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Abstract

Given a point A in the real Grassmannian, it is well-known that one can construct a soliton solution
u A(x, y, t) to the KP equation. The contour plot of such a solution provides a tropical approximation to the
solution when the variables x , y, and t are considered on a large scale and the time t is fixed. In this paper
we use several decompositions of the Grassmannian in order to gain an understanding of the contour plots
of the corresponding soliton solutions. First we use the positroid stratification of the real Grassmannian
in order to characterize the unbounded line-solitons in the contour plots at y ≫ 0 and y ≪ 0. Next we
use the Deodhar decomposition of the Grassmannian – a refinement of the positroid stratification – to
study contour plots at t ≪ 0. More specifically, we index the components of the Deodhar decomposition
of the Grassmannian by certain tableaux which we call Go-diagrams, and then use these Go-diagrams to
characterize the contour plots of solitons solutions when t ≪ 0. Finally we use these results to show that
a soliton solution u A(x, y, t) is regular for all times t if and only if A comes from the totally non-negative
part of the Grassmannian.
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1. Introduction

The KP equation is a two-dimensional nonlinear dispersive wave equation which was
proposed by Kadomtsev and Petviashvili in 1970 to study the stability problem of the soliton
solution of the Korteweg–de Vries (KdV) equation [14]. The KP equation can also be used to
describe shallow water waves, and in particular, the equation provides an excellent model for
the resonant interaction of those waves. The equation has a rich mathematical structure, and is
now considered to be the prototype of an integrable nonlinear dispersive wave equation with two
spatial dimensions (see for example [26,1,10,25,13]).
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One of the main breakthroughs in the KP theory was given by Sato [31], who realized that
solutions of the KP equation could be written in terms of points on an infinite-dimensional
Grassmannian. The present paper deals with a real, finite-dimensional version of the Sato
theory; in particular, we are interested in solutions that are localized along certain rays in the
xy plane called line-solitons. Such a soliton solution can be constructed from a point A of the
real Grassmannian. More specifically, one can apply the Wronskian form [31,32,12,13] to A to
produce a τ -function τA(x, y, t) which is a sum of exponentials, and from the τ -function one
can construct a solution u A(x, y, t) to the KP equation.

Recently several authors have studied the soliton solutions u A(x, y, t) which come from
points A of the totally non-negative part of the Grassmannian (Grk,n)≥0, that is, those points of
the real Grassmannian Grk,n whose Plücker coordinates are all non-negative [3,18,2,5,7,20,21].
These solutions are regular, and include a large variety of soliton solutions which were previously
overlooked by those using the Hirota method of a perturbation expansion [13].

One of the main goals of this paper is to understand the soliton solutions u A(x, y, t) coming
from arbitrary points A of the real Grassmannian, not just the totally non-negative part. In general
such solutions are no longer regular – they may have singularities along rays in the xy plane –
but it is possible, nevertheless, to understand a great deal about the asymptotics of such solutions.

Towards this end, we use two related decompositions of the real Grassmannian. The first
decomposition is Postnikov’s positroid stratification of the Grassmannian [28], whose strata are
indexed by various combinatorial objects including decorated permutations and -diagrams. Note
that the intersection of each positroid stratum with (Grk,n)≥0 is a cell (homeomorphic to an open
ball); when one intersects the positroid stratification of the Grassmannian with the totally non-
negative part, one obtains a cell decomposition of (Grk,n)≥0 [28].

The second decomposition is the Deodhar decomposition of the Grassmannian, which is a
refinement of the positroid stratification. Its components have explicit parameterizations due to
Marsh and Rietsch [24], and are indexed by distinguished subexpressions of reduced words in the
Weyl group. The components may also be indexed by certain tableaux filled with black and white
stones which we call Go-diagrams, and which provide a generalization of -diagrams. Note that
almost all Deodhar components have an empty intersection with the totally non-negative part of
the Grassmannian. More specifically, each positroid stratum is a union of Deodhar components,
precisely one of which has a non-empty intersection with (Grk,n)≥0.

By using the positroid stratification of the Grassmannian, we characterize the unbounded
line-solitons of KP soliton solutions coming from arbitrary points of the real Grassmannian.
More specifically, given A ∈ Grk,n , we show that the unbounded line-solitons of the solution
u A(x, y, t) at y ≪ 0 and y ≫ 0 depend only on which positroid stratum A belongs to, and that
one can use the corresponding decorated permutation to read off the unbounded line-solitons.
This extends work of [2,5,7,20,21] from the setting of the non-negative part of the Grassmannian
to the entire real Grassmannian.

By using the Deodhar decomposition of the Grassmannian, we give an explicit description
of the contour plots of soliton solutions in the xy-plane when t ≪ 0. The contour plot of the
solution u A(x, y, t) at a fixed t approximates the locus where |u A(x, y, t)| takes on its maximum
values or is singular. More specifically, we provide an algorithm for constructing the contour plot
of u A(x, y, t) at t ≪ 0, which uses the Go-diagram indexing the Deodhar component of A. We
also show that when the Go-diagram D is a -diagram, then the corresponding contour plot at
t ≪ 0 gives rise to a positivity test for the Deodhar component SD .

Finally we use our previous results to address the regularity problem for KP solitons. We prove
that a soliton solution u A(x, y, t) coming from a point A of the real Grassmannian is regular for
all times t if and only if A is a point of the totally non-negative part of the Grassmannian.
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The structure of this paper is as follows. In Section 2 we provide background on the Grass-
mannian and some of its decompositions, including the positroid stratification. In Section 3 we
describe the Deodhar decomposition of the complete flag variety and its projection to the Grass-
mannian, while in Section 4 we explain how to index Deodhar components in the Grassmannian
by Go-diagrams (Section 4.2). In Section 5 we provide explicit formulas for certain Plücker co-
ordinates of points in Deodhar components (Theorems 5.2 and 5.6), and use these formulas to
provide positivity tests for points in the real Grassmannian (Theorem 5.13). Subsequent sections
provide applications of the previous results to soliton solutions of the KP equation. In Section 6
we give background on how to produce a soliton solution to the KP equation from a point of the
real Grassmannian. In Section 7 we define the contour plot associated to a soliton solution at a
fixed time t (Definition 7.1), then in Section 8 we use the positroid stratification to describe the
unbounded line-solitons in contour plots of soliton solutions at y ≫ 0 and y ≪ 0 (Theorem 8.1).
In Section 9 we define the more combinatorial notions of soliton graph and generalized plabic
graph. In Section 10 we use the Deodhar decomposition to describe contour plots of soliton
solutions for t ≪ 0 (Theorem 10.6), and in Section 11 we provide some technical results on
X -crossings in contour plots and corresponding relations among Plücker coordinates. Finally we
use the results of the previous sections to address the regularity problem for soliton solutions in
Section 12 (Theorem 12.1).

2. Background on the Grassmannian and its decompositions

The real Grassmannian Grk,n is the space of all k-dimensional subspaces of Rn . An element
of Grk,n can be viewed as a full-rank k × n matrix modulo left multiplication by nonsingular
k × k matrices. In other words, two k × n matrices represent the same point in Grk,n if and only

if they can be obtained from each other by row operations. Let

[n]
k


be the set of all k-element

subsets of [n] := {1, . . . , n}. For I ∈

[n]
k


, let ∆I (A) be the Plücker coordinate, that is, the

maximal minor of the k×n matrix A located in the column set I . The map A → (∆I (A)), where

I ranges over

[n]
k


, induces the Plücker embedding Grk,n ↩→ RP( n

k )−1.

We now describe several useful decompositions of the Grassmannian: the matroid
stratification, the Schubert decomposition, and the positroid stratification. Their relationship is
as follows: the matroid stratification refines the positroid stratification which refines the Schubert
decomposition. In Section 3.4 we will describe the Deodhar decomposition, which is a refinement
of the positroid stratification, and (as verified in [34]) is refined by the matroid stratification.

2.1. The matroid stratification of Grk,n

Definition 2.1. A matroid of rank k on the set [n] is a nonempty collection M ⊂


[n]
k


of

k-element subsets in [n], called bases of M, that satisfies the exchange axiom:
For any I, J ∈ M and i ∈ I there exists j ∈ J such that (I \ {i}) ∪ { j} ∈ M.

Definition 2.2. A loop of a matroid on the set [n] is an element i ∈ [n] which is in every basis.
A coloop is an element i ∈ [n] which is not in any basis.

Given an element A ∈ Grk,n , there is an associated matroid M A whose bases are the k-subsets
I ⊂ [n] such that ∆I (A) ≠ 0.
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Definition 2.3. Let M ⊂


[n]
k


be a matroid. The matroid stratum SM is defined to be

SM = {A ∈ Grk,n | ∆I (A) ≠ 0 if and only if I ∈ M}.

This gives a stratification of Grk,n called the matroid stratification, or Gelfand–Serganova
stratification. The matroids M with nonempty strata SM are called realizable over R.

2.2. The Schubert decomposition of Grk,n

We now turn to the Schubert decomposition of the Grassmannian. First recall that the
partitions λ ⊂ (n − k)k are in bijection with k-element subset I ⊂ [n]. The boundary of the
Young diagram of such a partition λ forms a lattice path from the upper-right corner to the lower-
left corner of the rectangle (n− k)k . Let us label the n steps in this path by the numbers 1, . . . , n,
and define I = I (λ) as the set of labels on the k vertical steps in the path. Conversely, we let
λ(I ) denote the partition corresponding to the subset I .

Definition 2.4. For each partition λ ⊂ (n− k)k , one can define the Schubert cell Ωλ to be the set
of all elements A ∈ Grk,n such that when A is represented by a matrix in row-echelon form, it
has pivots precisely in the columns I (λ). As λ ranges over the partitions contained in (n − k)k ,
this gives the Schubert decomposition of the Grassmannian Grk,n , i.e.

Grk,n =


λ⊂(n−k)k

Ωλ.

Definition 2.5. Let {i1, i2, . . . , ik} and { j1, j2, . . . , jk} be two k-element subsets of {1, 2, . . . , n},
such that i1 < i2 < · · · < ik and j1 < j2 < · · · < jk . We define the component-wise order ≼ on
k-element subsets of {1, 2, . . . , n} as follows:

{i1, i2, . . . , ik} ≼ { j1, j2, . . . , jk} if and only if i1 ≤ j1, i2 ≤ j2, . . . , and ik ≤ jk .

Lemma 2.6. Let A be an element of the Schubert cell Ωλ, and let I = I (λ). If ∆J (A) ≠ 0, then
I ≼ J . In particular,

Ωλ = {A ∈ Grk,n | I (λ) is the lexicographically minimal base of M A}.

Proof. This follows immediately by considering the representation of A as a matrix in row-
echelon form. �

We now define the shifted linear order <i (for i ∈ [n]) to be the total order on [n] defined by

i <i i + 1 <i i + 2 <i . . . <i n <i 1 <i . . . <i i − 1.

One can then define cyclically shifted Schubert cells as follows.

Definition 2.7. For each partition λ ⊂ (n − k)k and i ∈ [n], we define the cyclically shifted
Schubert cell Ω i

λ by

Ω i
λ = {A ∈ Grk,n | I (λ) is the lexicographically minimal base of

M A with respect to <i }.

Note that Ωλ = Ω1
λ .
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2.3. The positroid stratification of Grk,n

The positroid stratification of the real Grassmannian Grk,n is obtained by taking the
simultaneous refinement of the n Schubert decompositions with respect to the n shifted linear
orders <i . This stratification was first considered by Postnikov [28], who showed that the strata
are conveniently described in terms of Grassmann necklaces, as well as decorated permutations
and -diagrams. Postnikov coined the terminology positroid because the intersection of the
positroid stratification with the totally non-negative part of the Grassmannian (Grk,n)≥0 gives a
cell decomposition of (Grk,n)≥0 (whose cells are called positroid cells).

Definition 2.8 ([28, Definition 16.1]). A Grassmann necklace is a sequence I = (I1, . . . , In)

of subsets Ir ⊂ [n] such that, for i ∈ [n], if i ∈ Ii then Ii+1 = (Ii \ {i}) ∪ { j}, for some
j ∈ [n]; and if i ∉ Ii then Ii+1 = Ii . (Here indices i are taken modulo n.) In particular, we have
|I1| = · · · = |In|, which is equal to some k ∈ [n]. We then say that I is a Grassmann necklace
of type (k, n).

Example 2.9. I = (1257, 2357, 3457, 4567, 5678, 6789, 1789, 1289, 1259) is an example of a
Grassmann necklace of type (4, 9).

Lemma 2.10 ([28, Lemma 16.3]). Given A ∈ Grk,n , let I(A) = (I1, . . . , In) be the sequence

of subsets in [n] such that, for i ∈ [n], Ii is the lexicographically minimal subset of

[n]
k


with

respect to the shifted linear order <i such that ∆Ii (A) ≠ 0. Then I(A) is a Grassmann necklace
of type (k, n).

If A is in the matroid stratum SM, we also use IM to denote the sequence (I1, . . . , In) defined
above. This leads to the following description of the positroid stratification of Grk,n .

Definition 2.11. Let I = (I1, . . . , In) be a Grassmann necklace of type (k, n). The positroid
stratum SI is defined to be

SI = {A ∈ Grk,n | I(A) = I}.

Remark 2.12. By comparing Definition 2.11 to Definition 2.7, we see that given a Grassmann
necklace I = (I1, . . . , In),

SI =
n

i=1

Ω i
λ(Ii )

.

In other words, each positroid stratum is an intersection of n cyclically shifted Schubert cells.

Definition 2.13 ([28, Definition 13.3]). A decorated permutation π : = (π, col) is a permutation
π ∈ Sn together with a coloring function col from the set of fixed points {i | π(i) = i} to {1,−1}.
So a decorated permutation is a permutation with fixed points colored in one of two colors. A
weak excedance of π : is a pair (i, π(i)) such that either π(i) > i or π(i) = i and col(i) = 1. We
call i the weak excedance position. If π(i) > i (respectively π(i) < i) then (i, π(i)) is called an
excedance (respectively, nonexcedance).

Example 2.14. The decorated permutation (written in one-line notation) (6, 7, 1, 2, 8, 3, 9, 4, 5)

has no fixed points, and four weak excedances, in positions 1, 2, 5 and 7.
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Fig. 1. A Le-diagram L = (λ, D)k,n .

Definition 2.15 ([28, Definition 6.1]). Fix k, n. If λ is a partition, let Yλ denote its Young
diagram. A -diagram (λ, D)k,n of type (k, n) is a partition λ contained in a k×(n−k) rectangle
together with a filling D : Yλ → {0,+} which has the -property: there is no 0 which has a +
above it and a + to its left.1 (Here, “above” means above and in the same column, and “to its
left” means to the left and in the same row.)

In Fig. 1 we give an example of a -diagram.
We now review some of the bijections among these objects.

Definition 2.16 ([28, Section 16]). Given a Grassmann necklace I , define a decorated
permutation π : = π :(I) by requiring that

(1) if Ii+1 = (Ii \ {i}) ∪ { j}, for j ≠ i , then π( j) = i .2

(2) if Ii+1 = Ii and i ∈ Ii then π(i) = i is colored with col(i) = 1.
(3) if Ii+1 = Ii and i ∉ Ii then π(i) = i is colored with col(i) = −1.

As before, indices are taken modulo n.

If π : = π :(I), then we also use the notation Sπ : to refer to the positroid stratum SI .

Example 2.17. Definition 2.16 carries the Grassmann necklace of Example 2.9 to the decorated
permutation of Example 2.14.

Lemma 2.18 ([28, Lemma 16.2]). The map I → π :(I) is a bijection from Grassmann necklaces
I = (I1, . . . , In) of size n to decorated permutations π :(I) of size n. Under this bijection, the
weak excedances of π :(I) are in positions I1.

Remark 2.19. Use the notation of Lemma 2.18. It follows from the definition of the positroid
stratification that if A ∈ SI is written in row-echelon form, then the pivots are located in position
I1. It follows from Lemma 2.18 that the pivot positions coincide with the weak excedance
positions of π :(I).

2.4. Irreducible elements of Grk,n

Definition 2.20. We say that a full rank k×n matrix is irreducible if, after passing to its reduced
row-echelon form A, the matrix A has the following properties:

(1) Each column of A contains at least one nonzero element.
(2) Each row of A contains at least one nonzero element in addition to the pivot.

1 This forbidden pattern is in the shape of a backwards L , and hence is denoted and pronounced “Le”.
2 Actually Postnikov’s convention was to set π(i) = j above, so the decorated permutation we are associating is the

inverse one to his.
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An irreducible Grassmann necklace of type (k, n) is a sequence I = (I1, . . . , In) of subsets
Ir of [n] of size k such that, for i ∈ [n], Ii+1 = (Ii \ {i}) ∪ { j} for some j ≠ i . (Here indices i
are taken modulo n.) A derangement π = (π1, . . . , πn) is a permutation π ∈ Sn which has no
fixed points.

In the language of matroids, an element A ∈ SM is irreducible if and only if the matroid
M has no loops or coloops. It is easy to see that if A is irreducible, then I(A) is an irreducible
Grassmann necklace and π :(I) is a derangement.

3. Projecting the Deodhar decomposition of G/B to the Grassmannian

In this section we review Deodhar’s decomposition of the flag variety G/B [8]. By projecting
it, one may obtain a decomposition of any partial flag variety G/P (and in particular the
Grassmannian), obtaining the decomposition which Deodhar described in [9]. We also review
the parameterizations of the components due to Marsh and Rietsch [24].

3.1. The flag variety

The following definitions can be made for any split, connected, simply connected, semisimple
algebraic group over a field K. However this paper will be concerned with G = SLn = SLn(R).

We fix a maximal torus T , and opposite Borel subgroups B+ and B−, which consist of the
diagonal, upper-triangular, and lower-triangular matrices, respectively. We let U+ and U− be
the unipotent radicals of B+ and B−; these are the subgroups of upper-triangular and lower-
triangular matrices with 1’s on the diagonals. For each 1 ≤ i ≤ n − 1 we have a homomorphism
φi : SL2 → SLn such that

φi


a b
c d


=



1
. . .

a b
c d

. . .

