we begin with a brief overview of the two families
of spaces involved.

Let K be a compact Lie group acting on a symplectic manifold (V, ω) with a moment map
µ : V −→ k∗. Then, for an appropriate central value α of the moment map, one has a smooth
symplectic quotient

M(α) := µ−1(α)/K .

Suppose that the cotangent bundle T ∗V has a hyperkähler structure and that the action of K
extends naturally to an action on T ∗V with a hyperkähler moment map µH K : T ∗V −→

k∗ ⊕ (k ⊗ C)∗. Then one defines the hyperkähler quotient as

X (α, β) := µ−1
H K (α, β)/K

for appropriate values of (α, β). When V = S2
× · · · × S2 is a product of n spheres and

K = SO(3), the space X (α, β) for generic (α, β) is a smooth non-compact hyperkähler quotient
of a product of cotangent bundles T ∗S2 by SO(3). When β = 0,

X (α) := X (α, 0)

contains the so-called polygon space M(α) of all configurations of closed piecewise linear paths
in R3 with n steps of lengths α1, . . . , αn modulo rotations and translations (a symplectic quotient
of a product of S2s by SO(3)). For this reason, X (α) is usually called a hyperpolygon space.
This family of hyperkähler quotients was first studied by Konno in [27] where he shows that
these spaces, when smooth, are all diffeomorphic.

It is known that a polygon space M(α) can be viewed as the moduli space of stable representa-
tions of a star-shaped quiver, as in Fig. 1. More precisely, a star-shaped quiver Q with dimension
vector

v = (2, 1, . . . , 1) ∈ Rn+1

is a directed graph with vertex set J = {0}∪{1, . . . , n} and edge set E =

(i, 0) | i ∈ {1, . . . , n}


.

A representation of Q, associated to a choice of finite dimensional vector spaces Vi , for i ∈ J ,
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Fig. 1. Star-shaped quiver.

such that dim Vi = vi , is the space of homomorphisms from Vi to V j for every pair of vertices
i and j connected by an edge in E . Therefore, the representation space of the star-shaped quiver
Q described above is

E(Q, V ) =

n
i=1

Hom(Vi , V0) ∼= C2n .

The group


GL(Vi )/GL(1)∆ acts in a Hamiltonian way on E(Q, V ) and the polygon space
M(α) is obtained by symplectic reduction of E(Q, V ) by this group, at the value α. Similarly,
one can obtain the hyperpolygon space X (α) as the hyperkähler reduction of T ∗E(Q, V ) by
the group


GL(Vi )/GL(1)∆ at (α, 0). Consequently, polygon and hyperpolygon spaces are

examples of Kähler and hyperkähler quiver varieties in the sense of Nakajima [35,33].
Any hyperkähler quiver variety X admits a natural C∗-action and the core L of X is defined

as the set of points x ∈ X for which the limit

lim
λ−→∞

λ · x

exists. It clearly contains all the fixed-point set components and their flow-downs. Moreover,
the core L is a Lagrangian subvariety with respect to the holomorphic symplectic form and is a
deformation retraction of X . The circle S1

⊂ C∗ acts on X in a Hamiltonian way with respect to
the real symplectic form. This action has been studied by Konno [27] for hyperpolygon spaces.
He shows that the fixed-point set of this action contains the polygon space M(α) (where the
moment map attains its minimum) and that all the other components of X (α)S1

are in bijection
with the collection of index sets S ⊂ {1, . . . , n} of cardinality at least 2 which satisfy

i∈S

αi −


i∈Sc

αi < 0 (1.1)

(see Theorem 2.2). Sets satisfying (1.1) are called short sets following Walker [38] and play
a very important role in the study of polygon and hyperpolygon spaces. The core of the
hyperpolygon space X (α) is then

Lα := M(α) ∪


S∈S′(α)

US,

where US is the closure of the flow-down set of the fixed-point set component X S determined
by the set S, and S′(α) is the collection of short sets of cardinality at least 2. Note that, even
though the hyperpolygon spaces X (α) are all diffeomorphic for any generic choice of α, they
are not isomorphic as complex manifolds, nor as real symplectic manifolds nor as hyperkähler
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manifolds. In particular, they are not S1-equivariantly isomorphic and the dependence of X (α)

and of its core Lα will be seen in Section 4.1. The study of these changes is important since, for
instance, the connected components of the core of a quiver variety give a basis for the middle
homology of the variety.

Let us now focus on the other family of spaces studied in this work. Higgs bundles over
a compact connected Riemann surface Σ have been introduced by Hitchin [22,23] and are an
important object of study in geometry with several relations with physics and representation the-
ory. Parabolic Higgs bundles, as first introduced by Simpson [36] (and hereafter referred to as
simply PHBs), are holomorphic vector bundles over Σ endowed with a parabolic structure, that
is, choices of weighted flags in the fibers over certain distinct marked points x1, . . . , xn in Σ ,
together with a Higgs field that respects the parabolic structure.

More precisely, if D is the divisor D =
n

i=1 xi and KΣ is the canonical bundle over Σ , a
parabolic Higgs bundle is a pair E := (E,Φ) where E is a parabolic bundle over Σ and

Φ : E −→ E ⊗ KΣ (D)

(called the Higgs field) is a strongly parabolic homomorphism. This means that Φ is a meromor-
phic endomorphism-valued one-form with simple poles along D whose residues are nilpotent
with respect to the flags.

As in the non-parabolic case, there exists a stability criterion (depending on the parabolic
weights) that leads to the construction of moduli spaces of semistable parabolic Higgs bundles
[42]. These spaces are smooth quasiprojective algebraic manifolds when the parabolic weights
are chosen so that stability and semistability coincide. Such parabolic weights are called generic.

The original work of Hitchin in the non-parabolic setting extends to this context. In particular,
the moduli space of parabolic Higgs bundles can be identified (as smooth manifolds) with the
moduli space of solutions of the parabolic version of Hitchin’s equations

F(A)⊥ + [Φ,Φ∗
] = 0, δAΦ = 0,

where A is a singular connection, unitary with respect to a singular hermitian metric on the
bundle E adapted to the parabolic structure (see [28] for details).

The moduli spaces of parabolic Higgs bundles have a rich geometric structure. In particular,
they contain the total space of the cotangent bundle of the moduli space of parabolic bundles
whose holomorphic symplectic form can be extended to the entire moduli space. Let Nβ,r,d be
the moduli space of rank-r , degree-d parabolic Higgs bundles that are stable for a choice of
parabolic weights β, and let N

0,Λ
β,r,d ⊂ Nβ,r,d be the subspace of elements (E,Φ) that have

fixed determinant and trace-free Higgs field. Konno provides a gauge-theoretic interpretation of
the moduli spaces N

0,Λ
β,r,d endowing them with a real symplectic form that, combined with the

holomorphic one, gives a hyperkähler structure on N
0,Λ
β,r,d , [28].

On the moduli space Nβ,r,d there is a natural C∗-action by scalar multiplication of the Higgs
field. Restricting to S1

⊂ C∗ one obtains a Hamiltonian circle action whose moment map
f : Nβ,r,d −→ R is a perfect Morse–Bott function on Nβ,r,d . Its downward Morse flow coincides
with the so-called nilpotent cone of Nβ,r,d (see [15] where the work of Hausel [19] is generalized
to the parabolic case).

In this paper we show that hyperpolygon spaces are S1-isomorphic to certain subspaces of
N

0,Λ
β,2,0 for Σ = CP1 and for a generic choice of the parabolic weights β2(xi ), β1(xi ) with xi ∈ D.
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Let α be the vector

α :=

β2(x1) − β1(x1), . . . , β2(xn) − β1(xn)


∈ Rn

+.

Then the hyperpolygon space X (α) is S1-isomorphic to the moduli space H(β) ⊂ N
0,Λ
β,2,0 of

stable rank-2, holomorphically trivial PHBs overCP1 with fixed determinant and trace free Higgs
field. The isomorphism

I : X (α) −→ H(β) (1.2)

constructed in (3.1) restricts to an isomorphism between the polygon space M(α) and the
moduli space of stable, rank-2, holomorphically trivial parabolic bundles over CP1 with fixed
determinant. (Viewing a polygon as a representation of a star-shaped quiver Q naturally yields
a flag structure on n fibers of a rank-2, trivial bundle over CP1.) The fact that these two spaces
are isomorphic has already been noted by Agnihotri and Woodward in [2] for small values of β.
There, a different approach is taken to show that the symplectic quotient of a product of SU (m)-
coadjoint orbits is isomorphic to the space of rank-m parabolic degree-0 bundles over CP1

for sufficiently small parabolic weights. Moreover, Boalch studies in [8] the relation between
the hyperkähler quotient of a product of coadjoint orbits and the moduli space of connections
on rank-2 holomorphic vector bundles over CP1. If one assumes the vector bundles to be
holomorphically trivial there is a correspondence between the Higgs field and the connection by
taking the connection d + Φ, where d is the trivial connection on the trivial bundle and Φ is the
Higgs field. Also in this situation, the open dense subset obtained by considering holomorphically
trivial vector bundles is identified with a quiver variety [9].

Generalizing the Morse-theoretic techniques introduced by Hitchin [22] for the non-parabolic
case, Boden and Yokogawa [7] and Garcı́a-Prada, Gothen and Muñoz [15] use the restriction
of the moment map f to N

0,Λ
β,r,d to compute the Betti numbers in the rank-2 and rank-3 situa-

tion. These turn out to be independent of the parabolic weights. This fact is explained by Naka-
jima [34] who shows that the moduli spaces N

0,Λ
β,r,d are actually diffeomorphic for any generic

choice of the parabolic weights β.
The space Q of admissible values of the parabolic weights β contains a finite number of

hyperplanes, called walls, formed by non-generic values of β, which divide Q into a finite
number of chambers of generic values. Thaddeus in [37] shows that as β crosses one of these
walls the moduli space of parabolic Higgs bundles undergoes an elementary transformation
in the sense of Mukai [32] (see also [24] for a detailed construction of these elementary
transformations).

We adapt the work of Thaddeus to the moduli space H(β). In particular, we conclude that if
H±

:= H(β±) are moduli spaces of PHBs for parabolic weights β+ and β− on either side of
a wall W , then H+ and H− are related by a Mukai transformation where H+ and H− have a
common blow-up. The locus in H− which is blown up is isomorphic to a complex projective
space PU− parameterizing all non-split extensions

0 −→ L+
−→ E −→ L−

−→ 0

of a trivial parabolic Higgs line bundle L− that are β−-stable but β+-unstable. Using the
isomorphism in (1.2) we conclude that the corresponding hyperpolygon spaces X±

:= X (α±)

are related by a Mukai transformation (see Theorem 4.2). Moreover, the blown up locus PU−

corresponds, via the isomorphism above, to a core component U−

S in X− for some short
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set S ⊂ {1, . . . , n} uniquely determined by the wall W . Taking advantage of the geometric
description of the core components in X (α) we study the changes in the other components U±

B
of the cores L± when crossing a wall, which naturally depend on the intersections U−

B ∩ U−

S
and U+

B ∩ U−

Sc (see Section 4.1). Moreover, we recover the description of the birational map
relating the polygon spaces M(α±) given in [31]. These changes in the core translate, via
our isomorphism, to changes in the nilpotent cone of H(β). In particular, one recovers the
dependence on the parabolic weight β of the moduli spaces of rank-2, degree-0 parabolic bundles
over CP1 studied in [6]. The study of the dependence of the whole nilpotent cone on the weights
β is new in the literature.

Going back to the study of hyperpolygon spaces and their cores we consider n circle bundlesVi over X (α) and their first Chern classes ci := c1(Vi ) as defined by Konno [27]. These classes
generate the cohomology ring of the hyperpolygon space X (α) (see [27,18,20]), as well as the
cohomology of all the core components. In particular, the restrictions ci |M(α) to the polygon
space M(α) are the cohomology classes considered in [1] to determine the intersection ring of
M(α). In this work we give explicit formulas for the computation of the intersection numbers of
the restrictions of the classes ci to the other core components.

For that we first prove a recursion formula in n which allows us to decrease the dimension
of the spaces involved (see Theorem 5.1). Analog recursion formulas have already appeared
for other moduli spaces in the work of Witten and Kontsevich (on moduli spaces of punctured
curves) [29,40,41], of Weitsman (on moduli spaces of flat connections on 2-manifolds of genus
g with n marked points) [39] and of Agapito and Godinho (on moduli spaces of polygons in
R3) [1]. Based on our recursion relation we obtain explicit formulas for the intersection numbers
of the core components US (see Theorems 5.2 and 5.3).

Finally, the isomorphism H(β) ↔ X (α) allows us to consider circle bundles over H(β) (the
pullbacks of those constructed over X (α)) and their Chern classes. We can then obtain explicit
formulas for the intersection numbers of the restrictions of these Chern classes to the different
components of the nilpotent cone of H(β), which allow us to determine their intersection
rings.

For completion, we use the isomorphism I together with the work of Harada–Proudfoot [18]
and Hausel–Proudfoot [20] for hyperpolygon spaces to present the cohomology rings of H(β)

and of its nilpotent cone components (see Theorems 6.1 and 6.2).
Here is an outline of the contents of the paper. In Section 2, we review the basic definitions

and facts about hyperpolygon spaces and moduli spaces of PHBs. In Section 3, we prove the
existence of an isomorphism between hyperpolygon spaces and moduli spaces H(β) of stable
rank-2, holomorphically trivial PHBs overCP1 with fixed determinant and trace-free Higgs field,
which is S1-equivariant with respect to naturally defined circle actions on these two spaces. In
Section 4, we adapt Thaddeus’ work [37] on the variation of moduli spaces of PHBs to H(β)

and, in Section 4.1, we prove, via our isomorphism, that the corresponding hyperpolygon spaces
X (α) undergo a Mukai transformation when the parameter α crosses a wall in the space of its
admissible values. Moreover, in this section, we describe the changes suffered by the different
core components as a result of this transformation. These changes easily translate to changes in
the different components of the nilpotent cone of H(β). In Section 5, we construct circle bundles
over X (α) and study the intersection numbers of their restrictions to each core component, giving
examples of applications. In Section 6, we see that the formulas obtained for the core components
of X (α) also apply to the nilpotent core components of the corresponding moduli space of PHBs
H(β), thus determining their intersection ring. Finally, for completion, we give presentations of
the cohomology rings of H(β) and of each of its nilpotent cone components.
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2. Preliminaries

2.1. Polygons and hyperpolygons

Hyperpolygon spaces have been introduced by Konno [27] from a symplectic point of view,
as the hyperkähler quotient analogue of polygon spaces, and from an algebro-geometric point of
view, as GIT quotients.

Hyperpolygon and polygon spaces are respectively the hyperkähler and Kähler quiver vari-
eties associated to star-shaped quivers Q (Fig. 1), that is, those with vertex set I ∪ {0}, for I :=

{1, . . . , n}, and edge set E = {(i, 0) | i ∈ I }.
Consider the representation of a star-shaped quiver Q obtained by taking vector spaces Vi = C

for i ∈ I , and V0 = C2. Then one gets the hyperkähler quiver variety associated with Q by
performing hyperkähler reduction on the cotangent bundle of the representation space

E(Q, V ) =


i∈I

Hom(Vi , V0) ∼= C2n

with respect to the action of the group U (2) × U (1)n by conjugation. Since the diagonal circle
in U (2) × U (1)n acts trivially on the cotangent bundle of E(Q, V ), one can consider the action
of the quotient group

K :=


U (2) × U (1)n


/U (1) =


SU (2) × U (1)n


/Z2,

where Z2 acts by multiplication of each factor by −1. As T ∗C2 ∼= (C2)∗ × C2 can be identified
with the space of quaternionsH, the cotangent bundle T ∗E(Q, V ) ∼= T ∗C2n ∼= H2n has a natural
hyperkähler structure. Indeed, writing a quaternion as

x0 + x1i1 + x2i2 + x3i3 ∈ H,

one has three symplectic forms

ω1 =

2n
i=1

dx i
0 ∧ dx i

1 + dx i
2 ∧ dx i

3, ω2 =

2n
i=1

dx i
0 ∧ dx i

2 − dx i
1 ∧ dx i

3,

ω3 =

2n
i=1

dx i
0 ∧ dx i

3 + dx i
1 ∧ dx i

2

on H2n . Note that, writing z2 j−1 = x j
0 + ix j

1 and z2 j = x j
2 + ix j

3 for j = 1, . . . , 2n with
i :=

√
−1, we see that

ωR := ω1 =
i
2

4n
j=1

dz j ∧ dz̄ j and ωC := ω2 + iω3 =

2n
j=1

dz2 j−1 ∧ dz2 j

are respectively the standard symplectic form and a holomorphic symplectic form on C4n

(see [25] for additional details).
Given the three Kähler structures ω1, ω2, ω3 on T ∗C2n , an action of a group G on T ∗C2n is

said to be hyperhamiltonian if it is Hamiltonian with respect to all ωi , for i = 1, 2, 3. We then
obtain three moment maps µi : T ∗C2n

−→ g∗ which can be put together as

µH K : T ∗C2n
−→ g∗

× R3
≃ g∗

⊕ (g × C)∗
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by setting

µH K := µR ⊕ µC,

where µR := µ1 and µC := µ2 + iµ3 has values in the dual (g × C)∗ of the Lie algebra of the
complexification of the group G. Note that µC is holomorphic and is the moment map associated
to ωC.

Let (p, q) be coordinates on T ∗C2n , where p = (p1, . . . , pn) is the n-tuple of row vectors

pi = (ai , bi ) ∈ C2 and q = (q1, . . . , qn) is the n-tuple of column vectors qi =


ci
di


∈ C2.The

action of K on T ∗C2n is given by

(p, q) · [A; e1, . . . , en] =


(e−1

1 p1 A, . . . , e−1
n pn A), (A−1q1e1, . . . , A−1qnen)


.

This action is hyperhamiltonian with hyperkähler moment map [27]

µH K := µR ⊕ µC : T ∗C2n
→

su(2)∗ ⊕ (Rn)∗


⊕

sl(2,C)∗ ⊕ (Cn)∗


,

where the real moment map µR is given by

µR(p, q) =
i
2

n
i=1

(qi q
∗

i − p∗

i pi )0 ⊕


1
2
(|q1|

2
− |pi |

2), . . . ,
1
2
(|qn|

2
− |pn|

2)


(2.1)

and the complex moment map µC is given by

µC(p, q) = −

n
i=1

(qi pi )0 ⊕ (i p1q1, . . . , i pnqn). (2.2)

The hyperpolygon space X (α) is then defined to be the hyperkähler quotient

X (α) = T ∗C2n ////α K :=


µ−1

R (0, α) ∩ µ−1
C (0, 0)


/K

for α = (α1, . . . , αn) ∈ Rn
+.

Remark 2.3. An element (p, q) ∈ T ∗C2n is in µ−1
C (0, 0) if and only if

pi qi = 0 and
n

i=1

(qi pi )0 = 0,

i.e. if and only if

ai ci + bi di = 0 (2.4)

and
n

i=1

ai ci = 0,

n
i=1

ai di = 0,

n
i=1

bi ci = 0. (2.5)

Note that pi qi = 0 implies that the trace of qi pi is equal to zero and then (qi pi )0 = qi pi .
Similarly, (p, q) is in µ−1

R (0, α) if and only if

1
2


|qi |

2
− |pi |

2
= αi and

n
i=1


qi q

∗

i − p∗

i pi


0 = 0,
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i.e. if and only if

|ci |
2
+ |di |

2
− |ai |

2
− |bi |

2
= 2αi (2.6)

and
n

i=1

|ci |
2
− |ai |

2
+ |bi |

2
− |di |

2
= 0,

n
i=1

ai b̄i − c̄i di = 0. (2.7)

An element α = (α1, . . . , αn) ∈ Rn
+ is said to be generic if and only if

εS(α) :=


i∈S

αi −


i∈Sc

αi ≠ 0 (2.8)

for every index set S ⊂ {1, . . . , n}. For a generic α, the hyperpolygon space X (α) is a non-empty
smooth manifold of complex dimension 2(n − 3).

On the other hand, one defines polygon spaces M(α) using the quiver Q of Fig. 1 and the
collection of vector spaces Vi = C and V0 = C2 by performing symplectic reduction on
E(Q, V ) = C2n by the action of K . More precisely, one considers the Hamiltonian action of
K on C2n given by

q · [A; e1, . . . , en] = (A−1q1e1, . . . , A−1qnen),

with moment map

µ : C2n
→ su(2)∗ ⊕


u(1)n∗

q →

n
i=1

(qi q
∗

i )0 ⊕


1
2
|q1|

2, . . . ,
1
2
|qn|

2


.

(2.9)

Then for α ∈ Rn
+,

M(α) := C2n //(0,α)K = µ−1(α)/K .

