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0. INTRODUCTION 

The object of this paper is to treat the following old question of 
Montgomery and Samelson [M-S] and some of its consequences: 

Which groups act smoothly on a closed homotopy sphere with exactly one 
fixed point and what are the isotropy representations of G which occur on the 
tangent space at the fixed point? 

The first and only previously existing example of such an action was given 
by E. Stein for the group SL(2, Z,) [St]. A related question was solved by 
Oliver [O,]: Which groups act smoothly on a disk without fixed points? A 
group which acts on a sphere with one fixed point acts on a disk without 
fixed points. In [P,] the author announced: 

THEOREM A. These groups act smoothly on a homotopy sphere with 
exactly one fixed point: 

(i) S3,S03, 
(ii) SL(2, F), PSL(2, F) with characteristic F odd, 

(iii) any odd order abelian group having at least three non-cyclic 
Sylow subgroups. 

This paper provides the proof of this theorem in case (i) and identifies 
some of the isotropy representations which occur. These are the represen- 
tations occurring in the set .5$,(G) defined in (6.9). Let G be S3 or SO,. 

THEOREM 0. Given any integer n > 0 and R E 9,,, there is a closed 
smooth homotopy G sphere Z such that ZG consists of n points and the 
isotropy representation at each is R. 

THEOREM C. If M is anv smooth G manifold and p E MC is a point 
whose isotropy representation A lies in 9,,(G), there is a smooth G manifold 
M’ having the same homotopy type as M, M” =M” -pV (p, . . . p,} and 
the isotropy representation at each pi is A. 
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To the author’s knowledge, it is not known whether there is a group which 
acts smoothly on a disk without fixed points yet cannot act smoothly on a 
sphere with one fixed point. Many groups which are not known to act 
smoothly act topologically on a spere with one fixed point. Take any smooth 
fixed point free action of G on a disk D [O, , O,]. Then G acts topologically 
on the sphere D/aD with one fixed point. Here is a challenging question 
which directs attention to the central issues: Is there any connected simple 
Lie group besides SO, which acts smoothly on a sphere with onefixed point? 

Aside from the main applications-Theorems A-C-this paper offers 
these general tools for constructing smooth actions on a manifold whose 
underlying homotopy type is fixed: (i) an equivariant transversality lemma 
(6.1), (ii) an equivariant surgery theory (Sections 3 and 4) (iii) an 
equivariant surgery induction theorem (5.10). These topics have independent 
interest in their own right. The Equivariant Transversality Lemma (6.1) is 
used in conjunction with the equivariant stable cohomotopy theory w,,*(Y) 
associated to the G space Y when G is a compact Lie group. An element of 
(I):(Y) is represented by a proper G map w: Y x M-, M, where M is some 
representation of G. When Y is a smooth G manifold and the hypothesis of 
(6.1) is satisfied, o is properly G homotopic to a map h transverse to 0. The 
manifold X = h - ’ (0) inherits some additional structure which serves as input 
for the equivariant surgery theory. In particular the composition 
J X c Y x M -+ Y is a G map whose degree is 1. There is a stable G vector 
bundle isomorphism 6: sTX+f*sTY, where sTX is the stable G tangent 
bundle of X. Additionally there is a A bundle isomorphism 
d: A(TX)+A(f*TY) (Section 3). The datum iyt’= (X,f, b, d) is called a G 
prenormal map. It is what is required for equivariant surgery theory. This 
theory describes a method of converting (via G cobordism) P’ to 
9” = (X/J’, b’, d’) withf’ a pseudoequivalence, i.e.,f’: X’ --f Y is a G map 

which is a homotopy equivalence. The Equivariant Induction Theorem 
describes conditions where pseudoequivalence is achievable. In general. an 
equivariant surgery induction theorem identifies a family P of proper 
subgroups of G such that if for each H E 2’ the restriction to H of fl’ is the 
boundary of an H prenormal map r/,;, then $7’ is G cobordant to 27” with 

f’ a pseudoequivalence. For the problem at hand we require that this 
cobordism is rel X” so Xc =X”. 

Briefly the program for applying (i)-(iii) to the problem of constructing 
smooth homotopy spheres with exactly one fixed point is this. Begin with 
Y = S(A @ iR+ the unit sphere of the representation A 0 R where A is a 
representation in 9,(G) with A” = 0 and G acts trivially on R. Thus Y” has 
two fixed points p and q. A suitable x E w:(Y) is produced with: (iv) 
requirements on i*x E o:(P), i: UC + Y and (v) res,,X = 1 E w;(Y) for 
H E J?‘. The Equivariant Transversality Lemma is used to produce a G 
prenormal map P‘= r’(x) = (X,J b, d),J X + Y whose properties implicitly 
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depend on x E w:(Y). Condition (iv) on i*x is used to arrange that 
XG = one point while (v) is used to satisfy the hypothesis of the Equivariant 
Induction Theorem, i.e., resH?Ve= 8%; for H EZ. This theorem implies 
that W’ is G cobordant (rel X”) to Z?? ” withf’ a pseudoequivalence. Thus X’ 
is a homotopy sphere and X” is one point. 

These methods have been used to study other invariants of actions on 
homotopy spheres. We mention two explicitly. Let Y be a smooth G 
homotopy sphere. Suppose for each subgroup H of G, each component of Y” 
has the same dimension-dim Y”. Define an integral valued function on the 
subgroups of G by 

Dim Y(H) = dim Y” + 1. 

The definition is so arranged that Dim S(A @ R)(H) = dim A” when A is a 
representation of G. It is an old theorem of Artin [Ar] that the values of 
Dim S(A @ R) are not independent and Dim S(A @ R)(G) is a function of 
(Dim S(A @ R)(C) ) C cyclic}. Using the methods here, this functional 
dependence is seen to fail for general smooth G homotopy spheres. 

THEOREM 1 D-P,]. There is a function v/~ such that Dim Y(G) = 
W,(Dim Y(H) ( H # G} for ever?’ smooth G homotopy sphere Y ifs G is a 
non-cJ,clic group of prime power order. Compare also (tD-P ]. 

Another interesting invariant of a smooth action of G on a homotopy 
sphere Y is the set of isotropy representations (T,, Y ) p E p } of G on the 
tangent space of Y at fixed points. In fact an old question of P. A. Smith 
asks if necessarily the representations of G at two isolated fixed points of an 
action of G on a homotopy sphere must be equal ] Sm 1. This question has a 
negative answer. The first examples [P4] (following strong positive evidence 
by Atiyah and Bott IA-B] and Milnor [ Mi ]) of distinct isotropy represen- 
tations were produced using a modification of the program outlined above 
for producing one fixed point actions. See also [P?]. For other applications 
of the methods here. see also ]P,, P, J. 

The author has expended considerable effort to make this paper as self- 
contained as possible. In particular there is a self-contained account of the 
relerant equiuariant surgery theory. The only outside references to surgery 
required are to some of the less technical results in ]W, ]. In spite of this 
most of the results in this paper appear for the first time in print here. At a 
few points the author had to sacrifice generality for clarity. In particular 
some of the hypothesis of (5.10) can be weakened; however, that is not 
relevant to our main applications. Sections 1 and 2 introduce the basic 
notation and background. 

Here is a brief description of the setting for equivariant surgery and 
induction theorem (Sections 3-5) whose goal is to convert an equivariant 
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map f: X-+ Y between smooth G manifolds into a pseudoequivalence. The 
basic datum for equivariant surgery is a K - G prenormal map of triads 
pp= (IV,F,B,D) ((3.9) and (3.9’)). H ere K is a subgroup of G. Briefly W 
is a K manifold whose boundary aW is the union of two invariant G 
manifolds X, and X, (which might be empty), F: W-t Z is a map of K - G 
manifold triads while B and D are certain equivariant bundle isomorphisms. 
In addition there are G prenormal maps q= (Xi,fi, bi, di) for i = 0, 1 with 
f: Xi + Yi, aZ = Y, U Y, such that restricting ?%$ to a K prenormal map 
gives the K prenormal map WI,,. For i = 0 abbreviate ?& as (X,f, b, d), 
where J X + Y. Let Q be a subgroup of G and ~1 E rrk+ idfQ). Definition 
(3.17) (see (3.30)) tells what it means to do surgery on (5V; p). It is a 
process which creates a new K - G prenormal map 5V“’ with r; = %y. The 
class 8,~ E rrk(XQ) which lies in the kernel of rrk(XQ) -+ n,(Y”) is killed in X’ 
where s-6 = (X’J’, b’, d’). Theorems (3. IS), (3.3 1) and Corollary (3.19) tell 
when surgery on a class ,U E 7ck+ ,(J”) is possible. For example, the condition 
in (3.19) is k < 4 dim XQ. 

The role of equivariant vector bundle data (B and D appearing in the 
definition of the prenormal map ?V” in (3.9) and the splitting (1.1)) in the 
process of equvariant surgery and transversality is much more prominent 
than in the case of equivariant surgery and transversality dealing with free 
actions. See [W i] for equivariant surgery for free actions. Some reasons for 
this are made aparent in the motivational remarks in Section 3. Another 
reason is the relation between bundle data (3.9) in equivariant surgery and 
its relation to the subtle process of equivariant transversality. Indeed the 
Transversality Lemma (6.1) naturally provides the required bundle data 
(B, D) for a prenormal map. See Section 6 and also [D-P,, Sect. 81. Many 
of the results which deal with bundle data in Sections 3, 6 and 7 have no 
counterpart or are trivial for equivariant surgery involving free actions. 
Sections 3 and 7 dealing with the equivariant vector bundle aspects of 
surgery and transversality are the most demanding. To help motivate the 
material there we include some motivational discussion now and more in 
Section 3. Here we mention the unexpected role of the splitting (1.1) and the 
notion of stability in equivariant transversality and surgery. 

In (1.1) we introduce the splitting of an equvariant vector bundle 
depending on a representation C. In particular if N is a smooth G manifold 
and K is a subgroup of G, we have a splitting of the normal bundle 
v = v(NK, N) of NK in N as 

v=A(v,C)@A’(v,C). 

This is a splitting of N(K) (normalizer of K) vector bundles and C is a 
representation of G which contains the Lie algebra of G. The splitting is 
arranged so that each fiber /l’(vx), x E NK, viewed as a representation of K 



ONE FIXED POINT ACTIONS, II 19 

contains all the irreducible representations in V, which occur in C (viewed as 
a representation of K). From the splitting of v we obtain a splitting 

(0.1) TN INK = TNK 0 A (v) @ A ‘(v), 

where C has been omitted, whose role in the Equivariant Transversality 
Lemma (6.1) we now explain. 

Let M be a representation of G, Y a smooth G manifold, N = Y x M and 
let w: N + M be a proper G map. Lemma (6.1) gives a condition-Y is C 
stable (3.6)-under which w is properly G homotopic to a map f transverse 
to 0 E M. Two general concepts are involved in the proof of (6.1). Compare 
[P,, Chap. 111. The first is that the problem of equivariant transversality is 
involved with global phenomena in contrast to the non-equivariant situation 
where everything is local and trivial. The second is that Schur’s lemma 
applied to the equivariant bundles involved with transversality gives a 
decomposition of the problem into two stages and provides the basis for the 
inductive proof (6.1). 

To amplify the second point suppose f: N-1 A4 is transverse to 0 with 
X = f -l(O). Let K c G and let x E X be a point with isotropy group K. Then 
the differential dfx offat x gives a surjective K map 

dfx: T,N-+ TOM 

between tangent spaces at x and 0 which splits according to (0.1) and Shur’s 
lemma as 

(O-2) dfx = df: 0 A (dfx,) 0 A ‘(dfx,). 

The transversality condition and the splitting (0.2) imply each factor is 
surjective. Let G(x) be the orbit of x in X and g, be its tangent space at x. 
Note g, E Ker(df*) because f (x) = 0 and f is a G map. This means A ‘(g,) = 
g, f-1,4 ‘(v,) is in Ker A ‘(df,); so A ‘(df,) II2 is already subjective on the 
complement L of A ‘(g,) in /i ‘(v,). On the other hand g, n A(v,) = 0; so 
there is no interaction between the Lie algebra of G and A(v,). 

The idea of the proof of (6.1) is to reverse these observations to make dJ; 
surjective. This is done inductively on the partial order in the set of isotropy 
groups of N. Let K be such an isotropy group and x E XK. We suppose dfy is 
surjective whenever y E XH for H > K. We must make each factor of df, in 
(0.2) surjective. (In the process X is altered rel U,,, X”.) To achieve surjec- 
tivity for the first factor traditional methods of non-equvariant transversality 
are used. This is the first stage and is easy. The second stage requires making 
the second and third factors in (0.2) surjective. The second requires work but 
no further hypothesis. Surjectivity for the third requires the stability 
assumption (3.6). In (6.4) we show how to use the transversality lemma to 
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produce the data for equivariant surgery, i.e., a prenormal map (3.9). The 
stability condition (3.6) appears also in the process of equivariant surgery 

through Lemma (3.26). 
As a point of interest we note that Dovermann and Rothenberg have 

extended the above outlined methods of equivariant transversality to 
topological actions of finite groups on manifolds. Madsen and Rothenberg 
have used the resulting topological transversality lemma in their work on 
topological equivalence of representations of finite groups. 

Section 4 analyzes what happens when k = $ dim WQ and ,B E 7rk+ ,(FQ). 
Here homological considerations appear. Chiefly these are dictated by Smith 
Theory which asserts that if F: W+ 2 is a pseudoequivalence, then for each 
subgroup P whose connected component P, is a torus and PIP, is a p group 
(the set of all such groups is denoted by .Y), FP must be a mod p homology 
equivalence. This must hold for all primes p. This means that in the process 
of converting F to a pseudoequivalence we are led to the inductive situation 
where Q is one of the groups mentioned above, FQ induces an isomorphism 
in homology up to the middle dimension of WQ ((4.8) using Section 3) and 
for all P as above with Q u P and P/P, a p group not 1, F’ is a mod p 
homology equivalence. Then (4.6) K,( WQ) =_Ker(H,( WQ) ~oH,(ZQ)), -- 
Tb;!edp WQ. is a, projective Z,,,(p) module Q = N(Q)/Q, Q = Q/Q,,. 

,,,, (Z locahzed at p) coefficients are understood. We analyze when 
this is free (4.13). The main technical results (4.14) and (4.15) then tell when 
F’ is G prenormally cobordant (produced by equivariant surgery) to % ; 
where F’Q is a modp homology equivalence and X’ is unaltered for P > Q. 

Section 5 contains the induction theorem for G = SO, and S’. As 
mentioned this asserts that if F ~ is a G prenormal map and res,% ‘= ?X, 
for all K in a certain family of subgroups, then Y’ is G prenormally 
cobordant to W ” with % ‘I = (X’,f’, b’, d’) and f’ a pseudoequivalence. The 
condition Res,‘%‘“= BFi is nothing more than %$ is a K - G prenormal 
(3.9’) map of triads with (Y8$)0 = YF and (Vi), = 0. Thus we can apply the 
results of Sections 3 and 4 to prove the induction theorem (5.10). The 
essential results in the proof of (5.10) are (4.13), (4.14) and (4.15). 

Section 6 contains the proofs of Theorems A-C. Section 7 contains the 
proof of the Equivariant Transversality Lemma (6.1) and Section 8 is a 
technical check that the set .‘ZJG) is non-empty. 

Because of the interval between announcement of the main results here 
and their publication, it is prudent to give some history. The Equivariant 
Transversality Lemma (6.1) has evolved since 1973 when the author first 
announced a version for finite groups in lectures at Heidelberg and 
Saarbrticken. It is used to establish the main results of this paper for finite 
groups. See also [Pj, P,, P,]. The equivariant surgery theory for finite 
groups was developed jointly with Dovermann [D-P, 1. Much of the material 
on equivariant surgery theory for general compact Lie groups appearing in 
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Section 4 was presented (in cruder form) in lectures at Aarhus in 1976. The 
article [P,] from August 1975 on the projective class group and equivariant 
surgery (Section 4) was an outgrowth of the author’s lectures at Mexico- 
Centro de Investigation and the University of Chicago. The author 
acknowledges the hospitality and support of the above institutions. The 
Equivariant Surgery Induction Theorem (5.10) has an analog for finite 
groups which was jointly done with Dovermann ID-P,]. The induction 
theorem there was used to treat the main results of this paper for finite 
groups [P, 1. The induction theorem of Dress [Drl for the Wall surgery 
obstruction groups may be recast in the geometric terms mentioned above 
(except that all group actions must be free). The theorem of Dress is entirely 
algebraic and plays a role in the geometric proof of the induction theorem of 
[D-P, 1 but has no role here. 

The author expresses his gratitude for the comments of Dovermann and 

Oliver on the material in this article. 

1. GENERAL REPRESENTATION THEORY 

View a complex (real) representation of G both as a vector space A and a 
homomorphism A ’ of G into the complex (real) general linear group GL(A ) 
of A. This representation is denoted by A with A’ understood. For g E G, 
trace A(g) is denoted by A(g). Let p be normalized Haar measure on G and 
for two representations A and B of G set 

(A.B)=.l;.A(g)B(g)~~(g). , 
When G is finite of order 1 G /, this becomes 

fA.B)--& g;; A(g)&). 

Here an overbar denotes complex conjugation. Then A and B are said to be 
orthogonal if (A, B) = 0 and A is irreducible if (A, A) = 1. 

When x is an irreducible representation, x E A means x occurs as a 
subrepresentation of A and A, is the maximal subspace of A orthogonal to 
all irreducible representations different from x. The set of all real irreducible 
representations of G is denoted by Z(G). The one dimensional real trivial 
representation is denoted by 1. For x E Z(G), the set of all real linear G 
equivariant endomorphisms of x is a division algebra D, over the real 
numbers R whose dimension over R is denoted by d,. The invertible real 
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linear G equivariant endomorphisms of a representation A of G are denoted 
by AutJ. By Schur’s lemma 

(1.0) Aut,A = n Au&#,) 
XEI(G) 

and A%@,) = GL(@, x), D,); 

so rck(AutG A) -+ n,(Aut, A ‘) is an isomorphism if A c A ’ and k < 
min{@,x)d,- 1 I @,x)#O). 

Let Hc Nc G and suppose H is normal in N. Let E be an N vector 
bundle over an N space X with trivial H action and let C be a representation 
of G. We seek an orthogonal splitting 

(1.1) E=EH@A(E,C)@A’(E,C) 

where for x E X, the fibers over X are the H representations 

A(E, C),= @ E,,; A’(E, C) = @ E,,. 
p+c.x+ 1 XEC.X” I 

Here x ranges over Z(H) and C is viewed as a representation of H. Note the 
splitting when it exists is functorial for N bundle maps because it is 
orthogonal. This also follows from Schur’s lemma. It means that an N 
bundle map b splits as bH @ A(b, C) @ A ‘(b, C). 