1


∈ SLn,

that is, φi replaces a 2 × 2 block of the identity matrix with


a b
c d


. Here a is at the (i + 1)st

diagonal entry counting from the southeast corner.3 We use this to construct 1-parameter
subgroups in G (landing in U+ and U−, respectively) defined by

xi (m) = φi


1 m
0 1


and yi (m) = φi


1 0
m 1


, where m ∈ R.

The datum (T, B+, B−, xi , yi ; i ∈ I ) for G is called a pinning.
Let W denote the Weyl group NG(T )/T , where NG(T ) is the normalizer of T . The simple

reflections si ∈ W are given explicitly by si := ṡi T where ṡi := φi


0 −1
1 0


andany w ∈ W can

be expressed as a product w = si1si2 . . . sim with m = ℓ(w) factors. We set ẇ = ṡi1 ṡi2 . . . ṡim .
For G = SLn , we have W = Sn , the symmetric group on n letters, and si is the transposition
exchanging i and i + 1.

3 Our numbering differs from that in [24] in that the rows of our matrices in SLn are numbered from the bottom.
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We can identify the flag variety G/B with the variety B of Borel subgroups, via

gB ←→ g · B+ := gB+g−1.

We have two opposite Bruhat decompositions of B:

B =


w∈W

B+ẇ · B+ =

v∈W

B−v̇ · B+.

Note that B−v̇ ·B+ ∼= Rℓ(w0)−ℓ(v). The closure relations for these opposite Bruhat cells are given
by B−v̇′ · B+ ⊂ B−v̇ · B+ if and only if v ≤ v′. We define

Rv,w := B+ẇ · B+ ∩ B−v̇ · B+,

the intersection of opposite Bruhat cells. This intersection is empty unless v ≤ w, in which case
it is smooth of dimension ℓ(w)− ℓ(v), see [16,23]. The strata Rv,w are often called Richardson
varieties.

3.2. Distinguished expressions

We now provide background on distinguished and positive distinguished subexpressions, as
in [8] and [24]. We will assume that the reader is familiar with the (strong) Bruhat order < on
the Weyl group W = Sn , and the basics of reduced expressions, as in [4].

Let w := si1 . . . sim be a reduced expression for w ∈ W . We define a subexpression v of
w to be a word obtained from the reduced expression w by replacing some of the factors with
1. For example, consider a reduced expression in S4, say s3s2s1s3s2s3. Then s3s2 1 s3s2 1 is a
subexpression of s3s2s1s3s2s3. Given a subexpression v, we set v(k) to be the product of the
leftmost k factors of v, if k ≥ 1, and v(0) = 1. The following definition was given in [24] and
was implicit in [8].

Definition 3.1. Given a subexpression v of a reduced expression w = si1si2 . . . sim , we define

J ◦v := {k ∈ {1, . . . , m} | v(k−1) < v(k)},

J�
v := {k ∈ {1, . . . , m} | v(k−1) = v(k)},

J •v := {k ∈ {1, . . . , m} | v(k−1) > v(k)}.

The expression v is called non-decreasing if v( j−1) ≤ v( j) for all j = 1, . . . , m, e.g. J •v = ∅.

The following definition is from [8, Definition 2.3]:

Definition 3.2 (Distinguished Subexpressions). A subexpression v of w is called distinguished if
we have

v( j) ≤ v( j−1) si j for all j ∈ {1, . . . , m}. (3.1)

In other words, if right multiplication by si j decreases the length of v( j−1), then in a distinguished
subexpression we must have v( j) = v( j−1)si j .

We write v ≺ w if v is a distinguished subexpression of w.

Definition 3.3 (Positive Distinguished Subexpressions). We call a subexpression v of w a positive
distinguished subexpression (or a PDS for short) if

v( j−1) < v( j−1)si j for all j ∈ {1, . . . , m}. (3.2)

In other words, it is distinguished and non-decreasing.
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Lemma 3.4 ([24]). Given v ≤ w and a reduced expression w for w, there is a unique PDS v+
for v in w.

3.3. Deodhar components in the flag variety

We now describe the Deodhar decomposition of the flag variety. This is a further refinement of
the decomposition of G/B into Richardson varieties Rv,w. Marsh and Rietsch [24] gave explicit
parameterizations for each Deodhar component, identifying each one with a subset in the group.

Definition 3.5 ([24, Definition 5.1]). Let w = si1 . . . sim be a reduced expression for w, and let
v be a distinguished subexpression. Define a subset Gv,w in G by

Gv,w :=

g = g1g2 · · · gm


gℓ = xiℓ(mℓ)ṡ

−1
iℓ

if ℓ ∈ J •v ,
gℓ = yiℓ(pℓ) if ℓ ∈ J�

v ,
gℓ = ṡiℓ if ℓ ∈ J ◦v ,

for pℓ ∈ R∗, mℓ ∈ R.

 . (3.3)

There is an obvious map (R∗)|J�
v |×R|J •v |→ Gv,w defined by the parameters pℓ and mℓ in (3.3).

For v = w = 1 we define Gv,w = {1}.

Example 3.6. Let W = S5, w = s2s3s4s1s2s3 and v = s2111s21. Then the corresponding
element g ∈ Gv,w is given by g = s2 y3(p2)y4(p3)y1(p4)x2(m5)s

−1
2 y3(p6), which is

g =


1 0 0 0 0
p3 1 0 0 0
0 p6 1 0 0

p2 p3 p2 − m5 p6 −m5 1 0
0 −p4 p6 −p4 0 1.


The following result from [24] gives an explicit parametrization for the Deodhar component

Rv,w. We will take the description below as the definition of Rv,w.

Proposition 3.7 ([24, Proposition 5.2]). The map (R∗)|J�
v |×R|J •v |→ Gv,w from Definition 3.5 is

an isomorphism. The set Gv,w lies in U−v̇ ∩ B+ẇB+, and the assignment g → g · B+ defines
an isomorphism

Gv,w
∼
−→ Rv,w (3.4)

between the subset Gv,w of the group, and the Deodhar component Rv,w in G/B.

Suppose that for each w ∈ W we choose a reduced expression w for w. Then it follows from
Deodhar’s work (see [8] and [24, Section 4.4]) that

Rv,w =


v≺w

Rv,w and G/B =


w∈W


v≺w

Rv,w


. (3.5)

These are called the Deodhar decompositions of Rv,w and G/B.
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Remark 3.8. One may define the Richardson variety Rv,w over a finite field Fq . In this setting
the number of points determine the R-polynomials Rv,w(q) = #(Rv,w(Fq)) introduced by
Kazhdan and Lusztig [15] to give a formula for the Kazhdan–Lusztig polynomials. This was the

original motivation for Deodhar’s work. Therefore the isomorphisms Rv,w ∼= (F∗q)|J
�
v | × F|J

•
v |

q
together with the decomposition (3.5) give formulas for the R-polynomials.

Remark 3.9. Note that the Deodhar decomposition of Rv,w depends on the choice of reduced
expression for w. However, we will show in Proposition 4.16 that its projection to the
Grassmannian does not depend on the choice of reduced expression.

Remark 3.10. The Deodhar decomposition of the complete flag variety is not a stratification—
e.g. the closure of a component is not a union of components [11].

This decomposition has a beautiful restriction to the totally non-negative part (G/B)≥0 of
G/B. See [24, Section 11] and also [30] for more definitions and details.

Remark 3.11. Suppose we choose a reduced expression w for w, and for each v ≤ w we let
v+ denote the unique positive distinguished subexpression for v in w. Note that v+ is non-
decreasing so J •v+ = ∅. Define G>0

v+,w to be the subset of Gv+,w obtained by letting the parameters
pℓ range over the positive reals. Let R>0

v,w denote the image of G>0
v+,w under the isomorphism

Gv+,w
∼
−→Rv+,w. Then R>0

v,w depends only on v and w, not on v+ and w. Moreover, the totally
non-negative part (G/B)≥0 of G/B has a cell decomposition

(G/B)≥0 =


w∈W


v≤w

R>0
v,w


. (3.6)

3.4. Deodhar components in the Grassmannian

As we will explain in this section, one obtains the Deodhar decomposition of the Grass-
mannian by projecting the Deodhar decomposition of the flag variety to the Grassmannian
[9].

The Richardson stratification of G/B has an analogue for partial flag varieties G/PJ intro-
duced by Lusztig [23]. Let WJ be the parabolic subgroup of W corresponding to PJ , and let W J

be the set of minimal-length coset representatives of W/WJ . Then for each w ∈ W J , the pro-
jection π : G/B → G/PJ is an isomorphism on each Richardson variety Rv,w. Lusztig showed
that we have a decomposition of the partial flag variety

G/PJ =


w∈W J


v≤w

π(Rv,w)


. (3.7)

Now consider the case that our partial flag variety is the Grassmannian Grk,n for k < n.
The corresponding parabolic subgroup of W = Sn is Wk = ⟨s1, s2, . . . , ŝn−k, . . . , sn−1⟩. Let
W k denote the set of minimal-length coset representatives of W/Wk . Recall that a descent
of a permutation π is a position j such that π( j) > π( j + 1). Then W k is the subset of
permutations of Sn which have at most one descent; and that descent must be in position
n − k.
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Let πk : G/B → Grk,n be the projection from the flag variety to the Grassmannian. For each
w ∈ W k and v ≤ w, define Pv,w = πk(Rv,w). Then by (3.7) we have a decomposition

Grk,n =


w∈W k


v≤w

Pv,w


. (3.8)

Remark 3.12. The decomposition in (3.8) coincides with the positroid stratification from
Section 2.3. This was verified in [17, Theorem 5.9]. The appropriate bijection between the strata
is defined in Lemma 3.13 below, and was first given in [35, Lemma A.4].

Lemma 3.13 ([35, Lemma A.4]). Let Qk denote the set of pairs (v, w) where v ∈ W , w ∈ W k ,
and v ≤ w; let Deck

n denote the set of decorated permutations in Sn with k weak excedances. We
consider both sets as partially ordered sets, where the cover relation corresponds to containment
of closures of the corresponding strata. Then there is an order-preserving bijection Φ from Qk to
Deck

n which is defined as follows. Let (v, w) ∈ Q J . Then Φ(v, w) = (π, col) where π = vw−1.
We also let π :(v, w) denote Φ(v, w). To define col, we color any fixed point that occurs in one of
the positions w(1), w(2), . . . , w(n − k) with the color −1, and color any other fixed point with
the color 1.

Since πk is an isomorphism from Rv,w to Pv,w, it also makes sense to consider projections
of Deodhar components in G/B to the Grassmannian. For each reduced decomposition w for
w ∈ W k , and each v ≺ w, we define Pv,w = πk(Rv,w). Now if for each w ∈ W k we choose a
reduced decomposition w, then we have

Pv,w =


v≺w

Pv,w and Grk,n =


w∈W k


v≺w

Pv,w


. (3.9)

Remark 3.14. By Remark 3.12 and Lemma 3.13, each projected Deodhar component Pv,w lies
in the positroid stratum Sπ : , where π : = (π, col), π = vw−1, and col is given by Lemma 3.13.
Moreover, each Deodhar component is a union of matroid strata [34]. Therefore the Deodhar
decomposition of the Grassmannian refines the positroid stratification, and is refined by the
matroid stratification.

Proposition 3.7 gives us a concrete way to think about the projected Deodhar components
Pv,w. The projection πk : G/B → Grk,n maps each g ∈ Gv,w to the span of its leftmost k
columns. More specifically, it maps

g =

gn,n . . . gn,n−k+1 . . . gn,1
...

...
...

g1,n . . . g1,n−k+1 . . . g1,1

 −→ A =

g1,n−k+1 . . . gn,n−k+1
...

...

g1,n . . . gn,n

 .

Alternatively, we may identify A ∈ Grk,n with its image in the Plücker embedding. Let ei denote
the column vector in Rn such that the i th entry from the bottom contains a 1, and all other entries
are 0, e.g. en = (1, 0, . . . , 0)T , the transpose of the row vector (1, 0, . . . , 0). Then the projection
πk maps each g ∈ Gv,w (identified with g · B+ ∈ Rv,w) to

g · en−k+1 ∧ · · · ∧ en =


1≤ j1<···< jk≤n

∆ j1,..., jk (A)e j1 ∧ · · · ∧ e jk . (3.10)
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That is, the Plücker coordinate ∆ j1,..., jk (A) is given by

∆ j1,..., jk (A) = ⟨e j1 ∧ · · · ∧ e jk , g · en−k+1 ∧ · · · ∧ en⟩,

where ⟨·, ·⟩ is the usual inner product on ∧k Rn .

Example 3.15. We continue Example 3.6. Note that w ∈ W k where k = 2. Then the map
π2 : Gv,w → Gr2,5 is given by

g =


1 0 0 0 0
p3 1 0 0 0
0 p6 1 0 0

p2 p3 p2 − m5 p6 −m5 1 0
0 −p4 p6 −p4 0 1


−→ A =


−p4 p6 p2 − m5 p6 p6 1 0

0 p2 p3 0 p3 1


.

4. Combinatorics of projected Deodhar components in the Grassmannian

In this section we explain how to index the Deodhar components in the Grassmannian Grk,n
by certain tableaux. We will display the tableaux in two equivalent ways – as fillings of Young
diagrams by +’s and 0’s, which we call Deodhar diagrams, and by fillings of Young diagrams
by empty boxes, ✈’s and ❢’s, which we call Go-diagrams. We refer to the symbols ✈and ❢as
black and white stones.

Recall that Wk = ⟨s1, s2, . . . , ŝn−k, . . . , sn−1⟩ is a parabolic subgroup of W = Sn and W k is
the set of minimal-length coset representatives of W/Wk .

An element w ∈ W is fully commutative if every pair of reduced words for w are related by a
sequence of relations of the form si s j = s j si . The following result is due to Stembridge [33] and
Proctor [29].

Theorem 4.1. W k consists of fully commutative elements. Furthermore the Bruhat order on W k

is a distributive lattice.

Let Qk be the poset such that W k
= J (Qk), where J (P) denotes the distributive lattice of

upper order ideals in P . The figure below (at the left) shows an example of the Young diagram of
Gr3,8. (The reader should temporarily ignore the labeling of boxes by si ’s.) The Young diagram
should be interpreted as follows: each box represents an element of the poset Qk , and if b1 and
b2 are two adjacent boxes such that b2 is immediately to the left or immediately above b1, we
have a cover relation b1 l b2 in Qk . The partial order on Qk is the transitive closure of l.
Note that the minimal and maximal elements of Qk are the lower right and upper left boxes,
respectively.

We now state some facts about Qk which can be found in [33]. Let wk
0 ∈ W k denote the

longest element in W k . The simple generators si used in a reduced expression for wk
0 can be used

to label Qk in a way which reflects the bijection between the minimal length coset representatives
w ∈ W k and upper order ideals Ow ⊂ Qk . Such a labeling is shown in the figure below. If
b ∈ Ow is a box labeled by si , we denote the simple generator labeling b by sb := si . Given this
labeling, if Ow is an upper order ideal in Qk , the set of linear extensions {e : Ow → [1, ℓ(w)]}

of Ow are in bijection with the reduced words R(w) of w: the reduced word (written down from
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left to right) is obtained by reading the labels of Ow in the order specified by e. We will call the
linear extensions of Ow reading orders.

s5 s4 s3 s2 s1

s6 s5 s4 s3 s2

s7 s6 s5 s4 s3

15 14 13 12 11

10 9 8 7 6

5 4 3 2 1

15 12 9 6 3

14 11 8 5 2

13 10 7 4 1

Remark 4.2. The upper order ideals of Qk can be identified with the Young diagrams contained
in a k × (n − k) rectangle, and the linear extensions of Ow can be identified with the reverse
standard tableaux of shape Ow, i.e. entries decrease from left to right in rows and from top to
bottom in columns.

4.1. ⊕-diagrams and Deodhar diagrams

The goal of this section is to identify subexpressions of reduced words for elements of W k

with certain fillings of the boxes of upper order ideals of Qk . In particular we will be concerned
with distinguished subexpressions.

Definition 4.3 ([22, Definition 4.3]). Let Ow be an upper order ideal of Qk , where w ∈ W k . An
⊕-diagram (“o-plus diagram”) of shape Ow is a filling of the boxes of Ow with the symbols 0
and +.

Clearly there are 2ℓ(w)
⊕-diagrams of shape Ow. The value of an ⊕-diagram D at a box x is

denoted D(x). Let e be a reading order for Ow; this gives rise to a reduced expression w = we for
w. The⊕-diagrams D of shape Ow are in bijection with subexpressions v(D) of w: we will make
the convention that if a box b ∈ Ow is filled with a 0 then the corresponding simple generator
sb is present in the subexpression, while if b is filled with a + then we omit the corresponding
simple generator. The subexpression v(D) in turn defines a Weyl group element v := v(D) ∈ W ,
where v ≤ w.

Example 4.4. Consider the upper order ideal Ow which is Qk itself for S5 and k = 2. Then
Qk is the poset shown in the left diagram. Let us choose the reading order (linear extension)
indicated by the labeling shown in the right diagram.

s3 s2 s1

s4 s3 s2

6 5 4

3 2 1

Then the ⊕-diagrams given by

0 0 0

0 0 0

0 + 0

0 0 +

0 + 0

+ 0 +

+ + 0

+ 0 +

correspond to the expressions s2s3s4s1s2s3, 1s3s4s11s3, 1s31s11s3, and 1s31s111. The first and
second are PDS’s (so in particular are distinguished); the third one is not a PDS but it is
distinguished; and the fourth is not distinguished.
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Parts (1) and (2) of this proposition come from [22, Lemma 4.5 and Proposition 4.6].

Proposition 4.5. If b, b′ ∈ Ow are two incomparable boxes, sb and sb′ commute. Furthermore,
if D is an ⊕-diagram, then

(1) the element v := v(D) is independent of the choice of reading word e,
(2) whether v(D) is a PDS depends only on D (and not e),
(3) whether v(D) is distinguished depends only on D (and not on e).

Proof. The commutation of sb and sb′ follows by inspection. For part (1), note that two linear
extensions of the same poset (viewed as permutations of the elements of the poset) can be
connected via transpositions of pairs of incomparable elements. Therefore v(D) is independent
of the choice of reading word.

