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0. INTRODUCTION

The object of this paper is to treat the following old question of
Montgomery and Samelson [M-S] and some of its consequences:

Which groups act smoothly on a closed homotopy sphere with exactly one
fixed point and what are the isotropy representations of G which occur on the
tangent space at the fixed point?

The first and only previously existing example of such an action was given
by E. Stein for the group SL(2, Z,) [St]. A related question was solved by
Oliver [0O,]: Which groups act smoothly on a disk without fixed points? A
group which acts on a sphere with one fixed point acts on a disk without
fixed points. In [P,] the author announced:

THEOREM A. These groups act smoothly on a homotopy sphere with
exactly one fixed point:

(i) S§%80;,
(i) SL(2,F), PSL(2, F) with characteristic F odd,

(iii) any odd order abelian group having at least three non-cyclic
Sylow subgroups.

This paper provides the proof of this theorem in case (i) and identifies
some of the isotropy representations which occur. These are the represen-
tations occurring in the set .%(G) defined in (6.9). Let G be S° or SO,.

THEOREM B. Given any integer n >0 and R € #,, there is a closed
smooth homotopy G sphere X such that £¢ consists of n points and the
isotropy representation at each is R.

THEOREM C. If M is any smooth G manifold and p € M® is a point
whose isotropy representation A lies in #,(G), there is a smooth G manifold
M’ having the same homotopy type as M, M'S =M% —p U {p,---p,} and
the isotropy representation at each p; is A.
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To the author’s knowledge, it is not known whether there is a group which
acts smoothly on a disk without fixed points yet cannot act smoothly on a
sphere with one fixed point. Many groups which are not known to act
smoothly act topologically on a spere with one fixed point. Take any smooth
fixed point free action of G on a disk D [O,, O,]. Then G acts topologically
on the sphere D/0D with one fixed point. Here is a challenging question
which directs attention to the central issues: Is there any connected simple
Lie group besides SO which acts smoothly on a sphere with one fixed point?

Aside from the main applications—Theorems A—C—this paper offers
these general tools for constructing smooth actions on a manifold whose
underlying homotopy type is fixed: (i) an equivariant transversality lemma
(6.1), (i) an equivariant surgery theory (Sections 3 and 4), (iii) an
equivariant surgery induction theorem (5.10). These topics have independent
interest in their own right. The Equivariant Transversality Lemma (6.1) is
used in conjunction with the equivariant stable cohomotopy theory wX(Y)
associated to the G space Y when G is a compact Lie group. An element of
we(Y) is represented by a proper G map w: ¥ X M - M, where M is some
representation of G. When Y is a smooth G manifold and the hypothesis of
(6.1) is satisfied, w is properly G homotopic to a map # transverse to 0. The
manifold X = A4 ~'(0) inherits some additional structure which serves as input
for the equivariant surgery theory., In particular the composition
[1XcYXM-Yis a G map whose degree is 1. There is a stable G vector
bundle isomorphism b:sTX - f*sTY, where sTX is the stable G tangent
bundle of X. Additionally there is a 4 bundle isomorphism
d: MTX)— A(f*TY) (Section 3). The datum 7 = (X,/f, b,d) is called a G
prenormal map. It is what is required for equivariant surgery theory. This
theory describes a method of converting (via G cobordism) 7 to
7 =(X'.f',b',d") with /' a pseudoequivalence, i.e.,/': X’ = Y is a G map
which is a homotopy equivalence. The Equivariant Induction Theorem
describes conditions where pseudoequivalence is achievable. In general. an
equivariant surgery induction theorem identifies a family #° of proper
subgroups of G such that if for each H € # the restriction to H of 7 is the
boundary of an H prenormal map 7/, then 7 is G cobordant to 77’ with
/' a pseudoequivalence. For the problem at hand we require that this
cobordism is rel X% so X% =X'C,

Briefly the program for applying (i)-(iii) to the problem of constructing
smooth homotopy spheres with exactly one fixed point is this. Begin with
Y = S(4 ® R)— the unit sphere of the representation 4 @ R where A4 is a
representation in .#,(G) with 49 =0 and G acts trivially on R. Thus Y? has
two fixed points p and g. A suitable x € w(Y) is produced with: (iv)
requirements on i*x € wi(Y%), i: Y95 Y and (v) res,x=1€ wj(Y) for
H € #. The Equivariant Transversality Lemma is used to produce a G
prenormal map 7 = 7 (x) = (X, /. b, d), f: X - Y whose properties implicitly
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depend on x € wl(Y). Condition (iv) on i*x is used to arrange that
X¢ = one point while (v) is used to satisfy the hypothesis of the Equivariant
Induction Theorem, i.e., res,# = d%#, for HE #. This theorem implies
that 77 is G cobordant (rel X¢) to 7" with f' a pseudoequivalence. Thus X'
is a homotopy sphere and X’“ is one point.

These methods have been used to study other invariants of actions on
homotopy spheres. We mention two explicitly. Let ¥ be a smooth G
homotopy sphere. Suppose for each subgroup H of G, each component of Y"
has the same dimension—dim Y*. Define an integral valued function on the
subgroups of G by

Dim Y(H) = dim Y* + 1.

The definition is so arranged that Dim S(4 @ R)(H) = dim A" when 4 is a
representation of G. It is an old theorem of Artin [Ar] that the values of
Dim S(4 ® R) are not independent and Dim S(4 @ R)(G) is a function of
IDim S(4 @ R)(C)| C cyclic}. Using the methods here, this functional
dependence is seen to fail for general smooth G homotopy spheres.

THEOREM |D-P,|. There is a function wg such that Dim Y(G)=
v, {Dim Y(H)| H # G} for every smooth G homotopy sphere Y iff G is a
non-cyclic group of prime power order. Compare ailso [tD-P|.

Another interesting invariant of a smooth action of G on a homotopy
sphere Y is the set of isotropy representations {T,Y|p € Y} of G on the
tangent space of Y at fixed points. In fact an old question of P. A. Smith
asks if necessarily the representations of G at two isolated fixed points of an
action of G on a homotopy sphere must be equal |Sm|. This question has a
negative answer. The first examples [P,] (following strong positive evidence
by Atiyah and Bott |A~B| and Milnor [Mi|) of distinct isotropy represen-
tations were produced using a modification of the program outlined above
for producing one fixed point actions. See also |P.|. For other applications
of the methods here. see also [P,, P(].

The author has expended considerable effort to make this paper as self-
contained as possible. In particular there is a self-contained account of the
relevant equivariant surgery theory. The only outside references to surgery
required are to some of the less technical results in [W,]. In spite of this
most of the results in this paper appear for the first time in print here. At a
few points the author had to sacrifice generality-for clarity. In particular
some of the hypothesis of (5.10) can be weakened; however, that is not
relevant to our main applications. Sections 1 and 2 introduce the basic
notation and background.

Here is a brief description of the setting for equivariant surgery and
induction theorem (Sections 3—5) whose goal is to convert an equivariant
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map f: X — Y between smooth G manifolds into a pseudoequivalence. The
basic datum for equivariant surgery is a K — G prenormal map of triads
¥ =(W,F,B,D) ((3.9) and (3.9')). Here K is a subgroup of G. Briefly W
is a K manifold whose boundary oW is the union of two invariant G
manifolds X, and X, (which might be empty), F: W —> Z is a map of K — G
manifold triads while B and D are certain equivariant bundle isomorphisms.
In addition there are G prenormal maps #; = (X,,f;, b;, d;) for i =0, 1 with
fiX;»Y,, 0Z=Y,UY, such that restricting 7%; to a K prenormal map
gives the K prenormal map #”|y,. For i=0 abbreviate 7; as (X,f, b, d),
where f: X > Y. Let Q be a subgroup of G and u € 7, ,(f?). Definition
(3.17) (see (3.30)) tells what it means to do surgery on (7, u). It is a
process which creates a new K — G prenormal map # " with 77" = 7. The
class du € m,(X?) which lies in the kernel of 7,(X?) - n,(Y?) is killed in X’
where %77, = (X', f’, b’,d"). Theorems (3.18), (3.31) and Corollary (3.19) tell
when surgery on a class u € m,, ,(f?) is possible. For example, the condition
in (3.19) is k < 3 dim X,

The role of equivariant vector bundle data (B and D appearing in the
definition of the prenormal map 7" in (3.9) and the splitting (1.1)) in the
process of equvariant surgery and transversality is much more prominent
than in the case of equivariant surgery and transversality dealing with free
actions. See [W,] for equivariant surgery for free actions. Some reasons for
this are made aparent in the motivational remarks in Section 3. Another
reason is the relation between bundle data (3.9) in equivariant surgery and
its relation to the subtle process of equivariant transversality. Indeed the
Transversality Lemma (6.1) naturally provides the required bundle data
(B, D) for a prenormal map. See Section 6 and also [D-P,, Sect. 8. Many
of the results which deal with bundle data in Sections 3, 6 and 7 have no
counterpart or are trivial for equivariant surgery involving free actions.
Sections 3 and 7 dealing with the equivariant vector bundle aspects of
surgery and transversality are the most demanding. To help motivate the
material there we include some motivational discussion now and more in
Section 3. Here we mention the unexpected role of the splitting (1.1) and the
notion of stability in equivariant transversality and surgery.

In (1.1) we introduce the splitting of an equvariant vector bundle
depending on a representation C. In particular if N is a smooth G manifold
and K is a subgroup of G, we have a splitting of the normal bundle
v="v(N%,N) of N¥ in N as

v=Ar, C)D A’ (¥, C).
This is a splitting of N(K) (normalizer of K) vector bundles and C is a

representation of G which contains the Lie algebra of G. The splitting is
arranged so that each fiber A’(v,), x € N¥, viewed as a representation of K
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contains all the irreducible representations in v, which occur in C (viewed as
a representation of K). From the splitting of v we obtain a splitting

0.1) TN |y = TN* @ A() ® A (v),

where C has been omitted, whose role in the Equivariant Transversality
Lemma (6.1) we now explain.

Let M be a representation of G, Y a smooth G manifold, N=Y X M and
let w:N— M be a proper G map. Lemma (6.1) gives a condition—Y is C
stable (3.6)—under which w is properly G homotopic to a map f transverse
to 0 € M. Two general concepts are involved in the proof of (6.1). Compare
[P;, Chap. II|. The first is that the problem of equivariant transversality is
involved with global phenomena in contrast to the non-equivariant situation
where everything is local and trivial. The second is that Schur’s lemma
applied to the equivariant bundles involved with transversality gives a
decomposition of the problem into two stages and provides the basis for the
inductive proof (6.1).

To amplify the second point suppose f* N - M is transverse to O with
X=f"'0). Let K = G and let x € X be a point with isotropy group K. Then
the differential df, of f at x gives a surjective K map

df,: T.N>T,M

between tangent spaces at x and 0 which splits according to (0.1) and Shur’s
lemma as

(0.2) df, =df y @ A(df,) ® A'(df.,).

The transversality condition and the splitting (0.2) imply each factor is
surjective. Let G(x) be the orbit of x in X and g, be its tangent space at x.
Note g, € Ker(df,) because f{x) =0 and fis a G map. This means 4’(g,) =
g.NA'(v,) is in KerA'(df,); so A'(df. )|, is already surjective on the
complement L of A'(g,) in A'(v.). On the other hand g, N A(v,)=0; so
there is no interaction between the Lie algebra of G and A(v,).

The idea of the proof of (6.1) is to reverse these observations to make df,
surjective. This is done inductively on the partial order in the set of isotropy
groups of N. Let K be such an isotropy group and x € X*. We suppose df, is
surjective whenever y € X¥ for H > K. We must make each factor of df, in
(0.2) surjective. (In the process X is altered rel (., X”.) To achieve surjec-
tivity for the first factor traditional methods of non-equvariant transversality
are used. This is the first stage and is easy. The second stage requires making
the second and third factors in (0.2) surjective. The second requires work but
no further hypothesis. Surjectivity for the third requires the stability
assumption (3.6). In (6.4) we show how to use the transversality lemma to
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produce the data for equivariant surgery, ie., a prenormal map (3.9). The
stability condition (3.6) appears also in the process of equivariant surgery
through Lemma (3.26).

As a point of interest we note that Dovermann and Rothenberg have
extended the above outlined methods of equivariant transversality to
topological actions of finite groups on manifolds. Madsen and Rothenberg
have used the resulting topological transversality lemma in their work on
topological equivalence of representations of finite groups.

Section 4 analyzes what happens when k = 3 dim W? and u € n,, ,(F9).
Here homological considerations appear. Chiefly these are dictated by Smith
Theory which asserts that if F: W — Z is a pseudoequivalence, then for each
subgroup P whose connected component P, is a torus and P/P is a p group
(the set of all such groups is denoted by ..»*), F¥ must be a mod p homology
equivalence. This must hold for all primes p. This means that in the process
of converting F to a pseudoequivalence we are led to the inductive situation
where Q is one of the groups mentioned above, F¢ induces an isomorphism
in homology up to the middle dimension of W¥ ((4.8) using Section 3) and
for all P as above with Q <1 P and P/P, a p group not 1, F” is a mod p
homology equivalence. Then (4.6) K, (W?)=Ker(H, (W% - H,(Z9)),
m=1%dim W?, is a projective Z,,(Q°) module Q= N(Q)/Q, 0°=0Q/Q,.
Above Z, (Z localized at p) coefficients are understood. We analyze when
this is free (4.13). The main technical results (4.14) and (4.15) then tell when
77" is G prenormally cobordant (produced by equivariant surgery) to # |
where F'? is a mod p homology equivalence and X” is unaltered for P > Q.

Section 5 contains the induction theorem for G =S50, and S°. As
mentioned this asserts that if 7 is a G prenormal map and res, 7 = ¢/,
for all K in a certain family of subgroups, then #  is G prenormally
cobordant to 77 with 7 " = (X'.f',b’.d’} and f' a pseudoequivalence. The
condition Resy % = ¢# is nothing more than %} is a K — G prenormal
{(3.9') map of triads with (#y), = %" and (%#,), = @&. Thus we can apply the
results of Sections3 and 4 tc prove the induction theorem (5.10). The
essential results in the proof of (5.10) are (4.13), (4.14) and (4.15).

Section 6 contains the proofs of Theorems A—C. Section 7 contains the
proof of the Equivariant Transversality Lemma (6.1) and Section 8 is a
technical check that the set .#,(G) is non-empty.

Because of the interval between announcement of the main results here
and their publication,it is prudent to give some history. The Equivariant
Transversality Lemma (6.1) has evolved since 1973 when the author first
announced a version for finite groups in lectures at Heidelberg and
Saarbriicken. It is used to establish the main results of this paper for finite
groups. See also [P,, P;, Py|. The equivariant surgery theory for finite
groups was developed jointly with Dovermann |D-P,|. Much of the material
on equivariant surgery theory for general compact Lie groups appearing in



ONE FIXED POINT ACTIONS, 11 21

Section 4 was presented (in cruder form) in lectures at Aarhus in 1976. The
article |P,] from August 1975 on the projective class group and equivariant
surgery (Section 4) was an outgrowth of the author’s lectures at Mexico-
Centro de Investigacion and the University of Chicago. The author
acknowledges the hospitality and support of the above institutions. The
Equivariant Surgery Induction Theorem (5.10) has an analog for finite
groups which was jointly done with Dovermann |D-P,|. The induction
theorem there was used to treat the main results of this paper for finite
groups |P,|. The induction theorem of Dress [Dr| for the Wall surgery
obstruction groups may be recast in the geometric terms mentioned above
(except that all group actions must be free). The theorem of Dress is entirely
algebraic and plays a role in the geometric proof of the induction theorem of
[D-P,} but has no role here.

The author expresses his gratitude for the comments of Dovermann and
Oliver on the material in this article.

1. GENERAL REPRESENTATION THEORY

View a complex (real) representation of G both as a vector space 4 and a
homomorphism 4" of G into the complex (real) general linear group GL(A4)
of A. This representation is denoted by 4 with A’ understood. For g € G,
trace A(g) is denoted by 4(g). Let 4 be normalized Haar measure on G and
for two representations 4 and B of G set

A.B)=| A(g)Bg)du(g).

When G is finite of order |G/, this becomes

1 _
A,BY=-— N\ A(g)B(g).
(4, B) Gl = (g)B(g)

Here an overbar denotes complex conjugation. Then 4 and B are said to be
orthogonal if (4, B) =0 and 4 is irreducible if (4.4)= 1.

When x is an irreducible representation, y € 4 means y occurs as a
subrepresentation of 4 and 4, is the maximal subspace of 4 orthogonal to
all irreducible representations different from y. The set of all real irreducible
representations of G is denoted by I(G). The one dimensional real trivial
representation is denoted by 1. For y € I(G), the set of all real linear G
equivariant endomorphisms of y is a division algebra D, over the real
numbers R whose dimension over R is denoted by d,. The invertible real
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linear G equivariant endomorphisms of a representation 4 of G are denoted
by Aut;A. By Schur’s lemma

(1.0) Autgd= [] Autg(d,) and  Autg(4,)=GL({4,x), D))

XeI(G)

so m(AutgA4)- m,(Aut;A') is an isomorphism if A<A’ and k<
min{{4, x)d,— 1| (4, x) # 0}.