Note that M(α) lies inside the hyperpolygon space X (α) as the locus of points [p, q] with p = 0.
Performing reduction in stages one obtains the polygonal description of M(α). In fact, the

symplectic reduction of C2n by U (1)n (or, more precisely, by the maximal subtorus T n
:=

(I d ⊕ U (1)n)/Z2 in K ) at the α-level set is the product of n spheres of radii α1, . . . , αn and
the residual action of K/T n ∼= SO(3) on this product is just the standard action by rotation with
moment map

µSO(3) :

n
i=1

S2
αi

→ R3

(v1, . . . , vn) → v1 + · · · + vn .

Performing the second step of reduction one gets

M(α) =


S2
αi

//0SO(3) = µ−1
SO(3)(0)/SO(3).

The level set µ−1
SO(3)(0) is then the set of all closed polygons in R3 with n edges v1, . . . , vn

of lengths α1, . . . , αn respectively and the quotient M(α) is the moduli space of all such
polygons modulo rigid motions in R3. Note that this space is empty if αi >


j≠i α j for some
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i ∈ {1, . . . , n} since, in this case, the closing condition
n

i=1 vi = 0 is not verified for any
v ∈


S2
αi

.

If α is generic the polygon space M(α) is a smooth manifold of complex dimension n − 3
(when not empty). Here generic has a geometric interpretation. It means that no element in M(α)

is represented by a polygon contained in a line. In fact, if such a polygon existed, the SO(3)-
action would not be free since the stabilizer of this polygon would be the circle of rotations
around the corresponding line. The quotient M(α) would then have a singularity.

Reduction in stages can also be performed in the opposite order. The quotient C2n //0SU (2)

is then identified with the Grassmannian Gr(2, n) of 2-planes in Cn , (see [21] for details). The
remaining U (1)n-action has the moment map

µU (1)n : Gr(2, n) −→ Rn

q →
1
2


|q1|

2, . . . , |qn|
2
 (2.10)

and the polygon space M(α) is the symplectic quotient Gr(2, n)//αU (1)n .
Hyperpolygon spaces can be described from an algebro-geometric point of view as GIT

quotients of T ∗C2n by the complexification

K C
:= (SL(2,C) × (C∗)n)/Z2

of K . For that we need the stability criterion developed by Nakajima [35,33] for quiver varieties
and adapted by Konno [27] to hyperpolygon spaces.

Let α be generic. A set S ⊂ {1, . . . , n} is called short if

εS(α) < 0 (2.11)

and long otherwise. Given (p, q) ∈ T ∗C2n and a set S ⊂ {1, . . . , n}, we say that S is straight at
(p, q) if qi is proportional to q j for all i, j ∈ S.

Theorem 2.1 ([27]). Let α ∈ Rn
+ be generic. A point (p, q) ∈ T ∗C2n is α-stable (in the sense

of Nakajima [35,33]) if and only if the following two conditions hold:

(i) qi ≠ 0 for all i , and
(ii) if S ⊂ {1, . . . , n} is straight at (p, q) and p j = 0 for all j ∈ Sc, then S is short.

Remark 2.12. Note that it is enough to verify (ii) for all maximal straight sets, that is for those
that are not contained in any other straight set at (p, q).

Let us denote by µ−1
C (0)α−st the set of points in µ−1

C (0) that are α-stable.

Proposition 2.13 ([27]). Let α ∈ Rn
+ be generic. Then

µ−1
H K


(0, α), (0, 0)


⊂ µ−1

C (0)α−st

and there exists a natural bijection

ι : µ−1
H K


(0, α), (0, 0)


/K −→ µ−1

C (0)α−st/K C.

It follows that

X (α) = µ−1
C (0)α−st/K C.
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As in [18] we denote the elements in µ−1
C (0)α−st/K C by [p, q]α−st, and by [p, q]R the elements

in µ−1
H K


(0, α), (0, 0)


/K when we need to make explicit use of one of the two constructions. In

all other cases, we will simply write [p, q] for a hyperpolygon in X (α).

2.1.1. The core
Let us assume throughout this section that α is generic. The core of a hyperpolygon space

X (α) has been studied in detail in [27,18], and here we give a brief overview of the results
therein that will be relevant to our study.

Consider the S1-action on X (α) defined by

λ · [p, q] = [λ p, q]. (2.14)

This action is Hamiltonian with respect to symplectic structure ωR and the associated moment
map φ : X (α) −→ R, given by

φ([p, q]R) =
1
2

n
i=1

|pi |
2, (2.15)

is a Morse–Bott function. Following Konno[27] consider S(α), the collection of short sets for α,
and its subset

S′(α) :=


S ⊂ {1, . . . , n} | S is α-short, |S| ≥ 2

.

Then, we have the following.

Theorem 2.2 ([27]). The fixed point set for the S1-action (2.14) is

X (α)S1
= M(α) ∪


S∈S′(α)

X S

where, for each element of S′(α),

X S :=

[p, q] ∈ X (α) | S and Sc are straight, p j = 0 for all j ∈ Sc.

Moreover, X S is diffeomorphic to CP|S|−2 and has index 2(n − 1 − |S|).

For S ∈ S′(α) let US be the closure of
[p, q] ∈ X (α) | lim

λ→∞
[λ p, q] ∈ X S


.

Then the core Lα of X (α) is defined as

Lα := M(α) ∪


S∈S′(α)

US

and is a deformation retraction of X (α). In fact US is the closure of the flow-down set for the
critical component X S and the polygon space (when non-empty) is the minimal set of φ. The
core components US are smooth compact submanifolds of complex dimension n − 3, and can
equivalently be described as

US = {[p, q] | S is straight and p j = 0 for all j ∈ Sc
} (2.16)

(see [18] for details). Moreover, they can be nicely described as moduli spaces of pairs of
polygons in R3 (see [18]). For that, given a short set S in S′(α), and a point [p, q]R ∈ US ,
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Fig. 2. A hyperpolygon in the core component US described as a pair of a spacial polygon and a planar one (where
S = {i1, . . . , i|S|} and Sc

= { j1, . . . , j|Sc |}).

define a (n + 1)-tuple of vectors in R3, (ui , v j , w), i ∈ S, j ∈ Sc as

ui = qi pi + p∗

i q∗

i , ∀i ∈ S

v j = (q j q
∗

j )0, ∀ j ∈ Sc

w =


i∈S

(qi q
∗

i )0 − (p∗

i pi )0,

where we make the usual identification i · su(2) ∼= su(2)∗ ∼= R3. These n + 1 vectors define two
polygons: one in R3 with edges w and v j , with j ∈ Sc, and one lying in the orthogonal plane to
w with edges ui for i ∈ S (see Fig. 2). Note that ∥v j∥ = α j and that

i∈S

αi ≤ ∥w∥ ≤


j∈Sc

α j ,

where the variations in ∥w∥ are determined by the lengths of the vectors ui . The lower bound
∥w∥ =


i∈S αi is reached when ui = 0 for all i , meaning that the planar polygon collapses

to a point and one obtains a polygon in R3 of edges w and {v j | j ∈ Sc
}. In this case, the

point [p, q]R defining this polygon is in the intersection US ∩ M(α). When the upper bound
∥w∥ =


j∈Sc α j is reached, the spatial polygon is forced to be in a line and the planar polygon

has maximal perimeter.

Theorem 2.3 ([18]). For any S ∈ S′(α) the associated core component US is homeomorphic to
the moduli space Z of n + 1 of vectors

{ui , v j , w ∈ R3
| i ∈ S, j ∈ Sc

}

taken up to rotation, satisfying the conditions:

(1) w +


j∈Sc

v j = 0;

(2)

i∈S

ui = 0;

(3) ui · w = 0 for all i ∈ S;
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(4) ∥v j∥ = α j for all j ∈ Sc
;

(5) ∥w∥ =


i∈S


α2

i + ∥ui∥
2.

If the polygon space M(α) is non empty, then all the core components US intersect M(α).
More precisely, for any S ∈ S′(α),

US ∩ M(α) ∼= MS(α),

where

MS(α) :=


v ∈

n
i=1

S2
αi

|

n
i=1

vi = 0, vi proportional to v j ∀i, j ∈ S


SO(3). (2.17)

This intersection is a (|Sc
|−2)-dimensional submanifold of M(α) that can be identified with the

moduli space of polygons in R3 with |Sc
| + 1 edges of lengths


i∈S αi and α j , for j ∈ Sc.

The intersection of any other two core components US and UT , with S, T ∈ S′(α), depends
upon the intersection of the short sets S and T .

• If S ∩ T = ∅ then US ∩ UT = MS(α) ∩ MT (α). (Note that this intersection might be empty.)
• If S ∩ T ≠ ∅ and S ∪ T is long, then US ∩ UT = ∅.
• If S ∩ T ≠ ∅ and S ∪ T is short, then

US ∩ UT =

[p, q] | S ∪ T straight , p j = 0 for all j ∈ (S ∩ T )c

⊆ US∪T .

Finally, if S ⊂ T , the critical submanifold XT intersects US , and US ∩ XT ∼= CP|S|−2 (cf. [18]).
In particular, we have the following.

Proposition 2.18. If S ∈ S′(α) is maximal with respect to inclusion then

US ∼= CPn−3.

This was conjectured in [18], and is a simple consequence of the following result of Delzant.

Theorem 2.4 ([11]). Let (M, ω) be a compact symplectic 2n-dimensional manifold equipped
with a Hamiltonian S1-action with moment map φ. If φ has only two critical values, one of
which is non-degenerate, then M is isomorphic to (CPn, λωF S), where λωF S is some multiple of
the Fubini–Study symplectic form.

Proof of Proposition 2.18. Since S is maximal with respect to inclusion, the core component
US is just the closure of the flow-down set of X S ∼= CP|S|−2.

If |S| = n − 1 then, assuming without loss of generality that S = {1, . . . , n − 1}, we have
S

αi < αn

(S is short), meaning that the polygon space MS(α) is empty. Therefore US = X S ∼= CPn−3.
If |S| < n − 1 then X S has index 2(n − 1 − |S|) and φ(X S) is a non-degenerate critical

value of the restriction of φ to US . The only other critical value of φ on US is its minimum
value φ(M(α)) = 0. We can then apply Theorem 2.4 to US equipped with the restriction of the
S1-action on X (α) to conclude the proof. �

Example 1. When n = 4 there are four critical components of the moment map φ for any generic
choice of α. In fact, since either S or Sc is short, there are always exactly three short sets (S1,
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S2 and S3) of cardinality 2 in S′(α). Moreover, the polygon space M(α) is empty if and only if
there is a short set S0 of cardinality 3 in S′(α). Note that in this case there is exactly one such
set in S′(α). The critical components X Si , i = 1, 2, 3, are isolated points of index 2, while X S0

and M(α), when nonempty, are diffeomorphic to CP1 and have index 0. The core components
USi , for i = 1, 2, 3, are three copies of CP1 intersecting the minimal component in three distinct
points. Consequently, the core Lα is a union of 4 spheres arranged in a D4 configuration [14] as
in Fig. 3.

2.1.2. Walls
We now set some notation and basic definitions relative to the wall-crossing analysis that will

be carried out in Section 4. Moreover, we summarize the wall-crossing behavior for polygon
spaces which is described in detail in [31].

Let Γ ⊂ Rn
+ be the set of generic values of α. If α ∉ Γ then there exists an index set

S ⊂ {1, . . . , n} for which εS(α) = 0. Hence Γ is the complement of the union of finitely many
walls

WS := {α ∈ Rn
+ | εS(α) = 0}

with S ⊂ {1, . . . , n}. The set S will be called the discrete data of WS .
Note that an index set S and its complement Sc define the same wall. Moreover, a wall WS

separates two adjacent connected components of Γ , called chambers, say ∆+ and ∆−, such that
εS(α+) > 0 for every α+

∈ ∆+ and εS(α−) < 0 for every α−
∈ ∆−. Consequently, S is

maximal short (with respect to inclusion) for values of α− in ∆− and long for those in ∆+.
The collection of short sets S(α) completely determines the chamber of α and, since only one

of S and Sc is short, there is a 1–1 correspondence between the elements of S(α) and the walls
in Rn

+.

Remark 2.19. The image

Ξ := µU (1)n (Gr(2, n)) =


(α1, . . . , αn) ∈ Rn

+ | 0 ≤ αi ≤
1
2

and
n

i=1

αi = 1


of the moment map defined in (2.10) is formed by values of α for which M(α) is nonempty.
Since M(α) is diffeomorphic to M(λα) for every λ ∈ R+, one can easily see that M(α) ≠ ∅
if and only if α is in the cone CΞ over Ξ . The walls WS with |S| = 1 or |S| = n − 1 form the
boundary of CΞ and so are called vanishing walls. (When α crosses one of these walls the whole
space M(α) vanishes.) The chambers in Rn

+ \ CΞ are called null chambers and each of these is
separated from CΞ by a unique vanishing wall.

By the Duistermaat–Heckman Theorem, M(α+) and M(α−) are diffeomorphic for α+ and α−

in the same chamber but the diffeotype of M(α±) changes if α+ and α− are in different chambers.
In particular, if α+ and α− lie in opposite sides of a single wall WS , then M(α+) and M(α−) are
related by a blowup followed by a blowdown. This is a classical result for reduced spaces (see,
for example [17,10]) and has been worked out in detail for the case of polygon spaces in [31],
where the submanifolds involved in the birational transformation are characterized in terms of
lower dimensional polygon spaces. More precisely, these submanifolds are the intersections

MS(α+) = US ∩ M(α+) and MS(α−) = US ∩ M(α−)

defined in (2.17).
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Fig. 3. Core of X (α) when n = 4: four spheres arranged in a D4 configuration.

Fig. 4. A hyperpolygon in the core component U{4,5} for α = (10, 1, 1, 2, 3).

Theorem 2.5 ([31]). If ∆+ and ∆− are two chambers lying in opposite sides of a wall WS and
S is short for α−

∈ ∆− and long for α+
∈ ∆+, then M(α+) is obtained from M(α−) by a

blowup along MS(α−) ∼= CP|Sc
|−2 followed by a blowdown of the projectivized normal bundle

of MSc (α+) ∼= CP|S|−2.

The situation for hyperpolygon spaces is quite different. The diffeotype of X (α) does not
depend on the value


(α, 0)(0, 0)


of the hyperkähler moment map as long as α is generic

(see [27]). Nevertheless, if α+ and α− are in different chambers of Γ the hyperkähler structures
on X (α±) are not the same. Moreover, if we equip these spaces with the S1-action defined in
(2.14) we see that X (α+) and X (α−) are not isomorphic as Hamiltonian S1-spaces since their
cores Lα± are different. The transformations suffered by X (α±) and its core will be studied in
Section 4.1.

Another difference in the behavior of hyperpolygon spaces is that, even though M(α) = ∅
for every value of α in a null chamber, the corresponding hyperpolygon space X (α) is always
non empty as we can see in Example 2.

Example 2. Let α = (10, 1, 1, 2, 3) be in the null chamber of Γ determined by the vanishing
wall W{1}. The polygon space M(α) is empty since α1 >

5
i=2 αi . However, the hyperpolygon

space X (α) ≠ ∅. For example, taking the short set S = {4, 5}, we see that the core component
U{4,5} ⊂ X (α) is non empty. Indeed, it can be identified with the moduli space of pairs of
polygons as depicted in Fig. 4 (cf. Theorem 2.3). The spatial polygon has edges w, v1, v2, v3
respectively of lengths 5 + k, 10, 1, 1 with k ∈ [3, 7]. (For k > 7 or k < 3 the polygon would
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not close.) The planar polygon lies on a line and has edges u4, u5 with u4 = −u5 satisfying

5 + k =


4 + ∥u4∥

2 +


9 + ∥u4∥

2. (2.20)

Any choice of ∥u4∥ satisfying (2.20) for some k ∈ [3, 7] determines a family of hyperpolygons
in U{4,5} that is isomorphic to the polygon space M(∥w∥, 10, 1, 1). For example, choosing
∥u4∥ = 4, we get that U{4,5} contains the non-empty polygon space M(5 + 2

√
5, 10, 1, 1).

2.2. Moduli spaces of parabolic Higgs bundles

Let Σ be a connected smooth projective algebraic curve of genus g with n distinguished
marked points x1, . . . , xn and let D be the divisor x1 + · · · + xn . A parabolic structure on a
holomorphic bundle E −→ Σ consists of weighted flags

Ex = Ex,1 ⊃ · · · ⊃ Ex,sx ⊃ 0,

0 ≤ β1(x) < · · · < βsx (x) < 1

over each point x ∈ D. Given two parabolic bundles E, F over Σ with parabolic structures
at x1, . . . , xn and weights βE

i (x) and βF
j (x) respectively, a holomorphic map φ : E −→ F

is called parabolic if φ(Ex,i ) ⊂ Fx, j+1 whenever βE
i (x) > βF

j (x) and strongly parabolic if

φ(Ex,i ) ⊂ Fx, j+1 whenever βE
i (x) ≥ βF

j (x).
Let Par Hom(E, F) and S Par Hom(E, F) be the subsheaves of Hom(E, F) formed by

the parabolic and strongly parabolic morphisms between E and F , respectively. In particular,
Par End(E) := Par Hom(E, E) and S Par End(E) := S Par Hom(E, E).

Considering mi (x) := dim Ex,i −dim Ex,i+1, the multiplicity of the weight βi (x), one defines
the parabolic degree pdeg(E) and parabolic slope µ(E) of a parabolic bundle E as

pdeg(E) = deg(E) +


x∈D

sx
i=1

mi (x)βi (x),

and

µ(E) =
pdeg(E)

rank(E)
.

A subbundle F of a parabolic bundle E can be given a parabolic structure by intersecting the flags
with the fibers Fx , and discarding any subspace Ex, j ∩ Fx which coincides with Ex, j+1 ∩ Fx . The
weights are assigned accordingly. Similarly, the quotient E/F can be given a parabolic structure
by projecting the flags to Ex/Fx . The weights of E/F are precisely those discarded for F .

A parabolic bundle E is said to be semistable if µ(F) ≤ µ(E) for all proper parabolic
subbundles F of E and stable if the inequality is always strict.

Example 3. We will now consider a very simple example which we will need later. Let E be a
rank-two parabolic bundle over Σ with parabolic structure

C2
= Ex,1 ⊃ Ex,2 = C ⊃ 0,

0 ≤ β1(x) < β2(x) < 1

over each point x ∈ D. Then

pdeg(E) = deg(E) +

n
x∈D

(β1(x) + β2(x)) .
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If L is a parabolic line subbundle of E , its parabolic structure is given by the trivial flag over
each point of D

C = Lx,1 ⊃ 0,

with weights

βL(x) =


β1(x), if Lx ∩ Ex,2 = {0},

β2(x), if Lx ∩ Ex,2 = C.

Then, assuming D = {x1, . . . , xn},

pdeg(L) = deg(L) +


i∈SL

β2(xi ) +


i∈Sc

L

β1(xi ),

where SL := {i ∈ {1, . . . , n} | βL(xi ) = β2(xi )}. (Note that the quotient bundle E/L is also a
parabolic line bundle over Σ with parabolic structure given by the trivial flag over each point of
D weighted by the weights of E not used in L .)

Hence, the parabolic bundle E is stable if and only if its parabolic line subbundles L satisfy

deg E − 2 deg(L) >

i∈SL


β2(xi ) − β1(xi )


−


i∈Sc

L


β2(xi ) − β1(xi )


. (2.21)

Let KΣ denote the canonical bundle over Σ (i.e. the bundle of holomorphic 1-forms in Σ ),
let OΣ (D) be the line bundle over Σ associated to the divisor D and give E ⊗ KΣ (D) :=

E ⊗ K ⊗ OΣ (D) the obvious parabolic structure. A parabolic Higgs bundle or PHB is a pair
E := (E,Φ), where E is a parabolic bundle and

Φ ∈ H0(Σ , S Par End(E) ⊗ KΣ (D))

is called an Higgs field on E . Note that Φ is a meromorphic, endomorphism-valued one-form
with simple poles along D, whose residue at x is nilpotent with respect to the flag, i.e.

(ResxΦ)(Ex,i ) ⊂ Ex,i+1,

for all i = 1, . . . , sx and x ∈ D. Note that we are only considering parabolic logarithmic Higgs
fields. The definitions of stability and semistability are extended to Higgs bundles as expected.
A PHB E = (E,Φ) is stable if µ(F) < µ(E) for all proper parabolic subbundles F ⊂ E which
are preserved by Φ and similarly for semistability, where the strict inequality is substituted by
the weak inequality.

The usual properties of stable bundles also apply to stable parabolic Higgs bundles. For in-
stance, if E and F are two stable PHBs with the same parabolic slope then there are no parabolic
maps between them unless they are isomorphic [28] and the only parabolic endomorphisms of a
stable parabolic Higgs bundle are the scalar multiples of the identity.

We will say that a vector β of weights βi (x j ) is generic when every semistable parabolic
Higgs bundle is stable (i.e. if there are no properly semistable Higgs bundles). Fixing a generic β

and the topological invariants r = rank(E) and d = deg(E), the moduli space Nβ,r,d of β-stable,
rank-r , degree-d parabolic Higgs bundles was constructed by Yokogawa in [43] using GIT. In
particular, he shows that this space is a smooth irreducible complex variety of dimension

dim Nβ,r,d = 2(g − 1)r2
+ 2 +

n
i=1


r2

−

sxi
j=1

m j (xi )
2


,
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containing the cotangent bundle of the moduli space of stable parabolic bundles. For that, he
worked out a deformation theory for PHBs as described next (see also [15] for details).