Suppose D is an ⊕-diagram of shape Ow, and consider the reduced expression w := we =

si1 . . . sin corresponding to a linear extension e. Suppose v(D) is a PDS of w. For part (2), it
suffices to show that if we swap the k-th and (k + 1)-st letters of both w and v(D), where these
positions correspond to incomparable boxes in Ow, then the resulting subexpression v′ will be a
PDS of the resulting reduced expression w′. If we examine the four cases (based on whether the
k-th and (k + 1)-st letters of v(D) are 1 or sik ) it is clear from the definition that v′ is a PDS. The
same argument holds if v(D) is distinguished. �

This leads to the following definitions. Note that by Theorem 4.8, Definitions 4.6 and 2.15
agree.

Definition 4.6 ([22, Definition 4.7]). A -diagram of shape Ow is an⊕-diagram D of shape Ow

such that v(D) is a PDS.

Definition 4.7. A Deodhar diagram of shape Ow is an ⊕-diagram D of shape Ow such that
v(D) is distinguished.

Theorem 4.8 ([22, Theorem 5.1] and [28, Lemma 19.3]). An ⊕-diagram is a -diagram if and
only if there is no 0 which has a + above it (in the same row) and a + to its left (in the same
column).

Theorem 4.8 motivates the following open problem (which is slightly reformulated in
Problem 4.13).

Problem 4.9. Find an analogue of Theorem 4.8 for Deodhar diagrams which characterizes them
by forbidden patterns.

Definition 4.10. Let Ow be an upper order ideal of Qk , where w ∈ W k and W = Sn . Consider
a Deodhar diagram D of shape Ow; this is contained in a k × (n − k) rectangle, and the shape
Ow gives rise to a lattice path from the northeast corner to the southwest corner of the rectangle.
Label the steps of that lattice path from 1 to n; this gives a natural labeling to every row and
column of the rectangle. We now let v be the permutation with reduced decomposition v(D),
and we define π :(D) to be the decorated permutation (π(D), col) where π = π(D) = vw−1.
The fixed points of π correspond precisely to rows and columns of the rectangle with no +’s. If
there are no +’s in the row (respectively, column) labeled by h, then π(h) = h and this fixed
point gets colored with color 1 (respectively, −1.)
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Remark 4.11. It follows from Remark 3.14 and the way we defined Deodhar diagrams that
the projected Deodhar component P D corresponding to D is contained in the positroid stratum
Sπ :(D).

4.2. From Deodhar diagrams to Go-diagrams and labeled Go-diagrams

It will be useful for us to depict Deodhar diagrams in a slightly different way. Consider the
distinguished subexpression v of w: for each k ∈ J ◦v we will place a ❢in the corresponding box;
for each k ∈ J •v we will place a ✈in the corresponding box of Ow; and for each k ∈ J�

v we will
leave the corresponding box blank. We call the resulting diagram a Go-diagram, and refer to the
symbols ❢and ✈as white and black stones.

Remark 4.12. Note that a Go-diagram has no black stones if and only if it corresponds to
a Deodhar diagram D such that v(D) is a PDS, i.e. a -diagram. Therefore, slightly abusing
terminology, we will often refer to a Go-diagram with no black stones as a -diagram.4

Note that the Go-diagrams corresponding to the first three ⊕-diagrams in Example 4.4 are

✐ ✐ ✐✐ ✐ ✐ ✐ ✐✐ ✐ ② ✐✐
Problem 4.13. Characterize the fillings of Young diagrams by blank boxes, white stones, and
black stones which are Go-diagrams.

Remark 4.14. Recall from Remark 3.8 that the isomorphisms Rv,w ∼= (F∗q)|J
�
v | × F|J

•
v |

q
together with the decomposition (3.5) give formulas for the R-polynomials. Therefore a good
combinatorial characterization of the Go-diagrams (equivalently, Deodhar diagrams) contained
in a given Young diagram could lead to explicit formulas for the corresponding R-polynomials.

If we choose a reading order of Ow, then we will also associate to a Go-diagram of shape Ow

a labeled Go-diagram, as defined below. Equivalently, a labeled Go-diagram is associated to a
pair (v, w).

Definition 4.15. Given a reading order of Ow and a Go-diagram of shape Ow, we obtain a
labeled Go-diagram by replacing each ❢with a 1, each ✈with a −1, and putting a pi in each
blank square b, where the subscript i corresponds to the label of b inherited from the linear
extension.

The labeled Go-diagrams corresponding to the examples above using the reading order from
Example 4.4 are:

1 1 1

1 1 1

1 p5 1

1 1 p1

−1 p5 1

p3 1 p1

4 Since -diagrams are a special case of Go-diagrams, one might also refer to them as Lego diagrams.
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In future work we intend to explore further aspects of Go-diagrams and Deodhar strata.

4.3. The projected Deodhar decomposition does not depend on the expressions w

Recall from Remark 3.9 that the Deodhar decomposition depends on the choices of reduced
decompositions w of each w ∈ W . However, its projection to the Grassmannian has a nicer
behavior.

Proposition 4.16. Let w ∈ W k and choose a reduced expression w for w. Then the components
of


v≺w Rv,w do not depend on w, only on w.

Proof. Recall from Theorem 4.1 that any two reduced expressions of w ∈ W k can be obtained
from each other by a sequence of commuting moves (si s j = s j si where |i − j | ≥ 2). And it is
easy to check that if si s j = s j si , then

(1) yi (a)y j (b) = y j (b)yi (a)

(2) yi (a)ṡ j = ṡ j yi (a)

(3) (xi (a)ṡ−1
i )ṡ j = ṡ j (xi (a)ṡ−1

i )

(4) (xi (a)ṡ−1
i )y j (b) = y j (b)(xi (a)ṡ−1

i ).

The result now follows from Definition 3.5 and Proposition 3.7. �

5. Plücker coordinates and positivity tests for projected Deodhar components

Consider Pv,w ⊂ Grk,n , where w is a reduced expression for w ∈ W k and v ≺ w. In this
section we will provide some formulas for the Plücker coordinates of the elements of Pv,w, in
terms of the parameters used to define Gv,w. Some of these formulas are related to corresponding
formulas for G/B in [24, Section 7].

5.1. Formulas for Plücker coordinates

Lemma 5.1. Choose any element A of Pv,w ⊂ Grk,n . Let

I = w{n − k + 1, . . . , n − 1, n} and I ′ = v{n − k + 1, . . . , n − 1, n}.

Then if ∆J (A) ≠ 0, we have I ≼ J ≼ I ′, where ≼ is the component-wise order
from Definition 2.5. In particular, the lexicographically minimal and maximal nonzero Plücker
coordinates of A are ∆I and ∆I ′ . Note that if we write I = {i1, . . . , ik}, then I ′ =
vw−1

{i1, . . . , ik}.

Proof. Recall that Pv,w = πk(Rv,w), where Rv,w ⊂ Rv,w, and Rv,w = B+ẇ · B+ ∩ B−v̇ · B+.
Now it is easy to check (and well-known) that the lexicographically minimal nonzero minor
of each element in the Schubert cell πk(B+ẇ · B+) is ∆I and the lexicographically maximal
minor of each element in the opposite Schubert cell πk(B−v̇ · B+) is ∆I ′ where I and I ′ are as
above. �

Our next goal is to provide formulas for the lexicographically minimal and maximal nonzero
Plücker coordinates of the projected Deodhar components.

Theorem 5.2. Let w = si1 . . . sim be a reduced expression for w ∈ W k and v ≺ w. Let
I = w{n − k + 1, . . . , n} and I ′ = v{n − k + 1, . . . , n}. Let A = πk(g) for any g ∈ Gv,w. If we
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write g = g1 . . . gm as in Definition 3.5, then

∆I (A) = (−1)|J
•
v |


i∈J�
v

pi and ∆I ′(A) = 1. (5.1)

Note that ∆I (A) equals the product of all the labels from the labeled Go-diagram associated to
(v, w).

Before proving Theorem 5.2, we record the following lemma, which can be easily verified.

Lemma 5.3. For 1 ≤ i ≤ n − 1, we have

(1) ṡi ei = −ei+1, ṡi ei+1 = ei , and ṡi e j = e j if j ≠ i or i + 1.
(2) yi (a)ei+1 = ei+1 + aei and yi (a)e j = e j if j ≠ i + 1.
(3) (xi (a)ṡ−1

i )ei = ei+1, (xi (a)ṡ−1
i )ei+1 = −(ei + aei+1), and (xi (a)ṡ−1

i )e j = e j for j ≠ i or
i + 1.

We now turn to the proof of Theorem 5.2.

Proof. Recall from (3.10) how to identify each A ∈ Grk,n with its Plücker embedding. We first
verify that ∆I ′(A) = 1. Since Gv,w ⊂ U−v̇ (see Proposition 3.7), we can write g ∈ Gv,w as
g = hv̇ with h ∈ U−. Let λ = en ∧ en−1 ∧ · · · ∧ en−k+1. Then ∆I ′(A) = ⟨v̇ · λ, g · λ⟩ =
⟨v̇ · λ, hv̇ · λ⟩ = 1.

Now we compute the value of ∆I (A). Recall from Proposition 4.16 that for w ∈ W k ,
the Deodhar component Rv,w does not depend on the choice of reduced expression w for w.
Therefore we will fix a linear extension of Qk , and use that to construct our reduced expressions
for each w ∈ W k .

It follows that each reduced expression w for w ∈ W k where W = Sn has the form

(s ja s ja+1 . . . sn−k+a−1)(s ja−1s ja−1+1 . . . sn−k+a−2) . . .

(s j2s j2+1 . . . sn−k+1)(s j1s j1+1 . . . sn−k). (5.2)

The four factors above correspond to the products of generators corresponding to the last, next-
to-last, second, and top rows of the Young diagram, respectively. In particular, 1 ≤ a ≤ k (a is
the number of rows in the Young diagram corresponding to w), and j1 < j2 < · · · < ja−1 < ja .
Moreover, it is easy to check that { j1, j2, . . . , ja, n − k + a + 1, n − k + a + 2, . . . , n − 1, n}
are the positions of the pivots of A (they correspond to the shape of the Young diagram), so
I = { j1, j2, . . . , ja, n − k + a + 1, n − k + a + 2, . . . , n − 1, n}.

Each g ∈ Gv,w will be obtained from (5.2) by replacing the si ’s by ṡi ’s, yi (a)’s, or
xi (m)ṡ−1

i ’s. Let us write g = g(1)g(2) . . . g(a) where g(1) is the product of gi ’s corresponding to
(s ja s ja+1 . . . sn−k+a−1), g(2) is the product of gi ’s corresponding to (s ja−1s ja−1+1 . . . sn−k+a−2),
etc. Now consider how such a g acts on en, en−1, . . .. Looking at Lemma 5.3, we see that g(1) is
the only portion of g which can affect en−k+a (or any e j with j > n − k + a). This is because
every si appearing in the other factors of (5.2) has the property that i ≤ n− k+a−2, and in this
case, ṡi , yi (a), and xi (m)ṡ−1

i all act as the identity on en−k+a (or any e j with j > n − k + a).
Similarly g(1)g(2) is the only portion of g which can affect en−k+a−1, and g(1)g(2)g(3) is the only
portion of g which can affect en−k+a−2, etc.

Now we want to determine the value of the lexicographically minimal Plücker coordinate
∆I (A). So we need to determine the coefficient of E I in g·en∧· · ·∧en−k+1. From Lemma 5.3, we
see that ṡi ei+1 = ei , yi (a)ei+1 = aei+ a higher term, and xi (a)ṡ−1

i ei+1 = −ei+ a higher term.
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Therefore from (5.2), we see that the expansion of g ·en−k+a in the basis e1, . . . , en has a nonzero
coefficient in front of e ja . And that coefficient is (−1)q times the product of all the parameters p
occurring in g(1), where q is the number of x-factors in g(1).

Similarly, from (5.2), the expansion of g · en−k+a−1 in the basis e1, . . . , en has a nonzero
coefficient in front of e ja−1 , and that coefficient is (−1)q times the product of all the parameters
p occurring in g(2), where q is the number of x-factors in g(2).

Continuing in this fashion, the expansion of g · en−k+1 in the basis e1, . . . , en has a nonzero
coefficient in front of e j1 , and that coefficient is (−1)q times the product of all the parameters p
occurring in g(a), where q is the number of x-factors in g(a).

Additionally, g acts as the identity on en−k+a+1, . . . , en−1, and en . It follows that
the coefficient of E I in the expansion of g · en ∧ · · · ∧ en−k+1 in the standard basis is
(−1)|J

•
v |


i∈J�
v

pi , as desired. �

Our next goal is to give a formula for some other Plücker coordinates besides the
lexicographically minimal and maximal ones. First it will be helpful to define some notation.

Definition 5.4. Let W = Sn , let w = si1 . . . sim be a reduced expression for w ∈ W k and choose
v ≺ w. This determines a Go-diagram D in a Young diagram Y . Let b be any box of D. Note
that the set of all boxes of D which are weakly southeast of b forms a Young diagram Y in

b ; also
the complement of Y in

b in Y is a Young diagram which we call Y out
b (see Example 5.5 below).

By looking at the restriction of w to the positions corresponding to boxes of Y in
b , we obtained a

reduced expression win
b for some permutation win

b , together with a distinguished subexpression
vin

b for some permutation vin
b . Similarly, by using the positions corresponding to boxes of Y out

b ,
we obtained wout

b , wout
b , vout

b , and vout
b . When the box b is understood, we will often omit the

subscript b.
For any box b, note that it is always possible to choose a linear extension of Ow which orders

all the boxes of Y out after those of Y in . We can then adjust w accordingly; Proposition 4.5 implies
that this does not affect whether the corresponding expression v is distinguished. Having chosen
such a linear extension, we can then write w = winwout and v = vinvout . We then use gin and
gout to denote the corresponding factors of g ∈ Gv,w. We define J�

vout to be the subset of J�
v

coming from the factors of v contained in vout . Similarly, for J ◦vout and J •vout .

Example 5.5. Let W = S7 and w = s4s5s2s3s4s6s5s1s2s3s4 be a reduced expression for w ∈

W 3. Let v = s4s511s41s5s111s4 be a distinguished subexpression. So w = (3, 5, 6, 7, 1, 2, 4)

and v = (2, 1, 3, 4, 6, 5, 7). We can represent this data by the poset Ow and the corresponding
Go-diagram:

s4 s3 s2 s1

s5 s4 s3 s2

s6 s5 s4

② ✐② ✐ ✐✐
Let b be the box of the Young diagram which is in the second row and the second column

(counting from left to right). Then the diagram below shows: the boxes of Y in and Y out ; a linear
extension which puts the boxes of Y out after those of Y in ; and the corresponding labeled Go-
diagram. Using this linear extension, win

= s4s5s2s3s4, wout
= s6s5s1s2s3s4, vin

= s4s511s4,
and vout

= 1s5s111s4.
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out out out out

out in in in

out in in

11 10 9 8

7 5 4 3

6 2 1

−1 p10 p9 1

−1 1 p4 p3

p6 1 1

Note that J •vout = {7, 11} and J�
vout = {6, 9, 10}. Then g ∈ Gv,w has the form

g = gingout
= (ṡ4ṡ5 y2(p3)y3(p4)ṡ4) (y6(p6)x5(m7)ṡ

−1
5 ṡ1 y2(p9)y3(p10)x4(m11)s

−1
4 ).

When we project the resulting 7× 7 matrix to its first three columns, we get the matrix

A =

−p9 p10 −p3 p10 −p10 −m11 0 −1 0
0 −p3 p4 −p4 −m7 1 0 0
0 0 0 p6 0 0 1

 .

Theorem 5.6. Let w = si1 . . . sim be a reduced expression for w ∈ W k and v ≺ w, and let D be
the corresponding Go-diagram. Choose any box b of D, and let vin

= vin
b and win

= win
b , and

vout
= vout

b and wout
= wout

b . Let A = πk(g) for any g ∈ Gv,w, and let I = w{n − k +

1, . . . , n − 1, n}. If b is a blank box, define Ib = vin(win)−1 I ∈

[n]
k


. If b contains a white or

black stone, define Ib = vinsb(w
in)−1 I ∈


[n]
k


. If we write g = g1 . . . gm as in Definition 3.5,

then

(1) If b is a blank box, then ∆Ib (A) = (−1)
|J •

vout |


i∈J�
vout

pi .

(2) If b contains a white stone, then ∆Ib (A) = 0.

(3) If b contains a black stone, then ∆Ib (A) = (−1)
|J •

vout |+1mb


i∈J�
vout

pi + ∆Ib (Ab), where

mb is the parameter corresponding to b, and Ab is the matrix A with mb = 0.

Remark 5.7. The Plücker coordinates given by Theorem 5.6(1) are monomials in the pi ’s. In
particular, they are nonzero, and do not depend on the values of the m-parameters from the
xi (m)-factors.

Those minors ∆Ib (A) correspond to the chamber minors defined in [24, Definition 6.3]. See
also Lemmas 7.4 and 7.5 in [24], and note that the dominant weight for the present case is
λ = en−k+1 ∧ · · · ∧ en .

Before proving Theorem 5.6, we mention an immediate corollary.

Corollary 5.8. Use the notation of Theorem 5.6. Let b be a box of the Go-diagram, and let e, s,
and se denote the neighboring boxes which are at the east, south, and southeast of b. Then we
have

∆Ie (A)∆Is (A)

∆Ib (A)∆Ise (A)
=

1 if box b contains a white stone
−1 if box b contains a black stone
pb if box b is blank and the labeled Go diagram contains pb.

Remark 5.9. Each black and white stone corresponds to a two-term Plücker relation, that is,
a three-term Plücker relation in which one term vanishes. And each black stone implies that
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there are two Plücker coordinates with opposite signs. This will be useful when we discuss the
regularity of solitons in Section 12. Also note that the formulas in Corollary 5.8 correspond to
the Generalized Chamber Ansatz in [24, Theorem 7.1].

Example 5.10. We continue Example 5.5. By Theorem 5.2, I = w{5, 6, 7} = {1, 2, 4} and
I ′ = v{5, 6, 7} = {5, 6, 7}, and the lexicographically minimal and maximal nonzero Plücker
coordinates for A are ∆I (A) = p3 p4 p6 p9 p10 and ∆I ′(A) = 1; this can be verified for the
matrix A above.