Here are two conditions which guarantee the existence of A(E, C) and 
A’((, C): 

(1.2) (a) Each x E Z(H), x E C extends to XE Z(NH). 

(b) Each x E Z(H), x & C extends to XE Z(NH). 

Here NH is the normalizer of H. We say C is good if: 

(1.2’) For each H c G, either (1.2a) or (1.2b) is valid. 

More generally if .Z is a conjugation invariant family of subgroups of G 
which is closed under taking subgroups, we say C is .Z good if for each 
H c G, H fZ .Z’, either (1.2a) or (1.2b) is valid. 

Let E’ and E be N vector bundles over X and let Hom,(E’, E) denote the 
vector bundle of H equivariant real linear vector bundle homomorphisms 
from E’ to E. It is an N vector bundle with (rib)(v) = nb(n- ‘,u) for 
b E HomH(E’, E), u E E’ and n E N. As a special case, let E’ = E =x be an 
irreducible representation of N which restricts to the irreducible represen- 
tation 1 of H. Then Horn,@, 3 is D,. It inherits an action of N as shown 
above and 2 is a module over it. Directly from the definitions, we find 

n(A . u) = (n/l) * nu, AED,, VEX; 

so i eo, Horn&, E) is an N vector bundle over X with n(w @ b) = nw @ nb. 
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Here 2 is X x X: In case (1.2a) resp. (1.2b), define (Compare [A, ] and 

IA,, P. 791) 

(1.3) (a> A(& C) = 0 XE iI ii C%,, Hom(ii, E), 

(b) ~‘(E,C)=0,,,2~ODXHom(ji,E), 

where.4”~={~EZ(H)~~~C,~#l},~Y~=(~EZ(H)J~EC,~#l}and~is 
a fixed extension of x. There are obvious monomorphisms of /1(E, C) and 
A’@, C) to E. Use (1.1) to define A’(E, C) when (1.3a) is used to define 
A (E, C). Similarly use (1.1) to define A (E, C) when /1’(E, C) is defined by 
(1.3b). Note that A(E, C) and A’@, C) are defined or any subgroup pair 
(ZZ, N) with H normal in N whenever C is good. If C is .T good, they are 
defined whenever H 6? .X. 

Throughout this paper we deal with objects with G action. If H c G, Res, 
denotes restriction of the action to H. Often from context it is clear that an 
object with G action should be viewed as one with H action. Then Res,, is 
omitted. E.g., if x E Z(H) and A is a representation of G, x E A means 
x E Res,A. 

For any integer k, let tk denote the complex one dimensional represen- 
tation of the circle S’ with f(z) = tk . z for z E C and t E S’ c C. As real 
representations tk and t’ are equivalent iff k = $1 and tk is real irreducible 
unless k = 0. Since S’ is the maximal torus of S3 and SO,, the represen- 
tations of these two groups are determined by their restrictions to S’. 

Let G be S3 viewed as the unit sphere in the quaternions IH. The 
quaternions are viewed as a right complex vector space. Then left 
multiplication by elements in S3 makes IH a complex two dimensional 
representation of S3. The ring of complex polynomials in the two complex 
coordinates of IH inherits the structure of an infinite dimensional represen- 
tation of G. The action of G is defined by gp(v) =p( g- ‘0) for g E G, u E iH 
and p a polynomial in the coordinates of u. The subspace of polynomials of 
degree k is a finite dimensional invariant subspace; so defines a complex 
representation Sk of G. From the immediate calculation 

Res,JH=t+r-‘, 

we find that for k odd, resp. even, 

(1.4) 
Res,, Sk = tk + trk + tke2 + trkC2 + . . . + t + tc’, 

Res,, Sk = tk + trk + tkp2 + trk+* + . . . + t* + t-* + 1. 

SO, is the quotient of S3 by its center Z, = { 1, -1). Let p: S3 + SO, be 
the quotient map. Since -1 E Z, acts trivially on polynomials of even 
degree, S,, in fact comes from a representation T, of SO,. Formally 
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p*T, = Szk. Since the circle in S3 double covers the circle in SO,, (1.4) 
implies that 

(1.5) Res,lTk=tk+fPk+tk-l+t-kt’+... +t+t-‘+ 1. 

Denote the realilications of Tk and Sk by t, sk. 
Let g denote the Lie algebra of G. It is a real representation of G. Then 

(1.6) 
g@C=T,, G=SO,, 

g@C=p*T,=s,, G = S3. 

This easy check is left to the reader. 

LEMMA (1.7). If G = SO,, g is good. If G is S3. g is .% good, where 
K E .X iff K is cyclic of order 4, 2 or 1. 

The proof of this is postponed until the representations of the subgroups of 
these groups are discussed in Section 8. 

COROLLARY (1.8). Let G be SO, (S3), H c N c G with H normal in N 
(and H & .R ). Then any N vector bundle E over an N/H space has a 
splitting E = EN @ A (E, g) @ A ‘(E, g). 

2. SUBGROUPS OF S3 AND SO, AND EQUIVARIANT COHOMOTOPY 

The subgroups of S3 and SO, are well known. See [Wo]. The subgroups 
of SO, up to conjugacy are: O,, the icosahedral group Z, the octahedral 
group 0, the tetrahedral group T, S’, the cyclic group of order n, Z,, the 
dihedral group D, of order 2n and the trivial group 1. The maximal proper 
subgroups are O,, I and 0. They are their own normalizers. O2 is the 
normalizer of S’ and Z,. The normalizer of D, is Dzn unless n = 1. The 
normalizer of D, is 0. The normalizer of T is 0. 

The subgroups of S’ up to conjugacy are the groups H’ =p ‘H for 
H c SO, and the cyclic groups of odd order. Their normalizers are given by 
NL = (Np(L))’ for L c S3. 

The notation H c G means H is a subgroup of G while H < G means H is 
a proper subgroup and H 4 G means H is a normal subgroup. The set of all 
subgroups of G is denoted .9 (G). The counterimage of D, in S3 is the 
generalized quaternion group Q,. Use J to denote either I c SO, or its coun- 
terimage I’ c S3. The context will determine the usage. 

Let A4 be a real representation of G, F = F(M) the space of proper self 
maps of M and [Y, FIG the G homotopy classes of maps of Y to F. For 
G = S3 resp. SO,, and H c G, we define a set .?;, of real representations of 
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H by declaring M E .yH iff x E M for x E I(H) implies x E s, or x = 1 resp. 
~Et,or~=l.ThenforHzG 

4(*) = !9,, [ ., F(M) 1” 

is the zeroth term in an equivariant cohomology theory w,T(.) ISe]. Caution! 
wi(.) usually refers to the case where i,, is the set of all representations 
of H. 

The G vector bundle Y x M over Y is denoted by M. As the base space Y 
is omitted from the notation, it must be determined by context. Any proper 
self G map CL) of M which is properly G homotopic to a fiber preserving map 
determines a class [w] E toy;(Y) and any element of this group is represented 
this way for some M in fF. (Equivalently elements are represented by 
proper G maps u: M + M.) Actually tuy;(Y) is a ring with unit 1 represented 
by the identity map of M. When Y” is connected, there is a homomorphism 

deg, : wE( Y) --f Z 

obtained by setting deg,lw] equal to the fiber degree of WI’: M” + M”. In 
the special case of a point q, we abbreviate o:(q) by r~:; and note that 
w:;(Y) is an wi module. 

When X is a G space and x E X, G, denotes the isotropy group of x and 
Iso = (G, 1 x E X). This set is closed under conjugation by G. Let 
Iso(X)/G be denoted by Iso( It is the set of conjugacy classes of isotropy 
groups of X. The conjugacy class of a subgroup K is denoted by (K). For 
G = S-’ or SO, set 

(2.0) 2 = (G,~.YEM,ME.f(J 

and let .Y ’ denote the set of compact G manifolds defined by X E .Y ’ iff 
Iso c P. Write X- Y if the Euler characteristics x(X”) and x(Y”) are 
equal for all H & G. The Grothendieck group of the equivalence classes in 
.i ’ with addition defined by disjoint union is denoted by A(G). It is a ring 
with multiplication defined by Cartesian product. The class of X E .‘P in 
A(G) is denoted by IX]. The unit 1 is the class of a point q. 

The function [Xl 4 x(X”) for H c G defines a homomorphism of A(G) to 
Z. The collection of these homomorphisms as H ranges over subgroups of G 
gives an injective homomorphism of A(G) into the ring of functions from 
subgroups of G to Z. From this one finds that 

(2.1) E’= IGlO,l+ IGlOl- IG/o,l- IG/o,l 

is an idempotent (i.e., Et2 = E’) in A(G) for G = SO,. (Compare T. tom 
Dieck. Idempotent elements in the Burnside ring. preprint.) This element is 
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defined as an element of A(G) because O,, 0, D, and D, are in Iso( This 
will become apparent later. One finds 

(2.2) 
X(E’“) = 0, H=G,I, 

= 1, (HI + (G), (0 

Set 

(2.3) 
E= 1 -E’EA(G), G=SO,, 

E=p*(l -E’)EA(G), G = S’. 

Here p*: A (SO,) + A (S3) is defined by viewing an SO, manifold as an S3 
manifold via the homomorphism p. 

There is a ring homomorphism @: A(G) + o,!J with the property that 

(2.4) kwW1) =xW’) 

for H c G and [X] E A(G). See [M-P, P,]. Then 

(2.5) e=@(E)Eoi 

is an idempotent and Res,(e) E wi is zero unless (H) is (G) or (I) for 
G = SO, or (H) is (G) or (I’) for G = S3. This follows from (2.2k(2.5) and 
the fact that [w] E wi is determined by the integers deg,m for KC H. 

LEMMA (2.6). Let G be SO, or S3 and Y a G space with YJ = p. Then 
the inclusion i: F + Y induces an isomorphism e . UI:( Y) + e . We. 

Compare [A-S, 1.11. 

Proof: e . oz(Y, Y”) = 0 because Res,e = 0 unless (H) is (G) or (J) and 
Y is obtained from p up to G homotopy equivalence by adding G cells of 
type D’ x G/H, H # G or J. Note w,f$((D’, S’-‘) X G/H) r w,*(D’, S’-‘). 

If G = SO,, set X= {O,, O}. If G = S3, set Z= {O;, 0’). Let G be one 
of these two groups and x E o:(Y). Then Res.,x = 1 r means by definition 
Res, x is the identity 1, E oL( Y) for H E Z. 

Let A be a representation of G and S(.4 @ 1) = Y be the unit sphere of 
A @ 1. We may suppose Y is a G invariant subspace of A @ 1. If AC = 0, p 
consists of two points so o:(F) = 0: @ 0:. Suppose AJ = 0; so YJ = UC. 
Let i: YG + Y be the inclusion. 

COROLLARY (2.7). Let G be SO, or S3 and a = *l. There is an 
x(a) E w:(Y) such that i*x(a) = (1, 1 - ae) and Res,x(a) = 1 y. 

Proof. i* maps em:(Y) isomorphically to ewi(p). Since i*l = (1, 1) 
and i*z = (0, ae) for some z E e . w:(Y), 1 - z serves for x(a). 
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3. THE H VECTOR BUNDLE ASPECTS OF SURGERY 

In this section we treat the geometric aspects of equivariant surgery. In 
contrast to the process of equivariant surgery in the category of free actions, 
the ‘role of equivariant bundle isomorphisms is a major consideration. 
Because of this we expend some effort to motivate the assumptions and 
results by first describing in an abbreviated way the role of bundle data in 
equivariant surgery. First we introduce some general notation. The main 
results of this section are (3.18), (3.19) and (3.3 1). 

For any G space X, G acts on the partially ordered set 

(3.1) H(X) = D q)(X”). 
II c G 

An element a of ZZ(X) lables a component X, of X” for some H. This is 
expressed by p(a) = H. It gives a function p from n(X) to the set of 
subgroups of G. Set a ,< /I if X, c X0 and p(J) cp(a). Set 
G, = (g E G 1 ga = a} and note p(a) is a normal subgroup of G,. For 
example, when XH is connected and G, = H for some x E XH, then X, = XH 
when p(a) = H and G, = N(H). 

Let 5 be a G vector bundle over X and C a good representation of G 
(1.2’). For a E n(X), define G, vector bundles over X, by 

Note that whenever a G/l 

(3.3) Res c,nG, n,(t) = nb(t) lx, 0 Vab, 

where V,, is orthogonal to the first summand. This means a G, vector 
bundle map d,: A,(c) -A,(<‘) defines a G, n G, bundle map 

4 : qr) Ix, -+ &(U IX”. 
d). 

We abbreviate the collection {l,(r) / a E n(X)} by 

(3.4) A 1 map d: k(r)--+ J(r’) is by definition a collection 
{d, / a E ZZ(X)}, where each d,: A,(<) --) A,(<‘) is a G, vector bundle map 
satisfying d, Ix, = d,, whenever a < /?. 

For example, if b: r- r’ is a G vector bundle map, A(6) = {n,(b): 
A,(r) --f A,(<‘)} is the collection of induced maps provided by the 
functoriality of the /i construction. It is a 2 map. A J. map d for which each 
d, is a vector bundle isomorphism is called a 1 isomorphism. Set 
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(3.5) A(X) = A(TX, C) and A’(X) = A’(TX, C), X a G manifold and C a 
good representation of G containing g. 

Remark. (3.5) only makes sense when C is good. If C is .P? good, we 
define A({, C) to be the collection (A,(& C) / p(a) 6? .T }. 

Let l be a G vector bundle over X. Define a G, vector bundle 7c, r over X, 
by 

Then 

l IX” = r” I.Y, 0 q&3, p(u) = H. 

The collection { rc,(<) / a E ZZ(X)) is denoted by n(5). Let 6: r -+ 5’ be a G 
vector bundle map. Then 

b Ix, = b, 0 n,(b), 

where 

When r = TX is the G tangent bundle of X, n,(TX) is the normal bundle 
v(X,, X) of X, in X. 

Let e(r) denote one of <, $0 or A(<). If b: <- 5’ is a G bundle map, 
F(b): E(&+E(<‘) is the induced map. The stabilization of c(c) is defined to be 

~(4 = 45 0 M) 

for an arbitrary G module M. Here M is G vector bundle X x M if X is the 
base space of r. If b: E(C) -P E((‘), s(b) is b @ E( 1 M). where 1 M is the identity 
of M. When q and q’ are G vector bundles and b,: q -+ q’, 0 < t < 1, is a G 
homotopy of G vector bundle isomorphisms, we say b, and 6, are regularly 
G homotopic. 

Here in abbreviated form is a description of the role of bundle data in the 
process of equivariant surgery. Roughly the setting for surgery is this: 
F: (IV. X) + (Z, Y) is an equivariant map between smooth G manifolds of the 
same dimension, X = 8 W, Y = aZ, 5 is a G vector bundle over Z, H c G, X, 
is a component of X”, YO is the component of YH into which X, is mapped 
by F, B: sTW + F*sr is a G bundle isomorphism and D,: Ay W + l,,F*r is an 
N = G, vector bundle isomorphism. There is a relation between B and D; 
(3.9), namely, A,(B) = s(D,). 

Suppose x E X, is a point whose isotropy group G, is H. Then the orbit 
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of x G(x) is G/H. The inclusion of G(x) in X gives an injection of 
7’,G(x) = g/h + T,X, where T.rX is the isotropy representation of H on the 
tangent space of X at x. The Lie algebras of G, N, H are g, n, h. Let 
0 = v(X,, X), (fiber over x) and let r be the orthogonal complement in R of 

‘Y/n. 
Note that as a representation of H, g/h splits as n/h @g/n and 

(g/h)” = M//Z; so g/n c a. Suppose dim W;, = II + 1. Let I’: Sh --) XC, 
represent an element of ker(rr,(X,) + ?rk(Yo)), let S = Sk X D” mh, i: S -+ Xn 
extend I’ and let II), = indg S x D(T). For any H space A, indii A is the G 
space Gx,A . If B is a G space and J A --) B is an H map, there is a unique G 
map indzf: ind: A --t B. 

The aim is to produce a G imbedding t: II;,, -+ X such that r IsI is 
homotopic to 1’. F extends to F’: (W’, X’) --$ (Z, Y) and (B, Dy) extend to 
(B’, D;), where W’ = WV, il. We use the bundle isomorphisms (B, DJ to 
produce the imbedding z. The differential of this imbedding is related to these 
bundle isomorphisms in such a way that the extensions (B’, Di,) exist ((3.27) 
(3.28) and the proof of (3.18)). We amplify this. The isomorphism 
B,: sTW,+ (F*sl)” IF+.), gives rise to an isomorphism I(B,,): sTS @ tz/h --$ 
i*sTX, (3.251). By (3.27) there is an imbedding i,: S +X,. The differential 
of inds i, at S is stably regularly homotopic to I(B,); so we can suppose i is 
an imbedding. We suppose ind: i is also an imbedding. To extend this to an 
imbedding of U?, in X it is necessary and sufficient (by the G Tubular 
Neighborhood Theorem) to have an H vector bundle isomorphism c: I- = 
v(ind$ S, D,)I, --+- v(indz S, X) Is. Lemma (3.26) produces c such that 
A(c) = f(D,): A (I-) + i*l, X and ,4 ‘(SC) = r(A’$?): A ‘(sQ) + i*AA X. (Remark 
A(r) =,4(Q).) See (3.23) for the definition of I(E). Here E is D, or A>(B). 
There is then an equivariant imbedding r: (D,,. indi S) + (X, ind:; S) whose 
normal differential (see just before (3.27)) is indi c. 

By construction the differential of z at S stably is the sum of three terms: 
I(B,,), /(SD,) = /(A,(B)) (because of (3.9)) and /(Al,(s)). Lemma (3.24) 
maintains then that B,,, L,(B) and Al,(B) each extends to an isomorphism of 
bundles over WY and Lemma (3.29) identifies the sources of these bundles as 
s7W”, Av W’ and “1 W’. The sum of these extensions gives an extension over 
sTW’ I,,., = sTW, @ sAy( W’) @ sAi,( W). This is easily extended over sTW’ 
giving By’ which together with the extension Di, over A?( W’) completes the 
process as far as the bundle isomorphisms are concerned. 