2.2.1. Deformation theory
Given PHBs E = (E,Φ) and F = (F,Ψ) one defines a complex of sheaves

C•(E, F) : Par Hom(E, F) −→ S Par Hom(E, F) ⊗ KΣ (D)

f → ( f ⊗ 1)Φ − Ψ f,

and write C•(E) := C•(E, E). Then the following proposition holds (see for instance [37] for a
detailed proof).

Proposition 2.22. (1) The space of infinitesimal deformations of a PHB E is isomorphic to the
first hypercohomology group of the complex C•(E). Consequently the tangent space to Nβ,r,d
at a point E is isomorphic to H1(C•(E)).

(2) The space of homomorphisms between PHBs E and F is isomorphic to the hypercohomology
group H0(C•(E, F)).

(3) The space of extensions 0 −→ E −→ F −→ G −→ 0 of PHBs E and G is isomorphic to
the hypercohomology group H1(C•(G, E)).

(4) There is a long exact sequence

0 −→ H0(C•(E, F)) −→ H0(Par Hom(E, F))

−→ H0(S Par Hom(E, F) ⊗ KΣ (D))

−→ H1(C•(E, F)) −→ H1(Par Hom(E, F))

−→ H1(S Par Hom(E, F) ⊗ KΣ (D))

−→ H2(C•(E, F)) −→ 0.

Moreover, we have the following duality result whose proof can be found in [15].

Proposition 2.23. If E and F are PHBs then there exists a natural isomorphism

Hi (C•(E, F)) ∼= H2−i (C•(F, E))∗.

In particular for any stable PHB E there is a natural isomorphism TENβ,r,d ∼= T ∗

ENβ,r,d .

2.2.2. Fixed determinant
If E ∈ Nβ,r,d and E is the underlying parabolic bundle, its determinant Λr E is a parabolic

line bundle of degree

d = d +

n
i=1


j

m j (xi )β j (xi )



and weight


j m j (x)β j (x) −


j m j (x)β j (x)


, at any x ∈ D, where the square brackets

denote the integer part. For fixed weights the moduli space of rank-1 parabolic Higgs bundles of
degree d is naturally identified with the total space of the cotangent bundle to the Jacobian of
degree-d line bundles on Σ . Hence one has the map

det : Nβ,r,d −→ T ∗Jacd̃(Σ ), (2.24)

(E,Φ) → (Λr E, Tr Φ).
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Fixing Λ, a line bundle of degree d , Konno [28] defines the moduli space N
0,Λ
β,r,d of stable

parabolic Higgs bundles with fixed determinant Λ and trace-free Higgs field as the fiber of the
map (2.24) over (Λ, 0) i.e.

N
0,Λ
β,r,d :=

−1
det(Λ, 0).

In particular, he shows that, for any Λ and generic β, this space is a smooth, hyperkähler manifold
of complex dimension

dim N
0,Λ
β,r,d = 2(g − 1)(r2

− 1) +

n
i=1


r2

−

sxi
j=1

m j (xi )
2


.

The deformation theory of E = (E,Φ) in N
0,Λ
β,r,d is determined by the complex

C•

0(E) : Par End0(E) −→ S Par End0(E) ⊗ KΣ (D)

f → ( f ⊗ 1)Φ − Φ f,

where the subscript 0 indicates trace 0.
We will now give a brief description of N

0,Λ
β,r,d following [28,15]. Given a PHB E of rank r with

underlying topological bundle E , one says that a local frame {e1, . . . , er } around x preserves the
flag at x if Ex,i is spanned by the vectors {eMi +1(x), . . . , er (x)}, where Mi =


k≤i mk . Then

one fixes a hermitian metric h on E which is smooth in Σ \ D and whose behavior around the
points in D is as follows: if z is a centered local coordinate around x (i.e. such that z(x) = 0),
then one requires h to have the form

h =

|z|2λ1 0
. . .

0 |z|2λr

 (2.25)

with respect to some local frame around x which preserves the flag at x . Let us denote by J the
affine space of holomorphic structures on E and by A the space of associated h-unitary connec-
tions. Note that the unitary connection A associated to some element δA of J via the hermitian
metric h is singular at the punctures. Indeed, writing z = ρeiθ and considering the local frame
{ei } used in (2.25), the connection A has the form

dA = d + i

λ1 0
. . .

0 λr

 dθ + A′ (2.26)

with respect to the local frame {ei/|z|λi }, where A′ is regular. The space of trace-free Higgs fields
on a parabolic bundle E is

� := Ω1,0S Par End0(E) ⊗ KΣ (D)

.

Let GC denote the group of complex parabolic gauge transformations (i.e. the group of smooth
determinant-1 bundle automorphisms of E which preserve the flag structure) and let G denote
the subgroup of h-unitary parabolic gauge transformations. Using the weighted Sobolev norms
defined by Biquard [5] on the above spaces (see [5,28] for details) let us denote by Jp, �p, Gp
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and G
p
C the corresponding Sobolev completions. Following Konno we consider the space

H :=

(δA,Φ) ∈ J × � | δAΦ = 0


and the corresponding subspace Hp of Jp

×�p. The gauge group GC acts on H by conjugation,
i.e. on the residues Ni := Resxi Φ the GC-action is g−1 Ni g for any g ∈ GC (cf. [28]). Let F(A)0

be the trace-free part of the curvature of the h-unitary connection corresponding to δA. Then we
consider the moduli space E0 defined as the subspace of Hp satisfying Hitchin’s equation

E0
:=

(δA,Φ) ∈ Hp

| F(A)0
+ [Φ,Φ∗

] = 0

/Gp.

Taking the usual definition of semi-stability on H, Konno shows in [28] that, for some p > 1,

N
0,Λ
β,r,d := Hss/GC ∼= E0 (2.27)

and this second quotient endows N
0,Λ
β,r,d with a hyperkähler structure.

There is a natural circle action on the moduli space N
0,Λ
β,r,d given by

eiθ
· (E,Φ) = (E, eiθΦ) (2.28)

which is respected by the identification in (2.27). This action is Hamiltonian with respect to the
symplectic structure of N

0,Λ
β,r,d compatible with the complex structure induced by the complex

structure

I (δA,Φ) = (iδA, iΦ)

on Hp (see [7] for details). The corresponding moment map is

[(A,Φ)] → −
1
2
∥Φ∥

2
= −i


Σ

Tr(ΦΦ∗).

Let us consider the positive function

f :=
1
2
∥Φ∥

2. (2.29)

Boden and Yokogawa in [7] show that this map is proper. By a general result of Frankel [13]
which states that a proper moment map of a circle action on a Kähler manifold is a perfect
Morse–Bott function, we conclude that f is Morse–Bott. Its critical set (which corresponds to
the fixed point set of the circle action) was studied by Simpson in [36] who shows the following
result.

Proposition 2.30 (Simpson). The equivalence class of a stable PHB E = (E,Φ) is fixed by the
S1-action (2.28) if and only if E has a direct sum decomposition

E = E0 ⊕ · · · ⊕ Em

as parabolic bundles, such that Φ is strongly parabolic and of degree one with respect to this
decomposition, i.e.,

Φ|El
∈ H0(S Par Hom(El , El+1) ⊗ KΣ (D)).

Moreover, stability implies that Φ|El
≠ 0 for l = 0, . . . , m − 1, and E = (


l El ,Φ) is stable as

a parabolic Higgs bundle if and only if the stability condition is satisfied for all proper parabolic
subbundles which respect the decomposition E =


l El and are preserved by Φ.
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Remark 2.31. Note that if m = 0, then E = E0 and Φ = 0 and one obtains the fixed points
(E, 0), where E is a stable parabolic bundle. Hence the moduli space M

0,Λ
β,r,d of β-stable rank-r

parabolic bundles of fixed degree and determinant is a component of the fixed-point set.

The Morse index of a critical point of f , which equals the dimension of the negative weight
space of the circle action on the tangent space at the fixed point (see [13]), was computed by
Garcı́a-Prada, Gothen and Muñoz.

Proposition 2.32 ([15]). Let the PHB E = (⊕m
l=0 El ,Φ) represent a critical point of f . Then

the Morse index of f at E is given by

λE = 2r2(g − 1) +

n
i=1


r2

−

sxi
j=1

m j (xi )
2



+ 2
m

l=0


(1 − g − n)rank(El)

2
+

n
i=1

dim Pxi (El , El)



+ 2
m−1
l=0


(1 − g)rank(El)rank(El+1) − rank(El) deg(El+1)

+ rank(El+1) deg(El) −

n
i=1

dim Nxi (El , El+1)


,

where, given two parabolic bundles F and G, Px (F, G) denotes the subspace of Hom(Fx , Gx )

formed by parabolic maps, and Nx (F, G) denotes the subspace of strongly parabolic maps.

2.2.3. The rank-two situation
Let us now restrict ourselves to the rank two situation. Most of what is presented in this

section is essentially contained in [7] but we will give an exposition adapted to our purposes.
If E = (E,Φ) is a fixed point of the circle action defined in (2.28) then we have two possible

cases:

(1) E is a stable rank-2 parabolic bundle and Φ = 0 (see Remark 2.31);
(2) E = E0 ⊕ E1 where E0 and E1 are parabolic line bundles and Φ induces a strongly parabolic

map

Φ0 := Φ|E0
: E0 −→ E1 ⊗ KΣ (D).

In the first case, the corresponding critical submanifold can be identified with the moduli space
M

0,Λ
β,2,d of ordinary rank-2 parabolic bundles of fixed degree and determinant and it is the only

critical component where the Morse–Bott function f takes its minimum value f = 0.
The fixed points in the second situation occur when eiθ

· (δA,Φ) is gauge equivalent to
(δA,Φ). In particular, this implies that there exists a 1-parameter family gθ ∈ Gp such that
g−1
θ Φgθ = eiθΦ which is diagonal with respect to the decomposition E = E0 ⊕ E1 (in fact the

splitting of the holomorphic parabolic bundle E is determined by the eigenvalues of gθ ). Hence
Φ is either strictly upper or lower triangular, meaning that one of E0 or E1 is Φ-invariant. Since
we also have that Φ0 := Φ|E0

is a map from E0 to E1 ⊗ KΣ (D), we conclude that

Φ =


0 0
φ 0


,
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with 0 ≠ φ ∈ S Par Hom(E0, E1 ⊗ KΣ (D)). Then E1 is preserved by Φ which, by β-stability
of E, implies that µ(E1) < µ(E). By Example 3 this is equivalent to requiring

deg E − 2 deg E1 >


i∈SE1


β2(xi ) − β1(xi )


−


i∈Sc

E1


β2(xi ) − β1(xi )


, (2.33)

where 0 ≤ β1(xi ) < β2(xi ) < 1 are the parabolic weights of E at xi ∈ D and

SE1 =

i ∈ {1, . . . , n} | βE1(xi ) = β2(xi )


with 0 ≤ βE1(x1) < 1 the weight of E1 at xi .

On the other hand, the existence of a strongly parabolic map

0 ≠ Φ0 := Φ|E0
: E0 −→ E1 ⊗ KΣ (D)

implies that

H0


S Par Hom

E0, E1 ⊗ KΣ (D)


≠ 0.

Moreover,

S Par Hom

E0, E1 ⊗ K (D)


∼= Hom

E0, E1 ⊗ K

D \


i∈SEc

1

{xi }


 ,

since, denoting the parabolic weights of E0 and E1 at xi respectively by βE0(xi ) and βE1(xi ),
we have

SE0 = Sc
E1

=

i ∈ {1, . . . , n} | βE0(xi ) = β2(xi )


=

i ∈ {1, . . . , n} | βE0(xi ) > βE1(xi )


.

Hence, a necessary condition for (E0 ⊕ E1,Φ) to be a critical point is that

0 ≤ deg Hom

E0, E1 ⊗ KΣ

D \


i∈Sc

E1

{xi }




= deg

E∗

0 ⊗ E1 ⊗ KΣ

D \


i∈Sc

E1

{xi }




= deg

E∗

0 ⊗ E1 ⊗ KΣ ⊗ OΣ

D \


i∈Sc

E1

{xi }




= deg(E1) − deg(E0) + 2(g − 1) +

D \


i∈Sc

E1

{xi }


= deg(E1) − deg(E0) + 2(g − 1) + n − |Sc

E1
|

= deg(E) − 2 deg(E0) + 2(g − 1) + |SE1 |,
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where we used the fact that deg KΣ = 2(g − 1) and that, for any divisor D =


x∈Σ nx x , we
have

deg OΣ (D) = deg(D) =


x∈Σ

nx .

Using (2.33) we conclude that if (E0 ⊕ E1,Φ) is a critical point then

εSE1
(β2 − β1) + d < 2d0 ≤ d + 2(g − 1) + |SE1 |,

where d0 = deg E0, d = deg E , β2 − β1 is the vector
β2(x1) − β1(xi ), . . . , β2(xn) − β1(xn)


and εSE1

(β2 − β1) is the sum defined in (2.8).
Given S ⊂ {1, . . . , n} and d0 ∈ Z, let M(d0,S) be the critical submanifold formed by parabolic

Higgs bundles E = (E0 ⊕ E1,Φ) ∈ N
0,Λ
β,2,d , where E0 is a parabolic line bundle of topological

degree d0 and parabolic weights βE0 satisfying SE0 = Sc (i.e. βE0(xi ) = β2(xi ) if and only if
i ∈ Sc). Then we have the following.

Proposition 2.34. Given S ⊂ {1, . . . , n} and d0 ∈ Z, the critical submanifold M(d0,S) ⊂ N
0,Λ
β,2,d

is nonempty if and only if

εS(β2 − β1) + d < 2d0 ≤ d + 2(g − 1) + |S|. (2.35)

Moreover, denoting by SmΣ the 22g cover of the symmetric product SmΣ under the map
x → 2x on Jac(Σ ), the map

M(d0,S) −→ SmΣ , (2.36)

(E0 ⊕ E1,Φ) → (E0, div Φ0)

is an isomorphism for

m = d − 2d0 + 2(g − 1) + |S|,

where div Φ0 (the zero set of Φ0 := Φ|E0
) is a non-negative divisor of degree m.

Proof. The discussion preceding this statement shows that (2.35) is necessary for M(d0,S) to be
nonempty.

Suppose now that a pair (d0, S) satisfies (2.35). Given an effective divisor Dm ∈ SmΣ with
m = d − 2d0 + 2(g − 1) + |S| one gets a line bundle OΣ (Dm) with a nonzero section Φ0
determined up to multiplication by a nonzero scalar, as well as the bundle

U := KΣ ⊗ OΣ


i∈S

{xi }


⊗ OΣ (−Dm)

of degree 2d0 − d. Then, one can choose a line bundle L0 ∈ Jacd0(Σ ), such that

L⊗2
0 = Λ ⊗ U (2.37)

and equip it with the parabolic structure given by the trivial flag over each point xi ∈ D and the
weight assignment

βL0(xi ) =


β1(xi ), if i ∈ S
β2(xi ), if i ∈ {1, . . . , n} \ S.
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In addition one considers the bundle

L1 := L0 ⊗ U∗

equipped with the complementary parabolic structure. Defining Φ to have component Φ|L0 = Φ0
one obtains a PHB E = (L0 ⊕ L1,Φ) which clearly has the desired invariants (d0, S), has the
required determinant (since Λ2(L0 ⊕ L1) = L0 ⊗ L1 = L⊗2

0 ⊗U∗
= Λ) and is stable if (2.35) is

satisfied. Hence (2.35) is a sufficient condition for M(d0,S) to be nonempty. Note that there exist
22g possible choices of L0 satisfying (2.37) (since the 2-torsion points in the Jacobian form a
group

Γ2 = {L | L⊗2
= O}

isomorphic to Z2g), and that each choice gives a stable PHB. Hence, the map (2.36) is surjective.
To see that it is injective we note that by taking non-zero scalar multiples of the Higgs field

Φ0 ∈ H0(L∗

0 ⊗ L1 ⊗ K (∪i∈S {xi })) (in order to obtain the same divisor div Φ) one obtains two
isomorphic PHBs since (E,Φ) is gauge equivalent to (E, λΦ) for λ ≠ 0. �

To compute the Morse index at the points in M(d0,S) we use Proposition 2.32 to obtain the
following proposition.

Proposition 2.38. The index of the critical submanifold M(d0,S) is

λ(d0,S) = 2(g − 1 + n) + 4d0 − 2d − 2|S|.

Proof. Noting that all the multiplicities are equal to 1 and that sx = 2 for every point in D, the
proof follows from Proposition 2.32 after we compute the dimensions of the spaces Px (El , El),
l = 0, 1, and Nx (E0, E1) for every point x ∈ D. The space Px (El , El) is formed by the parabolic
endomorphisms of (El)x and so, in this case,

dim Px (El , El) = dim End((El)x ) = 1.

The space Nxi (E0, E1) is the space of strongly parabolic maps from (E0)xi to (E1)xi and so

Nxi (E0, E1) =


0, if βE0(xi ) > βE1(xi )

Hom((E0)xi , (E1)xi ), otherwise.

Hence,

dim Nxi (E0, E1) =


0, if i ∈ {1, . . . , n} \ S
1, if i ∈ S.

�

With this we have the following proposition.

Proposition 2.39. (1) If g ≥ 1 then λ(d0,S) > 0 for all (d0, S) satisfying (2.35).
(2) If g = 0 and n ≥ 3 then there is at most one pair (d0, S) satisfying (2.35) with λ(d0,S) = 0.

Moreover, this pair exists if and only if M
0,Λ
β,2,d = ∅ and, in this case, M(d0,S) = CPn−3.

Proof. If λ(d0,S) = 0 then 2d0 = 1−g−n+d+|S|. Since, from (2.35), we have 2d0 > εS(α)+d ,
with α = β2 − β1, we conclude that εS(α) < 1 − g − n + |S|. Moreover, since by definition

εS(α) =


i∈S

αi −


i∈Sc

αi
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and 0 < αi < 1, we have εS(α) > −|Sc
| = |S| − n and so

|S| − n < εS(α) < 1 − g − n + |S|,

implying that 0 < 1 − g and thus g = 0.
Let us assume now that g = 0. Then (2.35) and λ(d0,s) = 0 imply that

|S| − n < εS(α) < 1 + |S| − n,

and so

0 <

i∈S

αi −


i∈Sc

αi + |Sc
| < 1,

which is equivalent to

0 <

i∈S

αi +


i∈Sc

(1 − αi ) < 1, (2.40)

with the advantage that now all the summands in (2.40) are positive. If λ(d ′

0,S
′) = 0 for some

other (d ′

0, S′) ≠ (d0, S) then

2(d ′

0 − d0) = |S′
| − |S|

and so |S′
| − |S| is even. This implies that there exist at least two indices in S ∪ S′ that are not in

S′
∩ S and so(S ∪ S′) ∩ (S ∩ S′)c

 =
(S′

∪ S) ∩

(S′)c

∪ Sc ≥ 2.

Hence, since both S and S′ satisfy (2.40) we have that

2 <


i∈S′∪S

αi +


i∈(S′)c∪Sc

(1 − αi ) < 2

which is impossible. Hence there is at most one pair (d0, S) satisfying (2.35) with λ(d0,S) = 0.
Still assuming g = 0, one has from Proposition 2.34 that

M(d0,S)
∼= SmCP1 ∼= CPm

with m = d − 2d0 − 2 + |S|. In particular, if λ(d0,S) = 0, we have that m = n − 3 and so
M(d0,S)

∼= CPn−3.
To show that such a pair exists if and only if M

0,Λ
β,2,d = ∅ we first define for any (d0, S) the

hyperplane

H(d0,S) = {(β1, β2) ∈ Q | εS(α) + d = 2d0}, (2.41)

where Q := {(β1, β2) ∈ R2n
| 0 < β1,i < β2,i < 1, i = 1, . . . , n} is the so-called weight space.