We now verify Theorem 5.6 for the box b chosen earlier. Then Ib = vin(win)−1 I = {1, 4, 6}.
Theorem 5.6 says that ∆Ib (A) = 0, since this box contains a white stone. The analogous
computations for the boxes labeled 7, 6, 4, 3, 2, 1, respectively, yield ∆1,5,7 = −p9 p10,
∆1,2,7 = p3 p4 p9 p10, ∆1,4,5 = p6 p9 p10, ∆1,3,4 = p4 p6 p9 p10, ∆1,2,4 = p3 p4 p6 p9 p10, and
∆1,2,4 = p3 p4 p6 p9 p10. These can be checked for the matrix A above.

5.2. The proof of Theorem 5.6

For simplicity of notation, we assume that when we write A in row-echelon form, its first
pivot is i1 = 1 and its last non-pivot is n. (The same proof works without this assumption, but
the notation required would be more cumbersome.)

Choose the box b which is located at the northwest corner of the Young diagram obtained
by removing the topmost row and the leftmost column; this is the box labeled 5 in the diagram
from Example 5.5. We will explain the proof of the theorem for this box b. The same argument
works if b lies in the top row or leftmost column; and such an argument can be iterated to prove
Theorem 5.6 for boxes which are (weakly) southeast of b.

Choose a linear extension of Ow which orders all the boxes of Y out after those of Y in , and
which orders the boxes of the top row so that they come after those of the leftmost column. The
linear extension from Example 5.5 is one such an example. Choosing the reduced expression w
correspondingly, we write w = winwout and v = vinvout , then choose g ∈ Gv,w and write it as
g = gingout . Note that from our choice of linear extension, we have

wout
= (sn−1sn−2 . . . sn−k+1)(s1s2 . . . sn−k). (5.3)

Recall that Ib = vin(win)−1 I if b is a blank box and otherwise Ib = vinsb(w
in)−1 I , where

I = {i1, . . . , ik}, with i1 = 1. In our case, sb = sn−k . Also w−1 I = {n − k + 1, . . . , n − 1, n},
which implies that

(win)−1 I = wout
{n − k + 1, . . . , n − 1, n}

= {1, n − k + 1, n − k + 2, . . . , n − 1}. (5.4)

Since there is no factor of s1 or sn−1 in vin (respectively vinsn−k), and Ib = vin
{1, n − k +

1, n− k+2, . . . , n−1} (respectively Ib = vinsn−k{1, n− k+1, n− k+2, . . . , n−1}), we have

1 ∈ Ib and n ∉ Ib. (5.5)

Write Ib = { j1, . . . , jk} with j1 = 1. Our goal is to compute ∆Ib (A) = ⟨e j1 ∧ · · · ∧ e jk , g ·
en−k+1 ∧ · · · ∧ en⟩.

Let fℓ = g · en−k+ℓ. Let qℓ be the product of all labels in the “out” boxes of the ℓth row of
the labeled Go-diagram. Using Lemma 5.3 and Eq. (5.3), we obtain

fk = g · en = gin
· (qken−1 + ck

nen)
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fk−1 = g · en−1 = gin
· (qk−1en−2 + ck−1

n−1en−1 + ck−1
n en)

...

f2 = g · en−k+2 = gin
· (q2en−k+1 + c2

n−k+2en−k+2 + · · · + c2
nen)

f1 = g · en−k+1 = gin
· (q1e1 + c1

2e2 + · · · + c1
nen).

Here the c j
i ’s are constants depending on gout .

We now claim that only the first term with coefficient qℓ in each fℓ contributes to the Plücker
coordinate ∆Ib (A). To prove this claim, note that:

(1) Since n ∉ Ib and gin
· en = en , the terms cℓ

nen do not affect ∆Ib (A). Therefore, we may as
well assume that each cℓ

n = 0. Define f̃k = qk gin
· en−1.

(2) Now note that the term ck−1
n−1en−1 does not affect the wedge product f̃k ∧ fk−1. In particular,

f̃k ∧ fk−1 = f̃k ∧ f̃k−1 where f̃k−1 = qk−1gin
· en−2.

(3) Applying the same argument for 2 ≤ ℓ ≤ k − 2, we can replace each fℓ by f̃ℓ =
qℓgin

· en−k+ℓ, without affecting the wedge product.
(4) Since 1 ∈ Ib and e1 does not appear in any fℓ except f1, for the purpose of computing

∆Ib (A) we may replace f1 by f̃1 = q1e1.

Now we have

∆Ib (A) = ⟨e j1 ∧ · · · ∧ e jk , f1 ∧ · · · ∧ fk⟩

= ⟨e j1 ∧ · · · ∧ e jk , f̃1 ∧ · · · ∧ f̃k⟩

=

 k
j=1

q j


⟨e j1 ∧ · · · ∧ e jk , gin

· (e1 ∧ en−k+1 ∧ · · · ∧ en−1)⟩ (5.6)

=

 k
j=1

q j


⟨e j2 ∧ · · · ∧ e jk , gin

· (en−k+1 ∧ · · · ∧ en−1)⟩, (5.7)

where in the last step we used j1 = 1. Finally we need to compute the wedge product in (5.7).
Consider the case that b is a blank box. Then from the definition of Ib = { j1, . . . , jk}, we

have { j2, . . . , jk} = vin
{n − k + 1, n − k + 2, . . . , n − 1}. It follows that

⟨e j2 ∧ · · · ∧ e jk , gin
· (en−k+1 ∧ · · · ∧ en−1)⟩ = 1,

because this is the lexicographically maximal minor for the matrix A′ = πk−1(gin) ∈ Grk−1,n−2
corresponding to the sub Go-diagram obtained by removing the top row and leftmost column.
Therefore ∆Ib (A) =

k
j=1 q j = (−1)

|J •
vout |


i∈J�

vout
pi , as desired.

Now consider the case that b contains a white or black stone. Then from the definition of
Ib = { j1, . . . , jk}, we have { j2, . . . , jk} = vinsn−k{n− k+ 1, n− k+ 2, . . . , n− 1}. The wedge
product in (5.7) is equal to ⟨vinsn−k · (en−k+1 ∧ · · · ∧ en−1), gin

· (en−k+1 ∧ · · · ∧ en−1)⟩.

If b contains a white stone, then the last factor in vin is sn−k and the last factor in gin is ṡn−k ,
so we can write vin

= ṽinsn−k and gin
= g̃in ṡn−k , where ṽin is also a distinguished expression.

Then g̃in
∈ G ṽin ,win so g̃in

= hṽin where h ∈ U−. Then we have ⟨vinsn−k · (en−k+1 ∧ · · · ∧

en−1), gin
·(en−k+1∧· · ·∧en−1)⟩ = ⟨ṽ

in
·(en−k+1∧· · ·∧en−1), hṽin

·(en−k+1∧· · ·∧en−1)⟩. Since
b contains a white stone, ṽinsn−k > ṽin in the Bruhat order, and hence ṽin

{n−k} < ṽin
{n−k+1}.

Since h ∈ U−, it follows that this wedge product equals 0.
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If b contains a black stone then the last factor in vin is sn−k and the last two factors in gin are
xn−k(mb)ṡ

−1
n−k . So we can write vin

= ṽinsn−k and gin
= g̃in xn−k(mb)ṡ

−1
n−k . Then we have

gin
· (en−k+1 ∧ · · · ∧ en−1)

= g̃in xn−k(mb)ṡ
−1
n−k · (en−k+1 ∧ · · · ∧ en−1) (5.8)

= −g̃in
· (mb(en−k+1 ∧ · · · ∧ en−1)+ (en−k ∧ en−k+2 ∧ · · · ∧ en−1)) (5.9)

= −mb g̃in
· (en−k+1 ∧ · · · ∧ en−1)− g̃in

· (en−k ∧ en−k+2 ∧ · · · ∧ en−1). (5.10)

Note that to go from (5.8) to (5.9) we used Lemma 5.3.
Let us compute the wedge product of the first term in (5.10) with vinsn−k ·(en−k+1∧· · ·∧en−1).

Using vin
= ṽinsn−k , this can be expressed as

−mb · ⟨v
in
· (en−k ∧ en−k+2 ∧ · · · ∧ en−1), g̃in

· (en−k+1 ∧ · · · ∧ en−1)⟩

= −mb · ⟨ṽ
in
· (en−k+1 ∧ · · · ∧ en−1), g̃in

· (en−k+1 ∧ · · · ∧ en−1)⟩.

Since we again have g̃in
= hṽin where h ∈ U−, the above quantity equals −mb.

Let us now compute the wedge product of the second term in (5.10) with vinsn−k · (en−k+1 ∧

. . . ∧ en−1). This wedge product can be written as

⟨vin
· (en−k ∧ en−k+2 ∧ · · · ∧ en−1), g̃in

· (en−k ∧ en−k+2 ∧ · · · ∧ en−1)⟩

= ⟨vin
· (en−k ∧ en−k+2 ∧ · · · ∧ en−1), g̃in ṡ−1

n−k · (en−k+1 ∧ · · · ∧ en−1)⟩

= ∆ j1,..., jk (Ab),

where Ab is the matrix obtained from A by setting mb = 0. This completes the proof of the
theorem.

Corollary 5.11. For any box b, the rescaled Plücker coordinate

∆Ib (A)
i∈J�

v

pi

depends only on the parameters pb′ and mb′ which correspond to boxes b′ weakly southeast of
b in the Go-diagram.

Proof. This follows immediately from (5.6) and the fact that
k

j=1 q j = (−1)
|J •

vout |
i∈J�

vout
pi . �

5.3. Positivity tests for projected Deodhar components in the Grassmannian

We can use our results on Plücker coordinates to obtain positivity tests for Deodhar
components in the Grassmannian.

Definition 5.12. Let D be a Go-diagram and SD ⊂ Grk,n . A collection J of k-element subsets
of {1, 2, . . . , n} is called a positivity test for SD if for any A ∈ SD , the condition that ∆I (A) > 0
for all I ∈ J implies that A ∈ (Grk,n)≥0.

Theorem 5.13. Consider A ∈ Grk,n lying in some Deodhar component SD , where D is a Go-
diagram. Consider the collection of minors J = {∆I (A)} ∪ {∆Ib (A) | b a box of D}, where I
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and Ib are defined as in Theorem 5.6. If all of these minors are positive, then D has no black
stones, and all of the parameters pi must be positive. It follows that the Deodhar diagram
corresponding to D is a -diagram, and A lies in the positroid cell Stnn

D ⊂ (Grk,n)≥0. In
particular, J is a positivity test for SD .

Proof. By Remark 5.9, if all the minors in J are positive, then D cannot have a black stone.
By Theorems 5.2 and 5.6 we have that

∆I (A) = (−1)|J
•
v |


i∈J�
v

pi and ∆Ib (A) = (−1)
|J •

vout |


i∈J�
vout

pi .

Since we are assuming that both of these are positive, it follows that for any box b, we have that

∆I (A)

∆Ib (A)
= (−1)

|J •
vin |


i∈J�

vin

pi

is also positive. Now by considering the boxes b of D in an order proceeding from southeast to
northwest, it is clear that every parameter pi in the labeled Go-diagram must be positive, because
each ∆I (A)

∆Ib (A)
must be positive.

Let v and w be the Weyl group elements corresponding to D. Then it follows from
Remark 3.11 that A lies in the projection of the totally positive cell R>0

v,w. And the projection
of R>0

v,w is precisely the positroid cell Stnn
D of (Grk,n)≥0. �

6. Soliton solutions to the KP equation

We now explain how to obtain a soliton solution to the KP equation from a point of Grk,n .
Each soliton solution can be considered as an orbit with the flow parameters (x, y, t) ∈ R3 on
Grk,n .

6.1. From a point of the Grassmannian to a τ -function

We start by fixing real parameters κ j such that

κ1 < κ2 < · · · < κn,

which are generic, in the sense that the sums
p

m=1 κ jm are all distinct for any p with 1 < p < n.
We also assume that the differences between consecutive κi ’s are similar, that is, κi+1 − κi is of
order one (e.g. one can take all κ j to be integers).

We now give a realization of Grk,n with a specific basis of Rn . We define a set of vectors
{E0

j : j = 1, . . . , n} by

E0
j :=


κn−1

j

κn−2
j
...

κ j
1

 ∈ Rn .

Since all κ j ’s are distinct, the set {E0
j : j = 1, . . . , n} forms a basis of Rn . Now define an n × n

matrix E0
= (E0

1, . . . , E0
n), and let A be a full-rank k× n matrix parametrizing a point on Grk,n .
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Then the vectors {F0
i ∈ Rn

: i = 1, . . . , k} span a k-dimensional subspace in Rn , where F0
i is

defined by

F0
i :=

n
j=1

ai, j E0
j , or (F0

1, . . . , F0
k) = E0 AT .

For I = {i1, . . . , ik}, define the vector E0
I = E0

i1
∧ · · · ∧ E0

ik
. Then we have a realization of the

Plücker embedding:

F0
1 ∧ · · · ∧ F0

k =


I∈( n
k )

∆I (A)E0
I .

In [31], Sato showed that each solution of the KP equation is given by an orbit on the Grass-
mannian. To construct such an orbit, we consider a deformation Et

j of the vector E0
j , defined by:

t := (x, y, t), θ j (x, y, t) = κ j x + κ2
j y + κ3

j t, Et
j := E0

j exp

θ j (x, y, t)


.

Remark 6.1. Let E t be the n × n matrix function whose columns are the vectors {Et
j }:

E t
:= (Et

1, . . . , Et
n) = E0diag(eθ1 , eθ2 , . . . , eθn ).

Note that E0 is a Vandermonde matrix. The vector functions {Et
j } form a fundamental set

of solutions of a system of differential equations. More concretely, if we define elementary
symmetric polynomials in the κ j ’s by

σ1 =

n
j=1

κ j , σ2 =

i< j

κiκ j , σ3 =


i< j<k

κiκ jκk, · · ·

and let CK be the companion matrix

CK =


σ1 −σ2 · · · · · · ±σn
1 0 · · · · · · 0

0 1
. . .

... 0
...

...
. . . 0

...

0 0 · · · 1 0

 ,

then the matrix E t satisfies

L E t
:=


∂

∂x
− CK


E t
= 0.

So for any t = (x, y, t), we have

Rn ∼= ker(L) = SpanR{E
t
j : j = 1, . . . , n}.

Note that CK can be diagonalized by the Vandermonde matrix E0, i.e.

CK E0
= E0 D, where D = diag(κn, . . . , κ1).

Each vector function E t satisfies the following linear equations with respect to y and t :

∂ E t

∂y
=

∂2 E t

∂x2 = C2
K E t and

∂ E t

∂t
=

∂3 E t

∂x3 = C3
K E t.
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This is a key of the “integrability” of the KP equation, that is, the solutions of the linear equations
provide a solution of the KP equation.

We now define an orbit generated by the matrix E t on elements of G = GLn ,

gt
:= E tg for each g ∈ GLn .

Then {gt
·en−k+1∧· · ·∧en−1} is a flow (orbit) of the highest weight vector on the corresponding

fundamental representation of GLn .
Next we define the τ -function as

τ(x, y, t) := ⟨e1 · · · ∧ ek, Ft
1 ∧ · · · ∧ Ft

k⟩

= ⟨e1 ∧ · · · ∧ ek, gt
· en−k+1 ∧ · · · ∧ en⟩,

where Ft
j := gt

· en−k+ j . Given I = {i1, . . . , ik} ⊂ [n], we let E I (x, y, t) denote the scalar
function

E I (x, y, t) = ⟨e1 ∧ · · · ∧ ek, Et
i1
∧ · · · ∧ Et

ik
⟩

= ⟨e1 ∧ · · · ∧ ek, E0
i1
∧ · · · ∧ E0

ik
⟩ eθi1+···+θik

=


l<m

(κim − κil )


eθi1+···+θik . (6.1)

With the projection πk : SLn → Grk,n, g → A, the τ -function can be also written as

τ(x, y, t) = τA(x, y, t) =


I∈

[n]
k

∆I (A) E I (x, y, t). (6.2)

It follows that if A ∈ (Grk,n)≥0, then τA > 0 for all (x, y, t) ∈ R3.

Remark 6.2. The present definition of the τ -function is quite useful for the study of the Toda
lattice whose solutions are defined on a complete flag manifold. We will discuss the totally non-
negative flag variety and the Toda lattice in a forthcoming paper.

6.2. From the τ -function to solutions of the KP equation

The KP equation for u(x, y, t)

∂

∂x


−4

∂u

∂t
+ 6u

∂u

∂x
+

∂3u

∂x3


+ 3

∂2u

∂y2 = 0

was proposed by Kadomtsev and Petviashvili in 1970 [14], in order to study the stability of
the soliton solutions of the Korteweg–de Vries (KdV) equation under the influence of weak
transverse perturbations. The KP equation can be also used to describe two-dimensional shallow
water wave phenomena (see for example [19]). This equation is now considered to be a prototype
of an integrable nonlinear partial differential equation. For more background, see [26,10,1,13,25].

Note that the τ -function defined in (6.2) can be also written in the Wronskian form

τA(x, y, t) =Wr( f1, f2, . . . , fk), (6.3)
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Fig. 2. A line-soliton solution u A(x, y, t) where A = (1, 1) ∈ (Gr1,2)≥0, depicted via the 3-dimensional profile
u A(x, y, t), and the level sets of u A(x, y, t) for some t . Ei represents the dominant exponential in each region.

with the scalar functions { f j : j = 1, . . . , k} given by

( f1, f2, . . . , fk)
T
= A · (exp θ1, exp θ2, . . . , exp θn)T ,

where (. . .)T denotes the transpose of the (row) vector (. . .).
It is then well known (see [13,5–7]) that for each choice of constants {κ1, . . . , κn} and element

A ∈ Grk,n , the τ -function defined in (6.3) provides a soliton solution of the KP equation,

u A(x, y, t) = 2
∂2

∂x2 ln τA(x, y, t). (6.4)

If A ∈ (Grk,n)≥0, then it is obvious that u A(x, y, t) is regular for all (x, y, t) ∈ R3. A main
result of this paper is that the converse also holds – see Theorem 12.1. Throughout this paper
when we speak of a soliton solution to the KP equation, we will mean a solution u A(x, y, t)
which has the form (6.4), where the τ -function is given by (6.2).

Remark 6.3. The function E I (x, y, t) in the τ -function (6.2) can be expressed as the Wronskian
form in terms of {Ei j = eθi j : j = 1, . . . , k}, i.e.