Let Hc Nc G and suppose H is normal in N. Let E be an N vector
bundle over an N space X with trivial H action and let C be a representation
of G. We seek an orthogonal splitting

(1.1) E=E"®AE,C)® A'(E, C)
where for x € X, the fibers over X are the H representations

A(E,C),= @ Ey  AEC= @ Ey

r€Cx#1 xeC.x#1

Here x ranges over I(H) and C is viewed as a representation of H. Note the
splitting when it exists is functorial for N bundle maps because it is
orthogonal. This also follows from Schur’s lemma. It means that an N
bundle map b splits as b” @ A(b, C) ® A’(b, C).

Here are two conditions which guarantee the existence of A(E, C) and
A'(E, C):

(1.2) (a) Each x € I(H), x € C extends to x € I(NH).
(b) Each y € I(H), x & C extends to y € I(NH).

Here NH is the normalizer of H. We say C is good if:
(1.2") For each H < G, either (1.2a) or (1.2b) is valid.

More generally if %" is a conjugation invariant family of subgroups of G
which is closed under taking subgroups, we say C is .# good if for each
Hc G, H& %, either (1.2a) or (1.2b) is valid.

Let E' and E be N vector bundles over X and let Hom,,(E’, E) denote the
vector bundle of H equivariant real linear vector bundle homomorphisms
from E’ to E. It is an N vector bundle with (nb)(v)=nb(n~'v) for
b& Hom,(E',E), vE E' and n € N. As a special case, let E' = E =y be an
irreducible representation of N which restricts to the irreducible represen-
tation y of H. Then Homy(x, X) is D,. It inherits an action of N as shown
above and ¥ is a module over it. Directly from the definitions, we find

n(d - v)=(nd) - nv, AED, vEY;

s0 ¥ ®p, Hom,,(§, E) is an N vector bundle over X with n(w ® b) = nw & nb.
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Here % is X X 7. In case (1.2a) resp. (1.2b), define (Compare [A,] and

(13) (a) A(E,C)=@,c, % ®p, Hom(E E),
(b) A'(E,C)=® ., 1®p, Hom(, E),

where ¥ = {y €IH)|x ¢ C.x# 1}, ¥, =x€IH)|y€C,x# 1} and 7 is
a fixed extension of y. There are obvious monomorphisms of A(E, C) and
A'(E,C) to E. Use (1.1) to define A’(E, C) when (1.3a) is used to define
A(E, C). Similarly use (1.1) to define A(E, C) when A’(E, C) is defined by
(1.3b). Note that A(E, C) and A’(E, C) are defined or any subgroup pair
(H, N) with H normal in N whenever C is good. If C is ./# good, they are
defined whenever H & 7.

Throughout this paper we deal with objects with G action. If H — G, Res,
denotes restriction of the action to H. Often from context it is clear that an
object with G action should be viewed as one with I action. Then Res,, is
omitted. E.g., if y € I(H) and A is a representation of G, y € A means
X € Resy,A.

For any integer k, let t* denote the complex one dimensional represen-
tation of the circle S' with {(z)=r*.z for z€C and € S' = C. As real
representations /* and ¢’ are equivalent iff k= 4/ and ¢* is real irreducible
unless k= 0. Since S' is the maximal torus of S° and S0O,, the represen-
tations of these two groups are determined by their restrictions to S'.

Let G be S§° viewed as the unit sphere in the quaternions IH. The
quaternions are viewed as a right complex vector space. Then left
multiplication by elements in S° makes H a complex two dimensional
representation of S°. The ring of complex polynomials in the two complex
coordinates of H inherits the structure of an infinite dimensional represen-
tation of G. The action of G is defined by gp(v)=p(g~'v) for g€ G, v € H
and p a polynomial in the coordinates of v. The subspace of polynomials of
degree k is a finite dimensional invariant subspace; so defines a complex
representation S, of G. From the immediate calculation

ResgiH=¢+41¢"",
we find that for k odd, resp. even,
Resgi Sy =t + ¢ 4+ 2 417 %74 o r 17
(14) Resgi S, =t +t7F 41 247424424172 1 L

S0, is the quotient of S* by its center Z, = {1, —1}. Let p: §* - SO, be
the quotient map. Since —1 € Z, acts trivially on polynomials of even
degree, S,, in fact comes from a representation T, of SO,. Formally
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p*T,=S,,. Since the circle in S* double covers the circle in SO, (1.4)
implies that

(1.5) Resgi Ty =tf+t ¥+ "7 w4140 4+ L

Denote the realifications of T, and S, by ¢, s,.
Let g denote the Lie algebra of G. 1t is a real representation of G. Then

g®C=T|. G=S03.

(1.6)
g®C:p*T1:S2, G:S1

This easy check is left to the reader.

LemMa (1.7). If G=S0,, g is good. If G is S°, g is . # good. where
K €.7 iff K is cyclic of order 4, 2 or 1.

The proof of this is postponed until the representations of the subgroups of
these groups are discussed in Section 8.

COROLLARY (1.8). Let G be SO, (S°), Hc= N < G with H normal in N
(and H&.%). Then any N vector bundle E over an N/H space has a
splitting E = E" @ A(E, g§) ® A'(E, g).

2. SUBGROUPS OF §° AND SO, AND EQUIVARIANT COHOMOTOPY

The subgroups of S* and SO, are well known. See [Wo|. The subgroups
of SO, up to conjugacy are: O,, the icosahedral group /, the octahedral
group O, the tetrahedral group T, S’, the cyclic group of order n, Z,, the
dihedral group D, of order 2n and the trivial group 1. The maximal proper
subgroups are O,, I and O. They are their own normalizers. O, is the
normalizer of §' and Z,. The normalizer of D, is D,, unless n = 1. The
normalizer of D, is O. The normalizer of T is O.

The subgroups of S* up to conjugacy are the groups H' =p 'H for
H < S0, and the cyclic groups of odd order. Their normalizers are given by
NL = (Np(L))' for L = §°.

The notation H = G means H is a subgroup of G while H < G means H is
a proper subgroup and H <] G means H is a normal subgroup. The set of all
subgroups of G is denoted .#(G). The counterimage of D, in S* is the
generalized quaternion group Q,. Use J to denote either / — SO, or its coun-
terimage I’ — S*. The context will determine the usage.

Let M be a real representation of G, F = F(M) the space of proper self
maps of M and [Y, F]|° the G homotopy classes of maps of Y to F. For
G = §? resp. SO,, and H < G, we define a set ., of real representations of
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H by declaring M € .7, iff y € M for y € I(H) implies y € s; or y = | resp.
x€t,or =1 Then for HS G
w%(-)= lim [ F(M)*

=
Me 7,

is the zeroth term in an equivariant cohomology theory w;(-) [Se|. Caution!
wy(+) usually refers to the case where .7, is the set of all representations
of H.

The G vector bundle Y X M over Y is denoted by M. As the base space Y
is omitted from the notation, it must be determined by context. Any proper
self G map w of M which is properly G homotopic to a fiber preserving map
determines a class |w] € w¢(Y) and any element of this group is represented
this way for some M in .~7,. (Equivalently elements are represented by
proper G maps w: M — M.) Actually wl(Y) is a ring with unit 1 represented
by the identity map of M. When Y is connected, there is a homomorphism

degy: wi(Y)— Z

obtained by setting deg,|w]| equal to the fiber degree of w":M" - M. In
the special case of a point ¢, we abbreviate wg(g) by w{ and note that
wg(Y) is an w module.

When X is a G space and x € X, G, denotes the isotropy group of x and
Iso(X)={G,|x€ X{. This set is closed under conjugation by G. Let
[so(X)/G be denoted by Iso(X). It is the set of conjugacy classes of isotropy
groups of X. The conjugacy class of a subgroup K is denoted by (K). For
G =S’ or S5O, set

(2.0) =G |xEMME 7}

and let .¥’ denote the set of compact G manifolds defined by X € .7 iff
Iso(X) < Z. Write X ~ Y if the Euler characteristics y(X") and x(Y*) are
equal for all H <€ G. The Grothendieck group of the equivalence classes in
.#"" with addition defined by disjoint union is denoted by A(G). It is a ring
with multiplication defined by Cartesian product. The class of X €.7 in
A(G) is denoted by |X|. The unit 1 is the class of a point g.

The function |[X |- x(X") for H < G defines a homomorphism of 4(G) to
Z. The collection of these homomorphisms as H ranges over subgroups of G
gives an injective homomorphism of A(G) into the ring of functions from
subgroups of G to Z. From this one finds that

(2.1) E'=[G/0,| +|G/O| - |G/D,| - |G/D;|

is an idempotent (i.e., E'*=E') in A(G) for G = S0,. (Compare T. tom
Dieck. Idempotent elements in the Burnside ring, preprint.) This element is
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defined as an element of 4(G) because 0,, O, D, and D, are in Iso(¢,). This
will become apparent later. One finds

(EH)=0, H=0G,I,

(2.2)
=1, (H)#(G),U)
Set
E=1-FE"€A(G), G=2S0,,
2.3)

E=p*(1—E')EA(G), G=5"

Here p*: 4(S0,)—» A(S”) is defined by viewing an SO, manifold as an S°
manifold via the homomorphism p.
There is a ring homomorphism @: 4(G) — w?. with the property that

(2.4) deg, P(|X]) = x(X")
for Hc G and [X]| € A(G). See [M-P, P,|. Then
(2.5) e=®P(E)E w

is an idempotent and Res,(e) € w}; is zero unless (H) is (G) or (I) for
G =S80, or (H) is (G) or (I') for G = S°. This follows from (2.2)-(2.5) and
the fact that |w]| € w}, is determined by the integers deg, w for K — H.

LEMMA (2.6). Let G be SO, or S* and Y a G space with Y’ = Y°. Then
the inclusion i: Y° - Y induces an isomorphism e - w3(Y)— e - w(Y©).

Compare [A-S, 1.1].

Proof. e - wi(Y, Y?)=0 because Res, e =0 unless (H) is (G) or (J) and
Y is obtained from Y° up to G homotopy equivalence by adding G cells of
type D' X G/H, H+# G or J. Note (D', S'"") X G/H)= w}(D', ' ").

If G=S0,, set # = {0,,0}. If G=§?, set # = {0}, 0'}. Let G be one
of these two groups and x € w%(Y). Then Res , x = 1 , means by definition
Res,, x is the identity 1, € wp(Y) for H € #.

Let A be a representation of G and S(4 @ 1) =Y be the unit sphere of
A @ 1. We may suppose Y is a G invariant subspace of A @ 1. If 49 =0, Y°
consists of two points so wi(¥YY) = wl @ wf. Suppose 47 =0; so Y/ = Y°.
Let i: Y° > Y be the inclusion.

COROLLARY (2.7). Let G be SO; or S° and a=+1. There is an
x(a) € wi(Y) such that i*x(a@) = (1,1 — ae) and Res - x(a) = 1 ,.

Proof. i* maps ew?(Y) isomorphically to ewl(Y®). Since i*1 =(1,1)
and i*z = (0, ae) for some z € e - w%(Y), 1 — z serves for x(a).
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3. THE H VECTOR BUNDLE ASPECTS OF SURGERY

In this section we treat the geometric aspects of equivariant surgery. In
contrast to the process of equivariant surgery in the category of free actions,
the ‘role of equivariant bundle isomorphisms is a major consideration.
Because of this we expend some effort to motivate the assumptions and
results by first describing in an abbreviated way the role of bundle data in
equivariant surgery. First we introduce some general notation. The main
results of this section are (3.18), (3.19) and (3.31).

For any G space X, G acts on the partially ordered set

(3.1) o) = [ [ my(x").

Hce G

An element a of /I(X) lables a component X, of X* for some H. This is
expressed by p(a)=H. It gives a function p from II(X) to the set of
subgroups of G. Set a<f if X,cX; and p(B)cp(a) Set
G,={g€G|ga=a} and note p(a) is a normal subgroup of G,. For
example, when X" is connected and G, = H for some x € X”, then X, = X*
when p(a) =H and G, = N(H).

Let ¢ be a G vector bundle over X and C a good representation of G
(1.27). For a € II{X), define G, vector bundles over X, by

Aa(é) - A’a(éa C) :A(é |Xa’ C)a

(3.2)
4a(8) =4, C)=A"¢ ]y, C).

Note that whenever a < 8

(3.3) Resg g, Ao(Q) =450 |y, @ Voo

where V, is orthogonal to the first summand. This means a G, vector
bundle map d,:4,(6)—4,(¢') defines a G,NG; bundle map
daéz Ag(&) [x, = A3(¢") |5, - We abbreviate the collection {4,({) | a € I1(X)} by
2(S).

(34) A 1 map d:A(&)—A{’) is by definition a collection
{d, | e € II(X)}, where each d_:4,(6)— A,(&) is a G, vector bundle map
satisfying d; |y =d,, whenever a < .

For example, if b:{—>¢" is a G vector bundle map, A(b)= {1 (b):
A= A,(&)} is the collection of induced maps provided by the
functoriality of the A construction. It is a A map. A A map d for which each
d, is a vector bundle isomorphism is called a A isomorphism. Set
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(3.5) AX)=A(TX,C) and '(X)=A"(TX,C), X a G manifold and C a
good representation of G containing g.

Remark. (3.5) only makes sense when C is good. If C is .# good, we
define A(&, C) to be the collection {4,(& C)|p(a) & # 1.

Let £ be a G vector bundle over X. Define a G, vector bundle 7 & over X,
by

¢ |Xﬂ =& |X,, @ m,(8), pla)=H.
Then

1(8) =2, ®A,(8).

The collection {r,(£)|a € I(X)} is denoted by n(£). Let b: £~ ¢ be a G
vector bundle map. Then

bly, =b,®m,(d)
where

bot &y &My, (D) () > (&)

When {=TX is the G tangent bundle of X, n (TX) is the normal bundle
WX,,X)of X, in X.

Let (&) denote one of & m(&) or A(E). If b: £— ¢ is a G bundle map,
e(b): e(&)—¢e(&') is the induced map. The stabilization of &(¢) is defined to be

s(e€) = (GO M)

for an arbitrary G module M. Here M is G vector bundle X X M if X is the
base space of & If b: (&) — &(¢'), s(b) is b D e(1y). where 1y is the identity
of M. When # and ' are G vector bundles and b,:n—n', 0t ,isa G
homotopy of G vector bundle isomorphisms, we say b, and b, are regularly
G homotopic.

Here in abbreviated form is a description of the role of bundle data in the
process of equivariant surgery. Roughly the setting for surgery is this:
F: (W,X)— (Z,Y)is an equivariant map between smooth G manifolds of the
same dimension, X = oW, Y =0Z, £ is a G vector bundle over Z, H< G, X,
is a component of X”, Y, is the component of ¥* into which X, is mapped
by F, B: sTW — F*s{ is a G bundle isomorphism and D : 4 W — A, F*is an
N =G, vector bundle isomorphism. There is a relation between B and D,
(3.9), namely, 1(B) = s(D,).

Suppose x € X, is a point whose isotropy group G, is H. Then the orbit
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of x G(x) is G/H. The inclusion of G(x) in X gives an injection of
T.G(x)=g/h— T X, where T X is the isotropy representation of H on the
tangent space of X at x. The Lie algebras of G, N, H are g, n, & Let
2 =v(X,.,X), (fiber over x) and let I be the orthogonal complement in £2 of
g/n.

Note that as a representation of H, g/h splits as n/h® g/n and
(g/m)"=n/h; so g/nc. Suppose dim W,=n+1. Let 1":S">X,
represent an element of ker(m,(X,)— m,(Y5)), let S=S8* X D" % i:S-> X,
extend 1’ and let D, =ind$§ S X D(I'). For any H space A, indj; 4 is the G
space Gx, A. If B is a G space and f/: 4 —» B is an H map, there is a unique G
map ind§ f: ind A - B

The aim is to produce a G imbedding 1:[J,—» X such that ], is
homotopic to 1. F extends to F': (W', X')—>(Z,Y) and (B, D,) extend to
(B', D;), where W' =W\, ). We use the bundle isomorphisms (B, D,) to
produce the imbedding . The differential of this imbedding is related to these
bundle isomorphisms in such a way that the extensions (B’, D) exist ((3.27),
(3.28) and the proof of (3.18)). We amplify this. The isomorphism
B,:sTW, - (F*sé)”},,,y gives rise to an isomorphism /(B ):sTS @ n/h -
i*sTX, (3.25i). By (3.27) there is an imbedding i,: S - X . The differential
of indy; i, at S is stably regularly homotopic to /(B,); so we can suppose i is
an imbedding. We suppose indj; i is also an imbedding. To extend this to an
imbedding of [0, in X it is necessary and sufficient (by the G Tubular
Neighborhood Theorem) to have an H vector bundle isomorphism ¢: I =
p(ind§ S, Dy)ls == v(ind§ S, X)|s. Lemma (3.26) produces c¢ such that
A(e)=U(D,): A(T)—i*A, X and A'(sc) = (A},B): A'(sQ) - i*A, X. (Remark
A(T) = A(Q).) See (3.23) for the definition of /(). Here E is D, or Ai(B).
There is then an equivariant imbedding :: ([7,, ind$ S)— (X, ind; S} whose
normal differential (see just before (3.27)) is ind}; c.

By construction the differential of 7 at S stably is the sum of three terms:
I(B,), sD,)=[(A,(B)) (because of (3.9)) and [(4)(B)). Lemma (3.24)
maintains then that B, 1,(B) and 4)(B) each extends to an isomorphism of
bundles over W), and Lemma (3.29) identifies the sources of these bundles as
sTW,, A, W’ and AL W’. The sum of these extensions gives an extension over
sTW L —sTW'(Jas/ly(W’)@si (W). This is easily extended over sTW’
giving B’ which together with the extension D, over A, (W') completes the
process as far as the bundle isomorphisms are concerned.