Boden and Hu show in [6] that, if β and β ′ are weights in adjacent connected components of
Q \ ∪(d0,S) H(d0,S), (usually called chambers) then the corresponding moduli spaces are related
by a special birational transformation which is similar to a flip in Mori theory which will be
studied in detail in Section 4. Moreover, when g = 0, there exist null chambers formed by
weights β ∈ Q for which M

0,Λ
β,2,d = ∅. Let β and β ′ be weights on either side of a (unique)

hyperplane separating a null chamber from the rest (called a vanishing wall), and let δ be a
weight on this hyperplane. Then, assuming M

0,Λ
β ′,2,d = ∅, Boden and Hu show that there exists a

canonical projective map

φ : M
0,Λ
β,2,d −→ M

0,Λ
δ,2,d
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which is a fibration with fiber CPa , where a = dim M
0,Λ
β,2,d − dim M

0,Λ
δ,2,d = n − 3. Moreover,

M
0,Λ
δ,2,d consists of classes of strictly semistable bundles E = L ⊕ F for parabolic line bundles

L and F with SF = S and deg(L) = d0. Assuming, without loss of generality, that εSF (β) >

εSF (δ) > εSF (β ′), the fact that M
0,Λ
β ′,r,d = ∅ implies that there are no nontrivial extensions of

L by F , when regarded with weight β ′, i.e. Par Ext1
β ′(L , F) = 0 (cf. [7] for details). Then, the

short exact sequence of sheaves

0 −→ Par Hom(L , F) −→ Hom(L , F) −→ Hom(L D, FD)/PD(L , F) −→ 0,

(where, denoting by Px (L , F) the subspace of Hom(Lx , Fx ) consisting of parabolic maps, we
write PD(L , F) = ⊕x∈D Px (L , F)), gives us

χ

Par Hom(L , F)


= χ


Hom(L , F)


− χ


Hom(L D, FD)/PD(L , F)


= χ


Hom(L , F)


+

n
i=1

(dim Pxi − 1). (2.42)

Moreover, since H0

Par Homβ ′(L , F)


= 0,

0 = dim Par Ext1
β ′(L , F) = dim H1Par Homβ ′(L , F)


= −χ


Par Homβ ′(L , F)


= −χ


Hom(L , F)


−

n
i=1

(dim Pxi − 1) = −χ(L∗
⊗ F) + |SL |

= 2d0 − d − 1 + n − |S|,

where we used the Riemann–Roch theorem and the fact that SL = Sc
F = Sc. Hence, every van-

ishing wall is given by H(d0,S) with 2d0 − d − 1 + n − |S| = 0. Conversely, if d + 1 − n + |S| is
even and d0 = (d + 1 − n + |S|)/2, then H(d0,S) is a vanishing wall. We conclude that if β ′ is in
a null chamber separated from the rest by a (unique) hyperplane H(d0,S) then 2d0 − d > εS(α′)

with α′
= β ′

2 −β ′

1, as usual, and 2d0 −d −1+n −|S| = 0 and so, when n ≥ 3, (d0, S) originates
a critical component with index 0 (since this pair satisfies (2.35)). �

Example 4. Let us now consider the case where g = 0 (i.e. Σ = CP1) and deg(E) = 0, and
make the additional restriction of only considering rank-2 PHBs which are trivial as holomorphic
vector bundles. Let H(β) ⊂ N

0,Λ
β,2,0 be the moduli space of such PHBs. The S1-action on N

0,Λ
β,2,0

defined in (2.28) restricts to an S1-action on H(β) with moment map the restriction to H(β) of
the moment map f defined in (2.29). For a generic weight vector β (with 0 < β1(x j ) < β2(x j ) <

1 at the parabolic points x j ∈ D = {x1, . . . , xn}), the critical components of f =
1
2∥Φ∥

2 where
f is nonzero are those M(0,S) ⊂ H(β) for which

εS(β2 − β1) < 0 ≤ |S| − 2.

Indeed, by Proposition 2.30, an element of M(0,S) decomposes as E = E0 ⊕ E1, with d0 =

deg(E0) = 0.
Hence, there is a one-to-one correspondence between the components M(0,S) and the sets

S ⊂ {1, . . . , n} with |S| ≥ 2 which are short for α ∈ Rn
+, with αi := β2(xi ) − β1(xi ) (see (2.11)

for the definition of a short set).
The Morse indices of the critical submanifolds M(0,S) are

λ(0,S) = 2(n − 1 − |S|).
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If one of these has index zero then the corresponding short set S has cardinality |S| = n − 1. As
we will see later, the space M

0,Λ
β,2,0 of ordinary rank-2 parabolic bundles of degree zero and fixed

determinant can be identified with the set of spatial polygons in R3 with n edges of prescribed
lengths equal to αi . Then, the existence of a short set with cardinality n − 1 implies that these
polygons do not close and so M

0,Λ
β,2,0 = ∅ (thus verifying Proposition 2.39).

To end this example we explore in detail the implications of the genericity condition on the
weight vector β. Let E be any rank-2 semistable parabolic bundle over CP1 which is trivial as a
holomorphic vector bundle. By Grothendieck’s Theorem the underlying holomorphic bundle is
isomorphic to the sum

OCP1(0) ⊕ OCP1(0).

Hence, given an arbitrary i ∈ {1, . . . , n} there is a uniquely determined degree-0 parabolic line
subbundle L of E with fiber over xi equal to Lxi = Exi ,2 (the underlying line bundle is just
CP1

× Exi ,2). Then we have

0 −→ L −→ E −→ E/L −→ 0

as parabolic bundles and so, any other parabolic line subbundle L of E admits a nontrivial
parabolic map to E/L . Consequently, by Lemma 2.4 in [4], we can change the weights of L by
tensoring with an appropriate degree-0 parabolic line bundle, obtaining a parabolic line bundleL ′ with the same parabolic slope as E/L . Since, if there is a parabolic map between two stable
parabolic bundles of the same parabolic slope the two bundles are isomorphic, we conclude that

deg(L) = deg(L ′) = deg(E/L) = 0.

Hence any parabolic line subbundle of E must have degree zero and so it is trivial as a holomor-
phic line bundle.

Knowing this, any rank-2 holomorphically trivial PHB which is semistable but not stable with
respect to the weights β must have an invariant line subbundle L satisfying

0 =


i∈SL


β2(xi ) − β1(xi )


−


i∈Sc

L


β2(xi ) − β1(xi )


(2.43)

(just use (2.21) with both deg(E) = deg(L) = 0). For any S ⊂ {1, . . . , n} one can construct a
parabolic line bundle which is trivial as a holomorphic line bundle and has parabolic weights

βL(xi ) =


β2(xi ), if i ∈ S
β1(xi ), if i ∉ S.

Hence one may write L = CP1
× C and see it as a line subbundle L of the PHB

E =


E := CP1

× C2, (β j (xi ))xi ∈D,Φ = 0


with the flag structure defined by

C2
= Exi ,1 ⊃ Exi ,2 = C ⊃ 0,

0 ≤ β1(xi ) < β2(xi ) < 1,

where the class [Exi ,2] ∈ CP1 is the same for all i ∈ S and satisfies

[Exi ,2] = [Lxi ], for i ∈ S.
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(Note thatCP1 is the projective space of the fiber of E .) Then E and L satisfy (2.43) if and only if
i∈S


β2(xi ) − β1(xi )


−


i∈Sc


β2(xi ) − β1(xi )


= 0.

We conclude that a weight vector β is generic if and only if

εS(α) :=


i∈S

αi −


i∈Sc

αi ≠ 0

for every S ⊂ {1, . . . , n}, where α := β2 − β1. Note that this condition is the same as the one
used for polygon and hyperpolygon spaces in Section 2.1.

Example 5. Let us consider the moduli space N
0,Λ
β,2,0 of PHBs over CP1 with n = 4 parabolic

points and β a generic weight vector, i.e. β is not in any wall as defined in (2.41). By
Proposition 2.34, given S ⊂ {1, 2, 3, 4} and d0 ∈ Z, the critical submanifold M(d0,S) is nonempty
if and only if

εS(α) < 2d0 ≤ |S| − 2,

with α = β2 − β1. Moreover, from Proposition 2.38 we know that the index of a critical
submanifold M(d0,S) is

λd0,S = 6 + 4d0 − 2|S|

and so −1 ≤ d0 ≤ 1. Indeed the function f in (2.29) has no maximum and then, for dimensional
reasons we have 0 ≤ λd0,S < 4.

If |S| = 4 then 4 > λd0,S = 4d0 − 2 ≥ 0 and so d0 = 1, λd0,S = 2 and
4

i=1 αi < 2.

If |S| = 3 then 4 > λd0,S = 4d0 ≥ 0 and so d0 = 0, λd0,S = 0, the set S is short and M
0,Λ
β,2,0

is empty (note that by Proposition 2.39 there can only be one such set).
If |S| = 2 then 4 > λd0,S = 4d0 + 2 ≥ 0 and so d0 = 0, λd0,S = 2 and S is short. Note that,

for any choice of α there are exactly three short sets Si , i = 1, 2, 3, of cardinality 2.

If |S| = 1 then 4 > λd0,S = 4 + 4d0 ≥ 0 and so d0 = −1, λd0,S = 0 and M
0,Λ
β,2,0 is empty

(note again that there can only be one such set).
If |S| = 0 then 4 > λd0,S = 4d0 + 6 ≥ 0 and so d0 = −1, λd0,S = 2 and

4
i=1 αi > 2.

We conclude that exactly one of M(−1,∅) and M(1,{1,2,3,4}) is a critical point (of index 2) and
that there are always three other index-2 critical points, M(0,Si ), i = 1, 2, 3, corresponding to the
three possible short sets Si of cardinality 2. Note that, by Proposition 2.34, when nonempty, the
sets M(−1,∅), M(1,{1,2,3,4}) and M(0,Si ) are SmCP1 ∼= CPm with

m = |S| − 2d0 − 2 = 0. (2.44)

Moreover, if M
0,Λ
β,2,0 is empty, then there is exactly one minimal component M(d0,S0)

∼= CP1

(since m in (2.44) is now 1) with S0 a set of cardinality 3 or 1. Note that, in the first case S is
short and d0 = 0, while in the latter we have d0 = −1 and εS(α) < −2.

If we restrict the circle action to the moduli space H(β) as in Example 4 we are left with the
three index-2 critical points M(0,Si ), i = 1, 2, 3, corresponding to the three possible short sets Si

of cardinality 2, together with a minimal sphere (either M
0,Λ
β,2,0 or M(0,S0) with S0 the short set of

cardinality 3).
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3. Trivial rank-2 parabolic Higgs bundles over CP1 versus hyperpolygons

In this section we give an explicit isomorphism between hyperpolygons spaces and moduli
spaces of parabolic Higgs bundles.

Given a divisor D = {x1, . . . , xn} in CP1, let H(β) be the subspace of N
0,Λ
β,2,0 formed by

rank-2 β-stable PHBs E over CP1 that are holomorphically trivial, (see Example 4) with generic
parabolic weights β2(xi ), β1(xi ). The fact that the parabolic weights are generic implies that the
vector α := β2−β1 ∈ Rn

+ is also generic (see (2.8)), and hence we can consider the hyperpolygon
space X (α). Then we have the following result.

Theorem 3.1. The hyperpolygon space X (α) and the moduli space H(β) of PHBs are isomor-
phic.

Proof. Consider the map

I : X (α) → H(β)

[p, q]α-st → [E(p,q),Φ(p,q)] =: E(p,q)

(3.1)

where E(p,q) is the trivial vector bundle CP1
× C2 with the parabolic structure consisting of

weighted flags

C2
⊃ ⟨qi ⟩ ⊃ 0

0 ≤ β1(xi ) < β2(xi ) < 1

over each xi ∈ D, and where Φ[p,q] ∈ H0

S Par End(E(p,q)) ⊗ KCP1(D)


is the Higgs field

uniquely determined by setting the residues at the parabolic points xi equal to

Resxi Φ := qi pi =


ai ci bi ci
ai di bi di


. (3.2)

We first show that the map I is well-defined, that is, the Higgs field Φ(p,q) is uniquely defined,
the PHB E(p,q) is stable, and the map I is independent of the choice of representative in [p, q]α-st.
Note that from (3.2) the map I is a continuous algebraic map.

• Given a prescribed set of residues adding up to zero, Theorem II.5.3 in [12] allows one to
construct a meromorphic 1-form (since CP1 is compact). This defines Φ up to addition of a holo-
morphic 1-form. However, by Hodge theory, the space of holomorphic 1-forms on a Riemann
surface of genus g has dimension g (see Proposition III.2.7 in [12]), and so on CP1 a collec-
tion of residues adding up to zero uniquely determines a meromorphic 1-form. Since (p, q) ∈

µ−1
C (0)α-st, the set of residues (3.2) adds up to 0 by the complex moment map condition (2.2)

and so it uniquely determines the Higgs field Φ(p,q) ∈ H0

S Par End(CP1

×C2) ⊗ KCP1(D)

.

• Recall that the PHB E(p,q) is stable if µ(L) < µ(E(p,q)) for all proper parabolic subbundles
L that are preserved by Φ(p,q). Note that, since the bundle E(p,q) is holomorphically trivial, any
parabolic Higgs subbundle L of E(p,q) is also trivial, as explained in Example 4, and its parabolic
structure at each point xi ∈ D consists of the fiber Lxi with weight

βL(xi ) =


β2(xi ), if Lxi = ⟨qi ⟩

β1(xi ), otherwise.

Consider the index set SL := {i ∈ {1, . . . , n} | Lxi = Im qi } associated to any such subbundle.
Since L is holomorphically trivial, then SL is clearly straight. Let us assume without loss of gen-
erality that the fiber of L at each point of CP1 is the space generated by (1, 0)t . Then, writing
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qi = (ci , di )
t , one has di = 0 for i ∈ SL and di ≠ 0 for i ∈ Sc

L . Since Φ(p,q) preserves L, then,
writing pi = (ai , bi ) the residues qi pi satisfy

(qi pi )


1
0


=


ai ci bi ci
ai di bi di


1
0


=


λi
0


for some λi ∈ C. This implies that ai di = 0 for every i and so ai = 0 for every i ∈ Sc

L . Then,
using the moment map condition (2.4), one has bi = 0 and thus pi = 0 for i ∈ Sc

L .
Consequently, by the α-stability of (p, q) (see Theorem 2.1) the index set SL is short. This,

by (2.21) with deg L = deg E = 0, is equivalent to µ(L) < µ(E), and the stability of E(p,q)

follows.
• To see that I is independent of the choice of a representative in [p, q]α-st let ( p̃, q̃) be an

element in the K C-orbit of (p, q) and consider [E( p̃,q̃),Φ( p̃,q̃)] as before. The Higgs field Φ( p̃,q̃)

is defined by the residues

Resxi Φ( p̃i ,q̃i ) := q̃i p̃i = Bqi z
−1
i zi pi B−1

= B(qi pi )B−1
= B Resxi Φ(p,q) B−1

for some B ∈ SL(2,C) and zi ∈ C∗. Similarly, the flags in E( p̃,q̃) are determined by q̃i =

Bqi z
−1
i . Note that qi z

−1
i is just another generator of ⟨qi ⟩, and B acts on the whole bundle leaving

the flag structure unchanged. Since the weights are obviously the same, we can conclude that
[E(p,q),Φ(p,q)] = [E( p̃,q̃),Φ( p̃,q̃)]. This completes the proof that the map I is well-defined.

Let us consider the map F : H(β) −→ X (α) defined by

F([E,Φ]) = [p, q]α-st (3.3)

where (p, q) is determined as follows. For every parabolic point xi ∈ D, let qi = (ci , di )
t be

a generator of the flag Exi ,2 and, considering the residue of the Higgs field Φ at the parabolic
point xi

Ni := Resxi Φ =


r i

11 r i
12

r i
21 r i

22


,

let pi be

pi = (ai , bi ) :=
r i

12 − r i
21

c2
i + d2

i

(−di , ci ) . (3.4)

(Note that the case ci = di = 0 never occurs since the flags are complete.) To see that F is
well-defined one needs to check that (p, q), defined as above, is in µC(p, q) = 0, it is α-stable
and also that the value of F does not depend on the choice of generators of the flags Exi ,2 nor
on the choice of representative of the class [E,Φ]. Note that from (3.4) it is clear that F is a
continuous algebraic map.

• Clearly the complex moment map condition (2.4)

ai ci + bi di = 0

is verified. Since Ni is by assumption trace-free, one gets r i
22 = −r i

11. Moreover, since Ni is
nilpotent with respect to the flag, one has

r i
11 r i

12
r i

21 −r i
11


ci
di


=


0
0


(3.5)
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and so

r i
12d2

i + r i
21c2

i = 0 and r i
11(c

2
i + d2

i ) + ci di (r
i
12 − r i

21) = 0. (3.6)

By the definition in (3.4) it is easy to verify that

r i
12 − r i

21 = bi ci − ai di . (3.7)

Multiplying the second equation in (3.6) by ai one gets

ai (c
2
i + d2

i )r i
11 + ai ci di (r

i
12 − r i

21) = 0 ⇒ (r i
12 − r i

21)di (ai ci − r i
11) = 0,

where we used ai (c2
i + d2

i ) = −(r i
12 − r i

21)di , and so either r i
12 = r i

21, or di = 0 or r i
11 = ai ci .

It is then easy to verify that, in all cases, we have

r i
11 = ai ci , r i

12 = bi ci and r i
21 = ai di .

Since the sum of the residues Ni is 0, we obtain the moment map condition (2.5)

n
i=1

ai ci = 0,

n
i=1

ai di = 0,

n
i=1

bi ci = 0.

This proves that (p, q) ∈ µ−1
C (0).

• To show that (p, q) is α-stable, we need to check that conditions (i) and (ii) of Theorem 2.1
are verified. The first one (qi ≠ 0 for all i), is trivially verified since the flags are complete by
assumption. To show the second condition, let S ⊂ {1, . . . , n} be a maximal straight set such that
pi = 0 for all i ∈ Sc. As in Example 4 one can construct a line subbundle L S of the trivial bundle
CP1

× C2 which is trivial as an holomorphic line bundle, with fiber the complex line generated
by the qi for i ∈ S. We then give L S a parabolic structure at the parabolic points x1, . . . , xn by
assigning the parabolic weights

βL S (xi ) =


β2(xi ), if i ∈ S
β1(xi ), if i ∉ S.

By construction L S is a parabolic subbundle of E. Moreover, it is also trivially preserved by the
Higgs field Φ since, by the moment map condition (2.4), one has

Ni qi = 0, ∀ i = 1, . . . , n.

Therefore, by stability of E, one gets that L S satisfies µ(L S) < µ(E), which implies that S is
short since both bundles have degree zero. By Remark 2.12, this is equivalent to condition (ii).

• To show that the value of F is independent of the choice of generator qi of the flag Exi ,2, let
qi , q̃i be two different generators of Exi ,2. Then q̃i = λi qi for some λi ∈ C∗ and so (3.4) clearly
implies that p̃i = λ−1

i pi and then [p, q]α−st = [( p̃, q̃)]α−st .
• To show that J does not depend on the choice of representative of the class of [E,Φ] one

considers another PHB E = (E,Φ) in [E,Φ]. Let ( p̃, q̃) be coordinates determined from E
by the recipe above and denote by Ni the residues of the Higgs field Φ. Then there exists
g ∈ SL(2,C) such that Exi ,2 = gExi ,2 and so one can take q̃i = g qi , where qi is a genera-
tor of Exi ,2. Moreover, since the Higgs field Φ is obtained from Φ by conjugation with g, the
residues Ni of Φ satisfyNi = g Ni g−1

∀i = 1, . . . , n.
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Since p̃i is determined by the equation q̃i p̃i = Ni , one can easily see that p̃i = pi g−1 and so
( p̃, q̃) is in the K C-orbit of (p, q).

Finally, from what was shown above it is clear that F = I−1. �

This isomorphism allows us to identify X (α) and H(β) as S1-spaces.

Proposition 3.8. The isomorphism I is S1-equivariant with respect to the S1-actions on X (α)

and on H(β) defined in (2.14) and in (2.28) respectively.

Proof. The bundles eiθ
· I([p, q]) and I(eiθ

· [p, q]) are both holomorphically trivial and have
the same parabolic structure. Moreover, the Higgs field Φ(eiθ p,q) on I(eiθ

· [p, q]) is uniquely
determined by the residues

Resxi Φ(eiθ p,q) = (eiθqi pi )0 = eiθ Resxi Φ(p,q)

and hence

Φ(eiθ p,q) = eiθΦ(p,q).

Therefore, as PHBs,

eiθ
· I([p, q]) = I(eiθ

· [p, q])

and the isomorphism I is S1-equivariant. �

Since the isomorphism I : X (α) −→ H(β) is S1-equivariant it maps the critical components
of the moment map φ on X (α) to the critical components of the moment map f on H(β) as well
as the corresponding flow-downs. This flow-down is the restriction to H(β) of the nilpotent cone
of N

0,Λ
β,2,0, following [35, Section 5] and [15, Section 3.5].

In particular, the moduli space of polygons M(α) is mapped to the moduli space M
0,Λ
β,2,0 of

rank-2, holomorphically trivial, fixed determinant parabolic bundles overCP1. The fact that these
two spaces are isomorphic has already been noted in [2] for small values of β.

Moreover, the critical components X S in X (α) are mapped to the critical components M(0,S)

in H(β) and each connected component of the core US is isomorphic through I to the component
U(0,S) := I(US) of the nilpotent cone defined as the closure inside H(β) of the set

[E,Φ] ∈ H(β) | lim
t−→∞

[E, t · Φ] ∈ M(0,S)


. (3.9)

The nilpotent cone Lβ of H(β) is then

Lβ := M0
β,2,0 ∪


S∈S′(α)

U(0,S),

and so Lβ = I(Lα).