E I (x, y, t) =Wr(Ei1 , Ei2 , . . . , Eik ).

7. Contour plots of soliton solutions

One can visualize a solution u A(x, y, t) to the KP equation by drawing level sets of the solu-
tion in the xy-plane, when the coordinate t is fixed. For each r ∈ R, we denote the corresponding
level set by

Cr (t) := {(x, y) ∈ R2
: u A(x, y, t) = r}.

Fig. 2 depicts both a three-dimensional image of a solution u A(x, y, t), as well as multiple level
sets Cr . These level sets are lines parallel to the line of the wave peak.

To study the behavior of u A(x, y, t) for A ∈ SM ⊂ Grk,n , we consider the dominant
exponentials in the τ -function (6.2) at each point (x, y, t). First we write the τ -function in the
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Fig. 3. Example of contour plots Ct (u A) for A ∈ Gr4,9. The contour plots are obtained by “Plot3D” of Mathematica
(see the details in the text).

form

τA(x, y, t) =


J∈

[n]
k

∆J (A)E J (x, y, t)

=


J∈M

exp


n

i=1

(κ ji x + κ2
ji y + κ3

ji t)+ ln(∆J (A)K J )


,

where K J :=


ℓ<m(κ jm − κ jℓ) > 0. Note that in general the terms ln(∆J (A)K J ) could be
imaginary when some ∆J (A) are negative.

Since we are interested in the behavior of the soliton solutions when the variables (x, y, t) are
on a large scale, we rescale the variables with a small positive number ϵ,

x −→
x

ϵ
, y −→

y

ϵ
, t −→

t

ϵ
.

This leads to

τ ϵ
A(x, y, t) =


J∈M

exp


1
ϵ

n
i=1

(κ ji x + κ2
ji y + κ3

ji t)+ ln(∆J (A)K J )


.

Then we define a function f A(x, y, t) as the limit

f A(x, y, t) = lim
ϵ→0

ϵ ln

τ ϵ

A(x, y, t)


= max
J∈M


k

i=1

(κ ji x + κ2
ji y + κ3

ji t)


. (7.1)

Since the above function depends only on the collection M, we also denote it as fM(x, y, t).

Definition 7.1. Given a solution u A(x, y, t) of the KP equation as in (6.4), we define its contour
plot C(u A) to be the locus in R3 where f A(x, y, t) is not linear. If we fix t = t0, then we let
Ct0(u A) be the locus in R2 where f A(x, y, t = t0) is not linear, and we also refer to this as a
contour plot. Because these contour plots depend only on M and not on A, we also refer to them
as C(M) and Ct0(M).
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Remark 7.2. The contour plot approximates the locus where |u A(x, y, t)| takes on its maximum
values or is singular.

Remark 7.3. Note that the contour plot generated by the function f A(x, y, t) at t = 0 consists
of a set of semi-infinite lines attached to the origin (0, 0) in the xy-plane. And if t1 and t2 have
the same sign, then the corresponding contour plots Ct1(M) and Ct2(M) are self-similar.

Also note that because our definition of the contour plot ignores the constant terms
ln(∆J (A)K J ), there are no phase-shifts in our picture, and the contour plot for f A(x, y, t) =
fM(x, y, t) does not depend on the signs of the Plücker coordinates.

It follows from Definition 7.1 that C(u A) and Ct0(u A) are piecewise linear subsets of R3 and
R2, respectively, of codimension 1. In fact it is easy to verify the following.

Proposition 7.4 ([21, Proposition 4.3]). If each κi is an integer, then C(u A) is a tropical
hypersurface in R3, and Ct0(u A) is a tropical hypersurface (i.e. a tropical curve) in R2.

The contour plot Ct0(u A) consists of line segments called line-solitons, some of which have
finite length, while others are unbounded and extend in the y direction to ±∞. Each region of
the complement of Ct0(u A) in R2 is a domain of linearity for f A(x, y, t), and hence each region
is naturally associated to a dominant exponential ∆J (A)E J (x, y, t) from the τ -function (6.2).
We label this region by J or E J . Each line-soliton represents a balance between two dominant
exponentials in the τ -function.

Because of the genericity of the κ-parameters, the following lemma is immediate.

Lemma 7.5 ([7, Proposition 5]). The index sets of the dominant exponentials of the τ -function
in adjacent regions of the contour plot in the xy-plane are of the form {i, l2, . . . , lk} and
{ j, l2, . . . , lk}.

We call the line-soliton separating the two dominant exponentials in Lemma 7.5 a line-soliton
of type [i, j]. Its equation is

x + (κi + κ j )y + (κ2
i + κiκ j + κ2

j )t = 0. (7.2)

Remark 7.6. Consider a line-soliton given by (7.2). Compute the angle Ψ[i, j] between the
positive y-axis and the line-soliton of type [i, j], measured in the counterclockwise direction,
so that the negative x-axis has an angle of π

2 and the positive x-axis has an angle of −π
2 . Then

tan Ψ[i, j] = κi + κ j , so we refer to κi + κ j as the slope of the [i, j] line-soliton (see Fig. 2).

In Section 9 we will explore the combinatorial structure of contour plots, that is, the ways
in which line-solitons may interact. Generically we expect a point at which several line-solitons
meet to have degree 3; we regard such a point as a trivalent vertex. Three line-solitons meeting at
a trivalent vertex exhibit a resonant interaction (this corresponds to the balancing condition for
a tropical curve). See [21, Section 4.2]. One may also have two line-solitons which cross over
each other, forming an X -shape: we call this an X -crossing, but do not regard it as a vertex. See
Fig. 4. Vertices of degree greater than 4 are also possible.

Definition 7.7. Let i < j < k < ℓ be positive integers. An X -crossing involving two line-
solitons of types [i, k] and [ j, ℓ] is called a black X -crossing. An X -crossing involving two
line-solitons of types [i, j] and [k, ℓ], or of types [i, ℓ] and [ j, k], is called a white X -crossing.
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Fig. 4. Example of a contour plot Ct (u A), its soliton graph C = Gt (u A), and its generalized plabic graph Pl(C).
The parameters used are those from Example 7.9. In particular, (κ1, . . . , κ9) = (−5,−3,−2,−1, 0, 1, 2, 3, 4), and
π = (6, 7, 1, 8, 2, 3, 9, 4, 5).

Definition 7.8. A contour plot Ct (u A) is called generic if all interactions of line-solitons are at
trivalent vertices or are X -crossings.

Example 7.9. Consider some A ∈ Gr4,9 which is the projection of an element g ∈ Gv,w with

w = s7s8s4s5s6s7s2s3s4s5s6s1s2s3s4s5 and v = s711s51s7s21s4111s21s4s5.

Then v = 1 and π = vw−1
= (6, 7, 1, 8, 2, 3, 9, 4, 5). The matrix g ∈ Gv,w is given by

g = ṡ7 y8(p2)y4(p3)ṡ5 y6(p5)x7(m6)ṡ
−1
7 ṡ2 y3(p8)ṡ4 y5(p10)y6(p11)

· y1(p12)x2(m13)ṡ
−1
2 y3(p14)x4(m15)ṡ

−1
4 x5(m16)ṡ

−1
5 .

The Go-diagram and the labeled Go-diagram are as follows:

The A-matrix is then given by

A =


−p12 p14 q13 p14 q15 −m16 1 0 0 0

0 p8 p10 p11 0 p11(p3 + p10) p11 0 1 0 0
0 0 0 −p3 p5 −p5 0 −m6 1 0
0 0 0 0 0 0 p2 0 1

 ,

where the matrix entry q13 = −m13 p14 +m15 p8 −m16 p8 p10 and q15 = m15 −m16(p3 + p10).
In Fig. 3, we show contour plots Ct (u A) for the solution u A(x, y, t) at t = −10, 0, 10, using
the choice of parameters (κ1, . . . , κ9) = (−5,−3,−2,−1, 0, 1, 2, 3, 4), p j = 1 for all j , and
ml = 0 for all ℓ. Note that:

(a) For y ≫ 0, there are four unbounded line-solitons, whose types from right to left are:

[1, 6], [2, 7], [4, 8], and [7, 9].
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(b) For y ≪ 0, there are five unbounded line-solitons, whose types from left to right are:

[1, 3], [2, 5], [3, 6], [4, 8], and [5, 9].

Apparently the line-solitons for y ≫ 0 correspond to the excedances in π = (6, 7, 1, 8, 2,

3, 9, 4, 5), while those for y ≪ 0 correspond to the nonexcedances. In Section 8 we will give
a theorem explaining the relationship between the unbounded line-solitons of Ct (u A) and the
positroid stratum containing A.

Note that if there are two adjacent regions of the contour plot whose Plücker coordinates have
different signs, then the line-soliton separating them is singular. For example, the line-soliton of
type [4, 8] (the second soliton from the left in y ≫ 0) is singular, because the Plücker coordinates
corresponding to the (dominant exponentials of the) adjacent regions are

∆1,2,4,9 = p3 p5 p8 p10 p11 p12 p14 = 1 and ∆1,2,8,9 = −p8 p10 p11 p12 p14 = −1.

8. Unbounded line-solitons at y ≫ 0 and y ≪ 0

In this section we show that the unbounded line-solitons at |y| ≫ 0 of a contour plot
Ct (u A) are determined by which positroid stratum contains A. Conversely, the unbounded line-
solitons of Ct (u A) determine which positroid stratum A lies in. The main result of this section is
Theorem 8.1.

Theorem 8.1. Let A ∈ Grk,n lie in the positroid stratum Sπ : , where π : = (π, col). Consider the
contour plot Ct (u A) for any time t. Then the excedances (respectively, nonexcedances) of π are
in bijection with the unbounded line-solitons of Ct (u A) at y ≫ 0 (respectively, y ≪ 0). More
specifically, in Ct (u A),

(a) there is an unbounded line-soliton of [i, h]-type at y ≫ 0 if and only if π(i) = h for i < h,
(b) there is an unbounded line-soliton of [i, h]-type at y ≪ 0 if and only if π(h) = i for i < h.

Therefore π : determines the unbounded line-solitons at y ≫ 0 and y ≪ 0 of Ct (u A) for any
time t.

Conversely, given a contour plot Ct (u A) at any time t where A ∈ Grk,n , one can construct
π :=(π, col) such that A ∈ Sπ : as follows. The excedances and nonexcedances of π are
constructed as above from the unbounded line-solitons. If there is an h ∈ [n] such that h ∈ J for
every dominant exponential E J labeling the contour plot, then set π(h) = h with col(h) = 1. If
there is an h ∈ [n] such that h ∉ J for any dominant exponential E J labeling the contour plot,
then set π(h) = h with col(h) = −1.

Proof. This result will follow immediately from Theorems 8.3 and 8.7 below. �

Remark 8.2. Chakravarty and Kodama [5, Prop. 2.6 and 2.9] and [7, Theorem 5] associated a
derangement to each irreducible element A in the totally non-negative part (Grk,n)≥0 of the
Grassmannian. Theorem 8.1 generalizes their result by dropping the hypothesis of irreducibility
and extending the setting from (Grk,n)≥0 to Grk,n .

Before stating Theorems 8.3 and 8.7, we need to introduce some notation.
Given a matrix A with n columns, let A(k, . . . , ℓ) be the submatrix of A obtained from

columns k, k + 1, . . . , ℓ − 1, ℓ, where the columns are listed in the circular order k, k + 1, . . . ,

n − 1, n, 1, 2, . . . , k − 1.
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The following result generalizes [2, Lemma 3.4] from (Grk,n)≥0 to Grk,n . Our proof of
Theorem 8.3 will be similar to that of [2], but some arguments can be clarified using some basic
theory of matroids.

Theorem 8.3. Let A ∈ Grk,n and consider the contour plot Ct (u A) for any time t. Choose
i, h ∈ {1, . . . , n} with i < h.

Then there is an unbounded line-soliton of Ct (u A) at y ≪ 0 labeled [i, h] if and only if

rank A(i, . . . , h − 1) = rank A(i + 1, . . . , h) = rank A(i, . . . , h)

= rank A(i + 1, . . . , h − 1)+ 1. (8.1)

There is an unbounded line-soliton of Ct (u A) at y ≫ 0 labeled [i, h] if and only if

rank A(h, . . . , i − 1) = rank A(h + 1, . . . , i) = rank A(h, . . . , i)

= rank A(h + 1, . . . , i − 1)+ 1. (8.2)

Recall from Section 6 that θ j (x, y, z) = κ j x + κ2
j y + κ3

j t . Fix i, j ∈ {1, . . . , n}, and let L i, j
denote the line defined by θi = θ j . Define subsets of [n] by

P = {max(i, j)+ 1, . . . , min(i, j)− 1}
:= {1, . . . , min(i, j)− 1} ∪ {max(i, j)+ 1, . . . , n} and

Q = {min(i, j)+ 1, . . . , max(i, j)− 1}.

In order to study the unbounded solitons at y ≫ 0 and y ≪ 0, we first record the following
lemma.

Lemma 8.4 ([2, Lemma 3.1]). For |y| ≫ 0, we have the following ordering among the θ j ’s on
the line L i, j :

(1) For y ≫ 0 on the line L i, j , θm < θi = θ j for all m ∈ Q, and θm > θi = θ j for all m ∈ P.
(2) For y ≪ 0 on the line L i, j , θm > θi = θ j for all m ∈ Q, and θm < θi = θ j for all m ∈ P.

Proof. For a fixed t , the equation of the line L i, j (which is defined by θi = θ j ) has the form

x + (κi + κ j )y = constant.

Then along L i, j , we have

θm − θm′ = (κm − κm′)[(κm + κm′)− (κi + κ j )]y + δ,

where δ does not depend on x or y. The lemma now follows from the fact that κ1 < κ2 <

· · · < κn . �

Then it follows immediately that

Corollary 8.5. For y = y0 ≫ 0 (respectively y = y0 ≪ 0) there is a well-defined total order on
θ1, . . . , θn on the line L i, j (with θi = θ j ), and this order does not change if we increase y (resp.,
decrease y).

The following matroidal result will be useful to us.

Proposition 8.6 ([27, Theorem 1.8.5]). Consider a matroid M of rank k on the set [n], and
let ω = (ω1, . . . , ωn) ∈ Rn . Define the weight of a basis J = ( j1, . . . , jk) of M to be
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ω j1 +· · ·+ω jk . Then the basis (or bases) of maximal weight are precisely the possible outcomes
of the greedy algorithm: Start with J = ∅. At each stage, look for an ω-maximum element of
[n] which can be added to J without making it dependent, and add it. After k steps, output the
basis J .

We now turn to the proof of Theorem 8.3. We will prove the result for unbounded line-solitons
at y ≫ 0 (the other part of the proof is analogous).

Proof. Let M be the matroid associated to A. Its ground set [n] is identified with the columns
of A. First suppose that for i, j ∈ [n], with i > j we have

rank A(i, . . . , j − 1) = rank A(i + 1, . . . , j) = rank A(i, . . . , j)

= rank A(i + 1, . . . , j − 1)+ 1. (8.3)

By Corollary 8.5, at y ≫ 0 we have a well-defined total order on the θm’s on the line L i, j . At
y ≫ 0 the problem of computing the dominant exponential is equivalent to finding the basis of

M with the maximal weight with respect to (θ1, . . . , θn).
By Proposition 8.6, we can compute such a weight-maximal basis using the greedy algorithm.

By Lemma 8.4, the greedy algorithm will first choose as many columns of A(i + 1, . . . , j − 1)

as possible. All of the θm’s are distinct except for θi = θ j , so there will be a unique way to add a
maximal independent set of columns of A(i + 1, . . . , j − 1) to the basis we are building. Note
that by (8.3), the rank of A(i + 1, . . . , j − 1) is less than k, so our weight-maximal basis must
additionally contain at least one column that is not from A(i + 1, . . . , j − 1). By Lemma 8.4,
columns i and j share a weight which is greater than any of the other remaining columns, so the
next step is to add one of columns i and j to the basis we are building. By (8.3), we cannot add
both columns, because doing so will only increase the rank by 1. Therefore we now have two
ways to build a weight-maximal basis, by adding either one of the columns i and j . If the two
bases we are building do not yet have rank k, then there is now a unique way to add columns
from A( j + 1, . . . , i − 1) to complete both of them.

We have now shown that along L i, j at y ≫ 0, there are precisely two dominant exponentials,
E I and E J , where I = (J ∪ {i}) \ { j}. Therefore there is an unbounded line-soliton at y ≫ 0
labeled [ j, i].

Conversely, suppose that for i > j , there is an unbounded line-soliton labeled [ j, i] at y ≫ 0.
Then on the line L i, j there are two dominant exponentials E I and E J with J = (I ∪ { j}) \ {i}.
By Proposition 8.6, these must be the two outcomes of the greedy algorithm. As before, by
Lemma 8.4, the greedy algorithm will first choose as many columns of A(i + 1, . . . , j − 1) as
possible while keeping the collection linearly independent, and then the next step will be to add
exactly one of the columns i and j . Since neither dominant exponential contains both i and j ,
adding both columns must not increase the rank more than adding just one of them. Therefore
Eq. (8.3) must hold. �

Theorem 8.7. Let A ∈ Grk,n lie in the positroid stratum Sπ : where π : = (π, col). Choose
1 ≤ i < h ≤ n. Then π(h) = i if and only if Eq. (8.1) holds, and π(i) = h if and only if
Eq. (8.2) holds.

Proof. Let I = (I1, . . . , In) be the Grassmann necklace associated to A, so π : = π :(I). Then
by Lemma 2.10, Ii = {x1, x2, . . . , xk} is the lexicographically minimal k-subset with respect to
the order i < i + 1 < · · · < n < 1 < · · · < i − 1 such that ∆Ii (A) ≠ 0. Similarly Ii+1is
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the lexicographically minimal k-subset with respect to the order i + 1 < · · · < n < 1 < · · · <

i − 1 < i such that ∆Ii+1(A) ≠ 0.
We will prove the first statement of the theorem (the proof of the second is analogous, so we

omit it.) Suppose that π(h) = i . Then x1 = i ; otherwise the i th column of A is the zero-vector
and π(i) = i . Using Definition 2.16 and Lemma 2.10, h has the following characterization.
Consider the column indices in the order i + 1, i + 2, . . . , n, 1, 2, . . . , i and greedily choose the
earliest index h such that the columns of A indexed by the set {x2, . . . , xk} ∪ {h} are linearly
independent. Then Ii+1 = (Ii \ {i}) ∪ {h}.