This process of equivariant surgery is used on all components of fixed sets
of all isotropy groups in a family .7* (4.2) of subgroups of G. This means D,
must be defined whenever W, is such a component; so we must deal with a
collection D= {D,} of them; moreover. if y<y’ then the process of
equivariant surgery applied to W, affects W,. This leads to the relation
between D, and D,. incorporated in (3.4) and means that D is a 4 map. See
also (3.9).
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We now begin the description of equivariant surgery. Suppose that X is a
smooth G manifold and C is a good representation of G containing g. By
definition X is C stable if

(3.6) (T X, ) <X 0 — & x)

(real inner product of real representations)

for all y € I(G,) with (T, X, x)#0, y € C, x# 1. Here T, X is the isotropy
representation of G, on the tangent space at x. When C is .# good, (3.6)
must be modified when G, €. % by requiring the inequality to hold for all
¥ EI1(G,), x # 1. A representation 4 of G is C stable if it is C stable as a G
manifold. It is said to be stable if it is C stable for C = g. Since T, 4 = 4 for
all x € 4, stability for A becomes:

(3.7) Forall HEIso4)Yandally€I(H), yEg, x+ 1,4, 1)< {4, x)—
(g, x> whenever {4, y)# 0. (Note (4, x) is the multiplicity of y in 4.)

Of course (3.7) is appropriately modified when g is .# good.

Remark. If C is % good, condition (3.2) in the definition of C stability
must be modified when G, €.# by requiring the inequality to hold for all
x € I(G,), x € 1. Then (3.7) is modified accordingly.

Stability is applied through use of the following lemma: Suppose X is C
stable, a € II(X), p(e)=H and x€ X, with G,=H. Set G,=N. Its Lie
algebra is n and the Lie algebra of H is 4. Let £ be the H module v(X,, X),.
Since the tangent space to the orbit of x is g/h = g/n @ n/h as an H module
and since n/h is the H fixed set of g/A, it follows that g/n < Q. Let I be its
complement. In the next lemma A'( ) means A’( , C). See (1.3b).

Lemma (3.8). Let k+ 1 <dim X, and let v be an H vector bundle over
Sk (H acts trivially on S*.) For any H vector bundle isomorphism
b: A'(T @ g/m)—> A'(v@® g/n), there is an H vector bundle isomorphism
b': A (L) > A’(v) such that s(b') is regularly H homotopic to b.

Proof. Since H acts trivially on S*, v= vy V=X ®p, Ty where 7, =
Hom,,(y, v); see [A,] and (1.3). Note that b, provndes an 1somorph1sm
between (I ® g/n), and (v @ g/n), for xEI(H), x € C, x# 1. This means
dimg, 7, = (I, x); s0 dim 7, = (I, x) = {2, 1) — {&/m, x) 2 (T X, x) — (& 1) >
(T X, 1) dim X, > k. Smce v, is a stably trivial bundle over S, this
implies 7, is trivial. Since in addmon Vi , there is an H isomorphism
by:T,—v,. Let b'= @, b)’(:A’(F)—»A’(v). Since Iy >k+1 for all
¥ €C, n(AutyA'(N)- n(Aut, A" (I ®g/n)) is surjective (1.0). By
composing b’ with an element of the first homotopy group if necessary, we
may suppose s(b’) is regularly H homotopic to b.



ONE FIXED POINT ACTIONS, Ii 31

Remark. The statement and proof of (3.8) can be modified when X
satisfies the stronger stability assumption in the remark following (3.7). The
modified statement asserts the existence of ': T — v with s(b') regularly H
homotopic to b: s(I' ® g/n) - s(v @ g/n) which is a given H vector bundle
isomorphism. Compare the remark after (3.26).

A G prenormal map 77 = (W, F, B, D) consists of (often simply called a
prenormal map):

(39) () A G map F:W->Z of degree 1 between smooth G
manifolds.

(ii) A G vector bundle ¢ over Z with dim ¢ = dim TZ, a G vector
bundle isomorphism B:sTW — F*s¢ and a A isomorphism D: (W, C)—
A(F*E C) such that A(B, C)=s(D) for some good (or . # good) represen-
tation C of G.

(iii) W and W are C stable.

If we wish to emphasize the group G, we say G prenormal map. When 7 'is
a G prenormal map and H c G Res,, 77 "is the H prenormal map obtained by
restricting data to H.

Let X=¢W, Y=0Z and suppose f=F|,: X-> Y, b=B|, and d=D|,.
Then by definition

&7 = (X.f.b.d)

is again a prenormal map. Now let K < G and let 77 = (W, F, B, D). Then

(3.9') 77" is a K — G prenormal map if %7 is a K prenormal map and
%"= Resg % for some G prenormal map 7.

Remarks. (3.9') asserts the natural K data of ¢%7 extend to G data; so
in particular the K representation C in (3.91) is in fact the restriction of a G
representation which in applications is taken to be g.

A map between G spaces is a pseudoequivalence if it is a G map which is
a homotopy equivalence. The prenormal map 7 ' is a pseudoequivalence if F
is a pseudoequivalence.

Throughout this paper G manifold will always mean compact smooth
oriented G manifold where oriented means: for each subgroup H of G each
component of the H fixed set comes with an orientation class.

A manifold triad (W, W,, W,) is a triple of manifolds such that
oW =W, UW, and W, NW, =0W,=0W,. We make the usual
assumptions about compatibility of orientation classes. A G manifold triad is
a manifold triad such that G respects the triad structure and so does a map
of triads. A prenormal map of G manifold triads is a prenormal map which
is also a map of triads of G manifolds.

607/46/1-3
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Convention. If %"= (W, F, B, D) is a prenormal map of triads, then we
have induced prenormal maps %, i =0, 1, with %, = (W,, F,, B lws D lw s
where F;: W, — Z, is the restriction of F. We also write (X, f, b, d) for 7, so
[iX->Y=2Z,

DEFINITION (3.10). A prenormal map 7 is equivalent to zero (~0) if
there exists a prenormal map 7 of manifold triads such that %, =% and
%, and &%, are pseudoequivalences.

If X is a G manifold, T|X] denotes the triad (X X /I, X X0,
XX 1UaX x1I) Let fi: X;— Y be two G maps for i =0, 1. If there is a G
manifold pair (W, P) and a G map F: (W, P)— (Y X I, 8Y X I) such that
W =X,UPUKX, 0XyUWdX,=P=PN(X,VX,), Fly=f;, where
Fly: X;» Y Xi, we say (W,P,F)is a G cobordism between (X,,f,) and
(X 1) EP=0X,XT=0X,xIand F(x, t) = (fy(x), 1) for x € 8X,, we say
the cobordism is relative boundary (rel @). If # is a subset of .7 (G),
WY =X xI1=X7 xI and (p,F(x,0),t)=F(x,1) for x€ X7 and p, is
projection on the first factor, we say that the cobordism is rel #. (X7 is the
union of X¥ for H € .#.)

In analogy with the definition (3.9") of a K — G prenormal map we can
define a K — G prenormal triad # = (W,F,B,C). This is a K—G
prenormal map which also is a triad—similarly for the definition of K — G
prenormal cobordism. We shall sometimes abbreviate the phrase G
prenormal or K — G prenormal by prenormal.

(3.11) Hypothesis H: Let X be a smooth G manifold and H — G. Then X
satisfies hypothesis H if dim X, = dim X” is independent of « for all ¢ with
p(a)=H and if each class in 7, (X") for k< 3dim X*/N(H) can be
homotoped into X' = {x |G, = H}.

Note that (3.11) implies that each component of X“ has a point whose
isotropy group is H. For G finite (3.11) is guaranteed by supposing

2dim X" < dim X" whenever L > H. For non-finite groups the criterion is
more complicated. For G = SO, or §°, we give a simple criterion in (5.2).

(3.12) For any smooth G manifold X and H ¢ G, H = H, denoted the
unique minimal isotropy group of X containing H. This need not always
exist. It does when X" is connected. Note X" = X*.

Suppose #; = (X.f. b.d) is a G prenormal map where f/: X - Y. Let X be
a component of X” and Y, the component of Y” into which f maps X, so

le,,:fa:Xa—'YB

and a€llX, pellY. Let w€m,  (f,) (by definition = ,(f,)=
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(2, X, ), where Z, is the mapping cylinder of /) be represented by the
diagram

v

sk x
(3.13) u: J'j/ 1’3’

Dk+l_"_) YB

au € m(X,) is represented by 1’
We assume the existence of a point x € 'S with G, = H and define the H
representations £, I

(3.14) (i) Q=vX,.X),.
(i) Q=TI ® g/n. See discussion before (3.8).

Here is the Lie algebra of N = G,,. Note that the tangent space to the orbit
of x€ X, is g/h=n/h @ g/n. For fixed H, k. n— 1 =dim X, /G, we define
([Ds lIJO) by

[\):lnngXD(r). D:Dk+lXD”*/‘”l’

(3.15) ‘

D, =ind§ S X D(I). S=Skx Dkt
An extension # = #(%#,) of u € ny,,(f,) is a commutative diagram of G
which maps

D, — X

(3.16) 7 l jf

D S,y

such that the restriction to (D**!, $*) is u.
Suppose 77 "and # " are K — G prenormal maps of triads, é7 =#,U %7
and &7 " =71 U with 7, = (X, f, b, d) as above.

DerFNITION (3.17). We say %7 arises from 77 by surgery on
u€ m, (f,) if there is an extension # of u such that / is an imbedding
W =WuU, [, F'|. =« and the data of 77" extend those of 7. (Recall
# =(W,F,B,D)and #" = (W',F'.B', D).

If there exists a 77" which arises from 77 by surgery on u, we say surgery
on u is possible. The process of constructing 77 * from 7 is called surgery on
(7 1), € ny(f,), or briefly surgery on u. Let 87" =7 (U7 . There is
an obvious K — G prenormal cobordism between 77 and 77 | called the trace
of the surgery.
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We have just described surgery on (7,u) where 77 is a triad with
Y =W, I, #He=(X.f,b,d) and p € 7, (f,). As a special case we can
begin with any prenormal map 7 = (W. F, B, D) not necessarily a triad and
form the triad

T(# | =(T[W|,FX1,BXL,DXI).

where T{ W] is defined after (3.10). Then T[7% |, =7 " so for any u € n,(F.)
we have defined surgery on (T|# ], u). This gives some new triad # . Set
#o=7". Then # 7" is called surgery on (#,u), u€ ne(F). In
particular if 7" itself is a triad, we can consider surgery on (# ,u) with
1 € my(f,) as previously described or i € n4(F,) as just described. We must
emphasize that when %7 'is a K — G triad, surgery on x4 € m,(f,) is G surgery
in the sense that W' = W D, where D = indj; D X D(I"). However, surgery
on u€my(F,) is K surgery in the sense that W’ is defined by
(W X I\VUD')Y= W' U W, where D' =ind% D x D(I'). In particular H c K.
Let i: § - X, extend 1’ (3.13). We shall show that the data of a prenormal
map % with 0% =7, 7% together with y determine a particular regular
homotopy class of immersions of S in X, ((3.27) and (3.28)) within the
homotopy class of i when k  n — 3. Specifically there is an immersion §, of
S in X, homotopic to i. The differential of ind}, i, at S (see before (3.27))
viewed as an isomorphism of TS @ n/h and ifTX, is stably regularly
homotopic to (B,):sTS ® n/h— iFsTX,. (See (3.23) and (3.25i).) The
following are the two main geometric steps in equivariant surgery:

THEOREM (3.18). Suppose % is a K — G prenormal map of triads and
oW =%, I, with #y=(X.f,b,d). Let H be a subgroup of G, k<n—3
and u € my, ,(f,) with p(a)= H. Then surgery on u is possible if there is a
representative i, of the chosen regular homotopy class of i such that indf 1}
(1o = |s k) is an embedding.

We call a class u € m,, ((f,) represented by (3.13) trivial if 1'S* s
contained in a disk in X,. For such a class ind}:’ can always be assumed to
be an imbedding. Alternatively by general position ind} i’ can always be
assumed to be an imbedding if X satisfies hypothesis H (3.11) and

k< 1dimX,/G,.

COROLLARY (3.19). Let a € II(X) with pla)=H and u € n, . (). If X
is stable, satisfies hypothesis H (3.11), dimX,/G,>6 and if
k < 3dimX_ /G, or u is trivial, surgery on u is possible.

Remark. The effect on X, of surgery on g€ m. ,(f,) is to kill
ou € m(X,). Similarly the effect on W, of surgery on u € 7, (F,) is to kill
du € m(W,). The submanifolds X, . for ¢’ < a are unaltered.
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We begin the proofs of (3.18) and (3.19) with some preliminaries: Let N
be a compact Lie group with closed subgroup H. Let F: 4 —+ B be an N
equivariant map and A,cA4”, B,cB" with f=F|, :4,-B,. Let
4 € m,, (/). n be an integer larger than kiS=S8x D" A D=D""1xD*
and

0

A
¥
B

0

(3.20) s

e =

h
—_
be a diagram which gives u by restriction to (D**', $*) < (D, S). Define

A'=A4{) indD,  ind=ind?.

indi

Here H acts trivially on D. Let Fj, = F':A’ —» B’ be the unique N equivariant
map extending F with F' |, = h.

Let 8 and & be N vector bundles over 4 respectively B and E: 8 — F*£ an
N vector bundle isomorphism. Denote by V the H module 6, for any x € iS.
Set

(3.21) w=w@)=DxV.
It is an H vector bundle over D. Choose any H vector bundle isomorphism
L(E): w— h*&,, & =&y,

Let E, be the H vector bundle map which covers j defined by the com-
position

(3.22) i*0, ———»z*f*é =j*h*E, - h*E,.

where 6,=6/|, . Let /=1I(E):w|s— i*6, be the unique H vector bundle
isomorphsm which gives this commutative diagram

I(E)
wlg—— i*6,

(3.23) J l:

L)
w — h¥E,.
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Define an N vector bundle #’ over A’ by

=60 ) indw, ind=ind}.
ind I(E)
Extend E to E’: §' - F'*¢ with E/ = L(E) on w. This uniquely defines E’ as
we insist on N equivariance. Set

ré,uEy=46

so E': (6, u, E) =, F"*& We record this construction as a lemma.

LEMMA (3.24). Let F:A—- B, E:0-F* and pycn, (f), f14,- By,
be as above. Then F,=F':A'=AUind D - B is an N map extending F
and E': I'(0,u, E)— F'*& is an N vector bundle isomorphism extending E.

Lemma (3.24) is used several times in the proof of Theorem (3.18). In the
applications # is given in (3.18) and (4, 4,) is either (W, X,) or (W,. X,),
(B, B,) is either (Z, Y;) or (Z;, Y,) and N is either G or G,. Here f is the
component of Y# with f, X, < ¥, and y resp. d is the component W resp.
Z" with X, c W, resp. Y3 Z,. For each choice of bundle 6 over W or W,
(constructed from TW) and bundle isomorphism E, (3.23) provides an
equivariant bundle isomorphism [(E): w(f)|s— i*# |y . The next lemma
identifies the H bundles w(f)|g. Recall from Theorem (3.18) that
# = (W.F.B,D).

LEMMA (3.25). The H vector bundles w(0)|g (3.21) for 6 respectively
sTW,, A, W, sk,W and sTW are: sTS @ n/h, A(R), A'(sQ) and sTD,|s; so

(i) {(B,):sTS ®n/h—i*sTX,,
(i) I(D): AQR)—i*A, X,
(iii) 1(A(B)): A'(sQ) - i*sA, X,
(iv) I(B)sTD,lg— i*sTX |y .

Proof. Since w(#) is completely determined by the H module ¢, for any
x € iS, it suffices to check that the H vector bundles over S listed in (i)—(iv)
all have the form S X V, where V' =0,. (i) For 8 =sTW, H acts trivially on
6, and on the fibers of sTS @ n/h. (ii) For §=A,W, 0|y =4, (X)=
AW(X,, X)); so 0, =A4(R2) (3.14i); similarly for (iii): (iv) For §=sTW,
i*8=sTX; so 6, =sT X, ®v(X,,.X),=sT,S®n/h® R (3.14). Since
sTD, | =sTS @ n/h ® Q by (3.14i) and (3.15), w(#) | =sTD, |,.

Remark. From (3.14ii) and (3.15), we see that sTID,|, is
(sTD @ n/h) @ sQ. Since 2=A(R)D A'(R), sTD |, splits functorially as
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a sum of three terms. Because of the assumption A(B) = s(D), we can and do
choose L(B) = (L(B,) @ sL(D,) ® L(4,B)). This means /(B) splits similarly.

LEMMA (3.26). Suppose i: S — X, extends to a G imbedding of ind§ S in
X. Then there is an H vector bundle isomorphism ¢: T — v(indj; S. X) | = v/
such that A(c)=1(D,): A(T) = i*A, X and A'(sc) = 1(A(B)) up to regular H
homotopy.