Example 6. Consider the case of 4 parabolic points as in Example 5. The closure of the flow-
down of the four index-2 critical points is a union of four spheres intersecting the minimal
component at four distinct points. Consequently, the nilpotent cone of N

0,Λ
β,2,0 is a union of five

spheres arranged in a D4 configuration [14] as in Fig. 5. Restricting this nilpotent cone to H(β)

we loose one critical point (either M(1,{1,2,3,4}) or M(−1,∅)) and the corresponding flow-down.
Hence, the nilpotent cone of H(β) is a union of four spheres arranged in a D4 configuration just
like the core of the associated hyperpolygon space X (α) (cf. Example 1).
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Fig. 5. Nilpotent cone of N
0,Λ
β,2,0 when n = 4: union of five spheres arranged in a D4 configuration.

Remark 3.10. In general it is hard to describe the complement of the set H(β) inside N
0,Λ
β,2,0.

Nevertheless, one can still determine the complement of its nilpotent cone inside the nilpotent
cone of N

0,Λ
β,2,0. Indeed the critical components of the S1-action on N

0,Λ
β,2,0 defined in (2.28)

can be obtained from Proposition 2.34. In particular, we have a critical component M(d0,S)
∼=

CP|S|−2d0−2 for every pair (d0, S) with d0 ∈ Z and S ⊂ {1, . . . , n} satisfying

εS(β) < 2d0 ≤ |S| − 2.

The components with d0 ≠ 0 are lost when restricting to H(β) as it was described in detail in
Examples 5 and 6 for the case n = 4.

4. Wall crossing

The variation of moduli of PHBs has been studied in detail by Thaddeus in [37]. The con-
struction in this Section is an adaptation of his work to the moduli space H(β) of rank-2, holo-
morphically trivial PHBs over CP1 with fixed determinant and trace-free Higgs field considered
in the previous section. As we have seen in Example 4, rank-2 PHBs over CP1 which are triv-
ial as holomorphic bundles are semistable but not stable with respect to the parabolic weights
β1(xi ), β2(xi ) if and only if

εS(α) = 0

for some set S ⊂ {1, . . . , n}, with α = β2 − β1. Hence, any such PHB must have an invariant
line subbundle L which is trivial as a holomorphic line bundle and satisfies

0 =


i∈SL

αi −


i∈Sc

L

αi (4.1)

for SL = {i ∈ {1, . . . , n} | βL(xi ) = β2(xi )}, where βL(xi ) is the parabolic weight of L at xi .
We will call the set SL the discrete data associated to a line subbundle L of a strictly semistable
PHB satisfying Eq. (4.1).

Let Q be the weight space of all possible values of (β1(x j ), β2(x j )). It can be seen as the
product

Q = Sn
2 ⊂ (R+)2n
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of n open simplices of dimension 2 determined by

0 ≤ β1(x j ) < β2(x j ) < 1.

If the discrete data of a line subbundle is fixed, then (4.1) requires that the point β ∈ Q belongs
to the intersection of an affine hyperplane with Q. We will call such an intersection a wall. There
is therefore a finite number of walls. Note that a set S ⊂ {1, . . . , n} and its complement give rise
to the same wall and that on the complement of these walls the stability condition is equivalent
to semistability. A connected component of this complement will be called a chamber. In this
section we study how the moduli spaces H(β) change when a wall is crossed.

Let us then choose a point in Q lying on only one wall W . A small neighborhood of this
point intersects exactly two chambers, say ∆+ and ∆− and a PHB is ∆+-stable (respectively
∆−-stable) if it is stable with respect to the weights β ∈ ∆+ (respectively ∆−). If a PHB E is
∆−-stable but ∆+-unstable then it has a PH line subbundle L (called a destabilizing subbundle)
for which the stabilizing condition holds in ∆− but fails in ∆+.

Let H+ and H− respectively denote the moduli space of ∆+ and ∆−-stable rank-2, fixed-
determinant PHBs which are trivial as holomorphic bundles. Choosing the wall W is equivalent
to choosing a set S ⊂ {1, . . . , n} for which (4.1) holds whenever β ∈ W . The only ambiguity
is the possibility of exchanging S with Sc. Interchanging these sets if necessary one can assume
without loss of generality that εS(α) > 0 whenever β ∈ ∆+ with α = β2 − β1. The following
propositions then hold.

Proposition 4.2. If E is ∆−-stable but ∆+-unstable then any destabilizing subbundle has
discrete data S.

Proof. As the weight β crosses from ∆+ to ∆− any destabilizing subbundle L+ of E stops
destabilizing. Hence the corresponding values of εSL (α) change from positive to negative. This
implies that L+ has discrete data SL = S. �

Proposition 4.3. If E is ∆−-stable but ∆+-unstable then the destabilizing subbundle L+ is
unique.

Proof. Let L− be the quotient of E by a destabilizing subbundle L+ (holomorphically trivial as
well). If F is another ∆+-destabilizing trivial line subbundle, then it must have discrete data S.
There is then a non-trivial homomorphism F −→ L− of PHBs and hence a nontrivial element
of H0(C•(F, L−)) (both F and L− are trivially ∆+ and ∆−-stable). By Proposition 2.22, this is
impossible since the two PHBs are not isomorphic. Indeed,

pdeg F =


i∈S

β2(xi ) +


i∈Sc

β1(xi ),

while

pdeg L−
=


i∈S

β1(xi ) +


i∈Sc

β2(xi ),

and so

β ∈ ∆+
⇔ εS(α) > 0 ⇔


i∈S

(β2(xi ) − β1(xi ))

>

i∈Sc

(β2(xi ) − β1(xi )) ⇔ pdeg F > pdeg L−. �
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Proposition 4.4. Let L+ and L− be two line PHBs which are trivial as holomorphic line bundles
with discrete data S and Sc. Then any extension of L− by L+ is ∆+-unstable and it is ∆−-stable
if and only if it is not split.

Proof. The bundle L+ would be the destabilizing subbundle of such an extension E so this
extension would be ∆+-unstable. Moreover, if E splits as L+

⊕ L− then L− is the ∆−-
destabilizing subbundle of E which would then be ∆−-unstable.

Conversely, if the extension E is ∆−-unstable, the ∆−-destabilizing bundle F must not be
∆+-destabilizing and so it has discrete data Sc. The composition map

F ↩→ E −→ L−

must then be a nontrivial homomorphism of PHBs since F and L− have the same incidences with
the flags (F and L− both have discrete data Sc). Hence there is an element of H0(C•(F, L−))

which, by Proposition 2.22, must be an isomorphism and so E splits. �

The above three propositions then give the following result.

Theorem 4.1. If E is ∆−-stable but ∆+-unstable then it can be expressed uniquely as a nonsplit
extension of PHBs

0 −→ L+
−→ E −→ L−

−→ 0,

where L± are parabolic Higgs line bundles with discrete data S and Sc. Conversely, any such
extension is ∆−-stable but ∆+-unstable.

We will use this theorem to see that H+ and H− have a common blowup with the same
exceptional divisor. The loci in H± which are blownup (flip loci) are isomorphic to projective
bundles PU± ∼= CPn−3 over a product N+

× N− (a 0-dimensional manifold) of moduli spaces
of parabolic Higgs line bundles which are trivial as holomorphic line bundles. Moreover, as we
will see, the bundles U+ and U− are dual to each other and so PU+ and PU− are projective
bundles of the same rank over the same basis.

Let then N+ and N− be the moduli spaces of parabolic line Higgs bundles over CP1 which
are trivial as holomorphic line bundles and have discrete data S and Sc respectively. By [7] the
dimension of these spaces is

dim N−
= dim N+

= 2(g − 1)(r2
− 1) + (r2

− r) = 0.

Moreover, N+ and N− are composed of just one point as any two parabolic line Higgs bundles
which are trivial as holomorphic line bundles and have discrete data S (or Sc) are isomorphic
(there is always a parabolic map between them). Note that Higgs field in both N+ and N− is
identically 0 due to the strongly parabolic condition. Hence the product N+

× N−
= {pt}.

Define L± to be the element in N±. Considering the complex C•(L−, L+) and taking the
hypercohomology

H∗

C•(L−, L+)


one defines

U−
:= H1C•(L−, L+)


= (R1)∗


C•(L−, L+)


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and then, from the long exact sequence presented in Proposition 2.22, one obtains

0 −→ H0C•(L−, L+)


−→ H0Par Hom(L−, L+)


−→ H0S Par Hom(L−, L+) ⊗ KCP1(D)


−→ U−
−→ H1Par Hom(L−, L+)


−→ H1S Par Hom(L−, L+) ⊗ KCP1(D)


−→ H2C•(L−, L+)


−→ 0. (4.5)

Analogously, one can consider the complex C•(L+, L−) and define

U+
:= H1C•(L+, L−)


= (R1)∗


C•(L+, L−)


and obtain a similar sequence. By Proposition 2.22 and Serre duality for hypercohomology (cf.
Proposition 2.23) H0 and H2 vanish and so U+ and U− are locally free sheaves (hence vector
bundles [3]) dual to each other.

Proposition 4.6. Let U−
:= H1


C•(L−, L+)


and U+

:= H1

C•(L+, L−)


. Then U−

=

(U+)∗.

As stated in Proposition 2.22(3), U− parameterizes all extensions of the PHB in N− by that
in N+ and so, as usual, the projectivization PU− parameterizes all nonsplit extensions of the
parabolic Higgs line bundle in N− by that in N+ (see for instance [30]). Following the exact
sequence (4.5) one can see that the dimension of U− is given by

dim U−
= χ


S Par Hom(L−, L+) ⊗ KCP1(D)


− χ


Par Hom(L−, L+)


.

Using (2.42) one obtains

χ

Par Hom(L−, L+)


= χ


Hom(L−, L+)


+

n
i=1


dim Pxi (L−, L+) − 1


,

where Pxi (L−, L+) denotes the subspace of Hom(L−
xi

, L+
xi

) formed by parabolic maps. Then,
since

SL− = {i ∈ {1, . . . , n} | βL−

(xi ) = α2(xi )} = Sc

and

dim Pxi (L−, L+) =


1, if i ∈ Sc

L−

0, otherwise,

one gets

χ

Par Hom(L−, L+)


= 1 − |Sc

|,

where we used Riemann–Roch to compute

χ

Hom(L−, L+)


= χ


Hom(O(0), O(0))


= χ


CP1, O(0)


= rank(O(0))(1 − g) = 1.

On the other hand, consider the short exact sequence

0 −→ S Par Hom(L−, L+) ⊗ KCP1(D) −→ Hom(L−, L+) ⊗ KCP1(D)

−→ Hom(L−

D, L+

D)/ND(L−, L+) −→ 0,
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where Hom(L−

D, L+

D) =


x∈D Hom(L−
x , L+

x ) and, where, denoting by Nx (L−, L+) the sub-
space of Hom(L−

x , L+
x ) formed by strictly parabolic maps, ND(L−, L+) =


x∈D Nx (L−,

L+). Then,

χ

S Par Hom(L−, L+) ⊗ KCP1(D)


= χ


Hom(L−, L+) ⊗ KCP1(D)


+


x∈D

(dim Nx − 1)

and so, since in this case Px (L−, L+) = Nx (L−, L+), one obtains

χ

S Par Hom(L−, L+) ⊗ KCP1(D)


= χ


KCP1(D)


− |Sc

| = n − 1 − |Sc
|.

Here we used the fact that Hom(L−, L+) = O(0), and Riemann–Roch with deg(KCP1) = −2
and deg(O(D)) = n. Then dim U−

= n − 1 − |Sc
| − (1 − |Sc

|) and one concludes the following
result.

Proposition 4.7. Let U−
:= H1


C•(L−, L+)


. Then

dim U−
= n − 2

and so U− ∼= Cn−2 and PU− ∼= CPn−3.

Every parabolic Higgs bundle given by an element in PU− is ∆−-stable and so, by the uni-
versal property of the moduli space H−, there exists a morphism

CPn−3 ∼= PU−
−→ H−

whose image is precisely the locus of PHBs which become unstable when the wall is crossed.
Let V − be the cotangent bundle to PU− and consider the corresponding map π−

: PV −
−→

PU−. On the other hand, consider the Euler sequence of the cotangent bundle (see [24])

0 −→ V − π+

−→ (U−)∗ ⊗ OPU−(−1) −→ OPU− −→ 0. (4.8)

More explicitly, using the fact that

(U−)∗ ⊗ OPU−(−1) = (U−)∗ × U−
= U+

× U−,

one has

0 −→ T ∗CPn−3 π+

−→ (U−)∗ × U−
−→ CPn−3

× C −→ 0
([ω], ξ) −→ (ω, ξ) −→ ([ω], ξ(ω))

where [ω] ∈ CPn−3 and

ξ ∈ T ∗

[ω]
CPn−3

= [ω]
⊥

= {ξ ∈ (U−)∗ | ξ(ω) = 0}.

Hence

PV −
= P(T ∗PU−) ⊂ P


(U−)∗ ⊗ OPU−(−1)


= P


(U−)∗ × U−


= P


(U−)∗


× P(U−) = P(U+) × P(U−),

the fiber V −

[ω]
over a line [ω] ∈ PU− is naturally isomorphic to the space of linear functionals

ξ : U−
−→ C with ξ(ω) = 0, and there is an induced map π+

: PV −
−→ PU+. Moreover, one
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can identify P(T ∗

[ω]
PU−) with P([ω]

⊥) in a canonical way and for [ξ ] ∈ P

[ω]

⊥


one defines an

element σξ ∈ Grn−3(Cn−2) with [ω] ⊂ σξ by

σξ = {v ∈ Cn−2
| ξ(v) = 0}.

Then [ξ ] → ([ω], σξ ) gives a diffeomorphism of PV − onto the manifold of partial flags in
U−

= Cn−2 of type (1, n − 3) and π±
: V −

−→ PU± are the forgetful morphisms that discard
one subspace.

As noted before PU− parameterizes all nonsplit extensions of the bundle L− in N− by the
bundle L+ in N+. Over PU−

× CP1 there is a universal extension

0 −→ L+
⊗ OPU−(1) −→ E −→ L−

−→ 0, (4.9)

where, for ([ω], x) ∈ PU−
× CP1,L+

([ω],x) = L+
x and L−

([ω],x) = L−
x

i.e., if we consider the projection pr : PU−
× CP1

−→ CP1, we haveL+
= pr∗L+ and L−

= pr∗L−.

Moreover, by the universal property, the extension E restricted to {[ω]} × CP1 is the extension
E([ω]) of L− by L+ determined by the element [ω] ∈ PU−. Extensions like (4.9) are
parameterized by

H1

PU−

× CP1, C•
L−,L+

⊗ OPU−(1)


which by the Kunneth formula is isomorphic to

H1CP1, C•(L−, L+)

⊗H0PU−, OPU−(1)


= U−

⊗ (U−)∗ ∼= End(U−)

and one can show that the identity element in End(U−) defines the universal extension described
above.

Now consider the long exact sequence associated to

0 −→ C•
L−,L+

⊗ OPU−(1)


−→ C•′

0 (E) −→

C•(L+) ⊕ C•(L−)


0 −→ 0, (4.10)

where C•′

0 (E) is the subcomplex of C•

0(E) associated to the subsheaves Par End ′

0(
E) and

S Par End ′

0(
E) of Par End0(E) and S Par End0(E) preserving L+, and


C•(L+) ⊕ C•(L−)


0

is the complex formed by the direct sum of elements of C•(L+) and C•(L−) with symmetric
trace. By Serre duality and Proposition 2.22 we know that

H0C•

0(L−)


= H2C•

0(L−)


= 0,

H0C•(L+)


= H2C•(L+)


= C,

H0


C•
L−,L+

⊗ OPU−(1)


= H2


C•
L−,L+

⊗ OPU−(1)


= 0.

Moreover, again by the Kunneth formula,

dimH1PU−
× CP1, C•(L+)


= dim


H1CP1, C•(L+)


⊗H0PU−, OPU−(1)


= 0,
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since dimH1(CP1, C•(L+)) = 0 is the dimension of the moduli space of line PHBs over CP1

(cf. [7]). Then the long exact sequence associated to

0 −→ C•

0(L−) −→

C•(L+) ⊕ C•(L−)


0 −→ C•(L+) −→ 0

gives

H0


C•(L+) ⊕ C•(L−)


0


= H2


C•(L+) ⊕ C•(L−)


0


= C

H1


C•(L+) ⊕ C•(L−)


0


= 0.

Moreover,H0

C•′

0 (E)


= 0 sinceH0

C•

0(E)


= 0 and C•′

0 (E) is a subcomplex of C•

0(E). Hence,
the long exact sequence associated to (4.10) gives

0 −→ C a
−→ H1


C•
L−,L+

⊗ OPU−(1)
 b

−→ H1C•′

0 (E)


−→ 0 (4.11)

and

0 −→ H2


C•
L−,L+

⊗ OPU−(1)


−→ H2C•′

0 (E)


−→ C −→ 0. (4.12)

The image of the map a must be the line spanned by the extension class ρ of E. This follows
from exactness of (4.11) and, from the fact that H1


C•′

0 (E)


classifies infinitesimal deformations
of extensions and the deformation of any extension along its extension class is isomorphic to the
trivial one, thus implying Ker b = ⟨ρ⟩.

On the other hand, since PU− parameterizes a family of extensions of the PHB L−
∈ N− by

L+
∈ N+, there is a natural map

T[ω]PU−
−→ H1


CP1, C•′

0


E([ω])


,

where the bundle E([ω]) is the extension determined by [ω]. Therefore, one has the following
maps between exact sequences

0 //

��

(V −)∗
≃ //

m
��

TPU− //

��

0

��
0 // H1


C•
L−,L+

⊗ OPU−(1)


/⟨ρ⟩
≃ // H1(C•′

0 (E)) // 0

(4.13)

and, since the map m is an isomorphism, one has that

TPU− ∼= H1C•′

0 (E)

. (4.14)

Let us now consider the long exact sequence associated to

0 −→ C•′

0 (E) −→ C•

0(E) −→ C•
L+

⊗ OPU−(1),L−


−→ 0

which is

0 −→ TPU−
−→ T H−

−→ H1


C•
L+

⊗ OPU−(1),L−


−→ C −→ 0,
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where we used (4.14), (4.12) and the fact that T H− ∼= H1

C•

0(E)

. One concludes that the map

PU−
−→ H− is an embedding (it is injective by Proposition 4.3) and that the map

T H− ∼= H1


C•

0

E −→ H1C•(L+
⊗ OPU−(1),L−)


,

whose image is the normal bundle of PU− inside H−, has corank 1. This map is Serre dual to
the map

H1


C•
L−,L+

⊗ OPU−(1)


−→ H1C•

0(E)


which maps a deformation of the extension class ρ of E to a deformation of the bundle itself.
Since a deformation in the direction of ρ itself is isomorphic to a trivial deformation, the kernel
of this map is the line through ρ. We conclude then that the normal bundle of PU− inside H− is

the annihilator of ρ in H1


C•
L+

⊗ OPU−(1),L−


which by (4.13) is V −.

Let H− be the blowup of H− along the image of the embedding PU−
−→ H− with ex-

ceptional divisor PV −. Moreover, since the roles of plus and minus in the above arguments are
completely interchangeable one can consider the blowup H+ of H+ along the image of the
embedding PU+

−→ H+ with exceptional divisor PV +. Then we have the following result.

Proposition 4.15. Let ∆± be two chambers on either side of wall W in the space Q of admissible
parabolic weight vectors β. Let H± denote the moduli space of ∆±-stable rank-2, fixed-
determinant PHBs which are trivial as holomorphic bundles and let H± be the corresponding
blowups along the image of the embedding PU±

−→ H± with exceptional divisor PV ±.
Then there is an isomorphism H−

↔ H+ such that the following diagram commutes

H−
\ PU− //

OO

��

H−
OO

��

oo ? _ PV −
OO

��
H+

\ PU+ // H+ oo ? _ PV +.

Proof. LetE be the universal PHB over H−
×CP1. By uniqueness of families of extensions, the

restrictionE|PU−×CP1 is isomorphic to the universal extension ofL− byL+
⊗OPU−(1) tensored

by the pull-back of a line bundle F over PU−. Then the pull-back of E to H−
× CP1 restricted

to PV −
× CP1 hasL+

⊗ F(1) as a sub PHB. LetE′ be the elementary modification of the pull-
back of E to H−

× CP1 along L+
× F(1) as in Proposition 4.1 of [37]. Then, for x ∉ PV −,E′

{x}×CP1 = E{x}×CP1 while for x ∈ PV −,E′

{x}×CP1 is an extension ofL+ byL− with extension

class ρx ∈ H1(C•(L+,L−)) obtained as the image of the normal space Nx (PV −/H−) (see [37]
for details). Indeed, at every point x ∈ PV − there are deformation maps

TxH−
−→ H1C•

0(E)


and TxPV −
−→ H1C•′

0 (E)


and then the short exact sequence

0 −→ C•′

0 (E) −→ C•

0(E) −→ C•(L+,L−) −→ 0

determines a well-defined map from the (1-dimensional) normal space Nx (PV −/H−) to
H1

C•(L+,L−)


, giving a class ρx well-defined up to a scalar.
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We then have the following commutative diagram for x ∈ PV −

TxH− //

��

Tπ−(x)H
− //

��

H1


C•

0

E(x)


��
Nx (PV −/H−) // V −

π−(x)

π+

// H1

C•(L+

x ,L−
x )

,

where we used the fact that

π−

Nx (PV −/H−)


= Nπ−(x)


PU−/H−


= V −

π−(x)
,

as well as Proposition 2.22 adapted to the traceless situation. This defines a map H−
ϕ

−→ H+

which is an isomorphism away from the exceptional divisor PV − and such that for x ∈ PV −

gives ϕ(x) = π+(x), where π+ is the forgetful morphism defined by the Euler sequence as in
(4.8).