Now consider the ranks of various submatrices of A obtained by selecting certain columns.
Claim 0. rank A(i + 1, . . . , h − 1, h) = 1 + rank A(i + 1, . . . , h − 1). This claim follows

from the characterization of h and the fact that Ii+1 is the lexicographically minimal k-subset
with respect to the order i + 1 < · · · < n < 1 < · · · < i such that ∆Ii+1(A) ≠ 0.

Claim 1. rank A(i, i+1, . . . , h) = rank A(i, i+1, . . . , h−1). To prove this claim, we consider
two cases. Either i <i h <i xk or i <i xk <i h, where <i is the total order i < i + 1 < · · · < n <

1 < · · · < i − 1. In the first case, the claim follows, because h is not contained in the set Ii .
In the second case, rank A(i, i + 1, i + 2, . . . , xk) = k, and the index set {i, i + 1, . . . , xk} is a
proper subset of {i, i + 1, . . . , h}, so rank A(i, . . . , h) = rank A(i, . . . , h − 1) = k.

Now let R = rank A(i + 1, i + 2, . . . , h − 1). By Claim 0, rank A(i + 1, . . . , h) =

R + 1. Therefore we have rank A(i, . . . , h) ≥ rank A(i + 1, . . . , h) = R + 1. By Claim 1,
rank A(i, . . . , h) = rank A(i, . . . , h−1), but rank A(i, . . . , h−1) ≤ R+1, so rank A(i, . . . , h) ≤

R + 1. We now have rank A(i, . . . , h) = R + 1. But also rank A(i, . . . , h − 1) =

rank A(i, . . . , h) = R+1. Therefore rank A(i, i+1, . . . , h−1) = rank A(i+1, . . . , h−1, h) =

rank A(i, . . . , h) = rank A(i + 1, . . . , h − 1)+ 1, as desired.
Conversely, suppose that rank A(i, i + 1, . . . , h − 1) = rank A(i + 1, . . . , h − 1, h) =

rank A(i, . . . , h) = rank A(i + 1, . . . , h − 1) + 1. Let Ii and Ii+1 be the lexicographically
minimal k-subsets with respect to the total orders <i and <i+1, such that ∆Ii (A) ≠ 0 and
∆Ii+1(A) ≠ 0. Since rank A(i, i + 1, . . . , h − 1) = rank A(i, . . . , h), we have h ∉ Ii . And since
rank A(i + 1, . . . , h − 1, h) = rank A(i + 1, . . . , h − 1) + 1, we have h ∈ Ii+1. We now claim
that i ∈ Ii . Otherwise, by the definition of Grassmann necklace, Ii+1 = Ii , which contradicts the
fact that rank A(i, i + 1, . . . , h − 1) = rank A(i + 1, . . . , h − 1)+ 1. Therefore the claim holds,
and by Definition 2.16, we must have π(h) = i . �

9. Soliton graphs and generalized plabic graphs

The following notion of soliton graph forgets the metric data of the contour plot, but preserves
the data of how line-solitons interact and which exponentials dominate.

Definition 9.1. Let A ∈ Grk,n and consider a generic contour plot Ct (u A) for some time t .
Color a trivalent vertex black (respectively, white) if it has a unique edge extending downwards
(respectively, upwards) from it. We preserve the labeling of regions and edges that was used in
the contour plot: we label a region by E I if the dominant exponential in that region is ∆I E I ,
and label each line-soliton by its type [i, j] (see Lemma 7.5). We also preserve the topology of
the graph, but forget the metric structure. We call this labeled graph with bicolored vertices the
soliton graph G t0(u A).

Example 9.2. We continue Example 7.9. Fig. 4 contains the same contour plot Ct (u A) as that at
the left of Fig. 3. One may use Lemma 7.5 to label all regions and edges in the soliton graph. After
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computing the Plücker coordinates, one can identify the singular solitons, which are indicated by
the dotted lines in the soliton graph.

We now describe how to pass from a soliton graph to a generalized plabic graph.

Definition 9.3. A generalized plabic graph is an undirected graph G drawn inside a disk with n
boundary vertices labeled {1, . . . , n}. We require that each boundary vertex i is either isolated
(in which case it is colored with color 1 or −1), or is incident to a single edge; and each internal
vertex is colored black or white. Edges are allowed to cross each other in an X -crossing (which
is not considered to be a vertex).

By Theorem 8.1, the following construction is well-defined.

Definition 9.4. Fix a positroid stratum Sπ : of Grk,n where π : = (π, col). To each soliton graph
C coming from a point of that stratum we associate a generalized plabic graph Pl(C) by:

• embedding C into a disk, so that each unbounded line-soliton of C ends at a boundary vertex;
• labeling the boundary vertex incident to the edge with labels i and π(i) by π(i);
• adding an isolated boundary vertex labeled h with color 1 (respectively, −1) whenever h ∈ J

for each region label E J (respectively, whenever h ∉ J for any region label E J );
• forgetting the labels of all edges and regions.

See Fig. 4 for a soliton graph C together with the corresponding generalized plabic graph Pl(C).

Definition 9.5. Given a generalized plabic graph G, the trip Ti is the directed path which starts at
the boundary vertex i , and follows the “rules of the road”: it turns right at a black vertex, left at a
white vertex, and goes straight through the X -crossings. Note that Ti will also end at a boundary
vertex. If i is an isolated vertex, then Ti starts and ends at i . Define πG(i) = j whenever Ti ends
at j . It is not hard to show that πG is a permutation, which we call the trip permutation.

We use the trips to label the edges and regions of each generalized plabic graph.

Definition 9.6. Given a generalized plabic graph G, start at each non-isolated boundary vertex
i and label every edge along trip Ti with i . Such a trip divides the disk containing G into two
parts: the part to the left of Ti , and the part to the right. Place an i in every region which is to
the left of Ti . If h is an isolated boundary vertex with color 1, put an h in every region of G.
After repeating this procedure for each boundary vertex, each edge will be labeled by up to two
numbers (between 1 and n), and each region will be labeled by a collection of numbers. Two
regions separated by an edge labeled by both i and j will have region labels S and (S \ {i})∪{ j}.
When an edge is labeled by two numbers i < j , we write [i, j] on that edge, or {i, j} or { j, i} if
we do not wish to specify the order of i and j .

Although the following result was proved for irreducible cells of (Grk,n)≥0, the same proof
holds for arbitrary positroid strata of Grk,n .

Theorem 9.7 ([21, Theorem 7.6]). Consider a soliton graph C = G t (u A) coming from a point
A of a positroid stratum Sπ : , where π : = (π, col). Then the trip permutation of Pl(C) is π , and
by labeling edges of Pl(C) according to Definition 9.6, we will recover the original edge and
region labels in C.

We invite the reader to verify Theorem 9.7 for the graphs in Fig. 4.
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Remark 9.8. By Theorem 9.7, we can identify each soliton graph C with its generalized plabic
graph Pl(C). From now on, we will often ignore the labels of edges and regions of a soliton
graph, and simply record the labels on boundary vertices.

10. The contour plot for t ≪ 0

Consider a matroid stratum SM contained in the Deodhar component SD , where D is the
corresponding or Go-diagram. From Definition 7.1 it is clear that the contour plot associated to
any A ∈ SM depends only on M, not on A. In fact for t ≪ 0 a stronger statement is true – the
contour plot for any A ∈ SM ⊂ SD depends only on D, and not on M. In this section we will
explain how to use D to construct first a generalized plabic graph G−(D), and then the contour
plot Ct (M) for t ≪ 0.

10.1. Definition of the contour plot for t ≪ 0

Recall from (7.1) the definition of fM(x, y, t). To understand how it behaves for t ≪ 0, let
us rescale everything by t . Define x̄ = x

t and ȳ = y
t , and set

φi (x̄, ȳ) = κi x̄ + κ2
i ȳ + κ3

i ,

that is, κi x + κ2
i y + κ3

i t = tφi (x̄, ȳ). Note that because t is negative, x and y have the opposite
signs of x̄ and ȳ. This leads to the following definition of the contour plot for t ≪ 0.

Definition 10.1. We define the contour plot C−∞(M) to be the locus in R2 where

min
J∈M


k

i=1

φ ji (x̄, ȳ)


is not linear.

Remark 10.2. After a 180◦ rotation, C−∞(M) is the limit of Ct (u A) as t → −∞, for any
A ∈ SM. Note that the rotation is required because the positive x-axis (respectively, y-axis)
corresponds to the negative x̄-axis (respectively, ȳ-axis).

Definition 10.3. Define vi,ℓ,m to be the point in R2 where φi (x̄, ȳ) = φℓ(x̄, ȳ) = φm(x̄, ȳ). A
simple calculation yields that the point vi,ℓ,m has the following coordinates in the x̄ ȳ-plane:

vi,ℓ,m = (κiκℓ + κiκm + κℓκm,−(κi + κℓ + κm)).

Some of the points vi,ℓ,m ∈ R2 correspond to trivalent vertices in the contour plots we construct;
such a point is the location of the resonant interaction of three line-solitons of types [i, ℓ], [ℓ, m]
and [i, m] (see Theorem 10.6 below). Because of our assumption on the genericity of the κ-
parameters, those points are all distinct.

10.2. Main results on the contour plot for t ≪ 0

The results of this section generalize those of [20, Section 8] to a soliton solution coming from
an arbitrary point of the real Grassmannian (not just the non-negative part). We start by giving
an algorithm to construct a generalized plabic graph G−(D), which will be used to construct
C−∞(M). Fig. 5 illustrates the steps of Algorithm 10.4, starting from the Go-diagram of the
Deodhar component SD where D is as in the upper left corner of Fig. 5.
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Fig. 5. Construction of the generalized plabic graph G−(D) associated to the Go-diagram D. The labels of the regions
of the graph indicate the index sets of the corresponding Plücker coordinates. Using the notation of Definition 4.10, we
have π(D) = vw−1

= (5, 7, 1, 6, 8, 3, 4, 2).

Algorithm 10.4. From a Go-diagram D to G−(D):

(1) Start with a Go-diagram D contained in a k × (n − k) rectangle, and replace each ❢, ✈, and
blank box by a cross, a cross, and a pair of elbows, respectively. Label the n edges along the
southeast border of the Young diagram by the numbers 1 to n, from northeast to southwest.
The configuration of crosses and elbows forms n “pipes” which travel from the southeast
border to the northwest border; label the endpoint of each pipe by the label of its starting
point.

(2) Add a pair of black and white vertices to each pair of elbows, and connect them by an edge,
as shown in the upper right of Fig. 5. Forget the labels of the southeast border. If there is an
endpoint of a pipe on the east or south border whose pipe starts by going straight, then erase
the straight portion preceding the first elbow. If there is a horizontal (respectively, vertical)
pipe starting at i with no elbows, then erase it, and add an isolated boundary vertex labeled i
with color 1 (respectively, −1).

(3) Forget any degree 2 vertices, and forget any edges of the graph which end at the southeast
border of the diagram. Denote the resulting graph G−(D).

(4) After embedding the graph in a disk with n boundary vertices (including isolated vertices)
we obtain a generalized plabic graph, which we also denote G−(D). If desired, stretch and
rotate G−(D) so that the boundary vertices at the west side of the diagram are at the north
instead.

Remark 10.5. If there are no black stones in D, then this algorithm reduces to
[21, Algorithm 8.7]. In this case, by [21, Theorem 11.15], the Plücker coordinates corresponding
to the regions of G−(D) include the set of minors J described in Theorem 5.13. In particular,
the set of Plücker coordinates labeling the regions of G−(D) comprise a positivity test for SD .
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The following is the main result of this section.

Theorem 10.6. Choose a matroid stratum SM and let SD be the Deodhar component containing
SM. Recall the definition of π(D) from Definition 4.10. Use Algorithm 10.4 to obtain G−(D).
Then G−(D) has trip permutation π(D), and we can use it to explicitly construct C−∞(M)

as follows. Label the edges of G−(D) according to the rules of the road. Label by vi,ℓ,m each
trivalent vertex which is incident to edges labeled [i, ℓ], [i, m], and [ℓ, m], and give that vertex
the coordinates (x̄, ȳ) = (κiκℓ+κiκm+κℓκm,−(κi+κℓ+κm)). Replace each edge labeled [i, j]
which ends at a boundary vertex by an unbounded line-soliton with slope κi + κ j . (Each edge
labeled [i, j] between two trivalent vertices will automatically have slope κi +κ j .) In particular,
C−∞(M) is determined by D. Recall from Remark 10.2 that after a 180◦ rotation, C−∞(M) is
the limit of Ct (u A) as t →−∞, for any A ∈ SM.

Remark 10.7. Since the contour plot C−∞(M) depends only on D, we also refer to it as
C−∞(D).

Remark 10.8. The results of this section may be extended to the case t ≫ 0 by duality
considerations (similar to the way in which our previous paper [21] described contour plots for
both t ≪ 0 and t ≫ 0). Note that the Deodhar decomposition of Grk,n depends on a choice of
ordered basis (e1, . . . , en). Using the ordered basis (en, . . . , e1) instead and the corresponding
Deodhar decomposition, one may explicitly describe contour plots at t ≫ 0.

Remark 10.9. Depending on the choice of the parameters κi , the contour plot C−∞(D) may have
a slightly different topological structure than the soliton graph G−(D). While the incidences of
line-solitons with trivalent vertices are determined by G−(D), the locations of X -crossings may
vary based on the κi ’s. More specifically, changing the κi ’s may change the contour plot via a
sequence of slides, see Section 11.

Our proof of Theorem 10.6 is similar to the proof of [20, Theorem 8.9]. The main strategy is
to use induction on the number of rows in the Go-diagram D. More specifically, let D′ denote
the Go-diagram D with its top row removed. In Lemma 10.11 we will explain that G−(D′)
can be seen as a labeled subgraph of G−(D). In Theorem 10.14, we will explain that there is
a polyhedral subset of C−∞(D) which coincides with C−∞(D′). And moreover, every vertex
of C−∞(D′) appears as a vertex of C−∞(D). By induction we can assume that Theorem 10.6
correctly computes C−∞(D′), which in turn provides us with a description of “most” of C−∞(D),
including all line-solitons and vertices whose indices do not include 1. On the other hand,
Theorem 8.1 gives a complete description of the unbounded solitons of both C−∞(D′) and
C−∞(D) in terms of π(D′) and π(D). In particular, C−∞(D) contains one more unbounded
soliton at y ≫ 0 than does C−∞(D). This information together with the resonance property
allows us to complete the description of C−∞(D) and match it up with the combinatorics of
G−(D).

Lemma 10.10. The generalized plabic graph G−(D) from Algorithm 10.4 has trip permutation
π(D).

Proof. If we follow the rules of the road starting from a boundary vertex of G−(D), we will first
follow a “pipe” southeast (compare the lower left and the top middle pictures in Fig. 5) and then
travel straight west along the row or north along the column where that pipe ended. Recall from
Definition 4.10 that π(D) = vw−1. Noting that we can read off v and w from the pipes in the
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Fig. 6. Inductive construction of the generalized plabic graph G−(D) associated to the Go-diagram D; cf. Fig. 5.

top middle picture of Fig. 5, we see that following the rules of the road has the same effect as
computing vw−1. �

The next lemma explains the relationship between G−(D) and G−(D′), where D′ is the Go-
diagram D with the top row removed. It should be clear after examining Fig. 6.

Lemma 10.11. Let D be a Go-diagram with k rows and n − k columns, and let G = G−(D) be
the edge-labeled plabic graph constructed by Algorithm 10.4. Form a new Go-diagram D′ from
D by removing the top row of D; suppose that ℓ is the sum of the number of rows and columns
in D′. Let G ′ be the edge-labeled plabic graph associated to D′, but instead of using the labels
{1, 2, . . . , ℓ}, use the labels {n − ℓ+ 1, n − ℓ+ 2, . . . , n}. Let h denote the label of the top row
of D. Then G ′ is obtained from G by removing the trip Th starting at h and all edges to its right
which have a trivalent vertex on Th .

From now on, we will assume without loss of generality that i1 = 1 is a pivot for A ∈ SD .

Definition 10.12. Let M be a matroid on [n] such that 1 is contained in at least one base. Let
M′ be the matroid {J \ {1} | 1 ∈ J and J ∈ M}.

Using arguments similar to those in the proof of Theorem 5.6, one can verify the following.

Lemma 10.13. If A ∈ SM ⊂ SD is in row-echelon form and A′ is the span of rows 2, 3, . . . , k
in A ∈ SM ⊂ Grk,n , then A′ ∈ SM′ ⊂ SD′ , where D′ is obtained from D by removing its top
row.

The following result is a combination of [20, Theorem 8.17] and [20, Corollary 8.18].
Although in [20] the context was A ∈ (Grk,n)≥0 and in this paper we are allowing A ∈ Grk,n ,
the proofs from [20] hold without any modification. See Fig. 7 for an illustration of the theorem.
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Fig. 7. The contour plot C−∞(M′) within the contour plot C−∞(M).

Theorem 10.14 ([20]). Let M be a matroid such that 1 is contained in at least one base. Then
there is an unbounded polyhedral subset R of C−∞(M) whose boundary is formed by line-
solitons, such that every region in R is labeled by a dominant exponential E J such that 1 ∈ J . In
R, C−∞(M) coincides with C−∞(M′). Moreover, every region of C−∞(M′) which is incident
to a trivalent vertex and labeled by E J ′ corresponds to a region of C−∞(M) which is labeled by
E J ′∪{1}.

In particular, the set of trivalent vertices in C−∞(M) is equal to the set of trivalent vertices
in C−∞(M′) together with some vertices of the form v1,b,c. These vertices comprise the vertices
along the trip T1 (the set of line-solitons labeled [1, j] for any j). In particular, every line-soliton
in C−∞(M) which was not present in C−∞(M′) and is not on T1 must be unbounded. And every
new bounded line-soliton in C−∞(M) that did not come from a line-soliton in C−∞(M′) is of
type [1, j] for some j .

We now prove Theorem 10.6, using the characterization of unbounded line-solitons in
Theorem 8.1.