This process of equivariant surgery is used on all components of fixed sets 
of all isotropy groups in a family .f (4.2) of subgroups of G. This means D; 
must be defined whenever WY is such a component; so we must deal with a 
collection D = {D,} of them; moreover. if y < y’ then the process of 
equivariant surgery applied to W;, affects W,,,. This leads to the relation 
between D, and D,,, incorporated in (3.4) and means that D is a A map. See 
also (3.9). 
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We now begin the description of equivariant surgery. Suppose that X is a 
smooth G manifold and C is a good representation of G containing g. By 
definition X is C stable if 

(3.6) (LX, l><(Txxx)-(g~x) 

(real inner product of real representations) 

for all x E Z(G,) with (T,X, x) # 0, x E C, x # 1. Here T.VX is the isotropy 
representation of G, on the tangent space at x. When C is .x good, (3.6) 
must be modified when G, E .a’ by requiring the inequality to hold for all 
x E Z(G,), x # 1. A representation A of G is C stable if it is C stable as a G 
manifold. It is said to be stable if it is C stable for C = g. Since T.YA = A for 
all x E A, stability for A becomes: 

(3.7) ForallHEIso(A)andall~EZ(H),~Eg,~fl,(A,l)~(A,~)- 
(g, x) whenever (A, x) # 0. (Note (A, x) is the multiplicity of x in A.) 

Of course (3.7) is appropriately modified when g is .R good. 

Remark. If C is .?Y good, condition (3.2) in the definition of C stability 
must be modified when G, E .R by requiring the inequality to hold for all 
x E Z(G,), x @ 1. Then (3.7) is modified accordingly. 

Stability is applied through use of the following lemma: Suppose X is C 
stable, a E n(X), p(a) = H and x E X, with G, = H. Set G, = N. Its Lie 
algebra is n and the Lie algebra of H is h. Let Q be the H module v(X, , X),. 
Since the tangent space to the orbit of x is g/h = g/n @ n/h as an H module 
and since n/h is the H fixed set of g/h, it follows that g/n c Sz. Let Z be its 
complement. In the next lemma A’( ) means A’( , C). See (1.3b). 

LEMMA (3.8). Let k + 1 < dim X, and let v be an H vector bundle over 
Sk. (H acts trivially on Sk.) For any H vector bundle isomorphism 
b: A’(r @g/n) + A’(v 0 g/n), there is an H vector bundle isomorphism 
b’: A’(T) + A’(v) such that s(b’) is regularly H homotopic to b. 

Proof: Since H acts trivially on Sk, v = @v,, vx = x OD, ijz, where TX = 
Horn&v); see [A,] and (1.3). Note that b, provides an isomorphism 
between (I- @ g/n), and (v @ g/n), for x E Z(H), x E C, x # 1. This means 
dim, V; = (C x); so dim fx = (r, x) = (0, x) - (g/n, x> 2 (TJ, x> - (6 x> > 
(T,X, 1) = dim X, > k. Since “; is a stably trivial bundle over Sk. this 
implies cx is trivial. Since in addition vxtx = Z,, there is an H isomorphism 
b;: I-+ vx. Let b’ = @,,c b;: n’(r) + A’(v). Since (Z,x) > k + 1 for all 
x E C, rch(AutHA’(Z)) + rrh(AutHA’(Z@ g/n)) is surjective (1.0). By 
composing b’ with an element of the first homotopy group if necessary, we 
may suppose s(b’) is regularly H homotopic to b. 
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Remark. The statement and proof of (3.8) can be modilied when X 
satisfies the stronger stability assumption in the remark following (3.7). The 
modified statement asserts the existence of b’: I---f v with s(b’) regularly H 
homotopic to b: s(T @g/n) --f s(r @ g/n) which is a given H vector bundle 
isomorphism. Compare the remark after (3.26). 

A G prenormal map ir/ ‘= (IV’, F. B, D) consists of (often simply called a 
prenormal map): 

(3.9) (i) A G map F: IV-, Z of degree 1 between smooth G 
manifolds. 

(ii) A G vector bundle r over Z with dim { = dim TZ, a G vector 
bundle isomorphism B: sTW+ F*sl and a 1 isomorphism D: A( W, C)+ 
l(F*& C) such that l(B, C) = s(D) for some good (or .fl good) represen- 
tation C of G. 

(iii) W and %W are C stable. 

If we wish to emphasize the group G, we say G prenormal map. When T is 
a G prenormal map and H c G Res,, F is the H prenormal map obtained by 
restricting data to H. 

Let X=aW, Y=aZ and supposef=FI,:X+Y, b=B/y and d=Dl,. 
Then by definition 

iW’= (X..L b, d) 

is again a prenormal map. Now let Kc G and let %‘= (W, F, B, 0). Then 

(3.9’) y’t‘ is a K - G prenormal map if %’ is a K prenormal map and 
%??-‘= Res,?& for some G prenormal map ??d. 

Remarks. (3.9’) asserts the natural K data of &% extend to G data; so 
in particular the K representation C in (3.9i) is in fact the restriction of a G 
representation which in applications is taken to be g. 

A map between G spaces is apseudoequivalence if it is a G map which is 
a homotopy equivalence. The prenormal map S?. is a pseudoequivalence if F 
is a pseudoequivalence. 

Throughout this paper G manifold will always mean compact smooth 
oriented G manifold where oriented means: for each subgroup H of G each 
component of the H fixed set comes with an orientation class. 

A manifold triad (W, W,, W,) is a triple of manifolds such that 
HW= w,v w, and W, f’ W, = 3W, = %W,. We make the usual 
assumptions about compatibility of orientation classes. A G manifold friad is 
a manifold triad such that G respects the triad structure and so does a map 
of triads. A prenormal map oJG manifold triads is a prenormal map which 
is also a map of triads of G manifolds. 

607/46/ 1~3 
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Convention. If ?V= (IV’, F, B, D) is a prenormal map of triads, then we 
have induced prenormal maps 5Vie, i = 0, 1, with “rk;.‘= ( Wi, Fi, B IN.,. D Iw,), 
where Fi : Wi --t Zi is the restriction of F. We also write (X,f, b, d) for %; so 
fix-1 Y=Z,. 

DEFINITION (3.10). A prenormal map @. is equivalent to zero (-0) if 
there exists a prenormal map 3. of manifold triads such that rt, = $- and 
%,’ and 8%; are pseudoequivalences. 

If X is a G manifold, r[X] denotes the triad (XX I, X x 0, 
X X 1 U aX X I). Let fi: Xi --t Y be two G maps for i = 0, 1. If there is a G 
manifold pair (W, P) and a G map F: (W, P) + (Y x I, i3Y x I) such that 
iiW=X,UPUX,, 3X, U 8X, = aP = P n (X, U X,), F lx, =fi, where 
F I,yi: Xi -+ Y x i, we say (W, P, F) is a G cobordism between (X,, f,) and 
(X, ,f,). If P = ax, x I = ax, x I and F(x, t) = (fO(x), t) for x E %X0, we say 
the cobordism is relative boundary (rel a). If ,P’ is a subset of .y (G), 
WT=XfxZ=X‘FxI and (p,F(x,O),t)=F(x,t) for xEX% and pI is 
projection on the first factor, we say that the cobordism is relR. (X” is the 
union of X” for H ER’.) 

In analogy with the definition (3.9’) of a K - G prenormal map we can 
define a K-G prenormal triad y’= (W, F, B, C). This is a K-G 
prenormal map which also is a triad-similarly for the definition of K - G 
prenormal cobordism. We shall sometimes abbreviate the phrase G 
prenormal or K - G prenormal by prenormal. 

(3.11) Hypothesis H: Let X be a smooth G manifold and H c G. Then X 
satisfies hypothesis H if dim X, = dim X” is independent of a for all CI with 
p(a) = H and if each class in n,JX”) for k < 4 dim XH/N(H) can be 
homotoped into XH’ = (x ) G, = H}. 

Note that (3.11) implies that each component of XH has a point whose 
isotropy group is H. For G finite (3.11) is guaranteed by supposing 
2 dim X’ ( dim X1’ whenever L > H. For non-finite groups the criterion is 
more complicated. For G = SO, or S3, we give a simple criterion in (5.2). 

(3.12) For any smooth G manifold X and H c G, A = Ri, denoted the 
unique minimal isotropy group of X containing H. This need not always 
exist. It does when XH is connected. Note X” = XH. 

Suppose W; = (XJ b, d) is a G prenormal map wheref: X + Y. Let X, be 
a component of XH and Y, the component of Yr’ into which f maps X, so 

fix, =fa:Xn-' yt3 

and aE IIX, j3EZZY. Let ,u E zk+,(&) (by definition nk+,df,) = 
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Q+&,~ X,1> h w ere Z/, is the mapping cylinder off,) be represented by the 
diagram 

(3.13) 

& E x,(X,) is represented by I’. 
We assume the existence of a point x E Z’S with G, = H and define the H 

representations 0, C 

(3.14) (i) D = v(X,, X),, 

(ii) 0 = r@ g/n. See discussion before (3.8). 

Here is the Lie algebra of N = G,. Note that the tangent space to the orbit 
of x E X, is g/h = n/h @ g/n. For fixed H, k, n - 1 = dim X,/G, , we define 
(IL,, Do) by 

(3.15) 
D = ind; D x D(r). D =Dk+l x Dn-k--I, 

An extension i’/ = %‘(i’tJ of ,U E rtk+ ,(f,) is a commutative diagram of G 
which maps 

such that the restriction to (DA’ ‘, Sh) is ,u. 
Suppose “r/ and fl’ are K - G prenormal maps of triads, H ‘= Y,j U fl,’ 

and &Y ” = V 6 U -7,’ with ?YO = (X, f, 6, d) as above. 

DEFINITION (3.17). We say “r “ arises from q’ by surgery on 
~1 E rrk+ ,(f,) if there is an extension # of ,D such that I is an imbedding 
HJ’ = WV, CJ, F’ Iii = K and the data of Y’ extend those of Y 1 (Recall 
;y/ ‘= ( W, F, B, D) and Y ” = ( W’, F’, B’, D’).) 

If there exists a ‘;y/’ which arises from r/’ by surgery on ,u, we say surgeq 
ou p is possible. The process of constructing X ’ from r/ is called surgery on 
(i’/ ; p), ,u E 7c*(f,), or briefly surgery on p. Let H ” = fl K U .P,‘. There is 
an obvious K - G prenormal cobordism between i’/; and V 6 called the trace 
of the surgery. 
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We have just described surgery on (P”; p) where Z’ is a triad with 
M ‘= PYd U %‘,‘, YYd = (X,x b, d) and p E I. As a special case we can 
begin with any prenormal map Y.= (IV. F, B. D) not necessarily a triad and 
form the triad 

where T( IV] is defined after (3.10). Then T[“r4 ‘lo = fl’; so for any p E rr*(F;,) 
we have defined surgery on (r[fl’], p). This gives some new triad y: Set 
;17,’ = 9“. Then P ‘++ YY ” is called surgery on (F; p), p E z*(F.J. In 
particular if r/’ itself is a triad, we can consider surgery on (;r/ ; p) with 
p E n*(f,) as previously described or p E x*(FJ as just described. We must 
emphasize that when fl ‘is a K - G triad, surgery on ,u E rr*(f,) is G surgery 
in the sense that W’ = W u ID, where D = ind: D x D(Z). However, surgery 
on p E n,(F,) is K surgery in the sense that W’ is defined by 
a( W x IV in’) = W’ U W. where ID’ = indfi D X D(T). In particular H c K. 

Let i: S +X, extend I’ (3.13). We shall show that the data of a prenormal 
map Y’ with &Y.= YdU ?Y,‘ together with ,u determine a particular regular 
homotopy class of immersions of S in X, ((3.27) and (3.28)) within the 
homotopy class of i when k < n - 3. Specifically there is an immersion i,, of 
S in X, homotopic to i. The differential of indf; i, at S (see before (3.27)) 
viewed as an isomorphism of TS @n/h and i,*TX, is stably regularly 
homotopic to /(BY): sTS @ n/h + i,*sTX,. (See (3.23) and (3.25i).) The 
following are the two main geometric steps in equivariant surgery: 

THEOREM (3.18). Suppose 79’ is a K - G prenormal map of triads and 
ZV = Zi U %i with Vi = (X,f, b, d). Let H be a subgroup of G, k < n - 3 
and p E rrk+ ,(f,) with p(a) = H. Then surgery on p is possible if there is a 
representative i, of the chosen regular homotopy class of i such that indi 1; 
(I; = i, (s k) is an embedding. 

We call a class p E nk+,(f,) re resented p by (3.13) trivial if z’Sk is 
contained in a disk in X,. For such a class jnd: I’ can always be assumed to 
be an imbedding. Alternatively by general position indz I’ can always be 
assumed to be an imbedding if X satisfies hypothesis H (3.11) and 
k < 4 dim X,/G,. 

COROLLARY (3.19). Let a E D(X) with p(a) = H and p E q+ ,(f,). Zf X 
is stable, satisJies hypothesis H (3.1 l), dim X,/G, > 6 and if 
k < f dim X,/G, or p is trivial, surgery on ,u is possible. 

Remark. The effect on X, of surgery on p E nkfl(fa) is to kill 
8~ E n,(X,). Similarly the effect on W, of surgery on p E zk+ ,(F,) is to kill 
2~ E 7ck( WY). The submanifolds X,, for U’ < a are unaltered. 
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We begin the proofs of (3.18) and (3.19) with some preliminaries: Let N 
be a compact Lie group with closed subgroup H. Let F: A --) B be an N 
equivariant map and A, c AH, B, c B” with f = F 1. : A,) + B,. Let 
,U E 7ck+ ,(f), n be an integer larger than k; S = Sk x Dnmh. ‘2 = Dh ” x Dtl-h 

and 

(3.20) u 

be a diagram which gives ,u by restriction to (Dk+‘, Sk) c (D. S). Define 

A’=A u indD, ind = ind.’ II 
ind i 

Here H acts trivially on D. Let FL = F’:A ’ + B’ be the unique N equivariant 
map extending F with F’ In = h. 

Let 0 and r be N vector bundles over A respectively B and E: 8- F*r an 
N vector bundle isomorphism. Denote by V the H module 8, for any x’ E is. 
Set 

(3.21) 0 =0(d)= D X v. 

It is an H vector bundle over D. Choose any H vector bundle isomorphism 

Let E, be the H vector bundle map which covers j defined by the com- 
position 

(3.22) i*e,,~i*f**r,=j*h*5,-rh*r,, 

where 0, = 0 IA”. Let I = I(E): o Is+ i*B, be the unique H vector bundle 
isomorphsm which gives this commutative diagram 

w IS 
l(E) 

- i*fV, 

(3.23) / I- 0 
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Define an N vector bundle 0’ over A’ by 

8’ =B u indw, 
ind I(E) 

ind = indg. 

Extend E to E’: 0’ + F’*< with E’ = L(E) on w. This uniquely defines E’ as 
we insist on N equivariance. Set 

r(8, ,u, E) = 8’ 

so E’ :T(B, ,u, E) 5 F’ *<. We record this construction as a lemma. 

LEMMA (3.24). Let F: A + B, E: O+ F*{ and ,a E T$+ ,(f), fz A, + B,, 
be as above. Then FL = F’: A’ = A V ind D + B is an N map extending F 
and E’ : T(B, ,u, E) --f F’ “4 is an N vector bundle isomorphism extending E. 

Lemma (3.24) is used several times in the proof of Theorem (3.18). In the 
applications ,U is given in (3.18) and (A, A,,) is either (IV, X,) or (IV,, X,), 
(B, B,) is either (Z, YO) or (Z,, YB) and N is either G or G,. Here /I is the 
component of YH with f,X, c Y. and y resp. 6 is the component W” resp. 
Z” with X, c W, resp. YO c Z,. For each choice of bundle 0 over W or W, 
(constructed from TW) and bundle isomorphism E, (3.23) provides an 
equivariant bundle isomorphism I(E): o(0) Is * i*8 Ix,. The next lemma 
identifies the H bundles o(e) Is. Recall from Theorem (3.18) that 
Y‘=(W,F,B,D). 

LEMMA (3.25). The H vector bundles w(0) Is (3.21) for 0 respectively 
sTW,, Jy W, sJ> W and sTW are: sTS @ n/h, A(Q), A’(&) and s7Q, Is ; so 

(i) I(B,): sTS @ n/h + i*sTX,, 

(ii) I(D,): A (a) + i*A, X, 

(iii) f@;(B)): A ‘(sn) + i*sAh X, 

(iv) I(B) sm, Is + i*sTX lx n. 

ProoJ Since w(O) is completely determined by the H module Ox for any 
x E iS, it suffices to check that the H vector bundles over S listed in (i)-(iv) 
all have the form S x V, where V = 0,. (i) For 0 = sTW,, H acts trivially on 
8, and on the fibers of sTS @ n/h. (ii) For 0 = k,W, 0 lx, = k,(X) = 
A(v(X,, X)); so 0, = A(Q) (3.14i); similarly for (iii): (iv) For B = sTW. 
i*O = sTX; so 8, = sT.~X, @ v(X,, X), = sT,S @ n/h @ Q (3.14). Since 
sm, Is = sTS @ n/h @ n by (3.14i) and (3.15) w(O) Is = s711?, Is. 

Remark. From (3.14ii) and (3.15) we see that sTUJ,), is 
(sTD @ n/h) @ sn. Since 0 = A(Q) @ A’(Q), sm In splits functorially as 
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a sum of three terms. Because of the assumption A(B) = s(D), we can and do 
choose L(B) = (L(B,) @ sL(D,) @ L&B)). This means Z(B) splits similarly. 

LEMMA (3.26). Suppose i: S --f X, extends to a G imbedding of indg S in 
X. Then there is an H vector bundle isomorphism c: r + v(indE S, X) Is = 1” 
such that A(c) = I(D,): A(r) --f i*A,X and A’(W) = /(A.:,(B)) up to regular H 
homotopy. 

Proof. First observe that A (g/n)=0 because as an H module g/ncg. 
See (1.1) and recall g c C. This means A(r) =/i (g/n @ I-) and 
.4( g/n @ 11’) = A(\)‘). Note i*v(X,, X) = v(indf; S. X) Is = v(ind;, S, 
ind: S) Is @ v’ = g/n 0 v’; SO I(D,,):/i(r)=~(n)~i*n,X=/i(g/nO~’)= 
fl(v’). Note also that 1(16(B)):/i’(g/nOsr)=/i’(sSZ)-,si*/l:,X= 
A’(g/n@sv’) (3.25iii). Since X is stable and k<+dimX,, (1.0) and (1.1) 
and (3.8) imply there is an H vector bundle isomorphism b2: A’(r) + A’(\)‘) 
such that s(bz) is regularly H homotopic to /(A.:,(B)). Let c = I(D;.) @ b?: 
r --) VI. 