Proof. First observe that A(g/n)=0 because as an H module g/ncg.
See (1.1} and recall g< C. This means A(T)=A(g/m®I) and
A(g/m @ v') = A('). Note i*v(X,, X) = w(ind}; S, X)|¢ = v(indj, S.
indi S)|s @V =g/n@®v'; so I(D): AD)=A(Q) - i*L, X=A(ghDV)=
A('). Note also that [(A)(B)):A'(g/m@ sT)=A"(sQ)— si*A X =
A'(g/n @ sv') (3.25iii). Since X is stable and k < § dim X, (1.0) and (1.1)
and (3.8) imply there is an H vector bundle isomorphism b,: A'(IN)— A'(y")
such that s(b,) is regularly H homotopic to /(A)(B)). Let c=1(D,) @ b,:
I-v,

Remark. The proof completed applies to the case C is good or is .7
good and H & #. See (3.9ii). When H € % the statement and proof of
(3.26) are slightly altered. The statement asserts the existence of ¢ with
sc = I(n,(B)). The production of ¢ uses the stronger stability assumption in
the remark following (3.8).

We use the H vector bundle isomorphisms provided in (3.25) to produce
an extension #(#,) of u € m, (/) with 1 an imbedding. See (3.16). First
we need some definitions. Let §’ and X’ be smooth manifolds of the same
dimension and S resp. X a submanifold of S’ resp. X’ with dim § =dim X
and let ©:(S'.8)— (X', X) be an immersion of pairs. The composition
WS, 8"y TS | = TX' |y > v(X,X') induces an isomorphism between
w(S,S’) and (1[g)* v(X, X') called the normal differential of 1 at S. The
differential di of 1 induces an isomorphism di: T'S” | — 1* | TX" also called
the differential of 1 at S.

LEMMA (3.27). Suppose G acts freely on the smooth manifold X of
dimension | + dim G. Let S=S*x D'"*and i:S - X be a map. If k < -2,
any vector bundle isomorphism b:sTS @ g— i*sTX determines a G
immersion of ind?S in X G homotopic to ind{ i whose differential at S is
stably regularly homotopic to b, If k < 3l the immersion may be taken to be
an imbedding.

Proof. If p:X—X/G is the orbit map, TX =p*T(X/G)Dg; so
b:sTS®g— i*p*sT(X/G)®g. By |[H| (compare [W,, D-P,|). b
determines an immersion of S in X/G which is homotopic to p o i whose
differential is stably regularly homotopic to b. This lifts to an immersion of
S in X which uniquely extends to a G map of ind¢ S in X. Its differential
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restricted to S is stably regularly G homotopic to b @ 1,: (sTX ®g)D g~
(*p*sTX/G) +8) D .

LemMMA (3.28). Let % =(W,F,B,D) be a K— G prenormal map of
triads, #; = (X,f, b,d) and u € n, (f,). Then there is an extension # of u
(3.16) such that 1 is an immersion (imbedding if ind% 1’ is an imbedding in
particular if k < 5 dim X, /G,). The differential of 1" at S is stably regularly
homotopic to I(B,): sTS ® n/h— i*sTX_ (3.25i) and the normal differential
of 1: (Dy, ind§ S)~ (X, tind§ S) at ind% S is ind§ ¢, c: T - v(1ind§ S, X)
where A(c) =I(D,), A'(sc) = lI(A)B)) and 1" | = i.

S

Progf. Let u' be the diagram of (3.20) which gives p € n,, (f,) by
restriction to (D**',§*). We may suppose iSc X*={x€ X, |G,=H|
because of (3.11). Since N/H acts freely on X*, Lemma (3.27) applied to i
and the group N/H gives an N immersion of ind) S into X* whose
differential at S is stably regularly homotopic to {(B,): sTS @ n/h— i*sTX,,
(3.25i). Note that ind}” S is the same as ind}, S as an N manifold. (If
k < 3dim X, /G, the immersion may be taken to be an imbedding.) Thus we
may suppose indyi is an immersion. Then ind$j=ind%cind%i is an
immersion. The G Tubular Neighborhood Theorem |Br| provides a G
immersion 1 of D, =ind§ S X D(I') into X extending indj; i whose normal
differential at S is c¢:T - i*v(1ind§ S, X). Note v(ind§ S, Dy)|g=T: so
w(ind§ S, D,) = ind§ I

Since (D, D,) retracts equivariantly to indjj(D, S), there is an extension of
h:D—Z to k: D~ Z giving a diagram 7 extending u as in (3.16).

Lemma (3.28) is half way toward the proof of Theorem (3.18). What
remains is to extend B:sTW - F*¢ to B':sTW'— (F'*£). Here
W' =WuU D and F’ extends F with F' |p=x. As WU ind$ D=""0is a
G deformation retract of W, it suffices to define the extensions B’ and D’
restricted to sTW' |, and A(W')|,. Because k <n — 1, [IW and 110 are the
same set; moreover, for y' € IW, W, =0, unless y’ > gy for some g€ G
and then y€ 0, — W, is of the form y = gx for x € D. Note that W,=0.,,.
Suppose D/ has been defined extending D,. For g € G set D,,=gD} g~ !. For
v 2 gy and y =gx, x € D, D;. on the fiber over y is D, , over y. See (3.4).
Compare |D-P,]. Of course D) =D, on fibers over points of W,. We
emphasize this in the following remark.

Remark. The extension D’: A(W')— A(F'*&) exists if the extension
D} A (W)= ALF'*¢) exists and the extension B':sT'W' — sF'*¢ exists if
the extension to sTW' |, exists.

Let I'y = I'(sTW,,u, B,), I'y, = [(AW),u, D,) and I, = ['(sTW. u, B).

LEMMA (3.29). ', =sTW), I, =AW’ and I, =sTW'|,.
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Proof. By definition, I, :sTWyuindZ w, where ind} @ is attached to
sTW, along ind} w|s using indj /(B,). Since I(B,) is stably regularly
homotopic to the differential of the imbedding of § in X, (by construc-
tion—Lemma (3.28)) used to form W= W, Uind}, D, I', = sTW,.

The bundle I, is A (W)U indy @, where ind}; w is attached via {(D,).The
bundle 4, (W) is A(v(W,, W’)) by definition and w(W}, W')=v(W,, W)
ind} w. Here ind) w is attached via ind}; b, where b: w |; —+ v(X,,, X) | is the
restriction to S of the normal differential of the imbedding i: (D, indj, )~
(X,X,). By construction, the normal differential of ::(D,,indj S)—
(X.rindj; S) at ind§} S is indfj c. Thus A(b) = A(c)=1(D,) ((Lemma (3.26)):
so  Iy=2,(W'). (Note v(ind}S.X)|g=g/m®w(ind; S, X)|g: so0
Alv(ind} S, H) ) = A((ind§ S, X) ).)

The bundle I is sTW U ind$ w, where indj w is attached along ind§j w |
via indj; /(B). By the remark following (3.25) {(B)=1B,) ®si(D,)®
slA(B)) = I(B,) @ s(c) (3.26). But this is stably regularly homotopic to the
differential of ¢ at S dr by Lemma (3.28). Since sTW" |, is obtained from
sTW by attaching ind§ @ using the stabilization of ind§; di, I’y is sSTW’ |, as
asserted.

Proof of Theorem (3.18). By Lemma (3.28) there is an extension # of u
such that ¢ (3.16) is an imbedding. The differential of 1 has the properties
specified in (3.28). Form W' =W U D. O = WU, ind% D and extend F to
F': W' » Z with F'|p=x, By Lemmas (3.29) and (3.24) and the remark
prior to (3.29), the extensions B': sTW' — F'*¢ and D': A(W')— A(F'*¢) of
B and D exist. They satisfy A(B’)=s(D’) because A(B)=s(D) and
AfB'}y=s(D;). The latter is a consequence of the construction and the
remark preceding Lemma (3.26). Thus 7" = (W', F', B',C’) arises from %7
by surgery on u. This completes the proof of (3.18).

Remark (3.30). We modify the data of (3.13) when Y* is connected.
We then replace X, and Y, in (3.13) by X" and Y". Then u € n,, ,(f"); s0
(3.18) and (3.19) are correspondingly altered by changing f,, to /" and G,
to N(H).

Finally we consolidate some of the results of this section incorporating
(3.30).

THEOREM (3.31). Let /7 =W.F,B,D), F-W-Z be a K-G
prenormal map of triads with 07 =7, 07|, 7 =X.[.b. d), 1 X-> Y.
Suppose Hc K, Z" and Y" are connected and there is a point x € X with
G.=H. Let uen, (f") resp. p€n (F") and i:S->X" resp.
i: S interior W¥ be a map such that i' =i represents du. Then surgery
on u is possible if there is a representation i, of the regular homotopy class i
such that ind}, 1 is an imbedding for N = N(H) resp. N =K M N(H).
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Proof. This is a restatement of (3.18) when g€ m,, (f). When
u € my, (F7), it is a consequence of (3.18) applied to the triad T(# ) and the
definition of surgery on u.

4, HoMOLOGICAL ASPECTS OF EQUIVARIANT SURGERY

In this section we treat the basic homolgical steps in equivariant surgery.
The broad format is similar to [W,] which treats the case of free finite group
actions. Input from transformation groups appears here throughout but in
particular in Theorem (4.6). The following notation and assumptions hold:

4.1) Z#'=(W,F,B,D) is a K—G prenormal map, F:W-Z,
o = (X, [,b,d), f: X— Y, Q is subgroup of K; X and W satisfy hypothesis
Q (3.11), dim X¢ > 6, dim Z" and dim W are equal for all H c K, Z¢ and
Y? are 1 connected.

(4.2) 0=N(Q)/Q. Ox = Nx(0)/Q, Nc(Q)= KN N(Q), R is the integers
Z or Z,,, p prime, G, is the connected component of G, G’ = G/G,.
AQ,K:R(Q?()_’_ AQ:R(QO)’ FQ‘K:H*((QI\')O’R)’ FQZH*(QOsR)w
n=dim W?/Q,, K+ (W? R) = Ker(H,(W? R) -~ H,(Z% R)). Sometimes A
abbreviates 4, , or 4, and I" abbreviates I'; , or I',. Set

# = |P||P°| = p" for some prime p, n >0 and P, is a torus.}

We mention that often we have fixed a particular group G in the discussion.
Then PE€ .7 means P G and P € .7, We also emphasize that (4.1) is to
hold in this section except for a modification in (4.15). In particular Q is an
isotropy group of X. The properties of the kernel groups K,(W,R) are
reviewed in [W,, Sect.2]. In particular K*(W? R) is the cokernel of
H*(Z° R) - H*(W R), K,(W? R)y~K'"'(W? X% R), |=dim WY and
there is a long exact sequence of K (K*) groups for the pair (W, X¢). This
requires the assumption degree F¢ is a unit in R. Note K (W9 R) is a
module over I'y, , and A, .

For the remainder of this section all homology, cohomology and K, (K*)
groups will have coefficients in R and these will be suppressed from notation
except for special emphasis. The integers are denoted by Z.

DEFINITION (4.3). F? ~ 0 means:

(@) If n=dim W%/Q,=2m, K (W?Z)=0 for k<m and
Ku(X2,Z)=0 for k<m—1. If n=2m+1, K (W% Z)=0 for k<m,
K (X%, Z) =0 for k <m and K, (W9, X2, Z)=0.

(by W9 Z¢ X9 Y2 are | connected.
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DEFINITION (4.4). F? = O(R) means F? ~0 and K,(W?, R) =0.

DEFINITION (4.5). F?~ O(R) means:
(i) Fe~0,
(ii) degree F? is a unit of R and

(iii) F/P =O(R,) whenever Q<1P, P#Q. P/Q€E.”. and
I(P/Q)°| =p', p prime in R, [ > 0.

We remark that (4.5) implies that 0 — K (W¢)— H (W?)—> H,(Z?)—> 0 is
exact; so H,,, (M) =K, (W?) if M,, is the mapping cone of F?. We also
note that if degree F=+1 and PE€ .7, degree F” is a unit in Z,, if
|P°|=p'. p prime, and is a unit in Z if /=0. Compare |D-P,,
Theorem 1.26].

THEOREM (4.6). Suppose F2 =~ O(R). Then the following are projective
Agx modules: K, (W?), K, (W% X%) (and K,(X?) when n=2m+1).
Moreover K, (W) and K,_,(W° X®) are A, x duals. The Ky groups of
we, (We X%) (and X? when n=2m + 1) are free I, , modules. They are
obtained from K, (W?), K, (W%, X%) (and K,(X?) when n=2m + 1) by
tensoring over R with I', ..

Proof. This is essentially |P,, 6.1}. It suffices to treat the case Q=1
which we do. Let M be the mapping cone of F, ¢ € M be the canonical
basepoint and d be the the dimension of G. Then K (W, X)= K"*‘"*(W)=
H" 4%+ 1M, g). Since K, (W, X)=0 for k <m when n=2m or for k <m
when n=2m+ 1. H'M,q)=0 for s>m+d+ 1. Since K (W)=0 for
k<m, H{M.q)=0 for k <m+1: so H'(M,q)=0 for s <m+ 1 by the
Universal Coefficient Theorem.

Let E be an acyclic space on which G acts freely. Define
H¥(M.q)=H*(M X, E,q X, E) and similarly define H(M, g). There is a
spectral sequence H} (M, g. H¥(G,)) = H*(M.q) and a similar one in
homology. Since H*® (M q) is non—zero only if m+I<s<m+d+1, it
follows that the spectral sequence collapses and (i) Hj (M q)=0 for
s#m+ 1 and H''(M.q) is R torsion free. (Note H""(M q) = 0 because
H(M.,q)=0, s<m+1.) Since also (i) H*(M",q,R,)=0, R,=R/p"
whenever P € .7, |P°| =p" # 1, p prime in R, it follows from [P,, 5 2| that
HE (M, q)=H""'(M,q)=K"(W) is a projective 4 module. By the
Universal Coeffiecient Theorem so too is K, (W).

Now  observe  that H%M,q)=0 for s#m+1 and
K,W)=H,, (M, q)=HS (M,q) is R torsion free; so the homology
spectral sequence H$(M,q.TI')=> H,(M,q)=K, (W) collapses and the
associated graded group E, is I’ ® HY(M, q). Since K, (W)=H,,, (M, q) is
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R torsion free, E, is a free I module; hence, H, (M, q) is a free I’ module and
Ki(W)=H. M, q)=T®H, (M, q)=TRK,(W).

By considering the mapping cones of F: W/X—~Z/Y and f: X - Y and
using the above argument, the remaining statements of the theorem are
verified with the exception of the duality statement. For that note
K, (W.X)=K‘“"™(W)=H*G,) ® K"(W)=K™(W). By the Universal
Coefficient Theorem and K,,_,(W)=0, K™(W) is the dual of K, (W); so
then is X, _, (W, X).

Remark. The identification of K, (W9 X%) with the dual
Hom (K, (W?), A) = Hom (K ,(W?),R) of K, (W?) arises from the R
valued bilinear form A: K, (W?) XK, (W? X?)—>R defined by
A(x,yy={u-x,y), where u-x denotes the Pontrjagin product of the
fundamental class u of (Q,), and x. The intersection pairing between K ,(W?)
and K, , (W%, X?) defined by Poincaré duality and cup product is denoted
by ( , ). There is a straightforward way to make A’ into a A valued bilinear
form A: K, (W?) X K, (W% X?)—> A. In the case n=2m and /¢ = O(R),
K, (W% =K, (W? X?) (because K,(X?)=0): so 4’ and A become non-
singular forms on K, (W?). There is a more geometric definition of 4 in this
situation, Elements of K,(W?) can be represented by immersions of
S™x D™ in W9 which project to an immersion in WY /Q, by an
appropriate application of (3.28). Apply either |W,, Sect. 3| or [W,. Sect. 5|
to produce the intersection form A and self intersection form u giving a
special Hermitian form (K,,(W?), A, u) over A in the sense of |W , Sect. 5].

The remainder of this section makes repeated use of the results of surgery
in the preceding section. Since Z¢ and Y? are connected we use the setting
of remark (3.30) and the result of (3.31). In addition we note that surgery on
(7 ) for u € my(f2) or u € my(F?) does not alter W" for H& Q so the
trace of such a surgery is a prenormal cobordism rel{H & Q.

We begin with a description of the process of handle subtraction.
(Compare |W,, 1.3].) Let %7 '= (W, F, B, D) be a K — G prenormal map of
triads with F: (W, X)— (Z, Y). We suppose a map i: (D, S)— (W9 X9) is
given such that Foi maps into Y?. This gives rise to an element
wE€K,, (W% X?. Here D=D'xD"*' S=SxD"*,
n=dim W?%/Q. The subset of K, (W9 X?) represented in this way is
denoted by =, . ,(F?,f?). (Compare [D-P,, Sect. 4].) We suppose now that i
is an imbedding whose image lies in W% = {w |G, = Q} and that the
composition D— W2 - W?'/Q is an imbedding. Then ind}i is also an
imbedding. Since F%oi maps to Y9, the above data give a class
U €y, (f9) written ¢ = dw. The assumptions imply (3.31) surgery on ¢ is
possible giving 7" with W/ =W U D ((3.15}-(3.17)). There is a k+ 1
sphere in the interior of W' represented by iD**' U D**' « WU D**'. This
represents a class x in m,, (W'?). It is easy to see there is a class
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u' € my, (F'?) with éu’ = x (3.13). Perform surgery on (# ", u’). The result
is a K — G prenormal map 7" = (W", F", B", D"). This process 77 +— 77 "
is called handle subtraction on w € K, ,(W¥ X?). When N(Q)cC K, the
reader may check that the effect on W as a Q manifold is to convert W to
W2 with

4.7 W"? = closure(W* — ind};'?’ D).

This construction is discussed un [W,. 1.3| where the operation is done in
the orbit space.