Proof. Choose A in the Deodhar component SD . Let M be the matroid such that A ∈ SM.
We will prove Theorem 10.6 using induction on the number of rows of A. Using the notation of
Definition 10.12 and Lemma 10.13, we have that A′ ∈ SM′ ⊂ SD′ .

By Theorem 10.14, the contour plot C−∞(M) is equal to the contour plot C−∞(M′)

together with some trivalent vertices of the form v1,b,c, all edges along the trip T1, and some
new unbounded line-solitons (which are all to the right of the trip T1). By the inductive
hypothesis, C−∞(M′) is constructed by Theorem 10.6; in particular, Algorithm 10.4 produces a
(generalized) plabic graph which describes the trivalent vertices of C−∞(M′) and the interactions
of all line-solitons at trivalent vertices.

Using Lemma 10.10 and Theorem 8.1, we see that Algorithm 10.4 produces a (generalized)
plabic graph whose labels on unbounded edges agree with the labels of the unbounded line-
solitons for the contour plot C−∞(M) of any A ∈ SD . The same is true for A′ ∈ SD′ .

By Lemma 10.11, the plabic graph G which Algorithm 10.4 associates to D is equal to G ′

together with the trip T1 starting at 1 at some new line-solitons emanating right from trivalent
vertices of T1.
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Fig. 8. Illustration of cases 1 (left) and 2 (right) in the proof of Theorem 10.6.

We now characterize the new vertices and line-solitons which C−∞(M) contains, but which
C−∞(M′) did not. We claim that the set of new vertices is precisely the set of v1,b,c (where
1 < b < c), such that either c→ b is a nonexcedance of π = π(M), or c→ b is a nonexcedance
of π ′ = π(M′), but not both. Moreover, if c → b is a nonexcedance of π , then v1,b,c is white,
while if c→ b is a nonexcedance of π ′, then v1,b,c is black. The proof is identical to that of the
same claim in the proof of [21, Theorem 8.8].

Now, if one analyzes the steps of Algorithm 10.4 (see in particular the second and third
diagrams in Fig. 5), it becomes apparent that the above description also characterizes the set
of new vertices which the algorithm associates to the top row of the Go-diagram D. In particular,
the nonexcedances of the corresponding permutation π correspond to the vertical edges at the
top of the second and third diagrams; when one labels these edges using the rules of the road,
each edge gets the label [b, c], where b comes from the label of its pipe, and c comes from the
label of its column (shown at the bottom of the second diagram). The nonexcedances of π ′ are
labeled in the same way but come from vertical edges which are present in the second row of
D. Therefore each new trivalent vertex in the top row gets the label v1,b,c where b and c are as
above, and where c→ b is a nonexcedance of precisely one of π and π ′.

Finally, we discuss the order in which the vertices v1,b,c occur along the trip T1 in the contour
plot. First note that the trip T1 starts at y ≪ 0 and along each line-soliton it always heads up
(towards y ≫ 0). This follows from the resonance condition (see e.g. [21, Figure 9] and take
i = 1). Therefore the order in which we encounter the vertices v1,b,c along the trip is given by
the total order on the y-coordinates of the vertices, namely κ1 + κb + κc.

We now claim that this total order is identical to the total order on the positive integers 1+b+c
– that is, it does not depend on the choice of κi ’s, as long as κ1 < · · · < κn . If we can show this,
then we will be done, because this is precisely the order in which the new vertices occur along
the trip T1 in the graph G−(L).

To prove the claim, it is enough to show that among the set of new vertices v1,b,c, there are
not two of the form v1,i,ℓ and v1, j,k where i < j < k < ℓ. To see this, recall that the indices b
and c of the new vertices v1,b,c can be read off from the second and third diagrams illustrating
Algorithm 10.4: c will come from the bottom label of the corresponding column, while b will
come from the label of the pipe that v1,b,c lies on. Therefore, if there are two new vertices v1,i,ℓ
and v1, j,k , then they must come from a pair of pipes which have crossed each other an odd
number of times, as in Fig. 8.

Note that the second diagram of Fig. 5 depicts a “pipe dream” (or “wiring diagram”) encoding
the distinguished subexpression v of a reduced expression w. If two pipes pass over each other
in a given box we will say that they cross at that box, while if two pipes pass through the
same box without crossing, we will say that they kiss at that box. Let us now follow a pair
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of pipes from southeast to northwest. The property of v being distinguished mean that two pipes
starting at i and j must not kiss each other after having crossed each other an odd number of
times.

Assume that Algorithm 10.4 produces two vertices v1,i,ℓ and v1, j,k where i < j < k < ℓ.
Choose such a pair of vertices which minimizes |ℓ−k|. We consider two cases, based on whether
v1, j,k is black or white. In the first case (see the left of Fig. 8), since v1, j,k is black, its pipe j will
continue west from v1, j,k and must eventually turn up, at some column k′ such that k < k′ < ℓ.
But then Algorithm 10.4 produces another vertex v1, j,k′ such that i < j < k′ < ℓ, so this vertex
together with v1,i,ℓ form a pair of vertices where |ℓ− k′| < |ℓ− k|, contradicting our assumption
of minimality of |ℓ− k|.

In the second case (see the right of Fig. 8), since v1, j,k is white, there is another black vertex
v1, j ′,k to its left in the same box b, whose pipe starts at j ′. Because v is distinguished, j ′ must be
greater than j . (Otherwise the pipes starting at j and j ′ would cross each other an odd number
of times and then kiss at box b.) Now since v1, j ′,k is black, its pipe must travel west from it and
eventually turn up, at some column k′ such that j ′ < k′ < ℓ. But then Algorithm 10.4 produces
another vertex v1, j ′,k′ such that i < j ′ < k′ < ℓ. But now we have a pair of vertices v1,i,ℓ and
v1, j ′,k′ such that i < j ′ < k′ < ℓ where |ℓ − k′| < |ℓ − k|. This contradicts our assumption of
minimality of |ℓ− k|, and completes the proof of the claim.

Finally, using Definition 10.3 for the vertex vi,ℓ,m , we obtain the contour plot from G by
giving the trivalent vertices the explicit coordinates from Theorem 10.6. �

11. X-crossings, slides, and contour plots

In this section we discuss how our choice of the parameters κi may affect the topology of
the contour plot C−∞(D) (and hence Ct (u A) for t ≪ 0 and A ∈ SD), namely, by changing the
locations of the X -crossings. See Remark 10.9. We also discuss the relation between X -crossings
and Plücker coordinates.

11.1. Slides and the topology of contour plots

The following definition will be useful for understanding the dependence of the contour plot
on the κi ’s.

Definition 11.1. Consider a generalized plabic graph G with at least one X -crossing. Let va,b,c
be a trivalent vertex (with edges labeled [a, b], [a, c], and [b, c]) which has a small neighborhood
N containing one or two X -crossings with a line labeled [i, j], but no other trivalent vertices or
X -crossings. Here {a, b, c} and {i, j} must be disjoint. Then a slide is a local deformation of the
graph G which moves the line [i, j] so that it intersects a different set of edges of va,b,c, creating
or destroying at most one region in the process.

See Fig. 9 for examples. Recall the notions of black and white X -crossings from
Definition 7.7.

Remark 11.2. Theorem 10.6 determines everything about the combinatorics and topology of the
contour plot C−∞(D) except for which pairs of line-solitons form an X -crossing. Therefore if
one deforms the parameters κi , the only way that the contour plot can change so as to change the
topology is via a sequence of slides.
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Fig. 9. Some slides involving white X -crossings. These contour plots correspond to the same Le-diagram D with
π(D) = (5, 3, 2, 1, 4), but they differ from G−(D).

Fig. 10. Contour plots Ct (u A) constructed using the same t and A ∈ SD ⊂ Gr4,8 but with different choices
of the κ-parameters. The left plot uses (κ1, . . . , κ8) = (−3.5,−2,−1, 0, 0.5, 1, 2, 5) while the right one uses
(−3.5,−2,−1, 0, 0.5, 1, 2.5, 3). This affects the location of the [4, 7] line-soliton. In the middle we have the generalized
plabic graph G−(D) using the Go-diagram D of Fig. 5.

See Fig. 10 for an example of two different contour plots associated to the same Go-diagram
and element A ∈ Gr4,8, but obtained using different choices of the κ-parameters. The two
contour plots differ by precisely one slide. For another example, compare Fig. 4 to Fig. 11.
Both of them are based on the Go-diagram from Example 7.9 and the same matrix A. The only
difference is the value of κ1. Note that this affects the X -crossings formed by the unbounded
[1, 6] line-soliton, and that one contour plot can be obtained from the other via a sequence of
three slides.

We now show that a slide on a contour plot preserves the number of black X -crossings.

Theorem 11.3. Consider two contour plots C and C′ (for the same A ∈ Grk,n and time t but for
different κ-parameters) which differ by a slide. Then C and C′ have the same number of black
X-crossings.

Proof. Suppose that C and C′ differ by a slide involving the trivalent vertex va,b,c and the line-
soliton [i, j] for a < b < c and i < j , where the sets {a, b, c} and {i, j} are disjoint. We assume
that va,b,c is white. (The case where it is black is analogous.) There are five cases to consider:

Case 1. i < a < j < b < c, which implies that κi + κ j < κa + κb < κa + κc < κb + κc.
Case 2. i < a < b < j < c, which implies that (a.) κi + κ j < κa + κb < κa + κc < κb + κc, or

(b.) κa + κb < κi + κ j < κa + κc < κb + κc.
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Fig. 11. A contour plot Ct (u A), soliton graph C = Gt (u A) and generalized plabic graph G−(D) coming from a
Go-diagram where A ∈ SD . The κ-parameters are the same as those used for Fig. 4 except that κ1 = −3.1 now,
i.e. (κ1, . . . , κ9) = (−3.1,−3,−2,−1, 0, 1, 2, 3, 4).

Fig. 12. Various types of X -crossings involving the line-solitons incident to va,b,c and the [i, j] line-soliton. The top
row shows Cases 1, 2a, 2b, and 3a from left to right, while the bottom row shows Cases 3b, 4a, 4b, and 5 from left to
right.

Case 3. a < i < b < j < c, which implies that (a.) κa + κb < κi + κ j < κa + κc < κb + κc, or
(b.) κa + κb < κa + κc < κi + κ j < κb + κc.

Case 4. a < i < b < c < j , which implies that (a.) κa + κb < κa + κc < κi + κ j < κb + κc, or
(b.) κa + κb < κa + κc < κb + κc < κi + κ j .

Case 5. a < b < i < c < j , which implies that κa + κb < κa + κc < κb + κc < κi + κ j .

(Note that any other ordering on a, b, c, i, j , such as i < j < a < b < c, would imply that there
are no black X -crossings involving the edges incident to va,b,c and the [i, j] soliton.)

Consider Case 1. Recall that “slope” of the [i, j] line-soliton – that is, the tangent of the angle
measured counterclockwise from the positive y-axis to the [i, j] line-soliton – is equal to κi+κ j .
Therefore from the order on the slopes, the [i, j] soliton may intersect either the [a, c] soliton or
both the [a, b] and [b, c] solitons, as in the top-left diagram of Fig. 12. The black X -crossings
are denoted by a solid black square. In both cases, precisely one of the intersections is a black
X -crossing. The other cases are similar – see Fig. 12. �
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Remark 11.4. In fact one can show that the slides from Cases 3a and 3b in Fig. 12 are impossible
at t ≪ 0. More specifically, it is impossible for the [i, j] line-soliton to intersect the [b, c] line-
soliton. To show this, one may compute the coordinates (xv, yv) of the trivalent vertex v where
the [a, b], [a, c], and [b, c] solitons intersect. Then one can show that the intersection of the [i, j]
soliton and the line y = yv has x-coordinate which is strictly less than xv .

11.2. Slides and Plücker coordinates

In [21, Theorem 9.1], we proved that the presence of X -crossings in contour plots at |t | ≫ 0
implies that there is a two-term Plücker relation.

Theorem 11.5 ([21, Theorem 9.1]). Suppose that there is an X-crossing in a contour plot Ct (u A)

for some A ∈ Grk,n where |t | ≫ 0. Let I1, I2, I3, and I4 be the k-element subsets of {1, . . . , n}
corresponding to the dominant exponentials incident to the X-crossing listed in circular order.

• If the X-crossing is white, we have ∆I1(A)∆I3(A) = ∆I2(A)∆I4(A).

• If the X-crossing is black, we have ∆I1(A)∆I3(A) = −∆I2(A)∆I4(A).

The following corollary is immediate.

Corollary 11.6. If there is a black X-crossing in a contour plot at t ≪ 0 or t ≫ 0, then
among the Plücker coordinates associated to the dominant exponentials incident to that black
X-crossing, three must be positive and one negative, or vice-versa.

Corollary 11.7. Let D be a -diagram, that is, a Go-diagram with no black stones. Let A ∈ SD
and t ≪ 0. Choose any κ1 < · · · < κn . Then the contour plot Ct (u A) can have only white
X-crossings.

Proof. From Theorem 10.6, it follows that the contour plot C−∞(u A) has no dependence on
the signs of the Plücker coordinates of A. (In fact it has no dependence on A, only on the
Deodhar stratum SD containing A.) Since D is a -diagram, we can choose an element A′ ∈
SD ∩ (Grk,n)≥0, and C−∞(u A) = C−∞(u A′). But now since the Plücker coordinates of A′ are all
non-negative, by Theorem 11.5, there cannot be any black X -crossings in the contour plot. �

Lemma 11.8. Consider two contour plots for A ∈ Grk,n which differ by a single slide. Let J
and J ′ denote the two sets of Plücker coordinates corresponding to the dominant exponentials in
the two contour plots. Then from the values of the Plücker coordinates in J , one can reconstruct
the values of the Plücker coordinates in J ′, and vice-versa.

Proof. By Theorem 11.5, the four Plücker coordinates incident to an X -crossing satisfy a “two-
term” Plücker relation. Now it is easy to verify the lemma by inspection, since each slide only
creates or removes one region, and there is a dependence among the Plücker coordinates labeling
the dominant exponentials. The reader may wish to check this by looking at the first and second,
or the second and third, or the third and fourth contour plots in Fig. 9. �

Corollary 11.9. Let D be a -diagram, such that SD ⊂ Grk,n . Let C−∞(D) and C′−∞(D) be two
contour plots defined using two different sets of parameters κ1 < · · · < κn and κ ′1 < · · · < κ ′n .
Let J and J ′ be the k-element subsets corresponding to the dominant exponentials in C−∞(D)

and C′−∞(D). If ∆I (A) > 0 for each I ∈ J , then ∆I (A) > 0 for each I ∈ J ′. In particular, if
J is a positivity test for SD then so is J ′.
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Proof. One may use a continuous deformation of the parameters to get from κ1 < · · · < κn
to κ ′1 < · · · < κ ′n . As one deforms the parameters the contour plot will change by a sequence
of slides. At each step along the way, the contour plot will contain only white X -crossings (by
Corollary 11.7). By Lemma 11.8, if we know the values of the Plücker coordinates labeling
dominant exponentials before a slide, then we can compute the Plücker coordinates labeling
dominant exponentials after a slide. Moreover, since this computation involved only two-term
Plücker relations and all the X -crossings are white, the positivity of the Plücker coordinates in
J implies the positivity of the Plücker coordinates in J ′. �

12. The regularity problem for KP solitons

In this section, we first discuss the regularity of KP solitons. Given a soliton solution u A
coming from an element A ∈ Grk,n , we show that if u A(x, y, t) is regular for t ≪ 0, then in fact
A must lie in the totally non-negative part (Grk,n)≥0 of the Grassmannian. We then discuss the
uniqueness (and lack thereof) of the pattern when the soliton solution is not regular.

Our main theorem is the following.

Theorem 12.1. Fix parameters κ1 < · · · < κn and an element A ∈ Grk,n . Consider the
corresponding soliton solution u A(x, y, t) of the KP equation. This solution is regular at t ≪ 0
if and only if A ∈ (Grk,n)≥0. Therefore this solution is regular for all times t if and only if
A ∈ (Grk,n)≥0.

We will prove Theorem 12.1 in Section 12.2, after establishing some results on black X -
crossings.

12.1. Lemmas on black X-crossings

Recall from Section 10.1 that φi (x̄, ȳ) = κi x̄ + κ2
i ȳ + κ3

i . The following lemma is easy to
check.

Lemma 12.2. For 1 ≤ i < j ≤ n, let L i j be the line in the x̄ ȳ-plane where φi (x̄, ȳ) = φ j (x̄, ȳ).
For i < j < k < ℓ, let bi, j,k,ℓ be the point where the lines L ik and L jℓ intersect. Then L i j has
the equation

x̄ + (κi + κ j )ȳ + (κ2
i + κiκ j + κ2

j ) = 0,

and the point bi, j,k,ℓ = (bx̄
i, j,k,ℓ, b ȳ

i, j,k,ℓ) has the coordinates

bx̄
i, j,k,ℓ =

κ2
i κ j + κ2

i κℓ − κi κ
2
j + κi κ j κk − κi κ j κℓ + κi κkκℓ − κi κ

2
ℓ − κ2

j κk + κ j κ
2
k − κ j κkκℓ + κ2

k κℓ − κkκ
2
ℓ

κi − κ j + κk − κℓ

b ȳ
i, j,k,ℓ =

−κ2
i − κi κk + κ2

j + κ j κℓ − κ2
k + κ2

ℓ

κi − κ j + κk − κℓ

.

Lemma 12.3. Consider the point bi, j,k,ℓ where 1 ∉ {i, j, k, ℓ}. Then at this point we have
φ1 < φi = φk and φ1 < φ j = φℓ.

Proof. By definition of bi, j,k,ℓ we have that at this point φi = φk and φ j = φℓ. So we just need
to show that at bi, j,k,ℓ, φ1 < φi and φ1 < φ j . A calculation shows that φi (bi, j,k,ℓ)− φ1(bi, j,k,ℓ)
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is equal to

(κk − κ1)(κi − κ1)[(κ j − κ1)(κ j − κi + κℓ − κk)+ (κℓ − κi )(κℓ − κk)]

κ j − κi + κℓ − κk
,

and φ j (bi, j,k,ℓ)− φ1(bi, j,k,ℓ) is equal to

(κℓ − κ1)(κ j − κ1)[(κi − κ1)(κ j − κi + κℓ − κk)+ (κℓ − κk)(κk − κ j )]

κ j − κi + κℓ − κk
.