Remark. The proof completed applies to the case C is good or is .Y? 
good and H 6? .Y. See (3.9ii). When H E Y? the statement and proof of 
(3.26) are slightly altered. The statement asserts the existence of c with 
SC = /(n,(B)). The production of c uses the stronger stability assumption in 
the remark following (3.8). 

We use the H vector bundle isomorphisms provided in (3.25) to produce 
an extension #(r/i) of p E nA+,(f,) with I an imbedding. See (3.16). First 
we need some definitions. Let S’ and X’ be smooth manifolds of the same 
dimension and S resp. X a submanifold of S’ resp. X’ with dim S = dim X 
and let 1: (S’. S) + (X’, X) be an immersion of pairs. The composition 
v(S, S’) --* 7-S’ Is ?bd’ TX’ /,y --t v(X, X’) induces an isomorphism between 
v(S, S’) and ([ Is)* v(X, X’) called the rlormal differential of 1 at S. The 
differential dl of I induces an isomorphism dr: TS’ /,\ --* I* I5 TX’ also called 
the diffPrentia1 of I at S. 

LEMMA (3.27). Suppose G acts freely on the smooth manifold X of 
dimension I + dim G. Let S = Sk x Dlpk and i: S + X be a map. If k < I- 2, 
any vector bundle isomorphism 6: sTS @ g-r i*sTX determines a G 
immersion of ind:S in X G homotopic to indf; i whose dlj”erentia1 at S is 
stabls regular~r~ homotopic to b. If k < $1 the immersion rnaJj be taken to be 
an imbedding. 

ProoJ If p: X-X/G is the orbit map, TX=p*T(X/G) @ g; SO 

b:sTS@g+ i*p*sT(X/G)@g. By [HI (compare [W,, D-P,]). b 
determines an immersion of S in X/G which is homotopic to p 0 i whose 
differential is stably regularly homotopic to 6. This lifts to an immersion of 
S in X which uniquely extends to a G map of indy S in X. Its differential 
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restricted to S is stably regularly G homotopic to b @ 1 g: (sTX @ g) @ g + 
(i*p*sT(X/G) + g) 0 g. 

LEMMA (3.28). Let 75 ‘= (W, F, B, D) be a K - G prenormal map of 
triads, Y< = (X,f, b, d) and p E xk+ 1 (f,). Then there is an extension Z! of p 
(3.16) such that I is an immersion (imbedding if indg t’ is an imbedding in 
particular if k < 4 dim X,/G,). The dlflerential of tH at S is stably regularly 
homotopic to /(BY): sTS @ n/h + i*sTX, (3.251) and the normal differential 
of I: (D,, ind: S) + (X, z indz S) at indg S is indg c, c: I- + V(Z indg S, X) Is, 
where A(c) = f(D,), A ‘(SC) = 1(3,;(B)) and t” Is = i. 

Proof. Let p’ be the diagram of (3.20) which gives ,u E rck+ ,(f,) by 
restriction to (Dkt ‘, Sk ). We may suppose iS c X,* = {x E X, / G, = H) 
because of (3.11). Since N/H acts freely on Xz , Lemma (3.27) applied to i 
and the group N/H gives an N immersion of ind; S into X,* whose 
differential at S is stably regularly homotopic to l(B,): sTS @ n/h + i*sTX, 
(3 25i) Note that indylH S is the same as ind;; S as an N manifold. (If . . 
k < f dim X,/G, the immersion may be taken to be an imbedding.) Thus we 
may suppose indfi i is an immersion. Then ind: i= ind: o indg i is an 
immersion. The G Tubular Neighborhood Theorem ]Br] provides a G 
immersion z of ID, = ind: S x D(T) into X extending indg i whose normal 
differential at S is c: r + i*v(l ind$ S, X). Note r(indE S, D,) Is = r; so 
v(indg S, m,) = ind$ r. 

Since (m, iD,> retracts equivariantly to indg(D, S), there is an extension of 
h: D 4 Z to K: [i! --t Z giving a diagram # extending fi as in (3.16). 

Lemma (3.28) is half way toward the proof of Theorem (3.18). What 
remains is to extend B: sTW-1 F*< to B’: sTW’+ (F’*r). Here 
W’= WU,[D and F’ extends F with F’/,,=tc. As WUindgD=d’fO is a 
G deformation retract of W’, it suffices to define the extensions B’ and D’ 
restricted to sTW’ lo and A( W’) lo. Because k < II - 1, IZW and DO are the 
same set; moreover, for y’ E IZW, W,, = O,, unless y’ > gy for some g E G 
and then 1’ E O,, - W,, is of the form y = gx for x E D. Note that W; = 0,. 
Suppose D{ has been defined extending D,. For g E G set DLY= gD;g- ‘. For 
11’ > 81’ and y = gx, x E D, D$ on the fiber over JJ is DL,,,,, over ~1. See (3.4). 
Compare [D-P,]. Of course D$ = D,, on fibers over points of W,,. We 
emphasize this in the following remark. 

Remark. The extension D’: A(W’) + n(F’*<) exists if the extension 
0;: Ay( W’) + A,(F’*r) exists and the extension B’: ST’ W’ + SF’*{ exists if 
the extension to sTW’ lo exists. 

Let r, = f(sTW,,n,p,), Tz = r(n,( W),,u, DJ and f3 = T(sTW,,u, B). 

LEMMA (3.29). f, = sTW;, Tz = A,( W’) and rl = sTW’ lo. 
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Proof: By definition, r, = sTW,U indg w, where ind: o is attached to 
sTW, along inds UJ Is using indf, 1(B,3. Since I@?,,) is stably regularly 
homotopic to the differential of the imbedding of S in X, (by construc- 
tion-Lemma (3.28)) used to form WI= W,U ind,“; D, T, = sTW6. 

The bundle fz is A,(W) U indi Q, where ind: w is attached via f(D,).The 
bundle A,( W’) is A(v( W,;, W’)) by definition and V( WI,, W’) = v( W,, W) U 

ind: w. Here indz w is attached via indi b, where 6: o Is + 1*(X,, X) Is is the 
restriction to S of the normal differential of the imbedding I: (Do, ind;; S) ---t 
(X,X,). By construction, the normal differential of 1: (II,,, indg S)+ 
(X, I ind: S) at ind$ S is indz c. Thus A(b) = A(c) = I(D,) ((Lemma (3.26)); 

v(indi S, X) Is = g/n 0 r(indg S, X) Is ; 
?(r(in~~~,%)W~‘))= A ((VIGIL S, X) is).) 

so 

The bundle l-3 is sTWU ind$ w, where ind:: o is attached along inds w Is 
via indg I(B). By the remark following (3.25) i(B) = I(B,) @ sl(D,)@ 
sl(A;,(B)) = I@;,) @ s(c) (3.26). But this is stably regularly homotopic to the 
differential of I at S dl by Lemma (3.28). Since sTW’ lo is obtained from 
sTW by attaching indz CL) using the stabilization of ind: dl, IJ is sTW’ lo as 
asserted. 

Proof of Theorem (3.18). By Lemma (3.28) there is an extension fl of p 
such that I (3.16) is an imbedding. The differential of lH has the properties 
specified in (3.28). Form W’ = WV, ID. 0 = WU, ind,‘;, D and extend F to 
F’: W’ + Z with F’ lIc = K. By Lemmas (3.29) and (3.24) and the remark 
prior to (3.29), the extensions B’: sTW’ + F’*r and D’: A( W’) --f A(F’*<) of 
B and D exist. They satisfy l(B’) = s(D’) because l(B) = s(D) and 
A,(B’) = s(D;). The latter is a consequence of the construction and the 
remark preceding Lemma (3.26). Thus T.’ = (W’, F’, B’. C’) arises from 7? 1 
by surgery on p. This completes the proof of (3.18). 

Remark (3.30). We modify the data of (3.13) when Y” is connected. 
We then replace X, and Y, in (3.13) by X” and YN. Then P E rr/,+,(f”); so 
(3.18) and (3.19) are correspondingly altered by changing f, to S” and G, 
to N(H). 

Finally we consolidate some of the results of this section incorporating 
(3.30). 

THEOREM (3.3 1). Let ,7 ‘= W, F, B, D). F:W-+Z be a K-G 
prenormal map of triads with i?Cz ‘= -r/d U ;y/,‘, ;‘rd = (X,J 6, d), f: X + Y. 
Suppose H c K, Z” and Y” are connected and there is a point x E X loith 
G, = H. Let ,a E xk + ,(j”“) resp. ,a E 7ck + ,(FH) and i: S -+ XH resp. 
i: S -+ interior WH be a map such that I’ = i jsk represents 8,~. Then stirgeq 
on p is possible if there is a representation i, of the regular homotopv class i 
such that indg I; is an imbedding for N = N(H) resp. N = K n N(H). 
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Proof This is a restatement of (3.18) when p E rck+ ,(f”). When 
P E xk+ lv? ‘t 1 is a consequence of (3.18) applied to the triad r(?V ) and the 
definition of surgery on ,u. 

4. HOMOLOGICAL ASPECTS OF EQUIVARIANT SURGERY 

In this section we treat the basic homolgical steps in equivariant surgery. 
The broad format is similar to [W i ] which treats the case of free finite group 
actions. Input from transformation groups appears here throughout but in 
particular in Theorem (4.6). The following notation and assumptions hold: 

(4.1) %‘= (IV,F,B,D) is a K - G prenormal map, F: W-, Z, 
aI‘= (X,f, b, d), f: X--t Y, Q is subgroup of K; X and W satisfy hypothesis 
Q (3.1 l), dim XQ >, 6, dim ZH and dim WH are equal for all H c K, ZQ and 
Yc are 1 connected. 

(4.2) Q= N(Q)/Q, QK = ArE(Q)/Q, NK(Q) = K n N(Q), R is the integers 
Z or Z ,,,,> p prime, G, is the connected component of G, G” = G/G,, 

AQ,, = R(Qi), AQ = R@“), l-Q,S = &(@do, RI, I-, = H, @,,, R 1, 
n = dim Wc/QR, K,(v, R) = Ker(H,(I@, R) + H,(ZQ, R)). Sometimes ,4 
abbreviates AQ,K or A, and r abbreviates Pa,li or r,. Set 

.A=(P]IPO]=p”f or some prime p, n > 0 and P, is a torus.} 

We mention that often we have fixed a particular group G in the discussion. 
Then P E .? means P c G and P E .9. We also emphasize that (4.1) is to 
hold in this section except for a modification in (4.15). In particular Q is an 
isotropy group of X. The properties of the kernel groups K,( W, R) are 
reviewed in [W, , Sect. 2). In particular K*(v, R) is the cokernel of 
H*(ZQ, R) + H*( Wc, R), K,(@, R)z K’-‘(WV, Xv, R), I = dim @, and 
there is a long exact sequence of K,(K*) groups for the pair (I@, Xv). This 
requires the assumption degree FQ is a unit in R. Note K,( v, R) is a 
module over rV,K and A, R. 

For the remainder of this section all homology, cohomology and K,(K*) 
groups will have coefficients in R and these will be suppressed from notation 
except for special emphasis. The integers are denoted by Z. 

DEFINITION (4.3). FQ - 0 means: 

(a) If n = dim w”/QK = 2m, K,(@, Z) = 0 for k < m and 
K,(XQ, Z) = 0 for k ( m - 1. If n = 2m + 1, K,(v, Z) = 0 for k < m, 
K,(XQ, Z) = 0 for k < m and K,(p, XQ, Z) = 0. 

(b) WQ, ZQ, XQ, p are 1 connected. 
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DEFINITION (4.4). FQ = O(R) means FQ N 0 and K,( I+@, R) = 0. 

DEFINITION (4.5). FV z O(R) means: 

(i) FQ - 0, 

(ii) degree FQ is a unit of R and 

(iii) F” = O(R,,,) whenever Q Q P, P # Q, P/Q E .Y”. and 
I(P/Q)“l =p’, p prime in R, I > 0. 

We remark that (4.5) implies that 0 -K,(W)+H,(WQ)-+H,(ZQ)-rO is 
exact: so E m+ ,(M& = K,,,(p) if MFo is the mapping cone of FQ. We also 
note that if degree F = f 1 and P E %4, degree FP is a unit in Z(,,, if 
/POI=p’. p prime, and is a unit in Z if I = 0. Compare ID-P,, 
Theorem 1.26 1. 

THEOREM (4.6). Suppose FV z O(R). Then the following are projective 
A,,, modules: K,(WQ), K,-,,,(W”, Xv) (and K,(XQ) when n = 2m + 1). 
Moreover K,(W”) and K,-,( W”, XQ) are AQ,x duals. The K, groups of 
WV, (W”, XQ) (and Xv when n = 2m + 1) are free TQ,tc modules. TheJj are 
obtained from K,( W@), K,-,( W”, XQ) (and K,(XQ) when n = 2m + 1) bJ 
tensoring over R with rQ,ti. 

ProoJ This is essentially IP,, 6.1 1. It suffices to treat the case Q = 1 
which we do. Let M be the mapping cone of F, q E M” be the canonical 
basepoint and d be the the dimension of G. Then K,(W, X) z Kntdm’(W) = 
H n+d-A+‘(M,q). S ince K,(W,X)=O for h-cm when n=2m or for k<m 
when n=2m+ 1. H”(M,q)=O for s>m+d+ 1. Since K,(W)=0 for 
k ( m, H,(M. q) = 0 for X- < m f 1; so H’(M, q) = 0 for s < m t 1 by the 
Universal Coefficient Theorem. 

Let E be an acyclic space on which G acts freely. Define 
H,*(M. q) = H*(M X, E, q x6 E) and similarly define H:(M, q). There is a 
spectral sequence H,T,(M, q. H*(G,)) 3 H*(M, q) and a similar one in 
homology. Since H’(M, q) is non-zero only if m t 1 <s ,< m t d t 1, it 
follows that the spectral sequence collapses and (i) H:;“(M, q) = 0 for 
s f m t 1 and H&: ‘(M, q) is R torsion free. (Note HzfM, q) = 0 because 
H,(M, q) = 0, s < m + 1.) Since also (ii) H*(MP, q, R,,) = 0, R, = R/pR 
whenever P E 9, jP”J =p” # 1, p prime in R, it follows from [P9, 5.21 that 
HzO’ ‘(M, q) = Hmt ‘(M, q) = K”(W) is a projective A module. By the 
Universal Coeffiecient Theorem so too is K,,,(W). 

Now observe that H,G”(M, q) = 0 for s#m+l and 
K,(W) = H,, ,(M, q) = H2+ ,(M, q) is R torsion free; so the homology 
spectral sequence p,O(M, q, r) =j H,(M, q) = K, 1(W) collapses and the 
associated graded group E, is f @ H$“(M, q). Since K,(W) = H, + ,(M. q) is 
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R torsion free, E, is a free r module: hence, H,(M, q) is a free r module and 
K*(W)=H*(M,q)=r0H,+,(M,q)=r_0K,(W). 

By considering the mapping cones of F: W/X -Z/Y and fz X-1 Y and 
using the above argument, the remaining statements of the theorem are 
verified with the exception of the duality statement. For that note 
K,-,( W, X) z Kd+m( W) = Hd(GO) @ K”(W) = K”‘(W). By the Universal 
Coefficient Theorem and K,,-,(W) = 0. K”(W) is the dual of K,(W); so 
then is K “-l?l(W~ x>* 

Remark. The identification of K,-,( I+@, X”) with the dual 
Hom,(K,( v), A) = H om,(K,(~), R) of K,( I+@) arises from the R 
valued bilinear form 2’: K,,,(v) x K,-,( WV, X”) --t R defined by 
A’(-% 4’) = lp . x, y), where ,u . x denotes the Pontrjagin product of the 
fundamental class p of (&), and x. The intersection pairing between Ki(v) 
and K n+dpi( v, XQ) defined by Poincarl duality and cup product is denoted 
by ( , ). There is a straightforward way to make 2’ into a n valued bilinear 
form A: K,( urn) x K,-,( v, XQ) -+ ,4. In the case ?I = 2m and f v = O(R), 
K,(v) = K,(v, X”) (because K,(X”) = 0): so 2’ and L become non- 
singular forms on K,(v). There is a more geometric definition of k in this 
situation. Elements of K,(v) can be represented by immersions of 
S”xDm in I+@’ which project to an immersion in w”‘/& by an 
appropriate application of (3.28). Apply either [ Wz, Sect. 3 ] or [W, . Sect. 5 ) 
to produce the intersection form k and self intersection form p giving a 
special Hermitian form (K,(V), 1, p) over II in the sense of 1 WI, Sect. 5). 

The remainder of this section makes repeated use of the results of surgery 
in the preceding section. Since ZQ and p are connected we use the setting 
of remark (3.30) and the result of (3.3 1). In addition we note that surgery on 
(flip) for p E n*(fQ) or ,u E x,(FQ) does not alter W” for H & Q so the 
trace of such a surgery is a prenormal cobordism rel (H & Q}. 

We begin with a description of the process of handle subtraction. 
(Compare 1 W,, 1.31.) Let ‘g’= (W, F, B, D) be a K - G prenormal map of 
triads with F: (W, X) + (Z, u>. We suppose a map i: (D, S) -+ (WV, Xv) is 
given such that F 0 i maps into p. This gives rise to an element 
o E Kk+ ,(W’? X’). Here D=Dk+I xD”-k-1, s=sh XDll-k-I 

n = dim w”/e. The subset of K,, ,(p, Xv) represented in this way is 
denoted by zk + ,(FQ,fQ). (C om p are [D-P,, Sect. 4 1.) We suppose now that i 
is an imbedding whose image lies in WV’ = (~3 1 G,,. = Q} and that the 
composition D + v’ --$ @*/Q is an imbedding. Then indzi is also an 
imbedding. Since FQ o i maps to Ua, the above data give a class 
,u E: zk+ ,(fg) written ,u = aw. The assumptions imply (3.3 1) surgery on p is 
possible giving w’ with W’ = WV ID ((3.15)-(3.17)). There is a k + 1 
sphere in the interior of W’ represented by iDk ’ ’ U Dk + ’ c W U Dk ’ ’ . This 
represents a class x in zk+ ,( W’Q). It is easy to see there is a class 
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p’ E rck+ ,(F’V) with 8~’ =x (3.13). Perform surgery on (Y “,p’). The result 
is a K - G prenormal map 7”’ = (W”, F”, B”, D”), This process i’t‘b R”’ 
is called handle subtraction on w E K,, ,(@. Xc). When N(Q) c K, the 
reader may check that the effect on I+@ as a Q manifold is to convert v to 
WtrQ with 

(4.7) W”O = closure( @ - indz’v’ D). 