THEOREM (4.8). Let 77 be a K — G prenormal map satisfving (4.1). (i)
If N(Q)c K, 7 is K— G prenormally cobordant to 777 rel{H & Q} with
F'?~0. (i) 77 is K—G prenormally cobordant relboundary and
rel{H & Q) to 77 with K, (W', Z)=0 for k <m; so if f¢=O(R), F'* ~0.

Proof of Theorem (4.8). The proof is by repeated surgery on 77 . Each
step produces a % " with certain properties. These properties are then
assumed for the original 77 ; so the prime is dropped before the next stage.
Each surgery step produces a cobordism rel{H & Q1.

First we achieve (4.3b). Since Y? is connected, there are classes
Uy ves iy € T,(f9) such that du,...., du, generate 7,(X?). Use Theorem (3.31)
to do surgery on these classes. This kills 7,(X?). Since Y? is one connected,
the same procedure applied to classes in 7,(f?) kills 7,(X?). Likewise W is
made one connected.

Now we treat (4.3a). The Hurewicz theorem relates =,,,(/¢) and
K (X9, Z). If K(X°, Z)=0 for j<k, then K, (X9 Z)=n,, (/9. If
k < 3n (4.2), we can do surgery on classes in the latter group to kill it and
hence kill K,(X9, Z). Note X" is untouched if H > Q. Do this for all
k<m—1if n=2m and for k < m if n =2m + 1. Thus we may suppose the
properties required for X in (4.3) hold. By doing surgery on classes in
T, (F?), we kill K (W?, Z) for k < m, where m = 3n or 3(n — 1).

If n=2m the proof of (4.3a) is complete. If n = 2m + 1, it remains to kill
K, (W°, X% Z). Since this group is =, , (FY f¢). each class is represented
by a map y: (D™*', ") (WY, X?). Since W? and X satisfy hypothesis Q,
the range of this map may be supposed (W', X¢7). In W, 1.4] it is shown
how to make each y into an imbedding which projects to an imbedding in
(W2'/0. X?"/Q). This uses N(Q) < K. In fact we may suppose y extends to
an imbedding ¥ :(D,S)- (W?,X?) with these properties. Here
D=D"*'x D™ §=S8™xD". These are the data required for handle
subtraction. As in |W,,1.4| handle subtraction on generators of
K, (W%, X° Z) kills this group. This uses (4.7) and in particular requires
N(Q) < K.
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THEOREM (4.9). Let %# be a K— G prenormal map satisfying (4.1).
Suppose NQ < K, F? ~ O(R) and K, (W?) is a stably free A, module. Then
# " is prenormally cobordant to % " rel{H & Q} such that F¢ = O(R).

Proof. Since F?~ O(R), we need only kill K,(W?) to achieve
F? = O(R) by Theorem (4.6). There are two cases (compare |W,, Sect. 4]):

Case n=2m. By Theorem (4.6) and the hypotheses, K (W9, X¢) is a
stably free 4 modules which may be assumed free. (Just do surgery on trivial
classes in  7,(f9).) As K,(W?%X?%2Z) is zero for k<m,

T (FOf) =K, (W2, X2, Z) and K, (W9, X%) =K, (W9, X9, Z)® R. To
kill (W?, X?) we represent the elements of a A base by maps d,: (D}", S}") -
(W%, X9). Each D} is a copy of D™ Denote

U= |lind}2D;, D,=DrxD"

Uy=|]ind}?s,,  S;=Sr'xb™

The d; give rise (piping argument) to a Q imbedding @: (U, U,) — (W9, X?)
with ® lpn=d;. This uses N(Q) < K. Set W2 = closure(W? — U). For the
rest of the argument R coefficients are understood. We have a commutative
diagram of H.(Q;) homomorphisms.

0— H (UU X2, X)) —— H, (W2, X%) — Hu (WS, UU X)) — 0

P

0—— Ky(W2,X9%) — H (W9, X% —— Hy(Z°%Y%) —0.

By construction, 4 is an isomorphism. To see this note H = H, (UL X¢, X¢)
and K, (W9, X%)=K are free H,(Q,) = I modules. The first by inspection,
the second by Theorem (4.6). Moreover H® R and K ®p R are free A
modules with bases {(D;, S;)} in the first and their images in the second by
construction; hence, 4 ®; 1, is an isomorphism; so 4 is an isomorphism. It
follows that C is an isomorphism. The composition of excision and C gives
an isomorphism

H (W2, X2)» H (W2, UU X%~ Hy(Z9 Y?);

so K,.(W2,X2) is zero. Then K,(W¥) and K,(X$) are also. Here
= oWs.

The imbeddings d; represent classes in 7, 1(F9,f9). Perform handle
subtraction on these classes. This converts 7 to #'=(W',F',B’,C"),
where W'¢=W? by (4.7). This uses N(Q)c K; thus K, (W'¢)=0 as
required.
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Case n=2m+ 1. Since F? ~0, K, (W9 X?), K. (W?) and K.(X?9)
are free I' modules by Theorem (4.6). It follows from that theorem and
F? ~ O(R) that the sequence

0K, (W, X9)->K, (X)) K, (W)~ 0

is exact and consists of free 4 modules. (The homomorphism y: K, (W?¢) -
K« (W9, X?) is one of I’ modules and K, (W?) is generated as a /" module by
K, (W?); so v is zero.)

As K (W9, 2°,Z)=0 for k <m, n,, ,(F°.f°) =K, . ,(W? X% Z) and
Ko (WO, X% =K, , (W X°)®R. Represent a A base {w;} for
K, . (W9 X?) by elements

d,: (D7), STy — (W2, X2),

The techniques of |W,, Sect. 4] show that the map @: [ | ind3? S — X¢
induced by the d; can be assumed to be an imbedding. This uses hypothesis
Q and again involves mapping S into X9 so the projection in (X¢)*/Qy is
an imbedding. Let 7" be the result of surgery on the classes dw; € 7,,(f).
See (3.18) and (3.31). Then W' = W Uindy, U, where U= [ ]ind}° D,
D;=D7*' X D™ The sequence of kernel groups for the triple X' = X' U
Ucw is 02K, (WeLXD-K,, (WLXY)-K (U UNX?)-
K, (W2 X'?)- 0 because K,(U, UN X'?) is a free I” module generated by
K (U, UNX?)

The A module K, (U, UNX'?) is free with one basis element
corresponding to each handle (represented by the core of the dual handle).
The map from K, (W% X%) to K, (U, UNX'?) is dual to the map
K, (U, UNX%) > K, (W?) representing the attaching maps so it is zero.
(See (4.6).) Thus K, ,(W? X?) is unchanged. We acquire a free module
K, (W2 X'?) dual to K,,, ,(W'); thus K,,(X'?)=0.

Choose a base for K, (W’). Represent those elements by classes in
T.(F'?). Do surgery with respect to these classes. Denote the new map
again by # 7. Then it follows as in [W,, Sect. 4] that K, (W'?)=0; so
K.(W'?) =0 by Theorem (4.6).

In order to use (4.9) we have to decide when K, (W?) is stably free. This
leads to the Grothendieck groups K, (A) and G,(A4) of projective A modules
and all A modules. The quotient of K (A1) resp. Gy(A4) by the subgroup
generated by free modules is denoted by K,(A) resp. GO(A). The following
lemma was pointed out to me by Oliver:

LemMA (4.10). Ky(Z,)(G)) = [ Tucim1.ceceyetic Col(Z,(C)) is a mono-
morphism when G is finite. Each component homomorphism is induced by
tensoring with Z, and viewing the result as a Z (C} module.
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Proof. The basic facts which may be found in [Ba| are:
K (4(G)) — K((4,(G)) is injective if 4 is a local ring with maximal ideal p
and 4,=A/pA. This homomorphism is induced by tensoring over 4 with
A,. See [Ba, p.449|. K(Z,G)— G\(Z,G) is injective [Ba, p.532].
Go(Z,G) > | ceyenic Go(Z,(C)) is injective. Z,(G) is a local ring if |G| =p"
and is semisimple if (p,|G|) = 1. Projective modules over a local ring are
free.

Lemma (4.10) is exploited like this: Let X be a G space. Set I, =T'® Z,

(4.2) and define
X =Y (1)[HsX. Z,)®; Z,], € G|(Z,G").

(Observe—@rp Z, is an exact functor.) The tensor product in this definition
is graded. The subscript i denotes the term in degree /. From (4.6),
(K4 (W?) ®r, Z,); is zero if i# m and is K,,(W?)® Z, if i = m. Thus from
the sentence after (4.5)

[Kn(W?) ® Z,] = (-1)"(6(W?) — 6(Z?))

in GO(ZPQ_?(). (Note Z, is I', projective so tensoring with Z, is an exact
functor.) Define

4.11) Fo=|HcG|H¢ G,

Let X be a set of subgroups of G and 2 < X. Then {2 is said to be closed if
(i) whenever K€ X, HE Q and K> H, then K€ 2 and (ii) if H' € X is
conjugate to H € 2, then H' € Q. For any 2 c X, 2* is the smallest closed
subset of X' containing 2. Observe that .#, is closed in .#(L).

LEMMA (4.12). Let X=y.s;G/H X D' be a G c.w. complex. Then

dX)= Y (=1)'6(G/H) € G(Z,G°).
iHeF
Proof. If HcG,, then G/H/G,=G/G,; so H.(G/H) ®r,Z,=
Z,(G")®, (HJG/GoNH)®, Z,) is a free Z,(G°) module. Thus
6(G/H) =0 and so G/H contributes nothing to o(X).

COROLLARY (4.12"). Let X and Y bee G c.w. complexes G = O, or O).
If x(X¥)y = y(Y") whenever H € .7, then 6(X) = (Y).

Proof. By Lemma (4.12) we may suppose Iso(X) and Iso(¥) lie in
Fo=.F.Let <.# be closed and suppose the lemma is true if Iso(X) and
Iso(Y) are in (). Let K €. — X be a maximal element and X' =(Z U K)*.
Suppose Iso(X) and Iso(Y) lie in Z'. Set X’ = (J,; X” and likewise define
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Y'. Then y(X'7) = x(Y'") for all H € # (because for H € 7 there are only
finitely many isotropy groups containing H); so d6(X’')=d(Y’). Thus
5(X) = 6(Y) = | K|~ (x(X/X'*) — x(Y/Y'®)) 6(G/K) = 0. The proof is com-
pleted by induction.

LEMMA (4.13). Let # =(W,F,B,D) be a K—G prenormal map
satisfying (4.1). Suppose F¢~ O(R) (4.5) and either (i) Q, is finite and
x(WH) = x(Z") for all Q <01 H < K with H/Q cyclic + 1 of order prime to p
or (i) Qx is O, (or 05 < S°) and y(W") = x(Z") whenever Q <t H < K and
H/Q & (Q),- Then K,,= K, (W?,R) is a stably free A, , module.

Proof. Let G=Q,. By Lemma (4.10) it it suffices to show
(~1)"[K, ® Z,| = 3(W?) — 5(Z°) is zero in G4(Z,(L)) whenever L € G is
a non-trivial cyclic group of order prime to p. In case (i) this is implied by
the hypothesis and [O,, Lemma 4|. In case (ii) G° = Z,; so there is only one
L, namely, L = G°. Now apply Corollary (4.12') with X = W? and Y = Z¢.

THEOREM (4.14). Let % = (W,F,B,D) be a K— G prenormal map
satisfying (4 1). Suppose N(Q)< K and F?~ O(R) (4.5). Suppose either R
is Z and KO(AQ)—O or R iz Z,,, for some prime p and either (4.13i) or
(4.13ii) is satisfied. Then 7% is K—G prenormally cobordant to
7 " rel{H & Q} with F'? = O(R).

Proof. Since F¢~ O(R), K,,= K,,(W? R) is a projective A, module by
(4.6). If this is stably free_Lwe apply (4.9) to complete the proof. If R =Z,
K, is stably free because Ko(4,)=0.If R=Z,,, then K, is stably free by
(4.13).

THEOREM (4.15). Let %# =(W,F,B,D) be a K— G prenormal map
satisfving (4.1) with the hypotheses: (i) X satisfies hypothesis Q and (ii)
dim X9 > 6 deleted. In particular X =W may be empty. Require
dim W¥? > 6. Suppose ¢ = O(R) and F? ~ O(R). Suppose either R is Z and

O(AQ ) is zero or R is Z ,, for some prime p and either (4.13i) or (4.13ii)
holds. Then there is an obstruction 6y(#") € L, (A, 4) (n=dim W?/Qy)
whose vanishing implies 7 is K—G prenormally cobordant to
7 " rel{H ¢ Q} and rel boundary such that F'? = O(R).

Before proving Theorem (4.15) we briefly review the definition of the L
groups. (In Wall’s notation these are the L”" groups.) See [W,, W,]|. The
definition of L,(A) depends on he parity of ».

n=2k The group in ths case consists of equivalence classes of pairs
(M, ¢), where M is a stably free 4 module and ¢ is a (—=D* = u quadratic
form on M, i.e. in the notation in |W,,p.3] (M.d)€E Q. ,(M). (The

607/46/1-4
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antiautomorphism a of A arises from the orientation homomorphism
e?:m(Qx) ~ {+1} defined by g« [W?] =e?(g)[W?], g € n,(Qy) and | W] a
chosen generator of the top dimensional homology of W<, Then
a(g)=e%g) g ' for g € my(Qx) € A.) The bilinearization A = (¢ + T,9)of
¢ is assumed non-singular. Here T, ¢ is the transposed form |W,,p. 3| In
[W, Sect. 5] there is an alternative equivalent definition based on triples
(M, A,u) (called in [W,,Sect. 5] a (—1)* Hermitian form) with M as above;
A is a A valued form (intersection form) satisfying A(x,y) = (—1)* A(y. x)
with associated “‘quadratic form™ u (self intersection form). Note that we do
not assume a preferred stable base for M. A triple M of this kind is obtained
from a quadratic module (M, ¢) by setting A = (1 + T,) ¢ with u(x) = ¢(x, x).
Let M* = Hom,(M. A). It is a A module and M ® M* supports a (—1)*
quadratic form called te hyperbolic form and denoted by IH(M). A quadratic
module is by definition equivalent to zero if it is isomorphic to H(M) for
some M.

n=2k+ 1. The group in this case consists of equivalence classes of
formations over A. To define the data of a formation recall that a
Lagrangian (or subkernel |W,,5.3|) L of a quadratic module (Q,¢) is a
direct summand of Q on which A=(1+T7,)¢ and ¢(x,x) vanish and
L={x€Q|A(x,y)=0 for all y € L}. Then a formation (Q, ¢, Q,, Q,) over
A consists of:

(i) A quadratic module (Q, ¢) which is equivalent to zero.

(i) Lagrangians Q, and Q, of (Q, ¢). Here Q, and Q, are to be free A
modaules.

The further details of definition, addition and equivalence may be found in
IR, Sects. | and 2].

Proof of (4.15). The proof depends on the parity of n. First we define
o,(7 ).

n=2m. Since F¢ = O(R), K, (W?) =K, (W9, X9). By (4.6), K, (W?)
is a projective 4 =4, , module. It is stably free by (4.13). By (4.6),
K, (W9 X%) =K, (W?)*. This isomorphism is induced by the intersection
pairing . Since K, (W?9) = K, (W%, X?), 4 is non-singular bilinear form over
A. Let u be the associated self intersection form. Then ¢,(%#) is the class of
(Kn(W9), A, u) in L, (A).

n=2m+ 1. We follow |D-P,| which turn uses the ideas in |W,,
Sect. 2| and construct a diagram as on p. 56 of [W,|; this will give rise to a
formation defining an element in L (A4).
Since F¢x O(R), K,(W,Z)=0 for k<m so K, (WY, Z)=n,, ,(F").
Define K, =K, (W2 R)~ K, (W2 Z)® R. Pick classes {u;} in m (F?)
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which generate K,, as a A4 module. Associated to the u, are imbeddings
u;: S™"X D' W2, We can suppose these induce an imbedding of
[ | ind}* @8, - W, §,=8"x D" by a general position argument.
Pick z € Z with G. = Q. This exists because Q € Iso(Z). We can suppose
F? is transverse to z. This is easily seen using a (non-equivariant) transver-
sality argument for F¢ and the equivariant homotopy extension theorem for
FY. Hence, (F?) '(z)={w,,...w,}, where r can be assumed to be the
absolute value of the degree of F¢. Construct a submanifold U, of W%, It
consists of disks D, around points w;, the submanifolds du,(S™ x D"'"),
tubes connecting éu(S™ X D™*') with D, and tubes connecting D, with the
other D;s. We can suppose that the tubes and the éu: (S™ x D™"') are
mapped to a point Z in AD. (D. a disk around z) while the disks D, (up to a
small deformation at the boundary) are mapped by a linear isomorphism.
Also F¢(W? —intU,)< Z? —int D.. Finally we suppose U =ind}*’ U, is
imbedded in WY equivariantly extending the inclusion of U, in WY,
Similarly D denotes the equivariant image of ind}* D. in Z“. Define
W¢=w? —intU and Z¢=Z¢ — int D. So finally we can suppose

FO W, we U)y-(2°.2¢.D)

and deg F =deg FY | W¢.
The exact sequence of K, groups with R coefficients is

0——K, (W W= K, (UéU) — K, (W) ——0
e AN N e
N NS NS
K, (W9 K, (¢U) K, (W9)
A0 e ¢ ’ \\.\
S // p AN
0—— K, (WO U) =K, (W,.U)—— K,(U) — 0.