Because κ1 < κi < κ j < κk < κℓ, we can readily verify that the above quantities are
positive. �

Remark 12.4. Lemma 12.3 will be instrumental in proving Proposition 12.5 below regarding
black X -crossings. Note that if in the lemma we took the order i < k < j < ℓ or i < j < ℓ < k
then our proof would not work. So Proposition 12.5 does not necessarily hold for white
X-crossings.

Proposition 12.5. Use the hypotheses and notation of Theorem 10.14. Then every black
X-crossing of C−∞(M′) remains a black X-crossing in C−∞(M); and each region in C−∞(M′)

which is incident to a black X-crossing and is labeled by E J ′ corresponds to a region of
C−∞(M) which is labeled by E J ′∪{1}.

Proof. Consider a black X -crossing ba,b,c,d of C−∞(M′) in which the line-solitons [a, c] and
[b, d] intersect (here a < b < c < d). Since this is taking place in C−∞(M′), 1 ∉ {a, b, c, d}.
The four regions R1, R2, R3, R4 incident to ba,b,c,d are labeled by E J1 , E J2 , E J3 , E J4 . In
particular, this means that at region R1, J1 is the subset { j1, . . . , jk−1} of M′ which minimizes
the value θ j1 + · · · + θ jk−1 . Without loss of generality we can assume that a ∈ J1. But then by
Lemma 12.3, there is a neighborhood N of ba,b,c,d where φ1 is less than φa . It follows that in
N ∩ R1, J1 ∪ { jk = 1} is the subset of M that minimizes the value θ j1 + · · · + θ jk . Therefore
the region R1 of C−∞(M′) which is labeled by E J1 corresponds to a region of C−∞(M) which
is labeled by E J1∪{1}. Similarly for R2, R3, and R4. In particular, the black X -crossing from
C−∞(M′) will remain a black X -crossing in C−∞(M). �

Recall the notion of a slide from Definition 11.1.

Proposition 12.6. Choose a Go-diagram D such that SD ⊂ Grk,n . Let κ1 < · · · < κn and
κ ′1 < · · · < κ ′n be two choices of parameters, and let C−∞(D) and C′−∞(D) be the corresponding
contour plots. Then if C−∞(D) has r black X-crossings, then C′−∞(D) has r black X-crossings.

Proof. By Remark 11.2, the two contour plots differ by a series of slides. And by Theorem 11.3,
each slide preserves the number of black X -crossings. �

Theorem 12.7. If D is a Go-diagram with at least one black stone, then the contour plot
C−∞(D) contains a black X-crossing.

Proof. Let i denote the bottom-most row of D which contains a black stone. Choose A ∈ SD
and put it in row-echelon form; let A′ denote the span of rows i, i + 1, . . . , k of A. So
A′ ∈ SD′ ⊂ Grk−i+1,n , where D′ is the Go-diagram obtained from rows i, i + 1, . . . , k of
D. Then by Proposition 12.5, if we can show that the contour plot C−∞(D′) contains a black
X -crossing, then C−∞(D) must also contain a black X -crossing.
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Fig. 13. An illustration of case (a) in the proof of Theorem 12.7.

Our goal now is to show that there is a choice of the κ-parameters such that C−∞(D′) contains
a black X -crossing. If we can show this, then by Proposition 12.6, we will be done.

Note that for t = −1, we have the following.

(i) If i < j < k, then the y-coordinate yi, j,k of the trivalent vertex vi, j,k where the [i, j], [ j, k]
and [i, k] solitons meet is:

yi, j,k = κi + κ j + κk .

(ii) If i < j < k < ℓ, then the y-coordinate yi, j,k,ℓ of an X -crossing between the [i, k] and [ j, ℓ]
solitons is:

yi, j,k,ℓ = κi + κ j + κk + κℓ −
κiκk − κ jκℓ

(κi + κk)− (κ j + κℓ)
.

Consider the left-most black stone b in D′. Let [i, b] and [a, j] with i < a < b < j be the
pair of lines in G−(D′) which cross at this black stone. Then there are two cases:

(a) There is no empty box to the left of b in D′, and so there is an unbounded [i, b]-soliton at
y ≫ 0 in the corresponding contour plot. Because b is a black stone, the [i, b]-soliton must
have a trivalent vertex vi,b, j ′ at one end, where j ′ ≥ b. Additionally, [a, j] is an unbounded
soliton at y ≪ 0, and it has a trivalent vertex vi ′,a, j at one end, where i ′ ≤ a. See Fig. 13.

If we can choose the κ-parameters such that yi ′,a, j > yi,a,b, j > yi,b, j ′ then it follows that
there is an intersection of the [a, j] and [i, b] line-solitons in the contour plot.

One simple choice is to require that

κ j = −κi > 0 and κb = −κa > 0; and also (12.1)

κi ′ >
1
2
κi and κ j ′ <

1
2
κ j . (12.2)

By (12.1), we have yi,a,b, j = 0. By (12.2), together with κa > κi ′ and κb < κ j ′ , we have that

yi ′,a, j = κi ′ + κa + κ j > 0 > κi + κb + κ j ′ = yi,b, j ′ .

One concrete choice of parameters satisfying the required inequalities is (κi , κi ′ , κa, κb,

κ j ′ , κ j ) = (−4r,−2r,−r, r, 2r, 4r) where r > 0.
(b) The second case is that there is an empty box to the left of b in D′, and so the [i, b] line-

soliton has trivalent vertices at both ends. Fig. 14 illustrates this situation. These vertices are
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Fig. 14. An illustration of case (b) in the proof of Theorem 12.7.

the white vertex vi,b, j ′′ and the black vertex vi,b, j ′ where i < i ′ ≤ a < b ≤ j ′ < j < j ′′. As
before, [a, j] is an unbounded line-soliton at y ≪ 0 which is incident to the trivalent vertex
vi ′,a, j . Since vi,b, j ′′ is a white vertex, if we can show that

yi,b, j ′′ > yi,a,b, j > yi,b, j ′ , and yi ′a, j > yi,a,b, j ,

then it follows that the line-solitons of type [a, j] and [i, b] intersect in the contour plot.
As before, we choose the κ-parameters so that (12.1) and (12.2) are satisfied. Then again

we have yi,a,b, j = 0, yi ′,a, j > 0, and yi,b, j ′ < 0. Note that any choice of κ j ′′ > κ j gives
yi,b, j ′′ > 0, since κi + κb + κ j ′′ > κi + κb + κ j = κb > 0.

This completes the proof. �

12.2. Positivity of dominant exponentials and the proof of Theorem 12.1

In this section we prove Theorem 12.8 below. Once we have proved it, the proof of
Theorem 12.1 will follow easily.

Theorem 12.8. Let A ∈ SD ⊂ Grk,n , where D is a -diagram, and let t ≪ 0. If ∆J (A) > 0
for each dominant exponential E J in the contour plot Ct (u A), then A ∈ (Grk,n)≥0. In other
words, the Plücker coordinates corresponding to the dominant exponentials in Ct (u A) comprise
a positivity test for SD .

Lemma 12.9. Theorem 12.8 holds for elements A ∈ Gr1,n .

Proof. Let A ∈ SD ⊂ Gr1,n . If D contains r empty boxes, then SD has dimension r . Meanwhile,
the element A will have precisely r + 1 nonzero Plücker coordinates. (We can normalize the
lexicographically minimal one to be 1.) It is easy to see that G−(D) and hence Ct (u A) will
have r + 1 regions, each one labeled by a different dominant exponential corresponding to a
Plücker coordinate ∆J (A) such that ∆J (A) ≠ 0. Therefore if each such ∆J (A) > 0, then
A ∈ (Gr1,n)≥0. �

Lemma 12.10. Let A ∈ SD ⊂ Grk,n . Then it is possible to choose κ1 < κ2 < · · · < κn such that
the unbounded line-solitons at y ≪ 0 in the corresponding contour plot Ct (u A) (for any time t)
appear in the same order as they do in the generalized plabic graph G−(D).



1028 Y. Kodama, L. Williams / Advances in Mathematics 244 (2013) 979–1032

Proof. Recall that in a contour plot, the unbounded line-solitons [i, j] at y ≪ 0 appear from left
to right in increasing order of the slope κi + κ j . While in G−(D), one may easily check that the
unbounded line-solitons [i, j] at y ≪ 0 appear from left to right in increasing order of j .

Now let us choose κ1, . . . , κn so that κi − κi−1 = r i for some constant r > 1. To prove the
lemma, it suffices to prove that given two line-solitons [a, b] and [c, d] at y ≪ 0, where b < d,
we have that

κa + κb < κc + κd , or equivalently, κd − κb > κa − κc. (12.3)

Since a < b and c < d , we have a < d. By our choice of the κi ’s, κd − κb ≥ rd . If
a < c then κa − κc < 0, so (12.3) is obvious. On the other hand, if a > c, then κa − κc ≤

ra
+ ra−1

+ · · · + 1 < ra+1. And since a < d, Eq. (12.3) follows. �

We now prove Theorem 12.8.

Proof. Our strategy is to use induction on the number of rows of A. Lemma 12.9 takes care
of the base case of the induction. We suppose that A is in row-echelon form, and let A′ be the
element of Grk−1,n obtained from the bottom k − 1 rows of A. Then A′ ∈ SD′ where D′ is also
a -diagram (it is the restriction of D to its bottom k − 1 rows). Recall from Theorem 10.14
that “most” of the contour plot Ct (u A′) is contained in the contour plot Ct (u A). More precisely,
every region of Ct (u A′) which is incident to a trivalent vertex and labeled by E J ′ corresponds to
a region of Ct (u A) which is labeled by E J ′∪{1}. Because A is in row-echelon form with a pivot in
row 1, ∆J ′∪{1}(A) = ∆J ′(A′), so the fact that each ∆J ′∪{1}(A) > 0 implies that ∆J ′(A′) > 0.

We now claim that all Plücker coordinates corresponding to the dominant exponentials of the
contour plot Ct (u A′) are positive. To prove this, note that from Ct (u A) we can in fact construct
Ct (u A′): all of the trivalent vertices of Ct (u A′) are present in Ct (u A), so it is just a matter of
extending some line-solitons that were finite in Ct (u A) but are unbounded in Ct (u A′). These line-
solitons may create some new white X -crossings but cannot create black X -crossings, because D′

is a -diagram. If a single white X -crossing is created, then because three of its four regions are
incident to a trivalent vertex, three of the four corresponding Plücker coordinates are positive. But
then by the two-term Plücker relation relating the four Plücker coordinates, the fourth Plücker
coordinate is positive as well. If multiple white X -crossings are created, then one can iterate
the above argument, starting with a white X -crossing with three of its four regions incident to
a trivalent vertex in the contour plot. This proves the claim. So by the inductive hypothesis,
A′ ∈ (Grk−1,n)≥0.

Since A′ ∈ (Grk−1,n)≥0, it follows that all the Plücker coordinates labeling the regions of
G−(D′) are positive. And so all of the Plücker coordinates labeling the regions of G−(D) which
correspond to the bottom k−1 rows of D are positive. (Recall again that ∆J ′∪{1}(A) = ∆J ′(A′).)
If we can show that the Plücker coordinates labeling the regions of G−(D) which come from the
top row of D are positive, then by Remark 10.5, it will follow that A ∈ (Grk,n)≥0.

By Lemma 12.10, we can deform the κ-parameters so that the resulting contour plot C′t (u A)

has its unbounded line-solitons at y ≪ 0 in the same order as those in G−(D). Then the dominant
exponentials at y ≪ 0 in C′t (u A) are precisely those of G−(D), which in turn come from the top
row of D. By Corollary 11.9, since the dominant exponentials of Ct (u A) are positive, so are
those of C′t (u A). In particular, the dominant exponentials of C′t (u A) at y ≪ 0 are positive, so
we can conclude that all of the Plücker coordinates labeling the regions of G−(D) are positive.
Therefore A ∈ (Grk,n)≥0. �

Finally we are ready to prove Theorem 12.1.
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Proof. Recall the definition of u A(x, y, t) in terms of the τ -function from Section 6.2. It is easy
to verify that if A ∈ (Grk,n)≥0, then u A(x, y, t) is regular for all times t : the reason is that
τA(x, y, t) is strictly positive, and hence its logarithm is well-defined.

Conversely, let A ∈ Grk,n , and suppose that u A(x, y, t) is regular for t ≪ 0. This means
that the Plücker coordinates ∆J corresponding to the dominant exponentials in the contour plot
Ct (u A) must all have the same sign. Since the Grassmannian is a projective variety, we may
assume that all of these Plücker coordinates are positive.

Let SD be the Deodhar stratum containing A. If D has a black stone, then by Theorem 12.7,
the contour plot C−∞(u A) contains a black X -crossing. But then by Corollary 11.6, two dominant
exponentials incident to that black X -crossing must have opposite signs, which is a contradiction.
Therefore we conclude that D has no black stones. It follows that the Deodhar diagram
corresponding to D is a -diagram. But now by Theorem 12.8, it follows that A ∈ (Grk,n)≥0.

Finally, note that if A ∈ Grk,n and u A(x, y, t) is regular for all times t , then in particular
it is regular for t ≪ 0, so the arguments of the previous two paragraphs apply. Therefore
A ∈ (Grk,n)≥0. �

Remark 12.11. Corollary 11.6 implies that there are singularities among the line-solitons
forming a black X -crossing in a contour plot, and the singular solitons form a V-shape.

Example 12.12. We revisit the example from Figs. 5 and 10. Note that the contour plot at the
left of Fig. 10 is topologically identical to G−(D). The Go-diagram and labeled Go-diagram are
as follows.

The A-matrix is given by

A =


p11 p14 p14 0 0 1 0 0 0

0 −p7 p8 p9 −p8 p9 −p9 −m10 0 −1 0
0 0 0 −p4 −m6 1 0 0
0 0 0 0 p3 0 0 1

 .

Recall from Theorem 5.6 that we associate a Plücker coordinate ∆Ib to each box b of the
Go-diagram, via Ib = vin(win)−1

{1, 2, 4, 5} = { j1, j2, j3, j4}. For brevity, we simply write
( j1 j2 j3 j4) below. Because the contour plot at the left of Fig. 10 is topologically identical to
G−(D), all of these Plücker coordinates ∆Ib correspond to dominant exponentials in the contour
plot.

(5678) (2567) (2456) (2345)

(1678) (1567) (1456) (1345)

(1268) (1256) (1256)

(1248) (1245) (1245)

1 1 1 1

1 1 1 1

−1 1 1

1 1 1
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The diagram at the right shows the values of the corresponding Plücker coordinates when we
choose all p j = 1 (regardless of the choice of the m j parameters). Since only the Plücker
coordinate ∆1,2,6,8(A) = −1 is negative, the singular line-solitons in the contour plot are
precisely those at the boundary of the corresponding region; these line-solitons have types [4, 6],
[5, 8], and [2, 7]-types.

12.3. Non-uniqueness of the evolution of the contour plots for t ≫ 0

Consider A ∈ SD ⊂ Grk,n . If the contour plot C−∞(D) is topologically identical to G−(D),
then the contour plot has almost no dependence on the parameters m j from the parametrization
of SD . This is because the Plücker coordinates corresponding to the regions of C−∞(D)

(representing the dominant exponentials) are either among the collection of minors given in
Theorem 5.6 (by Remark 10.5), or determined from these by a “two-term” Plücker relation. Note
that the minors given in Theorem 5.6 are computed in terms of the parameters pi but have no
dependence on the m j ’s.

Therefore it is possible to choose two different points A and A′ in SD ⊂ Grk,n whose contour
plots for a fixed κ1 < · · · κn and fixed t ≪ 0 are identical (up to some exponentially small
difference); we use the same parameters pi but different parameters m j for defining A and A′.
However, as t increases, those contour plots may evolve to give different patterns.

Consider the Deodhar stratum SD ⊂ Gr2,4, corresponding to

w = s2s3s1s2 and v = s211s2.

The Go-diagram and labeled Go-diagram are given by

The matrix g is calculated as g = s2 y3(p2)y1(p3)x2(m)s−1
2 , and its projection to Gr2,4 is

A =


−p3 −m 1 0

0 p2 0 1


.

The τ -function is then given by

τA = −(p2 p3 E1,2 + p3 E1,4 + m E2,4 + p2 E2,3 − E3,4),

where Ei, j := (κ j − κi ) exp(θi + θ j ). The contour plots of the solutions with m = 0 and m ≠ 0
are the same (except for some exponentially small difference) when t ≪ 0. In both cases, the plot
consists of two line-solitons forming an X -crossing, where the parts of those solitons adjacent to
the region with dominant exponential E3,4 (i.e. for x ≫ 0) are singular, see the left of Fig. 15.

On the other hand, for t ≫ 0, the contour plot with m = 0 is topologically the same as it
was for t ≪ 0, while the contour plot with m ≠ 0 has a box with dominant exponential E2,4,
surrounded by four bounded solitons (some of which are singular). See the middle and right of
Fig. 15. So not only the contour plots but also the soliton graphs are different for t ≫ 0!

Note that the non-uniqueness of the evolution of the contour plot (a tropical approximation)
does not imply the non-uniqueness of the evolution of the solution of the KP equation as t
changes. If one makes two different choices for the mi ’s, the corresponding τ -functions are
different, but there is only an exponentially small difference in the corresponding contour plots
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t=–20 t=–20, m=0 t=–20, m=1

Fig. 15. The non-uniqueness of the evolution of the contour plots (and soliton graphs). The left panel shows the contour
plot at t = −20 for any value of m. The middle panel shows the graph at t = 20 with m = 0, and the right one
shows the graph at t = 20 with m = 1. These contour plots were made using the choice pi = 1 for all i , and
(κ1, . . . , κ4) = (−2,−1, 0, 1.5). In all of them, the region at x ≫ 0 has a positive sign (∆3,4 = 1) and other regions
have negative signs. This means that the solitons adjacent to the region for x ≫ 0 are singular.

(hence the topology of the contour plots is identical). This is particularly interesting to compare
with the totally non-negative case, where the soliton solution can be uniquely determined by the
information in the contour plot at t ≪ 0. For more details, see the results on the inverse problem
in [21].
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