This construction is discussed un [W, . 1.3 1 where the operation is done in 
the orbit space. 

THEOREM (4.8). Let p be a K - G prenormal map satisjjling (4.1). (i) 
If N(Q) c K, V is K - G prenormallJ1 cobordant to ;r/ ” rel( H d Q} bvith 
F ‘o - 0. (ii) Y’ is K - G prenormally cobordant rel boundary and 
rel{H & Q} to 77” with Kk( W’o, Z) = 0 for k < m; so iff v = O(R), FIQ - 0. 

Proof of Theorem (4.8). The proof is by repeated surgery on fl: Each 
step produces a ;rf ‘I with certain properties. These properties are then 
assumed for the original ?Y ‘; so the prime is dropped before the next stage. 
Each surgery step produces a cobordism rel (H C? Q}. 

First we achieve (4.3b). Since p is connected, there are classes 
p, ,..., p, E n,(f Q, such that c$, ,..., 8~~ generate 7c0(XQ). Use Theorem (3.31) 
to do surgery on these classes. This kills n,(Xa). Since p is one connected, 
the same procedure applied to classes in nz(f Q, kills n,(XQ). Likewise w is 
made one connected. 

Now we treat (4.3a). The Hurewicz theorem relates rck+ ,(f ‘) and 
Kk+ i(Xa, Z). If K,i(Xv, Z) = 0 for j < k, then K,(XQ, Z) g 7ck+ ,(f v). If 
k < in (4.2), we can do surgery on classes in the latter group to kill it and 
hence kill K,(XQ, Z). Note XH is untouched if H > Q. Do this for all 
k < m - 1 if n = 2m and for k < m if n = 2m + 1. Thus we may suppose the 
properties required for X in (4.3) hold. By doing surgery on classes in 
z,,+,(FQ), we kill K,(W@, Z) for k < m, where m = +n or $(n - 1). 

If n = 2m the proof of (4.3a) is complete. If n = 2m + 1, it remains to kill 
K,(I@, XQ, Z). Since this group is r,,,+ i(FQ,fQ). each class is represented 
by a map I+V: (gmt ‘, S”) --) (WV, Xa). Since IVc and Xa satisfy hypothesis Q, 
the range of this map may be supposed (I@‘, Xv‘). In (W,, 1.41 it is shown 
how to make each w into an imbedding which projects to an imbedding in 
(p’/Q, Xv’@). Th is uses N(Q) c K. In fact we may suppose w extends to 
an imbedding I+? : (D, S)-+ (WQ*,XQ*) with these properties. Here 
D=Dm+‘xDm, S=S”xD”. These are the data required for handle 
subtraction. As in [ W, , 1.4 ] handle subtraction on generators of 
K,( l+@, Xv, Z) kills this group. This uses (4.7) and in particular requires 
N(Q) = K. 
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THEOREM (4.9). Let 33”’ be a K - G prenormal map satisfying (4.1). 
Suppose NQ c K, Fo z O(R) and K,(W”) is a stably free A, module. Then 
jw is prenormally cobordant to % “ rel(H & Q} such that FQ 5 O(R). 

Proof: Since FQ z O(R), we need only kill K,(W”) to achieve 
FQ = O(R) by Theorem (4.6). There are two cases (compare [W, , Sect. 41): 

Case n = 2m. By Theorem (4.6) and the hypotheses, K,( WQ, XQ) is a 
stably free n modules which may be assumed free. (Just do surgery on trivial 
classes in n,(fQ).) As K,(WQ, X0, Z) is zero for k < m, 
n,+r(FQ,fQ)= K,(WQ,XQ,Z) and K,(WQ,XQ)=K,(Wo,XQ,Z)@ R. To 
kill (V, XQ) we represent the elements of a n base by maps dj : (07, Sr) --$ 
(I@, XQ). Each Dj” is a copy of Dm. Denote 

u = 11 indzQ Dj, Dj=Dj”xDm, 

U, = 11 indiQ Sj, Sj=Sjm-’ x D”. 

The dj give rise (piping argument) to a Q imbedding @: (U, U,) + (WV, XU) 
with @ IDrn = dj. This uses N(Q) c K. Set q = closure(J@ - U). For the 
rest of the argument R coefficients are understood. We have a commutative 
diagram of H,(Qk) homomorphisms. 

O----+ H,(UuXQ,XQ)- &(fl,XQ>- H*(W”, UUX”) - 0 

A ” 
I I 

Id 

!  

< 

0 + K,(WQ, XQ) - H*(WQ, XQ) + H,(ZQ, Y”) - 0. 

By construction, A is an isomorphism. To see this note H = H,(U U Xv, X”) 
and K,( v, XQ) = K are free H,@,) = r modules. The first by inspection, 
the second by Theorem (4.6). Moreover H Or R and K Or R are free n 
modules with bases ( (Dj, S,)} in the first and their images in the second by 
construction; hence, A Or 1, is an isomorphism; so A is an isomorphism. It 
follows that C is an isomorphism. The composition of excision and C gives 
an isomorphism 

H*(wf,Xf)+H*(WQ, UUXQ)+H*(ZQ, P); 

so K,(Wf, Xf) is zero. Then K,(Wf) and K,(Xf) are also. Here 
x; =awf. 

The imbeddings dj represent classes in rr,,,+ ,(FQ,fa). Perform handle 
subtraction on these classes. This converts ?Y’ to Z.“ = (W’, F’, B’, C’), 
where W’Q = @ by (4.7). This uses N(Q)c K; thus K,( W”) =0 as 
required. 
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Case n = 2m + 1. Since FQ -0, K,(p,XQ), K,(WQ) and K,(Xv) 
are free f modules by Theorem (4.6). It follows from that theorem and 
FQ E U(R) that the sequence 

is exact and consists of free /i modules. (The homomorphism v: K,(WQ) -+ 
K,( P, XQ) is one of r modules and K*(W”) is generated as a r module by 
K,(WQ); so w  is zero.) 

As Kk(Wo, Zv, Z) = 0 for k < m, II ,+2(FQ,f Q, = K,,. ,(W’,X’, Z) and 
K,+,(WQ,Xe) = K,+,(lV”,XV) @RR. Represent a il base (oil for 
K, + , (IV@, Xv) by elements 

dj: (Djm+‘, S,“)- (WQJQ). 

The techniques of [W, , Sect. 41 show that the map @: u indGv S.y -+ X” 
induced by the di can be assumed to be an imbedding. This uses hypothesis 
Q and again involves mapping S,? into XQ’ so the projection in (Xv)*/Q{, is 
an imbedding. Let Y “ be the result of surgery on the classes &ui E rc,(fV). 
See (3.18) and (3.31). Then W’ = WV ind:, U, where U= u indgQ Dj, 
Dj=Di”” x D”. The sequence of kernel groups for the triple X’ c X’ U 

UC W’ is O-K,,, (W’Q,X’Q)~K,+,(Wo,XQ)-,K,(U, UnX’“)- 
K,,,( W’Q, XQ) + 0 because K,(U, Un X’O) is a free r module generated by 
K,(U, Un XfQ). 

The /i module K,,(U, Uf’ XIQ) is free with one basis element 
corresponding to each handle (represented by the core of the dual handle). 
The map from K,,,, ,( v, XQ) to K,(U, U n X’c) is dual to the map 
K,, ,(U, U n XQ) --f K,( I@‘) representing the attaching maps so it is zero. 
(See (4.6)) Thus K,, ,( WV, Xv) IS unchanged. We acquire a free module 
K,( W’“, X’O) dual to K,, ,( W’); thus K,(XIQ) = 0. 

Choose a base for K,(W’). Represent those elements by classes in 
r,,,+ ,(F’Q). Do surgery with respect to these classes. Denote the new map 
again by ,Y ‘I. Then it follows as in IW,, Sect. 4 ] that K,x( Wl”) = 0; so 
K,( W’O) = 0 by Theorem (4.6). 

In order to use (4.9) we have to decide when K,( I@) is stably free. This 
leads to the Grothendieck groups K,(A) and G,(4) of projective n modules 
and all ,I modules. The quotient of K,(A) resp. G&t) by the subgroup 
generated by free modules is denoted by 2,(/i) resp. G&l). The following 
lemma was pointed out to me by Oliver: 

LEMMA (4.10). adz,,,) -+ FI,,,i,p)=1.CcCcyclic GdZ,(C)> is a mono- 
morphism when G is finite. Each component homomorphism is induced by 
tensoring with Z, and viewing the result as a Z,,(C) module. 
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ProoJ: The basic facts which may be found in [Ba] are: 
K@(G)) + K,(A,(G)) is injective if A is a local ring with maximal ideal p 
and A, = A/PA. This homomorphism is induced by tensoring over A with 
A p. See [Ba. p.4491. Ko(Z,G)+Go(ZpG) is injective [Ba, p. 5321. 

Go(W) --$ Lyc,ic Go&K)) is injective. Z,(G) is a local ring if 1 G 1 = p” 
and is semisimple if (p, 1 G 1) = 1. Projective modules over a local ring are 
free. 

Lemma (4.10) is exploited like this: Let X be a G space. Set r, = r @ Z, 
(4.2) and define 

‘cx) = \’ (-l)i[H,(X, zp) @r,z,]i E e,(Z,G”). 
(Observe+-@rDZZ, is an exact functor.) The tensor product in this definition 
is graded. The subscript i denotes the term in degree i. From (4.6), 

CK*CwQ> Or, zp)i is zero if i # m and is K,(W) @ Z, if i = m. Thus from 
the sentence after (4.5) 

IK,(~) 0 Z,] = (-l)“(S( WQ) - d(ZQ>) 

in G,(Z,@). (Note Z, is r, projective so tensoring with Z, is an exact 
functor.) Define 

(4.11) FG={HcGIHdGo}. 

Let E be a set of subgroups of G and 0 c z. Then B is said to be closed if 
(i) whenever K E E:, HE Q and K > H, then K E D and (ii) if H’ E ,E is 
conjugate to H E 0, then H’ E Q. For any R c C, Q* is the smallest closed 
subset of C containing 8. Observe that ,FL is closed in ,y’(L). 

LEMMA (4.12). Let X= lJHcCqi G/H x D’ be a G C.W. complex. Then 

d(X) = 2 (-1)’ 6(G/H) E G,(Z,G’). 
i.HE FG 

Proof. If H c G,, then G/H/G0 = G/G, ; so H,(G/H) Or0 Zp = 
Z,(G’) mz (H,(G/G,n H) Or Zp) is a free Z,(G’) module. Thus 
J(G/H)=Q d an so G/H contri&utes nothing to S(X). 

COROLLARY (4.12'). Let X and Y bee G C.W. complexes G = 0, or 0;. 
Zf,y(X”) = ,y( Y”) whenever H E CFG, then S(X) = 6(Y). 

ProoJ: By Lemma (4.12) we may suppose Iso and Iso lie in 
,FG = ,i7. Let JC c,P be closed and suppose the lemma is true if Iso and 
Iso( Y) are in u. Let K E F - ,?C be a maximal element and C’ = (C U K)*. 
Suppose Iso and Iso lie in E’. Set X’ = u,,,, X” and likewise define 
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Y’. Then x(X’“) = x( YIH) for all H E .F (because for H E .F there are only 
finitely many isotropy groups containing H); so S(X) = &Y’). Thus 
6(X) - 6(Y) = / F( - ’ (J$%~/X’~) - x( Y/Y’“)) 6(G/K) = 0. The proof is com- 
pleted by induction. 

LEMMA (4.13). Let g ‘= (W, F, B, D) be a K - G prenormal map 
satisfying (4.1). Suppose FQ E O(R) (4.5) and either (i) Q, is finite and 
x( W”) = x(Z”) for all Q a H c K with H/Q cyclic # 1 of order prime to p 
or (ii) & is 0, (or 0; c S3) and x( W”) = x(Z”) whenever Q CI H c K and 
H/Q & (a),. Then K, = K,(W”, R) is a stablv free A,,, module. 

Proof Let G = &. By Lemma (4.10) it it suffices to show 
(-l)m [K, @ ZP] = &I+@) - J(ZQ) is zero in G,(Z,(L)) whenever L E Go is 
a non-trivial cyclic group of order prime to p. In case (i) this is implied by 
the hypothesis and [O,, Lemma 41. In case (ii) Go = Zz ; so there is only one 
L, namely, L = Go. Now apply Corollary (4.12’) with X = I@ and Y = ZQ. 

THEOREM (4.14). Let ?7 -= (W, F, B, D) be a K - G prenormal map 
satisfy?ing (4.1). Suppose N(Q) c K and FQ =: O(R) (4.5). Suppose either R 
is Z and K:,(A,) = 0 or R iz Z(,, for some prime p and either (4.13i) or 
(4.13ii) is satisfied. Then Y/l is K - G prenormallVv cobordant to 
Y“ rel(Hc! Q} with F’Q E O(R). 

Proof Since FQ z O(R), K, = K,( WQ, R) is a projective A, module by 
(4.6). If this is stably free, we apply (4.9) to complete the proof. If R = Z, 
K, is stably free because k,(A,) = 0. If R = Z,,,,, then K, is stably free by 
(4.13 ). 

THEOREM (4.15). Let fl’= (W, F, B, D) be a K - G prenormal map 
satisfying (4.1) with the hypotheses: (i) X satisfies h.vpothesis Q and (ii) 
dim Xo > 6 deleted. In particular X = i! W mav be empty. Require 
dim W” > 6. Suppose f Q f O(R) and FQ % O(R). Suppose either R is Z and 
K,(A,,,) is zero or R is Z,,, for some prime p and either (4.13i) or (4.13ii) 
holds. Then there is an obstruction aQ(P) E L,(A,,,) (n = dim WQ/&) 
whose vanishing implies g is K - G prenormal!la cobordant to 
r” rel(H v? Q} and rel boundary such that F’o E O(R). 

Before proving Theorem (4.15) we briefly review the definition of the L 
groups. (In Wall’s notation these are the Lh groups.) See [W, , W,]. The 
definition of L,(A) depends on he parity of n. 

n = 2k. The group in ths case consists of equivalence classes of pairs 
(M, #), where M is a stably free A module and 4 is a (-l)k = u quadratic 
form on M, i.e., in the notation in ]W,, p, 31 (M, 4) E Q,,,.,(M). (The 

607146/l-4 
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antiautomorphism a of /i arises from the orientation homomorphism 
eQ:~Zg(~~)-‘(fI}definedbyg,[WQ]=eQ(g)[WQ],gE7c,(e,)and(WQ]a 
chosen generator of the top dimensional homology of WQ. Then 
U(g)=eQ(g).g~‘forgE~,(e,)E/1.)Thebilinearization~=(~+T,~)of 
d is assumed non-singular. Here T,,q’t is the transposed form ] W,, p. 3 ], In 
(W,, Sect. .5] there is an alternative equivalent definition based on triples 
(M, A, p) (called in [W,, Sect. 51 a (-1)” Hermitian form) with M as above; 
1 is a /i valued form (intersection form) satisfying A(x,y) = (-l)k 1(y, x) 
with associated “quadratic form” ,u (self intersection form). Note that we do 
not assume a preferred stable base for M. A triple M of this kind is obtained 
from a quadratic module (M, 4) by setting 1 = (1 + T,,) 4 with p(x) = (6(x, x). 
Let M* = Hom,(M,/i). It is a (1 module and M @ M* supports a (-1)’ 
quadratic form called te hyperbolic form and denoted by lH(M). A quadratic 
module is by definition equivalent to zero if it is isomorphic to lH(M) for 
some M. 

tz=2k+ 1. The group in this case consists of equivalence classes of 
formations over A. To define the data of a formation recall that a 
Lagrangian (or subkernel ]W,, 5.31) L of a quadratic module (Q, 4) is a 
direct summand of Q on which ,? = (1 + T,) 4 and #(x,x) vanish and 
L = (x E Q 1 A(x, J’) = 0 for all y E L ). Then a formation (Q. 4, Q,, Q ,) over 
il consists of: 

(i) A quadratic module (Q, 4) which is equivalent to zero. 

(ii) Lagrangians Q, and Q, of (Q, 4). Here Q,, and Q, are to be free /1 
modules. 

The further details of definition, addition and equivalence may be found in 
JR, Sects. 1 and 21. 

Proof of (4.15). The proof depends on the parity of n. First we define 

‘Qtv ‘). 

n = 2m. Since FQ = O(R), K,( WQ) E K,(v, X0). By (4.6), K,(WQ) 
is a projective n = A,., module. It is stably free by (4.13). By (4.6), 
K,( WQ, XQ) 2 K,( I%@)*. This isomorphism is induced by the intersection 
pairing 2. Since K,( kk@) = K,( IV@, X0), J. is non-singular bilinear form over 
,4. Let ,U be the associated self intersection form. Then aa is the class of 
W,(WQ),LP) in L,(A). 

tt=2m+ 1. We follow [D-P,] which turn uses the ideas in ] W,, 
Sect. 21 and construct a diagram as on p. 56 of (W, ]; this will give rise to a 
formation defining an element in L,(n). 

Since FQ =: O(R), Kk(W, Z) = 0 for k < m so K,,,(w, Z) = n, + ,(F’). 
Define K, = K,( WQ, R) z K,( WV. Z) @ R. Pick classes (pi} in 7~~ + ,(FQ) 
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which generate K, as a /i module. Associated to the pi are imbeddings 
d/ii: S” x Dm+’ -+ WQ’. We can suppose these induce an imbedding of 
D indG”‘Q’ Si + WV-, Si = S” x Dmi ’ by a general position argument. 