We justify the zeros on the left of this diagram. Let F¢=F¢|W¢.
Observe that K, (W,,0U, Z), K (U,o8U.Z), K(0U,Z) and K (W,,Z),
k < m, all vanish; and degree F¢ = degree F? is a unit of R. Also F) = F" =
O(R,,) whenever Q <1 P, Q+ P, P/Q € .7, |(P/Q)|° = p", p prime in R; so
F?~ O(R). Thus Theorem (4.6) implies K, (W?) is a projective 4 module
and K. (W?) is a free I’ module generated by K,,(W¢). Similarly for K, (U)
and K, (U). Then since K, (W,,aU) and K, (U, 8U) vanish, K, , (W;)—
K,. (W, éU)and K, (U)- K, , (U, 8U) are zero. This accounts for the
zeros and shows K, (U, dU) and K, ,(W,,0U) are A submodules of
K, (6U). We claim they are free. If R = Z, there is nothing to show. Note
that Wi = W* and Z%X=2Z* whenever Q < K. so (4.13i) or (4.13ii) is
satisfied with W¥ and Z¢ replacing W¥ and Z%. Thus Lemma (4.13) implies
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K, W)=K, (W, 8U)* is a free A module when R=2Z Note
K, . (U, dU) is free by inspection.

We now show that 7= (K,(@U),¢,K,,, (U, 8U).,K,, (W¢aoU)) is a
formation. It represents the class 0,(#") € L,(4). Here ¢ is the quadratic
form determined by the intersection form A and self intersection form u.
Certain facts are clear: (K ,(0U), ¢) is equivalent to zero; K, , (U, 8U) are
Lagrangian; 4 and g vanish on K, ,(W9,0U) (same argument as in the
proof of [W,, 5.7]); so it too is a Lagrangian. Thus 7 is a formation.

To complete the proof of (4.15) we must show that if 6,(%") vanishes,
then 7 is prenormally cobordant to #" with F'?=0(R). If n=2m,
0,(#) =0 means the quadratic module determined by (K, (W?),A,u) is
hyperbolic say IH(M) for some free 4 module M. As in [W, Sect. 4] surgery
on generators of M kills K, (W?). Let n=2m + 1 and 0,(#") = (K ,(3U), ¢,
K, . (U oU) K, (W¢, 0U))=0. We write this formation as (H(F), F, G),
where H(F)=(K,00U),¢). Let y®u:G-FO®F*=H(F) be the
homomorphism which exhibits G as a submodule of H(F). Since this
formation is equivalent to zero, there is a free A module L and a
homomorphism j: L — F* such that y: F® L - G* ® L* is an isomorphism
where

(VAN

Identify F* with K, (U). Let x...., x, generate L. Then surgery on the classes
10,(x;)i=1---1} kills K,(W?). See Butterfly diagram above. See |[W,
Sect. 5; R|. This is Ranicki’s formulation of W, Sect. 5].

5. AN INDUCTION THEOREM FOR S’ AND SO,

In this section G is SO, or S* and # is the set of two subgroups {0, O,}
when G is SO, or their double covers when G is S°. The Induction Theorem
(5.10) asserts that if 7%, is a G prenormal map and Res, 7= 07 for
K € #, then 7, is G prenormally cobordant rel{G} to a pseudoequivalence.
The precise assumptions for this to be true are spelled out in (5.8) and
(5.10). We note that much of the notation in this section is contained in
(4.2).

The proof of (5.10) makes repeated use of (4.14) and (4.15) as Q ranges
over a subset of .¥(G) which lies in .. Both (4.14) and (4.15) involve a
ring R which is a function of Q and single out a family of subgroups of .7
depending on Q and K < G. We specify this now.
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(50) For Q€.7°, R, is Z if Q is connected and R, is Z,, if
10°|=4¢* > 1, q prime.

PEZ |Q<QPcK,P#0,|/P|=p*

Ty k= . .
0.k for some prime p prime in R, s

Determination of the sets .7, , depends on knowledge of the subgroup
structure of G and of the normalizers of groups in .7°. This information for
G =S’ and SO, is recorded in Section 2. In particular we mention that a
subgroup P of SO, in 7 is conjugate to a subgroup Q of 0, and N(Q) < O,
unless Q = D,, then N(Q)=0.

Before applying the results of Section4 we need to have an effective
means of verifying the hypotheses of (4.1), in particular hypothesis Q for X
and W. Because in applications X and W are rarely explicitly given, we need
to be able to verify (4.1) from conditions on Z and Y. The next few results
show how this is done.

For certain G manifolds we can define an integral valued function Dim X
on the set of conjugacy classes of subgroups of G by

Dim X(H) = dim X*, HcG.

For this to make sense each component of X¥ must have the same
dimension. We say Dim X is even or odd if all values are even or odd.

In order to relate Dim X and (3.11), define X% = {x € X |G, > Q}. There
is a well defined map of G/L X X* to X which sends (gL, x) to gx. This
induces a surjective map of () (G/L)? X,. X* onto X2. The union is over the
set of conjugacy classes of isotropy groups L of X strictly containing Q and
L*=NLNNQ/L N NQ. This set is finite so

dim X? { max ( dim X" + dim G/L? —dim
>0

(L) LelsoX I

NLNNQ
LNNQ )

LEMMA (5.1). Suppose X is a smooth G manifold for which Dim X is
defined. If for all L > Q

Dim X(L) + Dim G/L(Q) — dim NLONG ]

TANe <7 (Dim X(Q) + dim Q)

(see (4.2) for Q) then X satisfies hypothesis Q.

Proof. The hypothesis implies any sphere S* with k < 3 dim XQ/Q_can
be homotoped into X?" = X2 — X2 because dim X? < }(dim X¢ + dim Q).

DEerFINITION (5.2). X satisfies the Gap-hypothesis if:
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(i) P, is defined for all P < G with P€ .%. See (4.2) and (3.12).

(ii) The inequality in (5.1) is satisfied whenever Q = P, (3.12) for
Pe.7.

(5.3) From now on a prenormal map 7 = (X, f. b.d). f X = Y (3.9) will
satisfy these additional conditions: Dim X = Dim Y and Iso(X) = Iso(Y).

LEMMA (5.4). Let 7 be a prenormal map as in (5.3). If' Y satisfies the
Gap-hypothesis (5.2), then X satisfies the Gap-hypothesis.

Proof. As Iso X =1Iso Y, P, is defined and equal to P, for P €.7. The
inequalities required for Dim X are implied by those for Dim Y.

A weaker inequality than (5.1) is useful for determining whether
Q € Iso(X). Consider these properties for X and Q < G:

(5.5-Q) For all L>Q, DimX(L)+# Dim X(Q) implies Dim X(L) -+
dim G < Dim X(Q).

(5.6) (5.5-Q) holds for all 0 = G.

LEMMA (5.7). Suppose Dim X is defined and X satisfies (5.5-Q). If for
all L > Q, Dim X(L) # Dim X(Q), each component of X contains a point
whose isotropy group is Q. If X? is connected this is necessary and sufficient.

Proof. The hypothesis implies dim X¢ < dim X¢ so no component of X
is contained in X?. Finally observe that if X¢ is connected and Q € Iso(X),
dim X* < dim X9 because X* is a proper submanifold of X?.

The center of S* is denoted by C; so SO, = S§*/C. When #" = (X, f. b, d)
is an S’ prenormal map, 7' = (X€, €, b€, d°) will denote the resulting SO,
prenormal map.

Let G be SO, or S* and 7, = (X, f, b.d) be a G prenormal map which
satisfies these conditions:

Set .7 =.7, U{O.T} if G=S0, and .7 =.7,, U0, T'} if G=S".
Recall .7, is defined in (4.11). i

(5.8) (i) degreef=1 and in addition degree /¢ = 1 when G = S°.

(i1) Dim Y(H) is even for all Hc G and Dim Y(H)> 6 for
He #.

(iii) Y" is connected for HE #U.#.

(iv) When G=S0,, Iso(Y) contains .» = {(S', 0,, D,, D,,
Z,,1)} and P,€.7 for all P€.7. When G=S", Iso(Y") contains .7,
Iso(Y)=p 'Iso(Y)U 1 and P, €.7 for all P € .%. Here Y is viewed as
an SO, manifold.

By an # prenormal map % ,, we sall mean %, = {7 | K € #}, where



ONE FIXED POINT ACTIONS, Il 53

Wy =Wy, Fy,Bg,Dy)is a K— G prenormal map (3.9') with Fy: Wy - Z,
X a G manifold independent of K and 0% = (X, f, b, d) =%, a G prenormal
map which is independent of K. We write %, = ¢%# » and call Z the target of
7 .. If each 7 is K — G prenormally cobordant rel{H & Q} to 7 with
common G cobordism between &7 and &7 ., we say 7 , is prenormally
cobordant to 77 7, rel|{H & Q).

LEMMA (5.9). Let # = {2y} be an # prenormal map. Suppose
W o=, satisfies (5.8). Let 2 .7 be a closed set (Section 4) such that
x(WHy=y(Z") whenever HER, HcKE#. Let Q€.F —0 be a
maximal element. Then 77 , is prenormally cobordant rellH & Q) to 77,
with (W)= x(Z") whenever HE (2\U Q)*—the smallest closed set
containing £2 and Q. In addition &7 ", satisfies (5.8).

Proof. One of the groups in . # say J contains N(Q). Let J' be the other
group in #. Suppose first Q€& Iso(X). Since Y? is connected and
Iso(X) = Iso(Y), QAX and Q, are defined and equal say equal to Q. Then
X?=X? and Y?¢=Y? (3.12). Since X’ = XY and J is an isotropy group.
0<10cJ so 0€ #. But then Q€N because 2 is closed: thus
2(X9) = y(X9) = 20(W?) = 2¢(Z9) = x(Y?) = x(Y?). Here the inductive
hypothesis and the fact that dim X¢ is even and is the boundary of W¥ are
used. Since X¢ and Y? have the same Euler characteristics, W¥ and Z¢ do
also for the same reason as above.

Thus we may suppose Q € Iso(X). Since dim X¢>6 (5.8ii). we can
perform G surgeries on (7, .u) for K =J, J' using trivial classes u € 7,(f%)
(3.19) for i=1 or 2 to achieve y(W}?)=x(Z?). To justify this note that
surgery on such a class alters W% up to G homotopy by adding Q XDt
This alters the Euler characteristic by (—1)"*' y(Q). For Q€. 7. Q is ﬁmte
so x(Q)=1|Q|. Since W and Z} have the same Euler characteristic for
H>Q, thelr Euler characteristics for H=(Q have a difference divisible by

Having achieved equal Euler characteristics for ;¢ and Z° means the
same is true for X'¥ and Y" if H is any conjugate of Q. This implies equal
Euler characteristics for W;" and Z" for K either J of J' and H any
conjugate of Q in K. This completes the proof.

THEOREM (5.10). Let G be SO, or S* and #,= (X.f, b, d), [ X > Y be
a G prenormal map (5.3) satisfying (5.8). Suppose #,= % ». Let Z be the
target of 7 ,. Suppose Z" and Y’ are one connected for all PE€ .7° and Y
and Res, Z for K € # satisfy the Gap-hypothesis (5.2). Then 77 , is prenor-
mally cobordant rel{G} (Section 3) to 77 7y with 077 "p= (X' f',b',d"). f" a
pseudoequivalence (Introduction).

Remarks. (RO) Because of (5.8iii) 13,, (3.11) is defined whenever P € .7°.
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By (5.3), Py=P,. From now on we drop the subscripts; so P means the
minimal isotropy groups in X or Y which contain P. Observe that X* = X*
and Y* =

(R1) The proof of (5.10) uses (5.9) and the results of the preceding
section. All those results require the blanket assumption (4.1) which is used
for Q=P (3.11) for each P €.7. These conditions are met because Y and
Res, Z for K € # satisfy the Gap-hypothesis (5.2) by assumption. From
(5.3) and (5.4) it follows that X and W, satisfy the Gap-hypothesis. Then X
and W satisfy hypothesis Q whenever Q = P for P € .7. (Of course for W,
we need Q < K.) Note in particular that Q = Q whenever Q € Iso(Y)N.7.

(R2) Note that the assumption degree /=1 (5.8i) implies degree /* is
a unit of R, whenever P €.7, |P°| = p', p prime. See the remark following
(4.5); moreover, when P is such a group and P < K € .#, then degree F% is a
unit of R, because X* = oW7E.

(R3) If HcL, then y(W¥)=ix(X") because dim X" =dim Y" =
Dim Y(H) is even ((5.8ii) and (5.3)). This means x(W%)=yx(Z") iff
x(X¥)=x(Y"). We also note that F{=O(R,) (4.4) implies that
x(W2) = x(Z?) provided of course Q ¢ K.

(R4) Theorems (4.14) and (4.15) require statements about K,(A4) and
L ,(A) which are valid when these groups vanish. They vanish in these cases:
KyA)=0, A=Z(n), |n|j=1 or 2; L,(A) vanishes if n is odd and
A=2Z,,(H) for a 2 group H |Pa] or for 4 =Z.
There are several steps in the proof of (5.10). Each is an application of
(4.14) or (4.15) to #%, Q, K and R with

0=0€%, QcK, R=R,.

(Note (5.8iv) which implies P € .7 whenever P € .#.) The requirements for
(4.14) and (4.15) then simplify. For example, X and W, satisfy hypothesis Q
as noted in R1. We restate these simplified conditions for reference in proof:

(4.14") (i) N(Q) <= K. (ii) F2~ O(R,) (this is (4.5") below). (iii) If Q is
connected, K,(Z(Q°)) = 0; otherwise either (4.13i) or (4.13ii) is satisfied.

4.15") (1)fQ = O(R,). (ii) F¢ =~ O(R,) (this is (4.5") below. (iii) If Q is
connected, K,(Z(Q°)) =0; otherwise either (4.131) or (4.13ii) is satisfied.
(iv) L,(4) =0 when n = dim W?%/Q, and R,(Q%) = 4.

The condition (4.5) that F? = O(R) for F=F, and R = R, also simplifies in
the presence of the assumption degree f=1 (5.8). Then (4.5ii)
automatically satisfied by R2; thus F¢ ~ O(R,) is equivalent with:

4.5') (i) F2~0. (i) F. = O(R,) for PE€ .7, , (5.0).
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Finally for reference we simply restate (4.13) which is required for (4.14")
and (4.15"). Since it is applied to R =R,,, we must have |Q°|=¢* > | for
some prime g.

(4.13) F¢=O(R,), ie., (4.5") is satisfied and one of the following two
conditions holds: (i) If @ is finite, then y(W2)=x(Z") forall Q < K H
with H/Q cyclic # 1 of order prime to |Q°|. (ii) If Q, is O, (or O} c §%),
then y(W*#) = y(Z") whenever Q <t H< K and H/Q € (Q),.

Each step in the proof of (5.10) involves an application of (4.14) or (4.15)
to 77¢ (K one of the two subgroups of #) to achieve either F¢ = O(R,,) or
x(W2)=x(Z?) for some Q and K. Each application produces a K — G
prenormal cobordism rel{G} between 77, and 77 } to achieve the required
condition. {We emphasize that the G fixed set of X is unchanged.) This
produces a G prenormal cobordism 7 ' between &7, and &7 .. which is
glued to 7 (L the other group in #7) to produce 7 | with ¢77 | = a7 ;..
This yields 7 %= {# }.,7/}}. By construction 77 satisfies the required
condition. The condition on 7 ] is implied by either that for K or by the
preceding steps. For example, if @ is contained in both K and L, then
F¢~O(R,) implies f?=0(R,) implies x(X?)=x(Y?) implies
x(W2) = x(Z°). The first implication is a consequence of the definitions in
(4.4) and Poincaré Duality. The second and third are consequences of R3.
Since the cobordisms used to construct %7 ", from 77, are rel{H & Q), 7 7,
not only satisfies the condition specific to the particular step being discussed
but also satisfies the conditions of the preceding steps. At this point the
prime is dropped and 77, is assumed to have the properties of 77 7,

In order to apply (4.14) or (4.15), we verify the relevant conditions
(4.14") and (4.15") (and (4.5")) at each step. Remember this requires Q = Q
and Q € .7 or equivalently Q € Iso(Y) and Q €.7. In steps 2-6 below @ has
certain specific values. Each such Q must then be in Iso(Y) because Q = 0.
This accounts partially for (5.8iv).

We begin the proof of (5.10). First we prove (5.10) for G = SO,. Let

Zy= {PEOZ’PE'%: (P)‘t(Dz)}~
Fo=10€ 7 [(Q) £ (D,)}.

(# is defined just before (5.8).) Each P € 2 is unique up to conjugacy in
0,. Let QcXyUF =2 be a closed set. We make this inductive
assumption:
A(R): (i) For all HE Q, (W)= x(Z") whenever H, K € #.
(ii) For all P€ Q with P€ .2, F; = O(R,) for K = 0,.