Interchanging plus and minus signs in the above argument one obtains mapsH−
−→ H+ and H+

−→ H−.

Using these along with the blow-down maps H±
−→ H± one obtains injections of H+ andH− into H+

× H−. Clearly these maps are embeddings and their images are both equal to the
closure of the image of H±

\ PV ± and the result follows. �

4.1. Wall-crossing for hyperpolygons

Now that we have studied the changes in H(β) as β crosses a wall we will use the isomor-
phism constructed in Section 3 to analyze the behavior of the corresponding spaces of hyper-
polygons X (α) (with α = β2 − β1). First note that by rescaling if necessary one can assume that
all hyperpolygon spaces considered in this section have weights αi < 1.

Let W be a wall separating two adjacent chambers ∆− and ∆+ of admissible values of α and
let S be an index set in {1, . . . , n} associated to W . Exchanging S with Sc if necessary one can
assume that S is short for every α−

∈ ∆− and long for every α+
∈ ∆+. Then one sees that

the corresponding spaces of PHBs suffer a Mukai transformation as described above for H(β±).
Note that the wall W uniquely determines a wall in Q (defined by the same equation εS(α) = 0)
separating two chambers ∆+,∆−

⊂ Q of nongeneric parabolic weights.
Let X± be hyperpolygon spaces for values α±

∈ ∆±. Then X+ and X− suffer a Mukai
transformation where X− is blown up along an embedded CPn−3 and then blown down in the
dual direction giving rise to a new embedded CPn−3. Therefore, one sees (as observed by Konno
in [27]) that X+ and X− are diffeomorphic. Let us study this transformation in more detail.

The embeddedCPn−3 that is blown-up in X− corresponds to PU− in H− by the isomorphism
of Theorem 3.1. In fact, PU− is the space of PHBs in H− that are not stable for β+

∈ ∆+. Hence,
any PHB E in PU− has a destabilizing subbundle L which is holomorphically trivial and is such
that

S = SL = {i ∈ {1, . . . , n} | Lxi = Exi ,2}

is a maximal straight set. Moreover, as seen in the proof of Theorem 3.1 the fact that E is ∆−-
stable implies that the corresponding hyperpolygon F(E) = [p, q]α−−st in X− satisfies pi = 0
for every i ∈ Sc. By stability of hyperpolygons (cf. Theorem 2.1) one has that S is ∆−-short.
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Hence, the image of PU− under the isomorphism F is the core component U−

S
∼= CPn−3 (cf.

Proposition 2.18).
Similarly, one concludes that PU+ corresponds to U+

Sc
∼= CPn−3 in X+ and so we have the

following result.

Theorem 4.2. Let X+ and X− be hyperpolygon spaces for α+ and α− on either side of a wall
W of discrete data S. Then X− and X+ are related by a Mukai transformation where X± have
a common blowup obtained by blowing up X− along the core component U−

S and by blowing
up X+ along the core component U+

Sc . The common exceptional divisor is a partial flag bundle
P(T ∗CPn−3) ∼= P(T ∗U−

S ) ∼= P(U+

Sc ).

Even though X+ and X− are diffeomorphic they are not isomorphic as S1-spaces, for the
S1-action in (2.14), and the corresponding cores

Lα± = M(α±) ∪


B∈S′(α±)

U±

B

do change under the Mukai transformation.
All the fixed point set components X−

B with B ∈ S′(α−) remain unchanged except for
X−

S ≃ CP|S|−2 which is substituted by X+

Sc
∼= CP|Sc

|−2.
The fixed point set component M(α−) suffers a blowup along

U−

S ∩ M(α−) = MS(α−)

followed by a blowdown resulting in a new polygon space MSc (α+) = U+

Sc ∩ M(α+) embedded
in U+

Sc (see Section 2.1.2).
The core components U−

B for which B ∩ S ≠ ∅ but B ⊄ S are not affected by the Mukai
transformation and remain unchanged as U+

B . Indeed, since S is a maximal ∆−-short set, B ∪ S
is long and so U−

S ∩ U−

B = ∅.
If B  S then

U−

B ∩ U−

S =

[p, q] ∈ U−

S | p j = 0 for all j ∈ S \ B


and so U−

B suffers a blowup along U−

B ∩ U−

S followed by a blowdown of the exceptional divisor

VB = P

T ∗(U−

B ∩ U−

S )

,

resulting in the core component U+

B . Note that if one blows up U+

B along U+

B ∩U+

Sc = M+

B ∩ M+

Sc

(since B ∩ Sc
= ∅), one obtains the exceptional divisor VB inside the common blowup of U−

B
and U+

B .
Finally, if B ⊂ Sc then U−

B suffers a blowup along

U−

B ∩ U−

S = M−

B ∩ M−

S

followed by a blowdown of the exceptional divisor VB resulting in the core component U+

B .
Again, if one blows up U+

B along

U+

B ∩ U+

Sc =

[p, q] ∈ U+

Sc | p j = 0 for all j ∈ Sc
\ B


,

one obtains the exceptional divisor VB .
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Example 7. Let n = 5 and consider α−
= (2, 1, 5, 1, 2) and α+

= (3, 1, 5, 1, 2) on either side
of the wall WS with S = {1, 2, 5}. The corresponding collections of short sets of cardinality
greater than or equal to 2 are

S′(α−)

=


{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 4, 5}


and

S′(α+) =


{1, 2}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {4, 5}, {1, 2, 4}, {1, 4, 5}, {2, 4, 5}


.

Crossing the wall WS we see that the core component U−

{1,2,5}
∼= CP2 disappears as a result of the

Mukai transformation, being replaced by the new core component U+

{3,4}
∼= CP2. The other core

components affected are those relative to elements of S′(α−) which are subsets of S (i.e. {1, 5},
{1, 2} and {2, 5}). In Figs. 6 and 7 we represent these changes. There, the critical components are
pictured by shaded ellipses or dots (when 0-dimensional) while other ellipses represent copies of
CP1 flowing between two fixed points.

Remark 4.16. By the above arguments it is clear that the submanifolds PU− and PU+ of
H− and H+ involved in the Mukai flop are the nilpotent cone components U(0,S) ⊂ H− and
U(0,Sc) ⊂ H+, defined as the closure of the flow-down set (3.9). Moreover, the changes in the
different core components of X± as one crosses a wall translate to changes in the corresponding
components of the nilpotent cone in H±. In particular the birational map between polygon spaces
M(α±) studied in [31] and described in Section 2.1.2 translates to the birational map between
M

0,Λ
β±,2,0 studied in [6] and described in Section 2.2.3.

5. Intersection numbers for hyperpolygon spaces

Going back to the study of hyperpolygon spaces and their cores we will now consider n circle
bundles Vi over X (α) and take their first Chern classes ci := c1(Vi ) as in Konno [27]. These
classes generate the cohomology ring of the hyperpolygon space X (α) [27,18,20], as well as
the cohomology of all the core components. In particular, the restrictions ci |M(α) to the polygon
space M(α) are the cohomology classes considered in [1] to determine the intersection ring of
M(α).

In this section we obtain explicit formulas for the computation of the intersection numbers
of the restrictions of the classes ci to the other core components. For that, just as in the work
of Witten and Kontsevich on moduli spaces of punctured curves [29,40,41], we first prove
a recursion formula in n which allows us to decrease the dimension of the spaces involved
(see Theorem 5.1). Then, based on this recursion relation, we obtain explicit formulas for the
intersection numbers of the core components US (see Theorems 5.2 and 5.3).

Finally, the isomorphism H(β) ↔ X (α) proved in Section 3 allows us to consider circle
bundles over H(β) (the pullbacks of those constructed over X (α)) and their Chern classes.
We can thus obtain explicit formulas for the intersection numbers of the restrictions of these
Chern classes to the different components U(0,S) of the nilpotent cone of H(β). These formulas
then allow us to determine the intersection rings of the components U(0,S). For completion, we
use our results together with the work of Harada–Proudfoot [18] and Hausel–Proudfoot [20]
for hyperpolygon spaces to present the cohomology rings of H(β) and of its nilpotent cone
components (see Theorems 6.1 and 6.2).
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Fig. 6. Relevant part of the core of X (α−) before crossing the wall W{1,2,5}.

Fig. 7. Relevant part of the core of X (α+) after crossing the wall W{1,2,5}.

5.1. Circle bundles

As in [27] one constructs circle bundles over X (α) as follows. For each 1 ≤ i ≤ n one can
define the spaces

Qi =


(p, q) ∈ µ−1

R (0, α) ∩ µ−1
C (0) | (qi q

∗

i − p∗

i pi )0 =


t 0
0 −t


, t > 0


.

Note that the vectors (qi q∗

i − p∗

i pi )0 live in i su(2) ∼= su(2)∗ ∼= R3 and that, under this iden-
tification, Qi is the set of points (p, q) for which (qi q∗

i − p∗

i pi )0 = (0, 0, αi + |pi |
2). One
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then considers the representation

ρSO(3) : K −→ SO(3) ≃ SO(su(2))

defined by

ρSO(3)([A, e1, . . . , en]) = Ad(A),

where Ad is the adjoint representation of SU (2), and take the quotient

Qi := Qi/ ker ρSO(3).

Define an S1-action on Qi by the following injective homomorphism of S1 into K

ιQi (e
it ) =


eit 0
0 e−it


, 1, . . . , 1


. (5.1)

Since ι−1
Qi

(ker ρSO(3)) = {±1}, one gets an effective (right) S1/{±1}-action on Qi thus obtaining

a principal S1/{±1}-bundle over X (α). The line bundle associated to Qi is then

L i = Qi ×ρi C,

where ρi : K −→ S1 is the representation given by

ρi ([A, e1, . . . , en]) = e2
i

(see Section 6 in [28]). Restricting the bundle Qi to the polygon space M(α) one obtains a princi-
pal circle bundle Qi |M(α) −→ M(α). Comparing it with the S1-bundle Vi −→ M(α) considered
in [1] and given by

Vi :=


v ∈

n
j=1

S2
α j

|

n
j=1

v j = 0, and vi = (0, 0, αi )


, (5.2)

where the circle acts by standard rotation around the z-axis, one sees that

c1(Vi ) = −c1

Qi |M(α)


since the S1-action on Qi is a right action.

For this reason, we will work instead with the circle bundlesVi −→ X (α)

defined as the principal circle bundles over X (α) associated to the dual line bundles L∗

i . Note
that, under the identification of i su(2) ∼= su(2)∗ ∼= R3, the circle acts on Vi by standard (left)
rotation around the z-axis and soVi |M(α) = Vi .

From now on we will denote the first Chern classes of these bundles by

c j := c1(V j ) ∈ H2(X (α),R).

Performing reduction in stages one can see hyperpolygon spaces

X (α) :=
µ−1

R (0, α) ∩ µ−1
C (0)

K
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as a quotient of a product of the cotangent bundles T ∗S2
αi

by SO(3). Consider then the diagonal
S1-action on

T ∗S2
α1

× · · · × T ∗S2
αn

(5.3)

given by the following injective homomorphism of S1 into SU (2)/ ± I

ι(eit ) =


eit 0
0 eit


.

This action is Hamiltonian with moment map

µS1 :

n
i=1

T ∗S2
αi

−→ R

(p, q) → ζ


n

i=1

(qi q
∗

i − p∗

i pi )0


,

where ζ(x, y, z) = z is the height of the endpoint of
n

i=1(qi q∗

i − p∗

i pi )0 under the usual
identification of su(2)∗ with R3.

In analogy with the polygon space case one defines the abelian hyperpolygon space

AX (α) =


(p, q) ∈

n−1
i=1

T ∗S2
αi

| ζ


n−1
i=1

(qi q
∗

i − p∗

i pi )0


= αn



which is the set of those (p, q) for which the vector
n−1

i=1 (qi q∗

i − p∗

i pi )0 in R3 ends on the
plane z = αn modulo rotations around the z-axis. (Here we take S1

≃ SO(2) as a subgroup of
SO(3) acting on the right.) It is the symplectic quotient of

n−1
i=1

T ∗S2
αi

(5.4)

by the above circle action,

AX (α) = µ−1
S1 (αn)/S1,

and so it is a symplectic manifold of dimension 4n − 6.

Remark 5.5. It is always possible to act on any element [p, q] of X (α) by an element of K in
such a way that the vector

n−1
i=1 (qi q∗

i − p∗

i pi )0 ends not only on the plane z = αn but also so
that (qnq∗

n − p∗
n pn)0 points downwards.

Since α is generic, the circle acts freely on the level set B := µ−1
S1 (αn) and so B −→ AX (α) is

a principal circle bundle. Moreover, one has the following commutative diagram

Qn(α)
ĩ

−→ B
↓ ↓

X (α)
i

↩→ AX (α)

where the inclusion ĩ : Qn(α) −→ B is anti-equivariant since, in the identification of X (α) as
a submanifold of AX (α), the vector (qnq∗

n − p∗
n pn)0 must face downward (see Remark 5.5).
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Therefore,

cn := c1(Vn) = −c1(Qn) = i∗(c1(B)).

On the other hand, since AX (α) is the reduced space

µ−1
S1 (αn)/S1

= B/S1,

one has by the Duistermaat–Heckmann Theorem that

c1(B) =
∂

∂αn
[ωR]

in H2(AX (α),R), and so

cn =
∂

∂αn
[ωR]

in H2(X (α),R). By symmetry, interchanging the order of the spheres in (5.4), one obtains

c j =
∂

∂α j
[ωR]. (5.6)

It is shown in [27,18] that these classes generate H∗(X (α),Q).

5.2. Dual homology classes

In this section we determine homology classes representing the first Chern classes c j ∈

H2(X (α),Q). For that consider i and j , 1 ≤ i, j ≤ n, with i ≠ j and denote by Di, j (α)

the submanifold of X (α) formed by hyperpolygons [p, q] for which (qi q∗

i − p∗

i pi )0 and
(q j q∗

j − p∗

j p j )0 are parallel as vectors in R3. It is not restrictive to assume that both these vectors
are parallel to the z-axis. Clearly Di, j (α) has two connected components

D+

i, j (α) = {[p, q] ∈ Di, j (α) | ⟨(qi q
∗

i − p∗

i pi )0, (q j q
∗

j − p∗

j p j )0⟩ > 0}

D−

i, j (α) = {[p, q] ∈ Di, j (α) | ⟨(qi q
∗

i − p∗

i pi )0, (q j q
∗

j − p∗

j p j )0⟩ < 0}.

Moreover one has the following result.

Proposition 5.7. The circle bundle

V j |X (α)\Di, j (α)

π j
−→ X (α) \ Di, j (α)

has a section si, j : X (α) \ Di, j (α) −→ V j |X (α)\Di, j (α).

Proof. Let [p, q] ∈ X (α) and take i ≠ j . Then assign to [p, q] the unique element in
π−1

j ([p, q]) for which (qi q∗

i − p∗

i pi )0 projects onto the x Oy-plane along the positive y-axis.

Such a representative always exists in π−1
j ([p, q]) as long as [p, q] ∉ Di, j (α). �

On the other hand, let us consider the function

t̃ j : µ−1
R (0, α) ∩ µ−1

C (0) −→ C
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defined by

t̃ j (p, q) =


b j

c j
, if c j ≠ 0

−
a j

d j
, if d j ≠ 0,

where, as usual, p j = (a j , b j ) and q j =


c j
d j


. This map is well-defined since, if c j , d j ≠ 0, one

has by (2.4) that

b j

c j
= −

a j

d j
.

Moreover, it is K -equivariant with respect to ρ j since

t j

(p, q) · [A, e1, . . . , en]


= e−2

j t j (p, q),

and so it induces a section t j of L j vanishing on

W j := {[p, q] ∈ X (α) | p j = 0}.

Hence we obtain the following proposition.

Proposition 5.8. The line bundle L j |X (α)\W j

π j
−→ X (α) \ W j has a section.

We conclude that c j is represented in Borel–Moore homology by both Di, j (α) (i ≠ j) and by
−W j .

5.3. Restriction to a core component

We will restrict the circle bundles defined in the previous sections to a core component US
and determine the Poincaré Dual of the Chern classes of these restrictions. For that, recall that
Di, j (α) has two connected components D±

i, j (α). Then, if i ≠ j and i, j ∉ S, the intersection

D±

i, j (α) ∩ US(α) is diffeomorphic to a core component US(α±) for a lower dimensional
hyperpolygon space X (α±).

Proposition 5.9. Assuming S = {1, . . . , |S|} and αi > α j with i, j ∉ S there exist diffeomor-
phisms

s± : D±

i, j (α) ∩ US(α) −→ US(α±),

with

s± ([p, q]) =


p1, . . . , p|S|, 0, . . . , 0, q1, . . . , q̂i , . . . , q̂ j , . . . , qn,


αi ± α j

αi
qi


, (5.10)

where

α±

i, j := (α1, . . . , α̂i , . . . , α̂ j , . . . , αn, αi ± α j ).

Remark 5.11. By permutation it is not restrictive to assume S = {1, . . . , |S|}. Moreover, note
that both α±

i, j are generic provided that α is.
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Fig. 8. (I) A hyperpolygon in D+

i, j (α) ∩ US(α). (II) A hyperpolygon in D−

i, j (α) ∩ US(α).

Proof. From [18] we know that US(α) is homeomorphic to the moduli space of n + 1 vectors
ul , vk, w ∈ R3

| l ∈ S, k ∈ Sc
satisfying conditions (1)–(5) in Theorem 2.3, taken up to rotation. Moreover, in D±

i, j (α)∩US(α)

one has v j = λvi for some λ ∈ R± and so one can trivially identify this intersection with the
moduli space of n vectors

ul , v|S|+1, . . . , v̂i , . . . , v̂ j , . . . , vn, vi ± v j , w | l ∈ S


satisfying

(1) w + v|S|+1 + · · · + vi−1 + vi+1 + · · · + v j−1 + v j+1 + · · · + vn + (vi ± v j ) = 0

(2)

l∈S

ul = 0

(3) ul · w = 0, for all l ∈ S

(4) ∥vk∥ = αk, k ≠ i, j k ∈ Sc, ∥vi ± v j∥ = αi ± α j

(5) ∥w∥ =


l∈S


α2

l + ∥ul∥
2,

which, in turn, is homeomorphic to US(α±) (cf. Fig. 8). The composition of these homeomor-
phisms defines the map

s± : D±

i, j (α) ∩ US(α) −→ US(α±)

of (5.10). Note that the map s± is clearly a diffeomorphism between the two manifolds. �

We conclude that the manifolds D±

i, j (α)∩US(α) are connected and symplectic and so we can
orient them using the symplectic form by requiring

D±

i, j (α)∩US(α)

(i±S ◦ s±)∗(ω±

R )n−4 > 0,

where

i±S : US(α±) −→ X (α±)
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is the natural inclusion map. One obtains in this way two generators of

H2(n−4)


D±

i, j (α) ∩ US(α)

,

namely [D+

i, j (α) ∩ US(α)] and [D−

i, j (α) ∩ US(α)]. Hence, to determine the Poincaré dual of the
class i∗S c j , where iS : US(α) −→ X (α) is the inclusion map, one just has to determine constants
ai, j , bi, j as follows.

Proposition 5.12. Let i : Di, j (α) ∩ US(α) −→ X (α) be the inclusion map. If αi ≠ α j and
i, j ∉ S then the Poincaré dual of i∗S c j is in i∗ H2(n−4)(Di, j (α) ∩ US(α)) and can be written as

ai, j [D+

i, j (α) ∩ US(α)] + bi, j [D−

i, j (α) ∩ US(α)],

where

ai, j = 1 and bi, j = sgn(αi − α j ).

Proof. For simplicity, consider i = n−1, j = n and S = {1, . . . , |S|}. Then take a fixed element
in US(α) with pi = 0 for all i ≥ 3. Let (p0, q0) be a fixed representative of this class. Consider
the subvariety N of US(α) defined by the elements [(p, q)] of US(α) with pi = p0

i for all i and
qi = q0

i for i = 1, . . . , n − 3. This subvariety N is thus obtained by fixing pi for all i , and qi
for all i ≤ n − 3, allowing only to vary the last three values qn−2, qn−1 and qn (noting that the
corresponding coordinates of p are pn−2 = pn−1 = pn = 0). It is then symplectomorphic to the
moduli space of polygons in R3

M(l, αn−2, αn−1, αn),

with

l =

n−3
k=1


q0

k (q0
k )∗


0 −

(p0

1)
∗ p0

1


0 −


(p0

2)
∗ p0

2


0

 ,

which we know is a sphere. Note that N is homeomorphic to the moduli space of vectors
u1, u2, vk, w ∈ R3, k ∈ Sc, such that

u1 = −u2 = q0
1 p0

1 + (p0
1)

∗(q0
1 )∗,

vk =

q0

k (q0
k )∗


0, ∀k = |S| + 1, . . . , n − 3,

w =


i∈S


q0

k (q0
k )∗


0 −

(p0

1)
∗ p0

1


0 −


(p0

2)
∗ p0

2


0.