Pick z E Z with G, = Q. This exists because Q E Iso( We can suppose 
FV is transverse to z. This is easily seen using a (non-equivariant) transver- 
sality argument for FV and the equivariant homotopy extension theorem for 
FQ. Hence, (FQ).~ ‘(z) = ( wl ,..., MI,}, where r can be assumed to be the 
absolute value of the degree of F c. Construct a submanifold U, of WV. It 
consists of disks Di around points )tji, the submanifolds ?pi(S” x D’“’ ‘). 
tubes connecting ?pi(S” x D”‘*‘) with D, and tubes connecting D, with the 
other D,‘s. We can suppose that the tubes and the ?p: (S” x D’” * ‘) are 
mapped to a point r in iiD, (DC a disk around z) while the disks Di (up to a 
small deformation at the boundary) are mapped by a linear isomorphism. 
Also FQ( WQ - int U,) c Zv - int D.. Finally we suppose U= ind$” U, is 
imbedded in WV equivariantly extending the inclusion of U, in PVC’. 
Similarly 0’ denotes the equivariant image of ind$v D, in Z”. Define 
IV! = W” - int U and Zf = Zv - int d. So finally we can suppose 

and degFV=degFVI fl. 
The exact sequence of Kj groups with R coefficients is 

Km+ ,(@) K,,,(W K,( W? 
,/* ‘\ 

P ,n ,’ i _,’ ‘\ 
.I’ ‘\ /’ 

O+ Km&V% :K,_,(W;.iU) J 

/ 
j ‘\, 

L 

- K,,(U) __f 0. 

We justify the zeros on the left of this diagram. Let Ff = FV / Wf/. 
Observe that K,( W,,, au, Z), K,(U. dU. Z), K,(ilU, Z) and Kk( W,,, Z), 
k < m, all vanish; and degree Ff = degree FQ is a unit of R. Also Fg = F” s 
O(R,,,) whenever Q u P, Q # P, P/Q E .Y”, i(P/Q)j” =p”, p prime in R; so 
Ff % O(R). Thus Theorem (4.6) implies K,( I+$ is a projective n module 
and K,( wlf) is a free I- module generated by K,(e). Similarly for K,(U) 
and K,(U). Then since K,( Wo, a(i) and K,(U, au) vanish, K, + ,( W,) --t 
K,, r( W,, dU> and K,, I(U) + K,, ,(U, dU> are zero. This accounts for the 
zeros and shows K,, ,(U, au) and K,, ]( W,, dU) are /1 submodules of 
K,(BU). We claim they are free. If R = Z, there is nothing to show. Note 
that Wt = W’ and Zt = ZK whenever Q < K. so (4.13i) or (4.13ii) is 
satisfied with fl and Zz replacing lVc and ZQ. Thus Lemma (4.13) implies 
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K,(~ci) = Km, IWO, w* is a free /i module when R = a??(,,. Note 
K,, ,( U, au) is free by inspection. 

We now show that 7= (K,(BU),~,K,+,(U,aU),K,+,(wff,aU)) is a 
formation. It represents the class a&V) E L&I). Here 4 is the quadratic 
form determined by the intersection form A and self intersection form ,u. 
Certain facts are clear: (K,(W), 4) is equivalent to zero; K,,,, ,(U, XI) are 
Lagrangian; I and p vanish on K m+,(W~,aU) (same argument as in the 
proof of [W,, 5.71); so it too is a Lagrangian. Thus 7 is a formation. 

To complete the proof of (4.15) we must show that if cc(%) vanishes, 
then P:‘ is prenormally cobordant to ?V-’ with F’Q = O(R). If n = 2m, 
cQ(2F) = 0 means the quadratic module determined by (K,(W), A,,u) is 
hyperbolic say IH(M) for some free /i module M. As in [W, , Sect. 4] surgery 
on generators of M kills K,(W). Let n = 2m + 1 and a,(%) = (K,(dU), 4, 
K,,,, ,(U, au), K,, ,( IV:, t3l.I)) = 0. We write this formation as (IH(F), F, G), 
where lH(F)=(K,(dU),(d). Let y@,u:G-+F@F*=IH(F) be the 
homomorphism which exhibits G as a submodule of lH(F). Since this 
formation is equivalent to zero, there is a free n module L and a 
homomorphism j: L + F* such that w: F @ L + G* 0 L* is an isomorphism 
where 

Identify F* with K,(U). Let x ,,..., x1 generate L. Then surgery on the classes 
(aj(xi), i = 1 ... I} kills K,(W). See Butterfly diagram above. See ]W, 
Sect. 5; R]. This is Ranicki’s formulation of [W, , Sect. 51. 

5. AN INDUCTION THEOREM FOR S3 AND SO, 

In this section G is SO, or S3 and .F is the set of two subgroups (0, O,} 
when G is SO, or their double covers when G is S3. The Induction Theorem 
(5.10) asserts that if Y’i is a G prenormal map and Res, 2Yd = ZY;. for 
K E .X, then %‘i is G prenormally cobordant rel (G} to a pseudoequivalence. 
The precise assumptions for this to be true are spelled out in (5.8) and 
(5.10). We note that much of the notation in this section is contained in 
(4.2). 

The proof of (5.10) makes repeated use of (4.14) and (4.15) as Q ranges 
over a subset of .Y’(G) which lies in .9. Both (4.14) and (4.15) involve a 
ring R which is a function of Q and single out a family of subgroups of .Y 
depending on Q and Kc G. We specify this now. 



ONE FIXED POINT ACTIONS, II 51 

(5.0) For Q E 9, R, is Z if Q is connected and R, is Z,,, if 
jQOI=qS> 1, q prime. 

.YQ R= 
PE.9 QaPcK,P#Q,~/P”/=pS/ 

4 I for some primep prime in R, 1. 

Determination of the sets ,7Q,K depends on knowledge of the subgroup 
structure of G and of the normalizers of groups in .P. This information for 
G = S3 and SO, is recorded in Section 2. In particular we mention that a 
subgroup P of SO, in .9 is conjugate to a subgroup Q of O2 and N(Q) c O2 
unless Q = D,, then N(Q) = 0. 

Before applying the results of Section 4 we need to have an effective 
means of verifying the hypotheses of (4.1), in particular hypothesis Q for X 
and W. Because in applications X and W are rarely explicitly given, we need 
to be able to verify (4.1) from conditions on Z and Y. The next few results 
show how this is done. 

For certain G manifolds we can define an integral valued function Dim X 
on the set of conjugacy classes of subgroups of G by 

Dim X(H) = dim XH, H c G. 

For this to make sense each component of XH must have the same 
dimension. We say Dim X is even or odd if all values are even or odd. 

In order to relate Dim X and (3.1 l), define Xf = {x E X ( G, > Q}. There 
is a well defined map of G/L X XL to X which sends (gL, x) to gx. This 
induces a surjective map of U (G/L)Q xL1 XL onto Xp. The union is over the 
set of conjugacy classes of isotropy groups L of X strictly containing Q and 
L * = NL n NQ/L f7 NQ. This set is finite so 

dim Xp < max dim XL + dim G/L” - dim 
NLnNQ 

(I-) LEIS0.Y I. >Q i LnNQ ’ 

LEMMA (5.1). Suppose X is a smooth G manifold for which Dim X is 
defined. Iffor all L > Q 

Dim X(L) + Dim G/L(Q) - dim 
NLnNQ 1 
L n NQ < z (Dim X(Q) + dim Q) 

(see (4.2) for e) then X satisfies hypothesis Q. 

ProoJ: The hypothesis implies any sphere Sk with k < $ dim XQ/Q can 
be homotoped into XQ* = XQ -X,” b ecause dim Xp < +(dim Xv + dim Q). 

DEFINITION (5.2). X satisfies the Gap-hypothesis if: 
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(i) px is defined for all P c G with P E .‘V. See (4.2) and (3.12). 

PE 7) Th 
e inequality in (5.1) is satisfied whenever Q = p,. (3.12) for 

i . 

(5.3) From now on a prenormal map ? ‘= (X,5 b. d),J X 4 Y (3.9) will 
satisfy these additional conditions: Dim X = Dim Y and Iso = Iso( 

LEMMA (5.4). Let T’ be a prenormal map as in (5.3). If Y satisfies the 
Gap-hypothesis (5.2), then X satisfies the Gap-hJ,pothesis. 

ProoJ As Iso X = Iso Y, P,V is defined and equal to p,. for P E f. The 
inequalities required for Dim X are implied by those for Dim Y. 

A weaker inequality than (5.1) is useful for determining whether 
Q E Iso( Consider these properties for X and Q c G: 

(5.5-Q) For all L > Q, Dim X(L) # Dim X(Q) implies Dim X(L) -+ 
dim G < Dim X(Q). 

(5.6) (5.5-Q) holds for all Q c G. 

LEMMA (5.7). Suppose Dim X is defined and X satisfies (5.5-Q). I f  for 
all L > Q, Dim X(L) # Dim X(Q), each component of XV contains a point 
whose isotrop.v group is Q. If XQ is connected this is necessary and sufficient. 

Proof. The hypothesis implies dim Xa ( dim Xv so no component of Xv 
is contained in Xf . Finally observe that if Xv is connected and Q E Iso( 
dim XL < dim Xv because XL is a proper submanifold of Xv. 

The center of S3 is denoted by C; so SO, = S3/C. When %“= (X,5 b, d) 
is an S3 prenormal map, PC = (XC,f ‘, bC, dC) will denote the resulting SO, 
prenormal map. 

Let G be SO, or S3 and 9, = (X,J b, d) be a G prenormal map which 
satisfies these conditions: 

Set .?-==Fo2U (0, T} if G=SO, and .F==.<,lU (0’, T’} if G=S’. 
Recall FG is defined in (4.11). 

(5.8) (i) degreef = 1 and in addition degreeF = 1 when G = S’. 

(ii) Dim Y(H) is even for all H c G and Dim Y(H) > 6 for 
HE.W. 

(iii) Y” is connected for H E .y U .i”. 

(iv) When G = SO,, Iso contains .‘9 = ((S’, O,, D,. Dz, 
Z,, l)} and pr, E .3 for all P E .9. When G = S’, Iso contains .i , 
Iso(Y)=p-‘Iso(F)U 1 and P,., E.Y for all PE.9. Here u“ is viewed as 
an SO, manifold. 

By an .P’ prenormal map %,, we sall mean %& = {-rti. ( K E W), where 
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@;=(W,,F,,B,,D,) is a K - G prenormal map (3.9’) with Fk : W, -+ Z, 
X a G manifold independent of K and 8Vi = (X,J b, d) = %i a G prenormal 
map which is independent of K. We write Pi = 8V,& and call Z the target of 
‘fl ‘y. If each r/i. is K - G prenormally cobordant rel(H afr Q} to fl, with 
common G cobordism between ?fli. and irr L, we say ~7’; is prenormally 
cobordant to fl‘; rel{ H & Q}. 

LEMMA (5.9). Let *$ = {yi) be an ;iv prenormal map. Suppose 
&Vi= wt, satisfies (5.8). Let 0 c.F be a closed set (Section 4) such that 
x(Wz) =x(Z”) whenetler HE 0, H c K E x. Let Q E .7 - 0 be u 
maximal element. Then ;*/> is prenormall>~ cobordant rel{ H d Q} to 7/ “& 
with x( Wr) = x(Z”) wheneL?er H E (0 U Q)*-the smallest closed set 
containing l2 and Q. In addition %f ‘$ satisfies (5.8). 

Proof: One of the groups in X say J contains N(Q). Let J’ be the other 
group in V. Suppose first Q 6? Iso( Since p is connected and 
Iso = Iso( Y), Q,, and Q,. are defined and equal say equal to Q. Then 
Xv = Xv and p = Yc (3.12). Since XJ c Xv and J is an isotropy group, 
Q 4 Q CJ so & E, F. ‘But then Q E fi because n is closed: thus 
x(X0) =x(X0) = 2x( I@) = 2x(Zn) = x(P) = x(P). Here the inductive 
hypothesis and the fact that dim XQ is even and is the boundary of v are 
used. Since Xv and Yc have the same Euler characteristics, IV@ and Z’ do 
also for the same reason as above. 

Thus we may suppose Q E Iso( Since dim Xv > 6 (5.8ii). we can 
perform G surgeries on (;‘/i., pu) for K = J, J’ using trivial classes p E zj(fv) 
(3.19) for i = 1 or 2 to achieve ,x(WjQ) =x(ZQ). To justify this note that 
surgery on such a class alters Wy up to G homotopy by adding Q x D” ‘. 
This alters the Euler characteristic by (- I)” ’ x(Q). For Q E. F. Q is finite 
so x(Q) = / 01. S’ mce WY and Zy have the same Euler characteristic for 
H > Q, their Euler characteristics for H = Q have a difference divisible by 
101; so the above surgeries will kill this difference. 

Having achieved equal Euler characteristics for WiU and ZV means the 
same is true for X”’ and Y” if H is any conjugate of Q. This implies equal 
Euler characteristics for Wk” and Z” for K either J of J’ and H any 
conjugate of Q in K. This completes the proof. 

THEOREM (5.10). Let G be SO, or S3 and F; = (X,f, b, d),f: X-, Y be 
a G prenormal map (5.3) satisfying (5.8). Suppose y,j = flfi>. Let Z be the 
target of “r/k. Suppose Zp and Yp are one connected for all P E f and Y 
and Res, Z for K E X satisjjl the Gap-hMvpothesis (5.2). Then yf > is prenor- 
mally cobordant rel{G} (Section 3) to ;*r; with afl’lr= (X’,f’, b’, d’), f’ a 
pseudoequivalence (Introduction). 

Remarks. (RO) Because of (5.8iii) P,. (3.11) is defined whenever P E, y”. 
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By (5.3), px = P,. From now on we drop the subscripts; so p means the 
minimal isotropy groups in X or Y which contain P. Observe that Xp =X’ 
and Yp = Y’. 

(Rl) The proof of (5.10) uses (5.9) and the results of the preceding 
section. All those results require the blanket assumption (4.1) which is used 
for Q = P (3.11) for each P E Up. These conditions are met because Y and 
Res,Z for K E.X satisfy the Gap-hypothesis (5.2) by assumption. From 
(5.3) and (5.4) it follows that X and IV, satisfy the Gap-hypothesis. Then X 
and W, satisfy hypothesis Q whenever Q = P for P E .?. (Of course for W, 
we need Q c K.) Note in particular that Q = Q whenever Q E Iso( Y) n, i”. 

(R2) Note that the assumption degreef= 1 (5.8i) implies degreef” is 
a unit of R, whenever P E P, / P” 1 = p’, p prime. See the remark following 
(4.5); moreover, when P is such a group and P c K E , F, then degree FE is a 
unit of R, because Xp = 3 WE. 

(R3) If H c L, then x(WE) = +x(X”) because dim X” = dim Y” = 
Dim Y(H) is even ((5.8ii) and (5.3)). This means x( Wt) = x(Z”) iff 
x(X”) = x(Y”). We also note that Fi = O(R,) (4.4) implies that 
x(c) =x(Z”) provided of course Q c K. 

(R4) Theorems (4.14) and (4.15) require statements about Ro(/l) and 
L,(A) which are valid when these groups vanish. They vanish in these cases: 
K,(A)=O, A =Z(z), Inl= 1 or 2; L,(A) vanishes if n is odd and 
/1 = Zo,(H) for a 2 group H [Pa] or for /1 = Z. 

There are several steps in the proof of (5.10). Each is an application of 
(4.14) or (4.15) to %i, Q, K and R with 

Q=&.P, QcK, R =R,. 

(Note (5.8iv) which implies P E 9 whenever P E 9.) The requirements for 
(4.14) and (4.15) then simplify. For example, X and W, satisfy hypothesis Q 
as noted in Rl. We restate these simplified conditions for reference in proof: 

(4.14’) (i) N(Q) c K. (ii) F’$ zz O(Rp) (this is (4.5’) below). (iii) If Q is 
connected, ~,,(Z(~)) = 0; otherwise either (4.13i) or (4.13ii) is satisfied. 

(4.15’) (i)fQ = O(R,). (ii) F$ =: O(R,) (this is (4.5’) below. (iii) If Q is 
connected, K”,(Z@“)) = 0; otherwise either (4.13i) or (4.13ii) is satisfied. 
(iv) L,(A) = 0 when n = dim W”/QK and R,(ei) = A. 

The condition (4.5) that FQ z O(R) for F = FK and R = R, also simplifies in 
the presence of the assumption degree f = 1 (5.8). Then (4.5ii) is 
automatically satisfied by R2; thus FE x O(R,) is equivalent with: 

(4.5’) (i) Fz - 0. (ii) Fi. = O(R,) for P E ,pQ,, (5.0). 
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Finally for reference we simply restate (4.13) which is required for (4.14’) 
and (4.15’). Since it is applied to R = R,, we must have 1 Q” 1 = qs > 1 for 
some prime q. 

(4.13) F$ z O(R,), i.e., (4.5’) is satisfied and one of the following two 
conditions holds: (i) If @, is finite, then x(e) = x(Z”) for all Q u I( c H 
with H/Q cyclic # 1 of order prime to 1 Q” /. (ii) If Q,, is O2 (or 0; c S’), 
then x( WC) = x(Z”) whenever Q CI H c K and H/Q E (a), . 

Each step in the proof of (5.10) involves an application of (4.14) or (4.15) 
to ‘gi (K one of the two subgroups of a) to achieve either Ff = O(R,) or 
x( l+$) =x(ZQ) for some Q and K. Each application produces a K - G 
prenormal cobordism rel{G} between yi. and ?7 i to achieve the required 
condition. (We emphasize that the G tixed set of X is unchanged.) This 
produces a G prenormal cobordism *7’ between 677;. and air/i. which is 
glued to ‘T’fL (L the other group in W) to produce 77 ‘; with %y/ i = %r ;I. 
This yields ;r/‘&= (?7 L, r/;.}. B y construction i*/ i. satisfies the required 
condition. The condition on %i* is implied by either that for K or by the 
preceding steps. For example, if Q is contained in both K and L, then 
Fz z O(R,) implies f Q = O(R,) implies x(XQ) =x( Yv) implies 
x(q) =x(Z’). The first implication is a consequence of the definitions in 
(4.4) and Poincare Duality. The second and third are consequences of R3. 
Since the cobordisms used to construct rt ‘$ from ?7& are rel(H ti Q}, fl “;v 
not only satisfies the condition specific to the particular step being discussed 
but also satisfies the conditions of the preceding steps. At this point the 
prime is dropped and g, is assumed to have the properties of i’/‘$. 

In order to apply (4.14) or (4.15), we verify the relevant conditions 
(4.14’) and (4.15’) (and (4.5’)) at each step. Remember this requires Q = 0 
and Q E Jp or equivalently Q E Isof Y) and Q E ?. In steps 2-6 below Q has 
certain specific values. Each such Q must then be in Iso( Y) because Q = Q. 
This accounts partially for (5.8iv). 

We begin the proof of (5.10). First we prove (5.10) for G = SO,. Let 

c,=(PEO,JPE.~,(P)~((Dz)}, 

,iTo= IQE.71 (Q)~Pz)i. 