Step 1. Prove A(X). This is done inductively. By assumption A(£2)
holds. Let Q € ¥ — Q2 be a maximal element in this set partially ordered by
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inclusion. We show how to achieve 4(£2') for 2’ = (2 U Q)*—the smallest
closed set in X' containing £ and Q. There are two cases: (i) Q € .7 and (ii)
Q € .7°. For case (i) use Lemma (5.9) to achieve 4(2'). In case (ii) there are
two further cases (iia) Q # Q and (iib) 0 = Q.

Case (iia). Observe that 0 c 0, =K. To see this note that 0 €.7 by
(5.8iv); so Q is conjugate to a subgroup of 0, and this conjugate L of Qis
an isotropy group because Q is. This conjugate L contains the corresponding
conjugate of Q. Since subgroups of O, in X are unique up to conjugacy in
0,. L is conjugate in O, to an isotropy group L' containing Q. Then L' = Q
by definition of ¢ (R0). Now observe 0 > Q and Q € Z,. Since 2 is closed,
0 € 0. Since QEIso(X) by definition of ¢ and Res, X =W,, Q is an
isotropy group of Wy (by the Equivariant Collar Neighborhood Theorem)
so W¢=w¢ and FQ~FQ

We assert that Q is a finite ¢ group for some prime ¢ and Q° is also a g
group possibly the trivial group. Grant this for the moment. Then R, is Z
and R; is either Z, or Z. In either case FY=F?=O0(Ry) implies (a)
F¢ = O(R,). Now we establish the assertion. Note Q € .#* and 0 + Q rules
out @ = S' and Q = 0, because these are isotropy groups of Y by (5.8). This
means @ is cyclic of prime power order or dihedral of 2 power order. (These
are the only other groups in .7> which are in 0,.) Since S' and O, are
isotropy groups, Q is cyclic or 8" in the first case while Q is dihedral or o,
in the second. In either case this implies 0° is a ¢ group because 0 > Q and
0 € .7 by (5.8). Now suppose Q < 0. Then (8) x(W¢) = 1x(X?) = 1x(x?) =
2)((YQ) x(Z?2). The first and fourth equalities follow from R3). The second
follows from (RO) and the third follows from (R3) and y(W?2)=y(Z%)
because Q € 2 and A(£2) holds. Put («) and (8) together with 4 () to prove
A(£2'). This completes case (iia).

Case (iib). Q=0, Q€.7, K=0,. We verify the requirements of
(4.14"). (i) N(Q) © K because the normalizer in SO, of any subgroup of O,
in .~ other than D, lies in O, (Section 2). (ii) Use (4.8i) to achieve F¢ ~ O
(4.5'1). Then (4(0)i1) implies (4.5'i1); so (4 5') is satisfied, i.e.. F¢ = O(R,).
(iii) If Q is connected, Q = S' and Q° = Z, : s0 K,(Z(Q")) = 0 by (R4). If 0
is not conected, (4(£2)i) implies whichever of (4.131) or (4.13ii) is relevant.
The hypothesis of (4.14') is satisfied; so we apply (4.14) to achieve
F¢=0(R,). If Q is also a subgroup of O, this implies x(W¢) = x(Z¢) as in
case (iia). As A(£2) has not been disturbed in applying (4.14). we have
achieved A4(£2’). This completes case (iib).

Step 2. Achieve F{= O(R,) for =D, K=0. We verify (4.15"). (i)
fQ—O(RQ) because FY __O(RQ) by (A(X)ii). (i) Use (i) and (4.8ii) to
achieve F2~0 (4.5'i). Then (4.5'ii) is vacuously satisfied because .7,
empty as D, is the 2 Sylow subgroup of O. This means (4.5') is satisﬁed.
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(iii) This is implied by (4(Z)i). (iv) L,(4)=0: Since |Q°| =8, Ry=Z2,.
Since Ny(D,) = D,, Qs = l:s0 A = Z,,. Now observe that »n = dim W¢/Q,
is odd as dim X¢ = dim Y? = Dim Y(Q) is even by (5.8). Then L (41)=0is
implied by (R4). This completes verification of (4.15"). Step2 is now
completed using (4.15).

Steps 3 and 5 proceed exactly like step | case (iib) while steps 4 and 6
proceeds exactly like step 2.

Step 3. Achieve F{=O(R,) for Q=D,, K=0. Verify (4.14"). (i)
N(QYc K as N(Q)=0. (ii) Use (4.8i) to achieve F% ~ 0 (4.5i). Note that
.k (5.0) is {D,}: so Ff =O(R,) for Pe.7,, (4.5'1) by step 2. (iii)
(A(X)1) implies (4.131). Having verified (4.14"), apply (4.14) to achieve what
is required.

Step 4. Achieve F,‘{.EO(RQ) for Q=D,, K=0,. Verify (4.15"). (i)
f2= O(R,) because F§ = O(R,) by step 3. (ii) Use (i) and (4.81i) to achieve
(4.5'i). Observe that .7, , = {D,} because N, (D,)=D,. Since D, € X,
(A(2)ii) implies (4.57ii): so (4.5') is satisfied. (iii) This is implied by
(A(Z)i). (iv) L(A4)=0: |Q°|=4: so R, is Z,. Since @, is
Zy . A=Z2,(Z,). As in step 2(iv) n is odd. Then L (A)=0 is implied by
(R4). Use (4.15) to achieve the required goal.

Step 5. Achieve F¢ = O(R,) for Q= Z,. K = O,. Here we take Z, to be
the unique cyclic group of order 2 in S§'cO,. We verify (4.14). (i)
N(Q) =K. This follows from our choice of Z, in K. (ii) Use (4.8i) to achieve
(4.51). If PE€ 7, ., then PE X, or P=D,; so (4.5ii) is implied by either
(A(2)ii) or by step4. (iii) (A(X)i) implies (4.13ii). Note Q, = O,. Now
apply (4.14) to achieve the required condition.

Step 6. Final Step: [9 = O(R,) for @ =1: K is G. This is the final step
because this implies by definition f is a pseudoequivalence as R, is Z. (See
(4.4) and (5.0)). We apply (4.15) to 77 = (W, f. b, d). Care with notation is
necessary at this point. In particular X and f play the role of W and F in
(4.15) and X there is @¢W which is vacuous now. We verify (4.15'i). (i) This
is automatic as ¢X =@. (ii) Use (i) and (4.8ii) to achieve /¢ ~ 0 (4.5').
Note that each P in .7, , is conjugate to a subgroup in 2, {D,. Z,}. But
for P in this set. F/, = O(R,) by preceding steps: so f* = O(R,) and this
holds for any conjugate of P. Thus (4.5') is satisfied and /¢ ~ O(R,). (iii)
As Qis 1 and K is G, Qb = 1 and K,(Z(Q%) =0 by (R4). (iv) L,(4)=0:
Note n =dim X/G is odd and A is Z. Apply (R4). Thus (4.15') is verified.
Use (4.15) to achieve f¢ = O(R,).

Now we treat G =S, Observe that 77 § is a G/C = SO, prenormal map
which satisfies all the hypotheses of the case just completed: hence, we can
suppose /7§ is a pseudoequivalence. But then f”=O0(Z,,) whenever
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GoOPE.Z, |P°|=p", P#1, because P,CE % whenever PC.7. Now
apply Theorem (4.15) to 7%; with Q = 1. This completes the proof.

6. PROOFS OF THE MAIN RESULTS

One tool for constructing G prenormal maps is an equivariant transver-
sality construction used in conjunction with the equivariant cohomology
theory wX(-). This we now explain. In this section G is SO, or S°.

Let M be a representation of G and let Y be a smooth G manifold. Set
N=Y XM and n: N— Y the projection on Y. The G vector bundle map
(covering the point map q) which is defined by the composition TN - z*N =
n*q*M — M is called s. Here M is viewed as a G vector bundle over a point.
Let C be a G module. Suppose C is good (or .# good) and C>g. The
differential of a G map w:N—-M is denoted by Dw:TN—->TM and
dw: TN - M is p,o Dw where p,: TM =M X M — M is projection on the
second factor. Set TY > M if sTY = sA for some representation 4 of G and
{4, x) =0 implies (M, x) = 0 for each irreducible representation y # 1 of G.

LEMMA (6.1). Let w:N—->M be a proper G map. Suppose TY > M,
Iso(N)=1Iso(Y), Y is C stable, X <Y is a closed invariant set and w is
transverse to zero on N | with A(dw, C)=A(s, C) on A(TN |5, C). Then w is
properly G homotopic relN|y to a map h transverse to zero with
A(dh, C) = A(s, C).

The proof of this theorem is postponed until Section 7. Compare |P;
D-P,, Sect.8]. In the meantime we show how to use it to construct
prenormal maps which serve as input for (5.10). Observe that w in (6.1)
gives rise to a class |w] in wl(Y) which determines some of the properties of
X = h~"(0) produced from w by (3.1). We make these blanket assumptions
for the remainder of the section:

(6.2) Z and 8Z =Y are smooth G manifolds which satisfy: Dim Z and
Dim Y (Section 5) are defined, both are C stable (3.6) for C=g, Y and
Res, Z, K € # (Section 5) satisfy the Gap-hypothesis (5.2), Y and Z satisfy
(5.6) and

(a) Iso(Y)={H € G|Dim Y(L)= Dim Y(H), VL > H},

(b) Iso(Res, Z)={H € K|Dim Z'(L)# Dim Z'(H), VL>H, L<K},
Z' =Resg Z.

THEOREM (6.3). Let Y satisfy (6.2). Suppose the hypotheses of (6.1) are
satisfied (with A =@). Let X = h~'(0) and suppose X +# @. Then Dim X is
defined, Dim X = Dim Y, Iso(X) = Iso(Y), and X is C stable.
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Proof. By transversality the G normal bundle of X in N is X X M. Let
f:X—>Y be the composition X cN->"Y. Since TN=n¥*(TY D Y X M),
SYTYOXXM=TN|,=TX®XXM; so sTX=f*sTY. This implies
dim X7 = dim TX* = dim TY" = dim Y? whenever X? £, but X%+ g
guarantees this. This shows DimX=Dim Y. Let H &€ Iso(Y). Then
Dim Y(H)+# Dim Y(L) for L > H (6.2); so Dim Y(L) + dim G < Dim Y(H)
by (5.6). This inequality then holds if Y is replaced by X. By (5.7).
H € Iso(X); thus Iso(X) D> Iso(Y). As X < N, Iso(X) < Iso(N)=1Iso(Y): so
Iso(X) =Iso(Y). Use this and sTX = f*sTY together with C stability for ¥
to conclude C stability for X.

THEOREM (6.4). [n addition to the hypothesis of (6.3) suppose
deg,jw|=1 (Section2). Then there is a G prenormal map
(w)=X.Lb0,d)=%,, fX->Y with d=A(s,C) and the conclusions of
(6.3) hold for X.

Proof. Let X be produced by G transversality as in (6.3). As noted in the
proof of (6.3) there is a G vector bundle isomorphism b: sTX = f*sTY. The
A isomorphism d = A(s, C) satisfies s(d) = A(b, C). For G finite and C = g (so0
MTX,g)=nTX =vX) this was explained in {D-P,, Sect. 8|. The procedure
here is the same. The essential point is that A(dh.C)=Ai(s, C) (6.1). It
follows from (ordinary) transversality that degreef=deg,|w|=1. The
conditions (5.3) and (3.9) for t(w) = (X./, b, d) to be a G prenormal map are
now verified using (6.3).

THEOREM (6.5). Suppose Y and Z satisfy (6.2) and TZ > M. Let
w:YX M- M be a proper G map which extends to a proper K map
W ZXM->M jfor given KcG. Suppose lso(Y X M)=Iso(Y).
Iso(Resy Z X M) =1Iso(Res; Z), deg,|w| =1 and w is transverse to 0 with
X=w "0), X° % Q. Then there is a G — K prenormal map t(we) =%, =
(Wi, Fr. By .Dy), Fit Wi — Resy Z with &%, = Res 7y, 7 = t(w).

Proof.  As w is transverse to 0 as a G map, it is transverse as a K map.
Use (6.1) with =Y and N=2Z X M to construct a proper K homotopy
rel NIy between w, and a map hy which is transverse to 0. Set
W= (W, Fy,Byg,Dg)=1t(wy). Apply (6.3) to Res, Z to see W, satisfies
Dim W, = Dim Resy Z, Iso(W,)=Iso(Res, Z), and W is res; C stable.
The conditions (5.3) and (3.9) required for 77, to be a K prenormal map are
now verified using (6.3) and (6.4).

Manifolds Y and Z which satisfy (6.2) are S(4 ® R) and D(4 @ R) for
certain representations 4 of G. We proceed to spell out the properties
required for the representations.
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LEMMA (6.6). Let A be a complex representation of G satisfying (5.6).
Then K € Iso(A) iff for all L > K, Dim A(L)+# Dim A(K); moreover, 1so(4)
is closed under intersection.

Proof. The first statement is a consequence of (5.7) and the fact that A*
is connected for all K. To see the second note: 4 ® A4 satisfies (5.6),
Isod ®A)={HNK|H,K€lIso(4)} and Dim(4 P A)L)=2DimA(L)
for all L; so Dim(4 ® A)(L)# Dim(4 ® A)(K) iff Dim A(L) #+ Dim A(K).

LEMMA (6.7). Let A be a complex representation of G which satisfies
(5.6) and 1s0(4) > * (2.0). Then each element of wy(Y), Y = S(4 ® ) (or
D(A ® R)). can be realized as |w| where w: Y X M - M for some M€ .7,
with Iso(Y X M) = Iso(Y).

Proof. Each element of wl(Y) is represented this way for some M € .7;:
so Iso(M) < . By (6.6), Iso(4d)=1Iso(Y) is closed under intersections; so
Iso(Y X M)={HNK|K & Iso(Y), K € Iso(M)} = Iso(Y).

THEOREM (6.8). Let A be a complex representation of G which satisfies
(5.6) A>T, resp. Sy for G=S0, resp. S° (Section 1) and Iso(4)> ¥
(2.0). Suppose Y=S(ADR) and Z=DADR) satisfy (6.2) and Y
satisfies (5.8ii—iv). Let x € wg(Y) with res , x =1, and deg; x,+# 0 for some
g € Y. Suppose dim Y¢ =0. Then there is a smooth G manifold X with
Dim X = Dim Y, the cardinality of X¢ is Y ,cy.ldeg, x,| and there is a
pseudoequivalence f: X - Y.

Proof. Apply (6.4) to Y and w: Y X M = M with |w|=x € w (Y) and
Iso(Y X M)=1Iso(Y) (6.7). (Note: M€ .%,: A>T, resp. S, implies
TY > M.) This produces t(w)=%,=(X.f,b,c). We must verify that
XC=Y cyoldeggx,| If so X°#@ as degzx,#0 for some p by
hypothesis. A look at the proof of (6.1) (Section 7) shows that the first step
in making w equivariantly transverse to zero is to make w® transverse to
0 € M®. Here there is no group acting and this can be done in an arbitrary
manner. Now Y9 X M®=]],.,«p X M®. The restriction w; of w’ to
p X M has degree equal to deg, x, by definition. Make each w; transverse
to 0 with |degg; x,| points in the inverse image of 0. Then oY is transverse to
0. Now complete the equivariant transversality construction on w by
producing 4 equivariantly homotopic (rel Y¢ X M®) to w and h transverse to
zero. Since X =h~1(0) and X¢ = (%) "'(0) = (w“)'(0), the cardinality of
XG iS Zpe}’fi }degG xpl'

Now apply (6.5) to Y=S(ADR), Z=DAD®R) and w: Y X M->M
with [w|=x for each K € #. Note the assumption res , x = 1 ,- means
resy x = 1, € wY(Y) for each K € #7; so w does extend to wy: Z X H-> M.
Since TZ > M, (6.5) produces t(w,) = 7, with the properties specified and
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Ho=0% 5, where 7 , = {77 | K€ #}. Thus the hypothesis of (5.10) is
satisfied. (Note for G=S§", deg.x=1 because res,x=1,. Thus
degree /€ = 1. This is required in (5.8i).) By (5.10) we may suppose [ is a
pseudoequivalence (modulo a G prenormal cobordism rel{H # G}). This
completes the proof.

We now describe a set . #(G) of complex representations of G when
G =S80, or S* which satisfy the hypothesis of (6.8). The set of their
realifications is denoted by . #,(G).

(6.9) For G=S50,, A€ .#(G) iff 4 satisfies (5.6), 4'=0. A DI is
stable, 4 o T, resp. S, for G = SO, resp. §' and:

(i) Whenever Q<LcG, Q€. and dim 4" =dim 4%
2dim. A" < dim, 4. The inequality must be strict when Q is Z,. / a power
of 2, or (L, Q) is (D,, Z,), [ any prime power. For S the inequality must be
strict when Q is p 'D,, [ a power of 2.

(i) dim.A" >2 for H# G,I and dim.A4" >3 for P€ 7.
(ili) P,€.7 forall P€ .~ and Iso(d) > ¥

For G=S5", A€ .#(G) iff 4 =B @ niH, where H is the quaternion field
with standard action of S*, B €.#(S0,) and 4n > dim, B.

Remarks (6.10). (a) If for all H € Iso(4), {4, 1) is less than {4, ) for
all y€ I(H) with (4,x)# 0, y €g, y # 1. 34 @ I is stable. (b) In addition
3A always satisfies (5.6). (c) It is left to the reader to check that if
A€ .#(G), then Y=S8(4 @ R) and Z = D(4A ® 7} satisfy (5.8). (5.10} and
(6.2). The essential check (implied for G = S0, by (6.9i)) is the Gap-
hypothesis (5.2) for ¥ and Res, Z for K € #.