On the other hand, N equipped with the bending action along the first diagonal is a toric manifold
with moment polytope given by the interval

∆ =

max{|l − αn−2|, |αn−1 − αn|}, min{l + αn−2, αn−1 + αn}


,

(cf. [21,26] for details) and so we can use the following well-known fact about toric manifolds.
Consider a family of symplectic forms Ωt on a toric manifold and the corresponding family

of moment polytopes ∆t with m facets given, as usual, by

Ft,k :=


x ∈ t∗ | ⟨x, νk⟩ = λk(t)


for k = 1, . . . , m,

with νk the inward unit normal vector to the facet Ft,k and λk(t) ∈ R. Suppose that the polytopes
∆t stay combinatorially the same as t changes but the value of λi (t) for some i ∈ {1, . . . , m}
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depends linearly on t and, as t increases, the facet Ft,i moves outwards while the others stay
fixed. Then, dΩt

dt is the Poincaré dual of the homology class [µ−1(Ft,i )] where the orientation is
given by requiring that

µ−1(Ft,i )

Ω
1
2 (dim µ−1(Ft,i ))

t > 0

(cf. Section 2.2 of [16] for details).
Applying this result to the submanifold N we see that, as αn changes, the cohomology of the

symplectic form on N

[(iS ◦ iN )∗ωR]

changes by the Poincaré dual of the homology class

[µ−1(αn−1 + αn) ∩ US(α)] + sgn(αn−1 − αn)[µ−1(|αn−1 − αn|) ∩ US(α)]

= [D+

n−1,n(α) ∩ US(α) ∩ N ] + sgn(αn−1 − αn)[D−

n−1,n(α) ∩ US(α) ∩ N ].

The result then follows from the fact that

(i∗S cn)|N = i∗N i∗Scn = (iS ◦ iN )∗
∂

∂αn
[ωR] =

∂

∂αn
[(iS ◦ iN )∗ωR]. �

5.4. Recursion formula

To prove our recursion formula we have to first study the behavior of the classes c j when
restricted to

[D±

n−1,n ∩ US(α)].

Proposition 5.13. Suppose αn ≠ αn−1 and let c+
n and c−

n be the cohomology classes c1
Vn(α+)


and c1

Vn(α−)

, where

α+
:= (α1, . . . , αn−2, αn−1 + αn) and α−

:= (α1, . . . , αn−2, |αn−1 − αn|).

Then, considering the inclusion maps i± : D±

n−1,n(α) ∩ US(α) ↩→ US(α) and the diffeomor-

phisms s± : D±

n−1,n(α) ∩ US(α) −→ US(α±) from Proposition 5.9, we have

(i± ◦ s−1
± )∗(i∗S ci ) = (i±S )∗ c±

i for 1 ≤ i ≤ n − 2;

(i+ ◦ s−1
+ )∗(i∗S cn−1) = (i+S )∗ c+

n−1;

(i− ◦ s−1
− )∗(i∗S cn−1) = sgn(αn−1 − αn) (i−S )∗ c−

n−1;

(i+ ◦ s−1
+ )∗(i∗S cn) = (i+S )∗ c+

n−1;

(i− ◦ s−1
− )∗(i∗S cn) = − sgn(αn−1 − αn) (i−S )∗ c−

n−1.

Proof. Recall the identification of US(α) with the moduli space Z of (n + 1)-tuples of vectors
ul , vk, w ∈ R3, l ∈ S, k ∈ Sc

taken up to rotation, satisfying (1)–(5) in Theorem 2.3. Recall also that D±

n−1,n(α) ∩ US(α) can
be identified via this homeomorphism to the subspace D± of Z where vn−1 = λvn with λ ∈ R±,
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and that this space is, in turn, clearly homeomorphic to US(α±). We then have homeomorphisms

φ±
α : D±

−→ D±

n−1,n(α) ∩ US(α)

φα± : D±
−→ US(α±)

and the corresponding pull-back bundles

(φ±
α )∗

V j (α)


−→ D±

(φα±)∗
V j (α

±)


−→ D±

are topological circle bundles over D± obtained by rotation of the pairs of polygons formed by
the vectors ul , vk, w around the axis defined by the vector v j .

V j (α
±)|US(α±)

��

(φα±)∗
V j (α

±)|US(α±)

oo

��:
::

::
::

::
::

::
::

::
(φ±

α )∗
V j (α)|D±

n−1,n(α)∩US(α)


//

����
��

��
��

��
��

��
��

��

V j (α)|D±

n−1,n(α)∩US(α)

��
US(α±) D±

φα±

oo
φ±

α

// D±

n−1,n(α) ∩ US(α).

s±=φα±◦(φ±
α )−1

ii

(5.14)

We would like to compare the classes (i± ◦ s−1
± )∗(i∗S c j ) and (i±S )∗ c±

j . For that consider the pull

back of both classes to H2(D±) via φα± . In particular, one obtains

φ∗

α±


(i± ◦ s−1

± )∗i∗Sc j


= φ∗

α± (s−1
± )∗ i∗± (i∗S c j ) = (φ±

α )∗ i∗±(i∗Sc j ),

which is the first Chern class of the pull-back bundle (φ±
α )∗V j (α) −→ D±, and

φ∗

α±


(i±S )∗c±

j


,

which is the first Chern class of the pull-back bundle φ∗

α±
V j (α

±) −→ D±. These two bundles
rotate the pairs of polygons around the axis defined by the edges v j (α) and v j (α

±) respectively,
where v j (α) is the vector v j in (φ±

α )∗V j (α) and v j (α
±) is the vector v j in φ∗

α±
V j (α

±).
Since, if j ≠ n − 1, n, one has v j (α) = v j (α

±), one obtains

(i± ◦ s−1
± )∗(i∗S ci ) = (i±S )∗ c±

i for 1 ≤ i ≤ n − 2.

As vn−1(α
+) = vn−1(α) + vn(α), the vectors vn−1(α

+), vn−1(α) and vn(α) determine the same
circle action and so

(i+ ◦ s−1
+ )∗i∗S cn−1 = (i+S )∗ c+

n−1 and (i+ ◦ s−1
+ )∗i∗S cn = (i+S )∗ c+

n−1.

Similarly, since vn−1(α
−) = sgn(αn−1 −αn)(vn−1(α)−vn(α)), the vectors vn−1(α

−), sgn(αn−1
− αn)vn−1(α) and − sgn(αn−1 − αn)vn(α) determine the same circle action and so

(i− ◦ s−1
− )∗i∗S cn−1 = sgn(αn−1 − αn) (i−S )∗ c−

n−1

(i− ◦ s−1
− )∗i∗S cn = − sgn(αn−1 − αn) (i−S )∗c−

n−1. �

Using Propositions 5.12 and 5.13 one obtains the following recursion formula.
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Theorem 5.1. Suppose αn−1 ≠ αn and let

α+
:= (α1, . . . , αn−2, αn−1 + αn) and α−

:= (α1, . . . , αn−2, |αn−1 − αn|).

Then, for k1, . . . , kn ∈ Z≥0 such that k1 + · · · + kn = n − 3 and kn ≥ 1,
US(α)

i∗S


ck1
1 · · · ckn

n


=


US(α+)

(i+S )∗

(c+

1 )k1 · · · (c+

n−2)
kn−2(c+

n−1)
kn−1+kn−1


+

(−1)kn−1 (sgn(αn−1 − αn))kn−1+kn

×


US(α−)

(i−S )∗

(c−

1 )k1 · · · (c−

n−2)
kn−2(c−

n−1)
kn−1+kn−1


.

(5.15)

Proof. By Proposition 5.12 the Poincaré dual of i∗S cn is

(i+S )∗ [D+

n−1,n(α) ∩ US(α)] + sgn(αn−1 − αn)(i−S )∗ [D−

n−1,n(α) ∩ US(α)].

This means that the formula
US(α)

i∗S(a cn) =


US(α+)

(i+ ◦ s−1
+ )∗(i∗S a) + sgn(αn−1 − αn)


US(α−)

(i− ◦ s−1
+ )∗(i∗S a)

holds true for all a ∈ Hn−4(US(α)). The result then follows from Proposition 5.13. �

5.5. Explicit formulas

Using Theorem 5.1 one can obtain explicit expressions for the computation of intersection
numbers. For that we first note the following facts concerning the Chern classes c j .

Claim 1. If 1 ∈ S then i∗Sc1 = i∗Sc j for every j ∈ S.

Proof. By Proposition 5.12 the class i∗S(c1 − c j ) is represented by

2 sgn(α j − α1)[D−

1, j (α) ∩ US(α)].

However, in D−

1, j (α), the vectors (q1q∗

1 − p∗

1 p1)0 and (q j q∗

j − p∗

j p j )0 in R3 point in opposite
directions and that is impossible in US(α) since, by hypothesis, both j and 1 are in S. Indeed,
the vectors qi for i ∈ S are all proportional, implying that the vectors (qi q∗

i )0 are positive scalar
multiples of each other and, moreover, the moment map condition (2.4) implies that (p∗

1 p1)0 is
a non-positive scalar multiple of (qi q∗

i )0. Hence, for all i ∈ S, the vectors (q1q∗

1 − p∗

1 p1)0 all
point in the same direction and so i∗S(c1 − c j ) = 0. �

Claim 2. If 1 ∈ S then i∗S c2
j = i∗S c2

1 for all j ∈ Sc.

Proof. Since i∗S(c2
j − c2

1) = i∗S((c j − c1)(c j + c1)) and i∗S(c j − c1) is represented by

2 sgn(α1 − α j )[D−

1, j (α) ∩ US(α)],

while i∗S(c j + c1) is represented by

2[D+

1, j (α) ∩ US(α)],

the result follows. Here note that in D+

1, j the vectors (q1q∗

1 )0 and (q j q∗

j )0 (and consequently

(q1q∗

1 − p∗

1 p1)0 and (q j q∗

j − p∗

j p j )0) point in the same direction while in D−

1, j they point in
opposite directions. �
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Claim 3. If 1 ∈ S and |S| = n − 1 then i∗S c j = −i∗S c1 for the unique j ∉ S.

Proof. Note that

i∗S(c j + c1) = 2P D

[D+

1, j (α) ∩ US(α)]


= 0,

since it is impossible for (q j q∗

j )0 to point in the same direction as (q1q∗

1 )0 (the corresponding
spatial polygons in US(α) would not close). �

Using the first two claims, and reordering α if necessary, one can reduce the computation of all
intersection numbers to integrals of one of the two following types, where one assumes without
loss of generality, that S = {1, . . . , |S|}:

(I)


US(α)

i∗S cn−3
1 ,

(II)


US(α)

i∗S (ck
1 cn−l · · · cn), with n − l > |S| and k = n − l − 4.

To obtain explicit formulas for these integrals one needs first to consider families of triangular
sets as defined in [1].

Definition. Let α = (α1, . . . , αm) be generic. A set J ∈ I = {3, . . . , m} is called triangular if

ℓJ :=


i∈J

αi −


i∈I\J

αi > 0

and satisfies the following triangular inequalities

α1 ≤ α2 + ℓJ , α2 ≤ α1 + ℓJ and ℓJ ≤ α1 + α2.

Moreover, define the family of triangular sets in I as

T(α) = {J ∈ I | J is triangular}.

For integrals of type (I) one has the following result.

Theorem 5.2. Let S be the short set {1, . . . , |S|}.
If |S| ≤ n − 3 then

US(α)

i∗S cn−3
1 =


J∈T(α)

(−1)


n−|S|

J∩{n−|S|+1}

+|J |+|S|
, (5.16)

whereα :=

αn, α|S|+1, . . . , αn−1,


i∈S αi


and T(α) is the corresponding family of triangular

sets.
If |S| = n − 2 then

US(α)

i∗S cn−3
1 =


(−1)n−1, if S is a maximal short set for α

0, otherwise.
(5.17)

If |S| = n − 1 then
US(α)

i∗S cn−3
1 = (−1)n−1. (5.18)
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Fig. 9. (I) The element of US(α) ∩ W1 ∩ · · · ∩ Wn−3 represented as a pair of degenerate polygons when |S| = n − 1.
(II) The element of US(α) ∩ W1 ∩ · · · ∩ Wn−3 represented by a spatial polygon, when |S| = n − 2.

Proof. • If |S| = n − 1 and assuming that S = {1, . . . , n − 1} then, by Claim 1 and Proposi-
tion 5.8,

i∗S cn−3
1 = i∗S (c1 · · · cn−3) = (−1)n−3 P D


[US(α) ∩ W1 ∩ · · · ∩ Wn−3]


,

where Wi = {[p, q] ∈ X (α) | pi = 0}. Moreover,

US(α) ∩ W1 ∩ · · · ∩ Wn−3

can be identified with the moduli space of vectors u, v, w ∈ R3 taken up to rotation, satisfying

• w = −v,

• u · w = 0,

• ∥w∥ = ∥v∥ = αn,

•


α2

n−2 + ∥u∥2 +


α2

n−1 + ∥u∥2 = αn − α1 − · · · − αn−3,

(cf. Fig. 9-(I)). Since, by hypothesis, S is short we know that αn >


i∈S αi and so this moduli
space is a point and

US(α)

i∗S cn−3
1 = (−1)n−1.

• If |S| = n −2, assuming S = {1, . . . , n −2} and using Claim 1 and Proposition 5.8, one has

i∗S cn−3
1 = i∗S c1 · · · cn−3 = (−1)n−3 P D


[US(α) ∩ W1 ∩ · · · ∩ Wn−3]


.

In this situation all the vectors ui as in Theorem 2.3 are equal to zero since


i∈S ui = 0. Hence,

US(α) ∩ W1 ∩ · · · ∩ Wn−3

is now the polygon space

MS(α) := M


i∈S

αi , αn−1, αn


which is a point if simultaneously αn−1 <


i≠n−1 αi and αn <


i≠n αi , and empty otherwise

(cf. Fig. 9-(II)). The result then follows. (Note that the fact that S is short already implies that
αn−1 + αn <


i∈S αi .)
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• If |S| ≤ n − 3 then, assuming S = {1, . . . , |S|} and using Claim 1 and Proposition 5.8, one
has

i∗S c|S|−1
1 = (−1)|S|−1 P D


[US(α) ∩ W1 ∩ · · · ∩ W|S|−1]


.

Again, in the identification of

US(α) ∩ W1 ∩ · · · ∩ W|S|−1

as a moduli space of pairs of polygons in R3, all the vectors ui are zero, implying that

US(α) ∩ W1 ∩ · · · ∩ W|S|−1 = MS(α) = M


i∈S

αi , α|S|+1, . . . , αn


.

Hence,
US(α)

i∗S cn−3
1 = (−1)|S|−1


MS(α)

c̃ n−|S|−2
1 ,

where c̃1 := c1

V1(αS)


for V1 defined in (5.2), with

αS =


i∈S

αi , α|S|+1, . . . , αn


.

Indeed, the circle action on the principal bundleV1|US(α)∩W1∩···∩W|S|−1 −→ US(α) ∩ W1 ∩ · · · ∩ W|S|−1

agrees with the one on V1|MS(α) and so these two bundles are isomorphic. Reordering the ele-
ments in αS one has

MS(α)

c̃ n−|S|−2
1 =


M(α)

cn−|S|−2
n−|S|+1,

where α :=

αn, α|S|+1, . . . , αn−1,


i∈S αi


and c̃n−|S|+1 is the first Chern class of the circle

bundle

Vn−|S|+1 −→ M(α).

This new integral can then be computed using Theorem 2 of [1] for polygon spaces, yielding
MS(α)

c̃ n−|S|−2
1 =


J∈T(α)

(−1)
n−|S|+1+|J |+

(I\J )∩{n−|S|+1}

n−|S|


,

where I = {3, . . . , n − |S| + 1} and the result follows. �

For integrals of type (II) we have the following.

Theorem 5.3. Let S be the short set {1, . . . , |S|}.
If |S| < n − l − 2 then

US(α)

i∗S (ck
1 cn−l · · · cn)


J∈An,l (α)


J ′∈Tn,l (α,J )

(−1)

J∩{n−l−1}

+J ′
∩{n−l−|S|}

n−l−|S|+1

+|J ′

|+|S|+1
, (5.19)
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where An,l(α) is the family of sets J ⊂ In,l := {n − l − 1, . . . , n} for which

ℓJ (α) :=


i∈J

αi −


i∈In,l\J

αi > 0

and 
i∈S

αi < ℓJ (α) + α|S|+1 + · · · + αn−l−2,

and where Tn,l(α, J ) := T(αn,l,J ) is the family of triangular sets for

αn,l,J :=


ℓJ (α), α|S|+1, . . . , αn−l−2,


i∈S

αi


.

If |S| = n − l − 2 then
US(α)

i∗S (ck
1 cn−l · · · cn) =


J∈An,l (α)

(−1)

J∩{n−l−1}

+|S|+1
. (5.20)

If |S| = n − l − 1 then
US(α)

i∗S(ck
1 cn−l · · · cn) = (−1)n−l

An,l(α)

 , (5.21)

where

An,l(α) =


J ⊂ {n − l, . . . , n} | ℓJ (α) >


i∈S

αi


.

Proof. We will prove this formula by induction on n starting with n = k + 4 (implying l = 0).
Here we have to consider two cases (|S| = n − 1 and |S| < n − 1).

First, if |S| = n − 1 = k + 3 we have by Claim 3 and Theorem 5.2 (5.18), that
US(α)

i∗S (cn−4
1 cn) = −


US(α)

i∗S cn−3
1 = (−1)n,

which is equal to the right hand side of (5.21) since, in this case,An,0(α) =

{n}

.

If |S| < n − 1 = k + 3 then by the recursion formula (5.15) we have
US(α)

i∗S (cn−4
1 cn) =


US(α+)

(i+S )∗ cn−4
1 + sgn(αn−1 − αn)


US(α−)

(i−S )∗ cn−4
1 (5.22)

with α±
=

α1, . . . , αn−2, |αn−1 ± αn|


.

• If, in particular, |S| = n − 2 = k + 2 then by Theorem 5.2-(5.18),


US(α)

i∗S(cn−4
1 cn) =

(−1)n1 + sgn(αn−1 − αn)

, if


i∈S

αi < |αn−1 − αn|

(−1)n, otherwise.
(5.23)
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Note that S is always short for α+ since, by assumption S is short for α and that S is short for
α− if and only if


i∈S αi < |αn−1 − αn|. On the other hand, in this case we have

An,0(α) =


{n − 1}, {n − 1, n}


or

{n}, {n − 1, n}


, if S is α−-short

{n − 1, n}

, otherwise.

Then the right-hand-side of (5.20) agrees with the result obtained in (5.23).
• If |S| = n − 3 = k + 1 then again by Theorem 5.2-(5.17),

US(α)

i∗S (cn−4
1 cn)

is equal to

(i) (−1)n(1 + sgn(αn−1 − αn)), if S is α±-maximal short, in which case

An,0(α) =

{m − 1}, {m − 1, m}


or


{m}, {m − 1, m}


and

Tn,0

α, {n − 1, n}


= Tn,0


α, {n − 1}


= Tn,0


α, {n}


=

{3}

.

(ii) (−1)n , if S is α+-maximal short and either not α−-maximal short or not α−-short at all, in
which cases

An,0(α) =

{n − 1, n}


,


{n − 1}, {n − 1, n}


or


{n}, {n − 1, n}


and

Tn,0

α, {n − 1, n}


=

{3}

, Tn,0


α, {n − 1}


= Tn,0


α, {n}


= ∅.

(iii) (−1)n sgn(αn−1 − αn), if S is not α+-maximal short but α−-maximal short, in which case

An,0(α) =

{n − 1}, {n − 1, n}


or


{n}, {n − 1, n}


,

and

Tn,0

α, {n − 1, n}


= ∅, Tn,0


α, {n − 1}


= Tn,0


α, {n}


=

{3}

.

(iv) 0, if S is not α+-maximal short and either not α−-maximal short or not α−-short at all, in
which cases

An,0(α) =

{n − 1, n}


,


{n − 1}, {n − 1, n}


or


{n}, {n − 1, n}


and

Tn,0

α, {n − 1, n}


= Tn,0


α, {n − 1}


= Tn,0


α, {n}


= ∅.

It is now easy to verify that the above results (i)–(iv) agree in all cases with the right hand side
of (5.19).