(7 is defined just before (5.8).) Each P E z,, is unique up to conjugacy in 

02. Let 0 cC,,U&, = z be a closed set. We make this inductive 
assumption: 

A (0): (i) For all H E 0, I( IV,“) = x(Z”) whenever H, K E X. 

(ii) For all P E R with P E .9”, Fi E O(R,) for K = Oz. 

Step 1. Prove A(C). This is done inductively. By assumption A(C)) 
holds. Let Q E C - fi be a maximal element in this set partially ordered by 
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inclusion. We show how to achieve A(0’) for 52’ = (a U Q)*-the smallest 
closed set in C containing n and Q. There are two cases: (i) Q 4.4 and (ii) 
Q E .Y. For case (i) use Lemma (5.9) to achieve A(fi’). In case (ii) there are 
two further cases (iia) Q # Q and (iib) Q = Q. 

Case (iia). Observe that Q c 0, = K. To see this note that Q E .y by 
(5.8iv); so Q is conjugate to a subgroup of 0, and this conjugate L of Q is 
an isotropy group because Q is. This conjugate L contains the corresponding 
conjugate of Q. Since subgroups of 0, in z are unique up to conjugacy in 
O,, L is conjugate in 0, to an isotropy group L’ containing Q. Then L’ = d 
by definition of Q (RO). Now observe Q > Q and Q E C,. Since fi is closed, 
Q E J2. Since Q E Iso by definition of Q and Res, X = W,. Q is an 
isotropy group of yK (by the Equivariant Collar Neighborhood Theorem); 
so @= Wg and Ff=Fz. 

We assert that Q is a finite 4 group for some prime q and Q” is also a q 
group possibly the trivial group. Grant this for the moment. Then R, is Z,,, 
and Rd is either Z(,, or Z. In either case FE = Ff = O(Ra) implies (u) 
Fi = O(R,). Now we establish the assertion. Note Q E .y and Q # Q rules 
out Q = S’ and Q = 0, because these are isotropy groups of Y by (5.8). This 
means Q is cyclic of prime power order or dihedral of 2 power order. (These 
are the only other groups in $9 which are in O,.) Since S’ and O2 are 
isotropy groups, Q is cyclic or S’ in the first case while Q is dihedral or O2 
in the second. In either case this implies Q” is a q group because Q > Q and 
Q E cT by (5.8). Now suppose Q c 0. Then (/3) x(e) = &Xc) = &(X0) = 
fx( p) = x(ZQ). The first and fourth equalities follow from R3). The second 
follows from (RO) and the third follows from (R3) and x(e) =x(Z”) 
because Q E 52 and A(Q) holds. Put (u) and (/I) together with A(G) to prove 
A(f2’). This completes case (iia). 

Case (iib). Q = Q, Q E .P, K = 0,. We verify the requirements of 
(4.14’). (i) N(Q) c K because the normalizer in SO, of any subgroup of 0, 
in .4 other than D, lies in 0, (Section 2). (ii) Use (4.8i) to achieve Fz - 0 
(4.5’i). Then (A(J2)ii) implies (4.5’ii); so (4.5’) is satisfied, i.e., Fz zz O(R,). 
(iii) If Q is connected, Q = S’ and Q” = Zz; so go(Z(Qo)) = 0 by (R4). If Q 
is not conected. (A(R implies whichever of (4.13i) or (4.13ii) is relevant. 
The hypothesis of (4.14’) is satisfied; so we apply (4.14) to achieve 
F$ = O(R,). If Q is also a subgroup of 0, this implies x( I+$) = x(Z”) as in 
case (iia). As A(l2) has not been disturbed in applying (4.14). we have 
achieved A(0’). This completes case (iib). 

Step 2. Achieve F$ = O(RQ) for Q = D,. K = 0. We verify (4.15’). (i) 
fV = O(R,) because FzZ = O(R,) by (A(C)ii). (ii) Use (i) and (4.8ii) to 
achieve F; - 0 (4.5’i). Then (4.5’ii) is vacuously satisfied because .?u”u., is 
empty as D, is the 2 Sylow subgroup of 0. This means (4.5’) is satisfied. 
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(iii) This is implied by (A(C) (iv) L,,(A) = 0: Since 1 Q”l = 8, R, = Z,,. 
Since N,(D,) = D,, Q, = 1: so il = Z,?,. Now observe that n = dim q/Q, 
is odd as dim Xv = dim P = Dim Y(Q) is even by (5.8). Then L,,(A) = 0 is 
implied by (R4). This completes verification of (4.15’). Step 2 is now 
completed using (4.15). 

Steps 3 and 5 proceed exactly like step 1 case (iib) while steps 4 and 6 
proceeds exactly like step 2. 

Step 3. Achieve Ff= O(R,) for Q= D2, K =O. Verify (4.14’). (i) 
N(Q) c K as N(Q) = 0. (ii) Use (4.8i) to achieve Ff - 0 (4.5i). Note that 
Y;,~ (5.0) is {D,,}; SO Fi = O(R,,) for PE.Y>,~ (4.5’ii) by step 2. (iii) 
(A (C)i) implies (4.13i). Having verified (4.14’) apply (4.14) to achieve what 
is required. 

Step 4. Achieve Ffr O(R,) for Q= D2, K = Oz. Verify (4.15’). (i) 
f v = O(R,) because Ff = O(R,) by step 3. (ii) Use (i) and (4.8ii) to achieve 
(4.5’i). Observe that yO,K = {Da} because N,?(D2) = D,. Since D, E C, 
(A(E)ii) implies (4.5’ii): so (4.5’) is satisfied. (iii) This is implied by 
(A(C)ii). (iv) L,,(il)=O; IQ01 = 4; so R, is Z,,,. Since Q, is 
Z,,ii = Z,z,(Zz). As in step 2(iv) II is odd. Then L,,(4) = 0 is implied by 
(R4). Use (4.15) to achieve the required goal. 

Step 5. Achieve Ff = O(R,) for Q = Z,. K = Oz. Here we take Z, to be 
the unique cyclic group of order 2 in S’ c 0:. We verify (4.14’). (i) 
n;(Q) = K. This follows from our choice of Z, in K. (ii) Use (4.8i) to achieve 
(4.5i). If P E flg,K, then P E C, or P= D2; so (4.5ii) is implied by either 
(A(C)ii) or by step 4. (iii) (A(C implies (4.13ii). Note Q* = 0,. Now 
apply (4.14) to achieve the required condition. 

Step 6. Firlal Step: f v = O(R,) for Q = 1: K is G. This is the final step 
because this implies by definition f is a pseudoequivalence as R, is Z. (See 
(4.4) and (5.0)). We apply (4.15) to r/ ‘= (W.f.6, d). Care with notation is 
necessary at this point. In particular X and f play the role of Ct’ and F in 
(4.15) and X there is iiW which is vacuous now. We verify (4.15/i). (i) This 
is automatic as 8X = 0. (ii) Use (i) and (4.8ii) to achieve f Q - 0 (4.5/i). 
Note that each P in 7” V,h is conjugate to a subgroup in C,, U { Dz. Zz 1, But 
for P in this set. FzZ = O(R,,) by preceding steps: so f” = O(R,,) and this 
holds for any conjugate of P. Thus (4.5’) is satisfied andSV z O(R,). (iii) 
As Q is 1 and K is G, Ql. = 1 and I?,,(Z(Ql.)) = 0 by (R4). (iv) L,,(A) = 0: 
Note II = dim X/G is odd and /i is Z. Apply (R4). Thus (4.15’) is verified. 
Use (4.15) to achieve f v = O(R,). 

Now we treat G = S3. Observe that r/z is a G/C = SO? prenormal map 
which satisfies all the hypotheses of the case just completed: hence, we can 
suppose 1 6’ is a pseudoequivalence. But then f” = O(Z,,,,) whenever 
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GxPE.9, ]P’]=p”, Pf 1, because pvCE.y whenever PE,~“. Now 
apply Theorem (4.15) to ri with Q = 1. This completes the proof. 

6. PROOFS OF THE MAIN RESULTS 

One tool for constructing G prenormal maps is an equivariant transver- 
sality construction used in conjunction with the equivariant cohomology 
theory cc):(.). This we now explain. In this section G is SO, or S3. 

Let It4 be a representation of G and let Y be a smooth G manifold. Set 
N = Y x M and 7~: N + Y the projection on Y. The G vector bundle map 
(covering the point map q) which is defined by the composition TN + x*N = 
x*q*M --t M is called s. Here M is viewed as a G vector bundle over a point. 
Let C be a G module. Suppose C is good (or 2” good) and C 3g. The 
differential of a G map w: N -+ M is denoted by Do: TN + TM and 
dw: TN --) M is p2 0 Du where pZ: TM = M X M--t M is projection on the 
second factor. Set TY > M if STY = sA for some representation A of G and 
(A, x) = 0 implies (M, x) = 0 for each irreducible representation x # 1 of G. 

LEMMA (6.1). Let w: N + M be a proper G map. Suppose TY > M, 
Iso = Iso( Y is C stable, Z c Y is a closed invariant set and w is 
transverse to zero on N Ix with l(do, C) = i(s, C) on A( TN lx, C). Then w is 
properly G homotopic rel N lz to a map h transverse to zero with 
,l(dh, C) = ,I@, C). 

The proof of this theorem is postponed until Section 7. Compare [P,; 
D-P,, Sect. 81. In the meantime we show how to use it to construct 
prenormal maps which serve as input for (5.10). Observe that w in (6.1) 
gives rise to a class [w] in w:(Y) which determines some of the properties of 
X = h-‘(O) produced from w b-v (3.1). We make these blanket assumptions 
for the remainder of the section: 

(6.2) Z and 8Z = Y are smooth G manifolds which satisfy: Dim Z and 
Dim Y (Section 5) are defined, both are C stable (3.6) for C = g, Y and 
Res,Z, K E.F (Section 5) satisfy the Gap-hypothesis (5.2), Y and Z satisfy 
(5.6) and 

(a) Iso = {HE G 1 Dim Y(L) # Dim Y(H). VL > H}, 

(b) Iso(Res,Z)=(HEK]DimZ’(L)#DimZ’(H), VL>H, LcK}, 
Z’ = Res, Z. 

THEOREM (6.3). Let Y satisfy (6.2). Suppose the hypotheses of (6.1) are 
satisfied (with A = 0). Let X= h-‘(O) and suppose Xc # 0. Then Dim X is 
defined, Dim X = Dim Y, Iso = Iso( and X is C stable. 



ONE FIXED POINT ACTIONS, II 59 

Proof. By transversality the G normal bundle of X in N is X x M. Let 
f: X+ Y be the composition Xc N+” Y. Since TN = n*(TY @ Y x M). 
f*TY @ X x M = TN Ix = TX @ X X M; so sTX %f *STY. This implies 
dim XH = dim TX” = dim TYH = dim Y” whenever X” # 0, but Xc # 0 
guarantees this. This shows Dim X = Dim Y. Let H E Iso( Then 
Dim Y(H)# Dim Y(L) for t, > H (6.2); so Dim Y(L) + dim G < Dim Y(H) 
by (5.6). This inequality then holds if Y is replaced by X. By (5.7). 
H E Iso( thus Iso z~ Iso( Y). As X c N, Iso c Iso = Iso( Y); so 
Iso = Iso( Y). Use this and sTX “f *STY together with C stability for Y 
to conclude C stability for X. 

THEOREM (6.4). In addition to the hypothesis of (6.3) suppose 
deg,]W] = 1 (Section 2). Then there is a G prenormal map 
r(o) = (X.f, b, d) = Vi, f: X -+ Y with d = A(s. C) and the conclusions of 
(6.3) holdfor X. 

Proof: Let X be produced by G transversality as in (6.3). As noted in the 
proof of (6.3) there is a G vector bundle isomorphism b: sTX sf *sTY. The 
1 isomorphism d = /i(s, C) satisfies s(d) = l(b, C). For G finite and C = g (so 
A(TX, g) = ETX = vX) this was explained in [D-P,, Sect. 8 ]. The procedure 
here is the same. The essential point is that l(dh. C) = l(s, C) (6.1). It 
follows from (ordinary) transversality that degreef = deg,]W] = 1. The 
conditions (5.3) and (3.9) for s(clj) = (X,f, 6, d) to be a G prenormal map are 
now verified using (6.3). 

THEOREM (6.5). Suppose Y and Z satisL$l (6.2) and TZ > M. Let 
O: Y X M + M be a proper G map which extends to a proper K map 
w,:ZxM-,M for given K c G. Suppose Iso( Y x M) = Iso( Y), 
Iso(Res, Z X M) = Iso(Res, Z), deg, [o] = 1 arzd w is transverse to 0 Irith 
X = w ‘(O), XG # 0. Then there is a G - K prenormal map r(wfi) = iY/i = 
(W,, F, , B,, OK), F, : W, + Res, Z ivith mi = Res, r’r,, yi = r(w). 

ProoJ As tc) is transverse to 0 as a G map, it is transverse as a K map. 
Use (6.1) with ,E = Y and N = Z x M to construct a proper K homotopy 
rel NI, between CUE- and a map h, which is transverse to 0. Set 
ri = ( W,, F,, B,, DK) = t(ru,-). Apply (6.3) to Res, Z to see IV, satisfies 
Dim W, = Dim Res, Z, Iso( W,) = Iso(Res, Z), and W, is res, C stable. 
The conditions (5.3) and (3.9) required for pi to be a K prenormal map are 
now verified using (6.3) and (6.4). 

Manifolds Y and Z which satisfy (6.2) are S(A @ IR) and D(A 0 m) for 
certain representations A of G. We proceed to spell out the properties 
required for the representations. 
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LEMMA (6.6). Let A be a complex representation of G satisfying (5.6). 
Then K E Iso iff for all L > K, Dim A(L) # Dim A(K); moreover, Iso 
is closed under intersection. 

Proof The first statement is a consequence of (5.7) and the fact that Ah 
is connected for all K. To see the second note: A 0 A satisfies (5.6), 
I~~(A~A)=(HC’IK~H~KEI~~(A)} and Dim(A@A)(L)=2DimA(L) 
for all L; so Dim(A @A)(L) # Dim(A @A)(K) iff Dim A(L) # Dim A(K). 

LEMMA (6.7). Let A be a complex representation of G which satisfies 
(5.6) and Iso 1 y (2.0). Then each element of w:;(Y), Y = S(A 0 rt) (or 
D(A @ R)), can be realized as [o 1 where co: Y x M + M for some M E /(, 
with Iso( Y x M) = Iso( Y). 

Proof. Each element of ui( Y) is represented this way for some M E i, ; 
so Iso c y. By (6.6). Iso = Iso( Y) is closed under intersections; so 
I~~(YxM)=(H~K~KEI~~(Y),KEI~~(M)}=I~~(Y). 

THEOREM (6.8). Let A be a complex representation of G which satisfies 
(5.6) A 2 T4 resp. S, for G = SO, resp. S’ (Section 1) and Iso 13 Y’ 
(2.0). Suppose Y= S(A @R) and Z = D(A @ R) satis- (6.2) and Y 
satisfies (5.8ii-iv). Let x E w:(Y) with res, x = 1 y and deg, x, # 0 for some 
q E Y’;. Suppose dim Y(; = 0. Then there is a smooth G manifold X with 
Dim X = Dim Y, the cardinality of X” is CpE y,, 1 deg, x,, and there is a 
pseudoequivalence f: X + Y. 

Proof: Apply (6.4) to Y and LU: Y x M+ M with Iw] = s E tuy;(Y) and 
Iso(Y x M) = Iso (6.7). (Note: M E .‘i,; A 2 T, resp. S, implies 
TY > M.) This produces 7(w) = %; = (X,f, 6, c). We must verify that 

xc = C,e /deg, x,1. If so Xc # 0 as deg, xP # 0 for some p by 
hypothesis. A look at the proof of (6.1) (Section 7) shows that the first step 
in making o equivariantly transverse to zero is to make wc transverse to 
0 E M”. Here there is no group acting and this can be done in an arbitrary 
manner. Now p x M” = u,,ycp x M”. The restriction 0:: of 0” to 
p x M” has degree equal to deg, xP by definition. Make each 0: transverse 
to 0 with / deg, xp) points in the inverse image of 0. Then 0” is transverse to 
0. Now complete the equivariant transversality construction on w by 
producing h equivariantly homotopic (rel p x M”) to u and h transverse to 
zero. Since X= h-‘(O) and X” = (h’)--‘(O) = (w”)-‘(O), the cardinality of 
xc is ~pEY<, /deg, Xp(. 

Now apply (6.5) to Y = S(A @ Fi). Z = D(A @ R) and cc): Y x M-+ M 
with [WI = x for each K E .i%“. Note the assumption res P x = 1 y means 
res,x= l,Ewi(Y) for each KE X; so w does extend to w,:ZX H-r&f. 
Since TZ > M, (6.5) produces 7(uK) = R, with the properties specified and 
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;‘rd = aiY/&, where fl> = (Pi. / K E P }. Thus the hypothesis of (5.10) is 
satisfied. (Note for G = S’, deg,..~ = 1 because res. x = 1 y. Thus 
degreef“ = 1. This is required in (5.8i).) By (5.10) we may suppose f is a 
pseudoequivalence (modulo a G prenormal cobordism rel (H # G } ). This 
completes the proof. 

We now describe a set d(G) of complex representations of G when 
G = SO, or S3 which satisfy the hypothesis of (6.8). The set of their 
realifications is denoted by ./u’,,(G). 

(6.9) For G = SO,, A E .H(G) iff A satisfies (5.6). A’=O, A @ 11, is 
stable, A 3 T, resp. S, for G = SO, resp. S’ and: 

(i) Whenever Q < L c G, Q E ‘4” and dim, A’ =dim,.AV. 
2 dim,. A’, < dim,. Au. The inequality must be strict when Q is Z,, 1 a power 
of 2, or (L. Q) is (0,. Z,), 1 any prime power. For S’ the inequality must be 
strict when Q is p ID,, I a power of 2. 

(ii) dim,.A” > 2 for H # G, I and dim,. A” > 3 for P E ?. 

(iii) $,, E f for all P E ,4 and Iso I> Y . 

For G = S’, A E .d(G) iff A = B @ fzlrl, where ItI is the quaternion field 
with standard action of S”, B E .H(SO,) and 4n > dim,. B. 