THEOREM (6.11). Let G be SO, or 8, A €.#,(G) and a= +1. Then
there is a smooth action of G on a closed homotopy sphere X such that X
consists of 2 — « points and the isotropy representation at each points is A.

Proof. let Y=SA®F), Z=DADR) and x€ wy(Y) with
i*(x)=(l,1 —ae) (2.7) and Res, X=1,. (Observe that 4 satisfies the
hypothesis of (2.7) as 4’ =0.) Then Y, Z and x satisfy the hypothesis of
(6.8). From (6.8) we obtain a homotopy sphere X with X“ having
cardinality 1 +|1 —adeg,e|=2—a as deg,e=1 by (2.2)-(2.5). Take
=X

For (6.11) to be non-vacuous we need the following lemma whose proof is
postponed until Section 8.

LEMMA (6.12). . #(G) and hence . #y(G) is non-empty.
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Proof of Theorems A—C. These are all corollaries of (6.11) and the fact
that .#,(G) # @. First note that (6.11) produces homotopy spheres X, with
X9 consisting of i points for i=1 or 3 and the isotropy representation at
each point is 4. If M is any G manifold and p € M? has isotropy represen-
tation A4, then M#Z,= M’ has M'¢ = M® —p U (p,\U p,) and the isotropy
representation at p, and p, is 4. Of course this connected sum is taken at the
point of M whose isotropy representation is A. Repeat this process to
complete the proof of Theorem C. Theorems A and B are immediate from
Theorem C.

7. PROOF OF THE TRANSVERSALITY LEMMA

This section is devoted to the proof of the Transversality Lemma (6.1).
Compare |[P,; D-P;, Sect. 8]. We prove it under the assumption C is good.
The proof in the more general situation where C is .# good is a minor
modification of this proof. We fix notation. Let C be a good representation
of G with g < C. Abbreviate A(E, C) and A(b, C) by A(E) and A(b) when FE is
a G vector bundle and b is a G vector bundle map. View the representation
M of G as a G vector bundle over 0 € M. Then A(M) and A'(M) are defined
and A(M)={A_(M)|we€ M(0)}. If N is any G manifold and « € II(N), set
A (M)= A (M), where w € [I{0) is the unique component with p(w) = p(a),
and set M_ = M*'®, The tangent space of M TM is M X M and y X M <
M X M is regarded as the tangent space T,M of M at y. The differential
DfiTN->TM of a G map fiN-M is a ( bundle map. Set
df=p, o Dft TN - M, where p,: M X M - M is projection on the second
factor. Then f is transverse to 0 € M iff for each x € f'(0), df.: T.N- M
is surjective. For a € fI(N) and xE N,

(7.1) df = df, ® A, (df) @ A, (df>),

where f,: N, - M, is the restriction of f to N,. This means df, is surjective
iff each term in (7.1) is surjective. We emphasize df: TN - M is a G bundle
map covering the point map of N to. 0; so df,:TN,—-M,,
A, df): A (TN)- A, (M) and A/ (df): A, (TN)— A.(M).

Let N be a smooth G manifold provided with a G invariant inner product
on its tangent space. For x € N, let g, be the tangent space to the orbit
GxcM;so g, cT.N. Set
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Here T N — g, is the orthogonal complement of g, in T N. These are not G
vector bundles as the dimension of g, varies with x. With care they can be
treated as G vector bundles. In particular the definition of A(E) and A'(E) for
E either § or TN — ¢ is formally the same as if £ were a G vector bundle,
We observe that A(g, C)=0. This follows from the fact that g _is a sub G,
representation of g and g < C. Set

A"(TN) = 2'(TN — §) = A'(TN)

and denote the restriction of A/(df) to A”(TN) by A”(df'). Its target remains
A'(M). Now observe this key point. If x € N, and f(x)=0, then 1.(g,) €
Ker(A.(df,)): so if A'(df,) is surjective, then A”(df,) is surjective and con-
versely.

Here is one special situation where an equivariant transversality result
follows immediately from the classical case where there is no group acting.
Its proof is left to the reader.

LEmMA (7.2). Let a group L act freely on a manifold S. /S —- T be a
proper L map, T' < T be an invariant L submanifold and A < S be a closed
invariant set such that f is transverse to T' on A. There is a proper L
homotopy of frel A to a map transverse to T'.

Let W and Z be L/H spaces with L/H acting freely on W. Let E be an L
bundle over W, E’ an L bundle over Z, h: W— Z an L/H map and C an L
representation. Set

#=min{d (. E,.) — G Ej))h
xEIH), xeC  x+#1, (. E,)+0, weE W.

Lemma (7.3).  Suppose dim W L u, D < W is an L/H invariant subspace
and t: A'(E, C) |, > A'(F, C) |, is a surjective L bundle map covering h|,.
Then t extends to a surjective L bundle map covering h. Here F = h*E’.

Proof. Sought is a K=L/H section s in the space I' of surjective H
bundie maps from A'(E, C) to A'(F, C) which extends the section ¢ of I'|,,.
Observe that I” is the total space of a K fiber bundle over W whose fiber at
x € Wis 2/82', where Q2 is Aut,(4'(E,, C)) and Q' is Aut,(Ker 7, C)). By
(1.0) and (1.1), n(£2/22") is zero if i Cu. Now K sections of I' extending ¢
are in I-1 correspondence with sections of the fiber bundle I'/K » W/K
which extend ¢/K. The fiber of this bundle is again £/2' as K acts freely on
W. The existence of s now follows from obstruction theory.

Progf of (6.1). We refer to (6.1) for notation and hypothesis. We replace
w there by f. Set

a(N)={a € I(N)| G, = p(a) for some x E N }.

607/46/1-5
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Let § < a(N) be a G invariant subset with the property that if §€ @ and
y< B then y€ 4. Let a € n(N) — 6 be a minimal element.

(7.4) Inductive hypothesis: U is an open invariant set in N containing
N|; and N, for § € 6 such that:

(a) A(df)=A(s) on U,
(b) [fis transverse to 0 on U.

In addition suppose

(c) f,istransverse to 0c M,,.

(7.5) Set X=f"'(0) and H = p(a).

View the G, normal bundle v, of N, in N as a G invariant subspace of N
using the Equivariant Tubular Neighborhood Theorem [4]. Let B, and B, be
closed G, invariant subsets of N, with N, NN|[;UUg; Ny
B,c N,—B,=BcU. Here S denotes the closure of S. Set F=N_,— B,
and v/ =v_ — §|,. Observe that ¢|. and hence v’ is a G, vector bundle over
F. Let (D, S) resp. (D', S') be the unit disk; unit sphere bundle of v, resp. v’
and D, the vectors in D of norm not exceeding e.

Choose ¢ so small that D, , < U and 0 <¢ < 1. Choose a G, invariant
function ¢: D— [0, 1] so that ¢=1 on D[, US and ¢=yop, on D,
(Wass|. Here p,:v,— N, is bundle projection and y: N, [0,1] is a G,
map with y=1on B, and y=0 on B,.

Since f is transverse to O on B, df, is surjective for x € BM X_. This
means each factor in (7.1) is surjective and this implies A/(df,) is surjective
for x€eBMNX,. Let B,=BNF and t¢,:A2(TN)|.— A, (M) extend
Ag(df)fg,nx, With f, |~y surjective. First produce {,[rny, using
Lemma (7.3). The extension of this to F is always possible. See [1; 1.4.1].
We apply (7.3) with W=X NF, D=X,NB,, Z=0, k the point map,
L=G,, H=p(a), E=(TN—§)|, and E'=M viewed as an L vector
bundle over 0.

We verify the hypothesis of (7.3). Since a € n(N), there is a point x € N,
with G,=H. If y is any point of N, its isotropy group contains H. If it
strictly contains H, it is contained in U by definition of U. This means
L/H=K acts freely on F and so on FNX,. Since f, is transverse to
0OcM, with X,=f_'(0) and since N=Y XM, it follows that
dim X, =dim Y”. By hypothesis sTY = A for some representation 4 of G.
Let y€ I(H), x€C, x+ 1 and (T,N—g,,x)+# 0 for some p€ X, NF < N.
Since T,N=T,T®M, n(p)=y and TY > M, it follows that {4, y)+# 0.
Since H € Iso(N)=1Iso(Y) and Y is C stable ((3.6) and (3.7)),

(7.6) dim Y7 = (4, 1) <A, 1) — (& 1
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s0
dim W =dim X, =dim Y" < {4, ) — (g 1) S(T,N =&, x) — (M, x)-

This means dim W  u (7.3) and the conditions of (7.3) are verified.
Note that v’ is A, (TN)® AZ(TN) restricted to F. Define a G, map
L:D'->M=M,®i,(M)®A(M)by

L = (fa Dpn’la(s)e) tn)
Define h: D' - M by

h=¢f+(1—9¢)L.
(1.7) dh=¢df + (1 —¢)dL + 4,
where in terms of local coordinates

4=((f;— L) o/éx).

Assertions. Ag(dh,)=As(s,) for 6 € n(N) and x € D, N, AL {dh,)=1t,,
whenever x€EX, NF, h=f on D'|znp, US|z and f,=h,. These are
evident from the definitions and this observation: Whenever x € DM Ny,
As(4,) and 45(4,) are zero (¢ =y o p, there) and A4(dL,) = A,(s,).

For points xEFNX,, dh, is df, ®A,(s,)Pt,,. Each map is
surjective; so A is transverse to zero on FM X . Let f' be fon N~ G X; D’
and be the unique G extension of & to G X;_ D'. Then ' is transverse to
zero on a neighborhood V of N,,. Let U’ be UU (VNG X; D’). Then: (1)
U’ contains Ny for fEOUG -a=6". (2) Adf’) = A(s) on U'. 3) fis
transverse to 0 on U’. Let 6 € 7(N) — 6’ be a minimal element. Then f} is
transverse to 0 € M, on Ny,NU’. Replace U’ if necessary by a smaller G
invariant set again called U’ so these properties hold for U’ the cosure of U’
Use (7.2) and the equivariant homotopy extension theorem to produce a
proper G homotopy of f’ rel U’ to a map f" such that £ is transverse to
0 € M,. Note that G,/p(d) acts freely on N, — R, where R is an open
invariant set satisfying (1)~(3) and R c U. (7.2) is aplied to this space and f;
restricted to it.

This provides the inductive step for the proof of (6.1). It also takes care of
the initial step in the induction where § =@ and U = @. The induction is
completed when & = n(N).

8. REPRESENTATIONS OF SUBGROUPS OF SO, AND S

The aim of this section is to prove g is good when G =80, (1.7) and to
show .#(G) non—empty (6.12). These are statements which involve infor-
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mation about representations of G and its subgroups. The proofs of (1.7) and
(6.12) involve easy computations from representation theory once a few
specific facts about the representations of subgroups of SO, are collected.
The principal computations in (1.7) and (6.12) are involved with determining
which y € I(H) are contained in g for each subgroup H< G and in
computing (4, y) for a representation 4 of G when y € I(H) and y € g or
x=1. In particular the first is equivalent to describing Res, g for each
H < G, so our first task is to do this.

In order to avoid confusion, we write { ), for the inner product defined on
representations of H. When necessary to distinguish between real and
complex inner products, we use { )’ to denote the latter.

For each integer k # 0, n, denotes the real two dimensional representation
of O, defined as follows: View R’ as the complex numbers C. For
tES'c0,and zEC, set toz=1".z and 1o =7 the complex conjugate
of z. Since ' and t generate O, this defines the representation. Then n, is
irreducible, n, is equivalent to n_, and is the unique representation of O,
whose restriction to S' is t*. Let d denote the real one dimensional represen-
tation of 0, with tx=x for t € S' and x € R while 7x = —x.

Using the definition of T, (Section 1) as the set of complex polynomials in
the coordinates of H of degree 2k. it is easy to verify that

(8.1) Res, T,= (N,®N,_,® - ON, ®d*®C),

where N, =n,® C. In fact N, c T is the O, invariant subspace generated by
2% 'w! and z'w* ' if the complex coordinates of H are z and w while

d* ® C is generated by z*w?*. It follows that

Res()zts = 2(”5 @ n57| @ e @ n[ @ ds)-

(8.2)
Res, g=n @d.
Note T, =g ® C (Section 1); so ¢, = 2g.

One easily checks that Res,n, =Res,n, when H =D, iff r= tsmod k
and <n,, 1), 0 iff k|r and then Res,n, = Res,(1 ®d). Let C,, be the
number of integers /, 1 </<s, which are +1mod k and let D be the
number of these / which are 0 mod k. Then

(snp=2-Cy,

_ 2 s=10),
(®3) (tedy =20+ |0 0 (O
~ 0, s=1Q),

s L= 2Dy + 32, s=0(2).
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We remark that (8.3) is a consequence of (8.2), the fact that the restrictions
to H of d and 1 are irreducible, the restriction to H of n, is irreducible if
k +# 2 and the interpretation of (¢, x) as the multiplicity of y in £, when y is
irreducible.

For the cyclic group K = Z,, the numbers {1, x), for y € I(K), x € g can
be determined from either (8.4) or preferably from the character formula
(1.5) and (1.6). Unless K =1, there are two y € I(K) with y € g. One is
x = L. The other is called y. We find

(. wy=2C k+2 and 4C,k =2,

(8.4)
(t;,1)=4D, + 2.

With the aid of a character table for I=4,. O =S, and T =4, the fact
that each element of G is conjugate to an element of S'c G and the
character formula for T, (1.5), the following formulas are verified:

(8.5) (T\.T )yfor H=0,T is

L2+ D20 + 1)+ 9(=1)1 ¢ + 6a,a,), H=0
T2+ DQw + 1)+ 3(—=1)"*“ +8b,b,},  H=T.

Here a, is | for A congruent to 0 or | mod 4 and is —1 if 4 is 2 or 3 mod 4:
byis 0, 1, =1 as A is 1, 0, —1 mod 3.

8.6) (T,.Ty) is
{24+ 14 (=1 154206, + 12¢,).

Here ¢, is 2, 1, 0, —1, =2 as A is 0, 1, 2, 3, 4mod 5. Observe that
T,=1®C.

LEmMMA (8.7). Resy g is irreducible for H=0,T, L.

Proof. g® C =T, (Section 1). So Res,, g is real irreducible if Res, T is
complex irreducible. It suffices to take H=T because T is a common
subgroup. The result follows from (7',, T,)> =1 by (8.5).

Proof of (1.7). In the case G = S0,, we must verify either (l.2a) or
(1.2b) where C = g for each subgroup H of G. For G = S* we need to verify
this unless H is cyclic of order 4, 2 or 1. First SO,. If NH = H or Res,, g is
irreducible, there is nothing to show. This occurs for H=1, O, O, and T. If
H is not one of these, it is a subgroup of 0,. Now Res, g=n,®d and
Res,, d is irreducible for all H while Res,,#, is irreducible unless H is D,, Z,
or 1. So if H is not one of these groups and y is one of Res, n, or Res,, d,
then y is Res,,, w for w=n, or d. Note in these cases NH < O, (Section 2).



68 TED PETRIE

For H=D,, Res, g contains the three non-trivial representations of D,
different from 1; so y & g implies y =1 and this lifts to NH. For H=Z,,
Res,;, g contains both irreducible representations of H: so there is nothing to
show,

Now take G =S’. For any subgroup H of G, NH=p 'NpH. For
H=+p 'K, where K=D, or Z,, (1.2a) for K implies (1.2a) for H. Note

p 'D,=Qy= H is the quaternion group of order 8 and I(H)= Res,, IH U
p*I(D,). Since | and Res, H lift to G, the condition (1.2b) is verified for
H=Qs.

Proof of (6.12). It suffices to prove #(G)#@ for G=S0,. Let
A=3(T,® T, ®6T,. We claim 34 € #(G), so . #,(G) # 0. The conditions
(6.9) must be verified for 34. This requires the determination of dim, A" for
all L — G. For some L these are listed in these two tables:

L:D, D, D, D, D, D, 2, 2,2, Z, Z; Z,
9 9 9 12 21 30 24 24 24 30 48 66

The dimensions of fixed point sets of the groups not in this table can be
determined from the table via: A’ = A%, 4% =A% and 4% =45 for [ > 7.
The tables and subsequence equalities use (8.2)-(8.6) and dimcA’ =
(4,1 ® C); = 3(4, 1),. By inspection (6.9i-ii) and A’ =0 are now verified
for 4 and hence 34. In view of (5.7) and (6.10), the conjugacy classes of
isotropy groups of 34 are those listed in the table; thus (6.9iii) holds by
inspection of these tables. Note (2.0) that ¥ =Iso(3t,). Since 37,c A4,
¥ < Iso(3A).

To verify 34 @ 1 is stable, we use (6.10a). For the subgroups H € Iso(4)
and H < 0,, (6.10a) is verified by using (8.2)-(8.4). For H=0 or T, use
(8.5) and these hints: Res,, g is irreducible. Thus the condition for H = O or
T in (6.10a) is (4, 1), < (4, g)y. We verify this inequality

A, 8)n 2264, 8RChp =2(A4, T )y 2 U4, To)y = (A, Ly

The next to last inequality requires (8.5). Condition (6.10a) is vacuous for
H = G because g is irreducible and (4, g)=0.
Finally note that (6.10b) implies condition 34 satisfies (5.6).
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