• Finally, if |S| < n − 3 = k + 1 then by (5.22) and Theorem 5.2-(5.16), considering T(α±)

the family of triangular sets J ⊂ {3, . . . , n − |S|} for

α±
:=


|αn−1 ± αn|, α|S|+1, . . . , , αn−2,


i∈S

αi


,
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we have
US(α)

i∗S (cn−4
1 cn) =


J ′∈T(α+)

(−1)


n−1−|S|


|J ′

∩{n−|S|}|+|J ′
|+|S|

+ sgn(αn−1 − αn)


J ′∈T(α−)

(−1)


n−1−|S|


|J ′

∩{n−|S|}|+|J ′
|+|S|

, (5.24)

if S is short forα−, and
US(α)

i∗S(cn−4
1 cn) =


J ′∈T(α+)

(−1)


n−1−|S|


|J ′

∩{n−|S|}|+|J ′
|+|S|

, (5.25)

otherwise. In the first situation, we have

An,0(α) =

{n − 1}, {n − 1, n}


or


{n}, {n − 1, n}


and

Tn,0

α, {n − 1, n}


= T(α+), Tn,0


α, {n − 1}


= Tn,0


α, {n}


= T(α−),

while, in the second one, we have

An,0(α) =

{n − 1, n}


and Tn,0


α, {n − 1, n}


= T(α+),

and so (5.24) and (5.25) agree with the right hand side of (5.19).
We will now assume that (5.19)–(5.21) hold for n and show that they are still true for n + 1.

Using the recursion formula (5.15) we get
US(α)

i∗S (ck
1 cn+1−l · · · cn+1) =


US(α+)

(i+S )∗ ((c+

1 )k c+

n+1−l · · · c+
n )

+


US(α−)

(i−S )∗((c−

1 )k c−

n+1−l · · · c−
n ).

• If |S| < n − l − 2 then, if αn − αn+1 > 0,

An+1,l(α) =


J ⊂ In+1,l := {n − l, . . . , n + 1} | ℓJ (α) > 0 and


i∈S

αi < ℓJ (α) + α|S|+1 + · · · + αn−l−1


=
J ∈ An,l−1(α

+) | n ∉ JJ ∪ {n + 1} | J ∈ An,l−1(α
+) and n ∈ J J ∈ An,l−1(α

−) | n ∈ JJ ∪ {n + 1} | J ∈An,l−1(α
−) and n ∉ J , (5.26)

while, if αn − αn+1 < 0,

An+1,l(α) =
J ∈ An,l−1(α

+) | n ∉ J J ∪ {n + 1} | J ∈ An,l−1(α
+) and n ∈ JJ \ {n}


∪ {n + 1} | J ∈ An,l−1(α

−) and n ∈ JJ ∪ {n} | J ∈ An,l−1(α
−) and n ∉ J . (5.27)

Moreover, since Tn,l−1(α
±, J ) := T(α±

n,l−1,J ) is the family of triangular sets

J ′
⊂

3, . . . , n − (l − 1) − |S|


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forα±

n,l−1,J :=

ℓJ (α±), α|S|+1, . . . , αn−(l+1),


i∈S αi


, and Tn+1,l(α, J ) := T(αn+1,l,J ) is the

family of triangular sets

J ′
⊂

3, . . . , (n + 1) − l − |S|


forαn+1,l,J :=


ℓJ (α), α|S|+1, . . . , α(n−1)−l ,


i∈S αi


, we have that

Tn,l−1(α
+, J ) =


Tn+1,l


α, J ∪ {n + 1}


, if n ∈ J

Tn+1,l(α, J ), if n ∉ J,

and, if αn − αn+1 > 0,

Tn,l−1(α
−, J ) =


Tn+1,l


α, J ∪ {n + 1}


, if n ∉ J

Tn+1,l(α, J ), if n ∈ J,

while, if αn − αn+1 < 0,

Tn,l−1(α
−, J ) =


Tn+1,l


α, J ∪ {n}


, if n ∉ J

Tn+1,l

α, (J \ {n}) ∪ {n + 1}


, if n ∈ J.

Assuming that (5.19) holds for n we have
US(α+)

(i+S )∗((c+

1 )kc+

n+1−l · · · c+
n )

=


J in

An,l−1(α+)


J ′ in

Tn,l−1


α+,J

 (−1)
|J∩{n−(l−1)−1}|+|J ′

∩{n−(l−1)−|S|}|


n−(l−1)+1−|S|


+|J ′

|+|S|+1

=


J∈An,l−1(α+)

s.t.n∉J


J ′ in

Tn+1,l


α+,J

(−1)
J∩{(n+1)−l−1}

+|J ′
∩{(n+1)−l−|S|}|


(n+1)−l+1−|S|


+|J ′

|+|S|+1

+


J∈An,l−1(α+)

s.t. n∈J


J ′ in

Tn+1,l


α+,J∪{n+1}


(−1)

(J∪{n+1})∩{(n+1)−l−1}
+|J ′

∩{(n+1)−l−|S|}|

(n+1)−l+1−|S|


+|J ′

|+|S|+1
.

On the other hand, if αn − αn+1 > 0,
US(α−)

(i−S )∗((c−

1 )kc−

n+1−l · · · c−
n )

=


J in

An,l−1(α−)


J ′ in

Tn,l−1


α−,J

 (−1)
|J∩{n−(l−1)−1}|+|J ′

∩{n−(l−1)−|S|}|


n−(l−1)+1−|S|


+|J ′

|+|S|+1

=


J∈An,l−1(α−)

s.t.n∈J


J ′ in

Tn+1,l


α+,J

(−1)
J∩{(n+1)−l−1}

+|J ′
∩{(n+1)−l−|S|}|


(n+1)−l+1−|S|


+|J ′

|+|S|+1

+


J∈An,l−1(α+)

s.t.n∉J


J ′ in

Tn+1,l


α+,J∪{n+1}


(−1)

(J∪{n+1})∩{(n+1)−l−1}
+|J ′

∩{(n+1)−l−|S|}|

(n+1)−l+1−|S|


+|J ′

|+|S|+1

and similarly for αn − αn+1 < 0. The result now follows from (5.26) and (5.27).
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• If |S| = n − l −2 the family of sets An+1,l(α) is the same as in (5.26) and (5.27). Moreover,
assuming (5.20) holds for n,we have

US(α+)

(i+S )∗((c+

1 )kc+

n+1−l · · · c+
n ) =


J∈An,l−1(α

+)

(−1)|J∩{n−(l−1)−1}|+|S|+1

=


J∈An,l−1(α+)

s.t. n∉J
(−1)

J∩{(n+1)−l−1}
+|S|+1

+


J∈An,l−1(α+)

s.t. n∈J
(−1)

(J∪{n+1})∩{(n+1)−l−1}
+|S|+1.

On the other hand, if αn − αn+1 > 0,
US(α−)

(i−S )∗((c−

1 )kc−

n+1−l · · · c−
n ) =


J∈An,l−1(α

−)

(−1)|J∩{n−(l−1)−1}|+|S|+1

=


J∈An,l−1(α−)

s.t. n∈J
(−1)

J∩{(n+1)−l−1}
+|S|+1

+


J∈An,l−1(α+)

s.t. n∉J
(−1)

(J∪{n+1})∩{(n+1)−l−1}
+|S|+1

and similarly for αn − αn+1 < 0. The result then follows from (5.26) and (5.27).
• If |S| = n − l − 1 then, writing

An,l−1(α
±) =


J ⊂ In,l−1 := {n − (l − 1), . . . , n} | ℓJ (α±) >


i∈S

αi


,

we have for αn − αn+1 > 0 thatAn+1,l(α) =

J ∈ An,l−1(α
+) | n ∉ J J ∪ {n + 1} | J ∈ An,l−1(α

+) and n ∈ J J ∈ An,l−1(α
−) | n ∈ J J ∪ {n + 1} | J ∈ An,l−1(α

−) and n ∉ J ,

while, for αn − αn+1 < 0 we haveAn+1,l(α) =

J ∈ An,l−1(α
+) | n ∉ J J ∪ {n + 1} | J ∈ An,l−1(α

+) and n ∈ J J ∪ {n} | J ∈ An,l−1(α
−) and n ∉ J 

(J \ {n}) ∪ {n + 1} | J ∈ An,l−1(α
−) and n ∈ J .

Then 
US(α+)

(i+S )∗((c+

1 )kc+

n+1−l · · · c+
n ) +


US(α−)

(i−S )∗((c−

1 )kc−

n+1−l · · · c−
n )

= (−1)n−(l−1)
An,l−1(α

+)
+ An,l−1(α

−)
 = (−1)(n+1)−l

An+1,l(α)


and the result follows.
In the above proof one has to assume that each time that the recursion formula is used one

has αn ≠ αn+1. However, this result is still valid even if this is not the case, as long as α is
generic. In fact, for a generic α with αn = αn+1 we may take a small value of ε > 0 for which
US(α) is diffeomorphic to US(αε) with αε := (α1, . . . , αn−1, αn + ε). For ε small enough,
An,l−1(α

±) = An,l−1(α
±
ε ) and Tn,l−1(α

±, J ) = Tn,l−1(α
±
ε , J ) (since α generic implies that αε,

α+
ε and α−

ε are also generic) and so the induction step still holds. �
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5.6. Examples

Example 8. Let α = (1, 1, 3, 3, 3) and consider the space X (α) and the short set S = {1, 2}. The
fixed point set of the core component US(α) consists of the minimum component MS(α) ∼= CP1

and four isolated fixed points. From Claims 1 and 2 one has
US(α)

i∗S c2
1 =


US(α)

i∗S c2
2 =


US(α)

i∗S c2
3

=


US(α)

i∗S c2
4 =


US(α)

i∗S c2
5 =


US(α)

i∗S (c1c2).

Using the fact that

i∗Sc1 = −P D

US(α) ∩ W1


= P D


MS(α)


= P D


M(2, 3, 3, 3)


with W1 =: {[p, q] ∈ X (α) | p1 = 0} (cf. Proposition 5.8) and the recursion formula for polygon
spaces in [1], one can compute

US(α)

i∗S c2
1 = −


MS(α)

c̃1 = −


M(2,3,3,3)

c̃1

= −


M(3,3,3,2)

c̃4 = −


M(3,3,5)

1 −


M(3,3,1)

1 = −2,

where, as usual, given a polygon space M(λ) one defines c̃ j := c1(V j (λ)). Note that the polygon
spaces M(3, 3, 5) and M(3, 3, 1) consist of only one point as in Fig. 9-(II).

If one uses Theorem 5.2 to compute these integrals one obtains
US(α)

i∗S c2
1 =


J∈T(α)

(−1)
3
J∩{4}

+|J |+2
= −2,

whereα = (3, 3, 2), since

T(α) =


J ⊂ {3, 4} |


j∈J

α j −


j∈{3,4}\J

α j > 0


=

{3}, {3, 4}


.

Similarly,
US(α)

i∗S (c1c5) =


US(α)

i∗S (c1c3) =


US(α)

i∗S (c1c4) =


US(α)

i∗S (c2c3)

=


US(α)

i∗S (c2c4) =


US(α)

i∗S (c2c5).

These integrals can be computed using the recursion formula (5.15) as follows:
US(α)

i∗S (c1c5) =


US(1,1,3,3,3+ε)

i∗S (c1c5) =


US(1,1,3,6+ε)

i∗S c1 −


US(1,1,3,ε)

i∗S c1

= −


M(2,3,6+ε)

1 +


M(2,3,ε)

1 = 0
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since i∗Sc1 = −P D

US(α±

ε ) ∩ W1

. Note that

M(2, 3, 6 + ε) = M(2, 3, ε) = ∅

as the polygons in these spaces would not close.
If one uses Theorem 5.3-(5.19) to compute these integrals one obtains

US(αε)

i∗S c1c5 =


J∈A5,0(αε)


J ′∈T5,0(αε,J )

(−1)

J∩{4}

+4
J ′

∩{3}

+|J ′
|+3

= 0

since

A5,0(αε) =


J ⊂ {4, 5} | ℓJ (αε) > 0 and 2 < ℓJ (αε) + 3


=

{5}, {4, 5}


,

T5,0

αε, {5}


= T5,0(ε, 3, 2) = ∅

and

T5,0

αε, {4, 5}


= T5,0(6 + ε, 3, 2) = ∅.

Finally,
US(α)

i∗S (c4c5) =


US(α)

i∗S(c3c5) =


US(α)

i∗S(c3c4)

and, by the recursion formula (5.15), one has
US(α)

i∗S (c4c5) =


US(1,1,3,6+ε)

c4 +


US(1,1,3,ε)

c4

=


US(1,1,9+ε)

1 −


US(1,1,3+ε)

1 +


US(1,1,3+ε)

1 +


US(1,1,3−ε)

1 = 2.

Note that the core components US(1, 1, 9 + ε), US(1, 1, 3 + ε) and US(1, 1, 3 − ε) consist of a
single point as S = {1, 2} is short in all cases.

If one uses Theorem 5.3-(5.20) one obtains
US(αε)

i∗S (c4c5) =


J∈A5,1(αε)

(−1)

J∩{3}

+1
= 2,

since

A5,1(αε) =


J ⊂ {3, 4, 5} | ℓJ (αε) > 0 and 2 < ℓJ (αε)


=

{3, 4}, {3, 5}, {4, 5}, {3, 4, 5}


.

These computations agree with the results in Example 4.7 of [18]. In fact, US is homeomorphic
to the blow-up of CP2 at 3 points and the intersection form on H2(US) with respect to the basis

c1 + c3 + c4 + c5

2
, −

c1 + c3

2
, −

c1 + c4

2
, −

c1 + c5

2


can be obtained from our results and is represented by the diagonal matrix Diag(1, −1, −1, −1).
Indeed, for example,

•


US(α)

i∗S


c1 + c3 + c4 + c5

2

2

=


US(α)

i∗Sc2
1 +

3
2


US(α)

i∗S(c4 c5) = −2 + 3 = 1,



528 L. Godinho, A. Mandini / Advances in Mathematics 244 (2013) 465–532

•


US(α)

i∗S


c1 + c3

2

2

=
1
2


US(α)

i∗S c2
1 +

1
2


US(α)

i∗S (c1 c3) = −1 + 0 = −1,

•


US(α)

i∗S


c1 + c3 + c4 + c5

2


−

c1 + c3

2


= −


US(α)

i∗S


c1 + c3

2

2

−
1
2


US(α)

i∗S (c1 c5) −
1
2


US(α)

i∗S (c3 c5) = 1 − 0 − 1 = 0

•


US(α)

i∗S


c1 + c3

2


c1 + c4

2


=

1
4


US(α)

i∗S c2
1 +

1
2


US(α)

i∗S (c1 c4) +
1
4


US(α)

i∗S (c3 c4) = −
1
2

+ 0 +
1
2

= 0.

Example 9. Let us consider the same hyperpolygon space X (α) as in the preceding example and
compute the intersection numbers of the core component US(α) with S = {1, 2, 3}. By Claims 1
and 2 it is enough to consider the following three integrals.

US(α)

i∗S c2
1,


US(α)

i∗S (c1 c5) and


US(α)

i∗S (c4 c5).

The value of the first one is
US(α)

i∗S c2
1 = 1

since

i∗S c2
1 = iS (c1 c2) = P D


US(α) ∩ W1 ∩ W2


= P D


M(5, 3, 3)


= P D


{pt}


.

This agrees with the value given by Theorem 5.2-(5.17) since S is maximal short for α.
For the second one we get

US(αε)

i∗S (c1 c5) =


US(1,1,3,6+ε)

i∗S c1 −


US(1,1,3,ε)

i∗S c1 = −1 − 0 = −1

since S is not short for (1, 1, 3, ε) and, in US(1, 1, 3, 6 + ε),

i∗Sc1 = −P D

US(1, 1, 3, 6 + ε) ∩ W1


= −P D


{pt}


.

On the other hand, by Theorem 5.3-(5.20) one has
US(αε)

i∗S (c1 c5) =


J∈A5,0(αε)

(−1)

J∩{4}

+3+1
= −1,

since

A5,0(αε) =


J ⊂ {4, 5} | ℓJ (αε) > 0 and 5 < ℓJ (αε)


=

{4, 5}


.

Finally,
US(αε)

i∗S (c4 c5) =


US(1,1,3,6+ε)

i∗S c4 +


US(1,1,3,ε)

i∗S c4

= −


US(1,1,3,6+ε)

i∗S c1 + 0 = 1,
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where we used Claim 3, the fact that S is not short for (1, 1, 3, ε) and the fact that, in US(1, 1,

3, 6 + ε), one has

i∗Sc1 = −P D

US(1, 1, 3, 6 + ε) ∩ W1


= −P D


{pt}


.

By Theorem 5.3-(5.21),
US(αε)

i∗S (c4 c5) = (−1)4
A5,1(αε)

 = 1,

since A5,1(αε) =


J ⊂ {4, 5} | ℓJ (αε) > 5


=

{4, 5}


.

These values agree with the fact that, since S is a maximal short set for α, the core component
US is CP2 (cf. Proposition 2.18). Indeed one can choose c1 to be the generator of H2(US(α)).

6. Intersection numbers for PHBs

In this section we will use the isomorphism F : H(β) −→ X (α) defined in (3.3) to obtain ex-
plicit formulas for the intersection numbers of the nilpotent cone components of H(β). Consider
the pull backs F∗Vi of Vi as in the following diagram

F∗Vi
//

��

Vi

π

��
H(β)

F // X (α).

In particular,

F∗Vi :=


[E,Φ], (p, q)


∈ H(β) × Vi | F

[E,Φ]


= π


(p, q)


.

Note that the PHBs [E,Φ] ∈ H(β) for which there exists (p, q) ∈ Vi such that F

[E,Φ]


=

π

(p, q)


have parabolic structure at xi given by

C2
= Ex,1 ⊃ Ex,2 = ⟨(1, 0)t

⟩ ⊃ 0

and Higgs field with residue of the form

ResxΦ =


0 ∗

0 0


. (6.1)

Indeed, since any (p, q) ∈ Vi satisfies

(qi q
∗

i − p∗

i pi )0 =


t 0
0 −t


, t > 0,

writing, as usual, pi = (ai , bi ) and qi = (ci , di )
t , one has

ci d̄i − ai b̄i = 0 and |ci |
2
− |di |

2
− |ai |

2
+ |bi |

2 > 0

which, together with (2.4) gives ai = di = 0. Then, (6.1) follows from (3.2).
Consider the first Chern classes of these pull back bundles c1(F

∗Vi ) = F∗ci which we
will also denote by ci . Then it is clear that these classes generate H∗(H(β),Q) as in the case
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of hyperpolygon spaces (cf. [27,20,18]). In particular, following Corollary 4.5 in [20] we can
explicitly describe the ring structure of the cohomology of H(β).

Theorem 6.1. The cohomology ring H

H(β),Q


is independent of β and is isomorphic to

Q[c1, . . . , cn]/

⟨c2

i − c2
j | i, j ≤ n⟩ + ⟨all monomials of degree n − 2⟩


.

Moreover one can reduce the computation of the intersection numbers of any nilpotent cone
component U(0,S) = I(US(β)) of H(β) to one of the following two cases.

(I)


U(0,S)

ι∗S cn−3
1 =


US(α)

i∗S cn−3
1 ,

(II)


U(0,S)

ι∗S (ck
1 cn−l · · · cn) =


US(α)

i∗S (ck
1 cn−l · · · cn),

with n − l > |S| and k = n − l − 4,

where ιS : U(0,S) −→ H(β) is the inclusion map, and we used the fact that F ◦ ιS ◦ I = iS . These
integrals can then be computed using the formulas in Theorems 5.2 and 5.3.

The ring structure of H∗(U(0,S),Q) can also be obtained from the ring structure of H∗(US,Q)

(presented in [18]), through the isomorphism of Theorem 3.1. Explicitly, one obtains the follow-
ing result.

Theorem 6.2. Consider the classes bi = −ι∗S

 c1+ci
2


for 1 = 1, . . . , n. Then H∗(U(0,S),Q) is

isomorphic toQ[b1, . . . , bn]/IS where IS is generated by the following four families of relations:

(1) b1 − bi for all i ∈ S,

(2) b j (b1 − b j ) for all j ∈ Sc,

(3)

j∈R

b j for all R ⊆ Sc such that R ∪ S is long,

(4) b|S|−2
1


j∈L

(b j − b1) for all long subsets L ⊆ Sc.

Note that relations (1) and (2) in Theorem 6.2 are trivial consequences of Claims 1 and 2 respec-
tively.

Example 10. Let S be a maximal α-short set. Then

U(0,S)
∼= US(α) ∼= CPn−3

(cf. Proposition 2.18). This can be confirmed using Theorem 6.2. In fact, R ∪ S is long for any
R ⊆ Sc, so (3) implies that b j = 0 for all j ∈ Sc, and then (2) is trivially verified. Since by (1)
we have b1 = bi for all i ∈ S, we can chose b1 to be the generator of H∗(U(0,S),Q). Moreover,
since S is maximal, the only long subset of Sc is Sc itself, and so IS is generated by the unique
condition bn−2

i = 0. The cohomology ring of the nilpotent cone component U(0,S)
∼= CPn−3 is

then

H∗(U(0,S),Q) ∼= Q[b1]/⟨b
n−2
1 ⟩ ∼= H∗(CPn−3,Q)

as expected.
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