Remarks (6.10). (a) If for all HE Iso( (A, 1) is less than (A,x) for 
all x E Z(H) with (A,x) # 0, x E g, x # 1, 3A @ r! is stable. (b) In addition 
3A always satisfies (5.6). (c) It is left to the reader to check that if 
A E .;t’(G), then Y= S(A OR) and Z = D(A @ r;) satisfy (5.8). (5.10) and 
(6.2). The essential check (implied for G = SO, by (6.9i)) is the Gap- 
hypothesis (5.2) for Y and Res, Z for K E ?. 

THEOREM (6.11). Lef G be SO, or S’. A E.&,,(G) and c[ = rfrl. 7’herl 
there is a smooth action of G on a closed homotopy sphere C such that Z” 
consists of 2 - u points and the isotropy representation at each points is A. 

Proof Let Y= S(A @ n:), Z = D(A @ iii) and .Y E (u:;(Y) with 
i*(x) = (1, 1 - cre) (2.7) and Res, X= 1 y. (Observe that A satisfies the 
hypothesis of (2.7) as AJ = 0.) Then Y, Z and x satisfy the hypothesis of 
(6.8). From (6.8) we obtain a homotopy sphere X with X” having 
cardinality I + 11 ~ a deg, el = 2 - u as deg,, e = 1 by (2.2)-(2.5). Take 
.z = x. 

For (6.11) to be non-vacuous we need the following lemma whose proof is 
postponed until Section 8. 

LEMMA (6.12). .‘#(G) and hence H’,(G) is non-emp!,‘. 
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Proof of Theorems A-C. These are all corollaries of (6.11) and the fact 
that .,5?,,(G) # 0. First note that (6.11) produces homotopy spheres Zi with 
2Yp consisting of i points for i = 1 or 3 and the isotropy representation at 
each point is A. If A4 is any G manifold and p E M” has isotropy represen- 
tation A, then M#C, = M’ has M” = MC -pU (p, Up,) and the isotropy 
representation at p, and pz is A. Of course this connected sum is taken at the 
point of M whose isotropy representation is A. Repeat this process to 
complete the proof of Theorem C. Theorems A and B are immediate from 
Theorem C. 

7. PROOF OF THE TRANSVERSALITY LEMMA 

This section is devoted to the proof of the Transversality Lemma (6.1). 
Compare [P,; D-P,, Sect. 81. We prove it under the assumption C is good. 
The proof in the more general situation where C is .?Y good is a minor 
modification of this proof. We fix notation. Let C be a good representation 
of G with g c C. Abbreviate A(,??, C) and A(b, C) by A(E) and A(b) when E is 
a G vector bundle and b is a G vector bundle map. View the representation 
M of G as a G vector bundle over 0 E M. Then A(M) and l’(M) are defined 
and A(M) = (A,(M) 1 w E n(0)). If N is any G manifold and a E ZZ(N), set 
A,(M) = L,(M), where w E n(O) is the unique component with p(w) = p(a), 
and set M, = Mpca’. The tangent space of M TM is M x M and y x M c 
M x M is regarded as the tangent space TYM of M at y. The differential 
OJ TN+ TM of a G map f: N -+ M is a G bundle map. Set 
df =pz o Dj TN + M, where pz : M x M + M is projection on the second 
factor. Then f is transverse to 0 E M iff for each x Ef ‘(O), dJ; : T,N + M 
is surjective. For a E n(N) and x E N, 

where f, : N, + M, is the restriction of S to N, . This means dJ; is surjective 
iff each term in (7.1) is surjective. We emphasize df: TN + M is a G bundle 
map covering the point map of N to 0; so df,: TN0 --t M,, 
l,(df): ,l,(TN) +1,(M) and l.;(df): AA + A;(M). 

Let N be a smooth G manifold provided with a G invariant inner product 
on its tangent space. For x E N, let g, be the tangent space to the orbit 
Gx c M; so g, c T,N. Set 

TN-g= u (T,N-gg,). 
XEN 
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Here rVN - g, is the orthogonal complement of g, in T,N. These are not G 
vector bundles as the dimension of g, varies with x. With care they can be 
treated as G vector bundles. In particular the definition of l(E) and n’(E) for 
E either g or TN-g’ is formally the same as if E were a G vector bundle. 
We observe that l(g, C) = 0. This follows from the fact that g, is a sub G., 
representation of g and g c C. Set 

n”(TN)=A’(TN-f)c=C’(TN) 

and denote the restriction of n’(dfl to n”(TN) by ,4”(Q). Its target remains 
/1’(M). Now observe this key point. If x E N, and f(x) = 0, then A;( g,) E 
Ker(;l;(dfx)): so if n’(df,) is surjective, then Az(df) is surjective and con- 
versely. 

Here is one special situation where an equivariant transversality result 
follows immediately from the classical case where there is no group acting. 
Its proof is left to the reader. 

LEMMA (7.2). Let a group L act free& on a manifold S, J S --$ T be a 
proper L map, T’ c T be an invariant L submanifold and A c S be a closed 
invariant set such that f is transverse to T’ on A. There is a proper L 
homotopJ7 off rel A to a map transverse to T’. 

Let W and Z be L/H spaces with L/H acting freely on W. Let E be an L 
bundle over W, E’ an L bundle over Z, h: W-, Z an L/H map and C an L 
representation. Set 

P = min{dx(ti3 E,.) - lx, &,,,.,))I. 

x E WO XE c. Xf 1, C,x. E,,.) f 0, M’ E w. 

LEMMA (7.3). Suppose dim W ,<p, D c W is an L/H invariant subspace 
and t: A ‘(E, C) jD + A’(F, C) ID is a surjective L bundle map covering h In. 
Then t extends to a surjective L bundle map covering h. Here F = h *E’. 

ProojI Sought is a K = L/H section s in the space r of surjective H 
bundle maps from A ‘(E, C) to A ‘(F, C) which extends the section t of r 1,). 
Observe that f is the total space of a K fiber bundle over W whose fiber at 
x E W is Q/Q’, where D is Aut,(/l ‘(E,, C)) and R’ is Aut,(Ker tl, C)). By 
(1.0) and (l.l), n&?/Q’) is zero if i <p. Now K sections of r extending t 
are in 1-1 correspondence with sections of the fiber bundle T/K + W/K 
which extend t/K. The fiber of this bundle is again D/a’ as K acts freely on 
W. The existence of s now follows from obstruction theory. 

Proof of (6.1). We refer to (6.1) for notation and hypothesis. We replace 
w there by J: Set 
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Let 0 c n(N) be a G invariant subset with the property that if /3 E 8 and 
y </I then y E 8. Let a E n(N) - 0 be a minimal element. 

17.4) Inductive hypothesis: U is an open invariant set in N containing 
N lr and N, for /3 E 8 such that: 

(a) A(@+) = n(s) on U, 

(b) f is transverse to 0 on U. 

In addition suppose 

(c) f, is transverse to 0 c M,. 

(7.5) Set X =f-‘(0) and H = p(o). 

View the G, normal bundle ra of N, in N as a G invariant subspace of N 
using the Equivariant Tubular Neighborhood Theorem [4]. Let B, and B, be 
closed G, invariant subsets of N, with N,nNI,UlJ,,,N,c 
B, c N, - B, = B c U. Here g denotes the closure of S. Set F = N, - B, 
and v’ = va - g’ IF. Observe that 2 IF and hence v’ is a G, vector bundle over 
F. Let (D. S) resp. (D’, S’) be the unit disk; unit sphere bundle of v, resp. v’ 
and D, the vectors in D of norm not exceeding E. 

Choose E so small that D,,, c U and 0 < E < 1. Choose a G, invariant 
function 4: D + [0, l] so that d = 1 on D la,U S and 4 = y 0 p, on D, 
[Wass]. Here p, : v, + N, is bundle projection and y: N, + 10, 1 ] is a G, 
map withy= 1 on B, and y=O on B,. 

Since f is transverse to 0 on B, df, is surjective for x E B n X,. This 
means each factor in (7.1) is surjective and this implies Az(df;) is surjective 
for XEBnx,. Let B, = B n F and t, : Ai IF -+ Ah(M) extend 
l&‘(df) IBznx, with t, IFn.Y, surjective. First produce t, lFnY, using 
Lemma (7.3). The extension of this to F is always possible. See [ 1; 1.4.11. 
We apply (7.3) with W = X, n F, D =X, n B,, Z = 0, h the point map, 
L=G,, H=p(a), E=(TN-g’)l, and E’ = M viewed as an L vector 
bundle over 0. 

We verify the hypothesis of (7.3). Since CL E n(N), there is a point x E N, 
with G, = H. If y is any point of N,, its isotropy group contains H. If it 
strictly contains H, it is contained in U by definition of U. This means 
LfH = K acts freely on F and so on F n X,. Since f, is transverse to 
OCM, with X, =f i’(O) and since N = Y x M, it follows that 
dim X, = dim Y”. By hypothesis STY = A for some representation A of G. 
LetXEZ(H),XEC,X# 1 and (T,N-g,,,X)#Ofor somepEX,nFcN. 
Since TpN = Ty T @ M, x(p) =y and TY > M, it follows that (A, x) # 0. 
Since HE Iso = Iso and Y is C stable ((3.6) and (3.7)) 

(7.6) dim Y” = (A, l)< (A,x)- (g,x); 
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so 

dim W=dimX,=dim Y”~((A,X)-(g,X)~(T,N-~~,X)-(M,X). 

This means dim W<,u (7.3) and the conditions of (7.3) are verified. 
Note that V’ is A,(rIV) @IL(TN) restricted to F. Define a G, map 

L:D’-,M=M,O~,(M)O~~(M) by 

L=(f,oP,3J,(s)OL). 

Define h: D’ + M by 

h = @+ (1 - $) L. 

(7.7) dh = #J df+ (1 - 4) dL + A, 

where in terms of local coordinates 

A = ((4 - Lj) &‘@xi). 

Assertions. l,(dh,) = A,(s,) for 6 E Z(N) and x E: 0: f7 N,, AA(dh,) = t,, 
whenever x E X, n F, h =f on D’ lFnaO U S’ IF and f, = h,. These are 
evident from the definitions and this observation: Whenever x E D’, f’l N,, 

&(A,) and WJ are zero (4 = y o p, there) and d,(dL,) = n,(s,). 
For points x E Ff7 X,, dh, is df,, @ A,(s,) @ f,,. Each map is 

surjective; so h is transverse to zero on F nx,. Letf’ beSon N- G xGo D’ 
and be the unique G extension of h to G xG, D’. Then f’ is transverse to 
zero on aneighborhood VofN,. Let u’be UU(VnGx,nD’). Then: (1) 
U’ contains N, for /3 E 6U G . a = 8’. (2) l(df ‘) = l(s) on U’. (3) f’ is 
transverse to 0 on U’. Let 6 E r(N) - 6’ be a minimal element. Then f ;, is 
transverse to 0 E M, on N, n U’. Replace U’ if necessary by a smaller G 
invariant set again called U’ so these properties hold for 0 the cosure of U’. 

Use (7.2) and the equivariant homotopy extension theorem to produce a 
proper G homotopy off’ rel C?’ to a map f” such that f; is transverse to 
0 E M,. Note that G,/p(6) acts freely on N, -I?, where R is an open 
invariant set satisfying (l)-(3) and R c U. (7.2) is aplied to this space and fh 
restricted to it. 

This provides the inductive step for the proof of (6.1). It also takes care of 
the initial step in the induction where 8 = 0 and U = 0. The induction is 
completed when B = n(N). 

8. REPRESENTATIONS OF SUBGROUPS OF SO, AND S" 

The aim of this section is to prove g is good when G = SO, (1.7) and to 
show .#(G) nonempty (6.12). These are statements which involve infor- 



66 TED PETRIE 

mation about representations of G and its subgroups. The proofs of (1.7) and 
(6.12) involve easy computations from representation theory once a few 
specific facts about the representations of subgroups of SO, are collected. 
The principal computations in (1.7) and (6.12) are involved with determining 
which x E Z(H) are contained in g for each subgroup H < G and in 
computing (A, x> for a representation A of G when x E Z(H) and x E g or 
x = 1. In particular the first is equivalent to describing Res,,g for each 
H c G, so our first task is to do this. 

In order to avoid confusion, we write ( )E, for the inner product defined on 
representations of H. When necessary to distinguish between real and 
complex inner products, we use ( )’ to denote the latter. 

For each integer h- f 0, 11~ denotes the real two dimensional representation 
of 0, defined as follows: View R’ as the complex numbers c. For 
f~S’c0, and zEcC, set foz=t’.z and ro =5the complex conjugate 
of z. Since S’ and t generate O2 this defines the representation. Then rzl, is 
irreducible, nk is equivalent to nek and is the unique representation of O2 
whose restriction to S’ is th. Let d denote the real one dimensional represen- 
tation of 0, with fx =x for t E S’ and x E IK while r.~ = -.K. 

Using the definition of Tk (Section 1) as the set of complex polynomials in 
the coordinates of IH of degree 2k. it is easy to verify that 

(8.1) Res,,TT,=(N,@N,_,@... @N,@d”@Q‘), 

where N, = n, 0 Cc. In fact N, c T, is the 0, invariant subspace generated by 
z2S-/w/ and z/w2S-/ if the complex coordinates of !H are z and MI while 
d” @ Cc is generated by zs#. It follows that 

(8.2) 

Note T, = g @ @ (Section 1); so t, = 2g. 
One easily checks that ResHn, = Res,n, when H = D, iff r = fs mod k 

and < n,, 1)1, # 0 iff k 1 r and then Res,,n,. = Res,,( 1 @ d). Let C,, be the 
number of integers 1, 1 < I< s, which are f 1 mod k and let D,v, be the 
number of these I which are 0 mod k. Then 

(8.3) 
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We remark that (8.3) is a consequence of (8.2), the fact that the restrictions 
to H of d and 1 are irreducible, the restriction to H of n, is irreducible if 
k f 2 and the interpretation of (t,, x) as the multiplicity of x in t,Y when x is 
irreducible. 

For the cyclic group K = 2,) the numbers (t,, x), for x E I(K), 1 E g can 
be determined from either (8.4) or preferably from the character formula 
(1.5) and (1.6). Unless K = 1, there are two x E I(K) with XE g. One is 
x = I. The other is called v. We find 

(8.4) 
(t,$. I//) = 2C,, k f 2 and 4C,, k = 2, 

(ts, 1) = 4D,, f 2. 

With the aid of a character table for I = A,, 0 = S, and T = A,, the fact 
that each element of G is conjugate to an element of S’ c G and the 
character formula for T,y (1.5), the following formulas are verified: 

(8.5) (TA, T,); for H = 0, T is 

&((21+ l)(io + 1) + 9(-l).‘+, + 6~,~a,}, H=O 

3 (2A + 1 )(20+ 1) + 3(-l).‘+, + 8b.,b,}. H= T. 

Here a, is 1 for 1 congruent to 0 or 1 mod 4 and is -1 if A is 2 or 3 mod 4: 
6, is 0, 1, -1 as 1 is 1, 0, -1 mod 3. 

(8.6) (TV,, To)’ is 
3322 + 1 + C-l)-” 15 + 206, + 12c,}. 

Here c~, is 2, 1, 0, -1, -2 as ;1 is 0, 1, 2, 3, 4 mod 5. Observe that 
T, = 1 @ c:. 

LEMMA (8.7). Res, g is irreducible for H = 0, T, I. 

ProoJ g @ @Z = T, (Section 1). So Res,, g is real irreducible if Res,, T, is 
complex irreducible. It suffices to take H = T because T is a common 
subgroup. The result follows from (T,, T,); = 1 by (8.5). 

Proof of (1.7). In the case G = SO,, we must verify either (1.2a) or 
(1.2b) where C = g for each subgroup H of G. For G = S7 we need to verify 
this unless H is cyclic of order 4, 2 or 1. First SO,. If NH = H or Res,, g is 
irreducible, there is nothing to show. This occurs for H = I, 0. O2 and T. If 
H is not one of these, it is a subgroup of 0,. Now Res,> g = n, @ d and 
Res,,d is irreducible for all H while Res,n, is irreducible unless H is Dl, 2, 
or 1. So if H is not one of these groups and x is one of Res,, rz, or Res,, d, 
then f is Res,,,,, w for w = n, or d. Note in these cases NH c 0, (Section 2). 
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For H=D,, Res, g contains the three non-trivial representations of D, 
different from 1; so x & g implies x = 1 and this lifts to NH. For H = Z?, 
Res, g contains both irreducible representations of H; so there is nothing to 
show. 

Now take G=S3. For any subgroup H of G, NH =p-‘NpH. For 
H #p-‘K, where K = D, or Z,, (1.2a) for K implies (1.2a) for H. Note 
pP ‘D, = Q, = H is the quaternion group of order 8 and I(H) = Res,, It i U 

p*l(D,). Since 1 and Res, IH lift to G, the condition (1.2b) is verified for 
H= Q,. 

Proof of (6.12). It suffices to prove .X?(G) # 0 for G = SO,. Let 
A = 3(7’, @ T4) 0 6T,. We claim 3A E 2(G), so ,$0(G) # 0. The conditions 
(6.9) must be verified for 3A. This requires the determination of dim, A’ for 
all L c G. For some L these are listed in these two tables: 

L: G O2 S’ 0 T 
dim, AL: 0 3 12 3 12 

L: D, D, D, D, D, D, Z, Z, Z, Z, Z, Z, 
dime AL: 9 9 9 12 21 30 24 24 24 30 48 66 

The dimensions of fixed point sets of the groups not in this table can be 
determined from the table via: A’ = A’, A”’ = Ao2 and AZ’ = AS’ for 1 > 7. 
The tables and subsequence equalities use (8.2~(8.6) and dimcAl = 
(A, 1 @ C); = +(A, l)L. By inspection (6.9i-ii) and A’ = 0 are now verified 
for A and hence 3A. In view of (5.7) and (6.10), the conjugacy classes of 
isotropy groups of 3A are those listed in the table; thus (6.9iii) holds by 
inspection of these tables. Note (2.0) that 9 = Iso(3t,). Since 3T, c A, 
P c Iso(3A). 

To verify 3A @ 1 is stable, we use (6.10a). For the subgroups HE Iso 
and H c O,, (6.10a) is verified by using (8.2)-(8.4). For H = 0 or ?‘, use 
(8.5) and these hints: Res, g is irreducible. Thus the condition for H = 0 or 
T in (6.10a) is (A, 1)” < (A, g)H. We verify this inequality 

(A, g>H >, 2(A g 0 @); = 244, T,);, > ‘W To);, = (A, lh,. 

The next to last inequality requires (8.5). Condition (6.10a) is vacuous for 
H = G because g is irreducible and (A, g) = 0. 

Finally note that (6.10b) implies condition 3A satisfies (5.6). 
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