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A novel hypersonic facility is proposed that will reproduce the high pressures

and temperatures necessary for the accurate simulation of hypersonic flight con-

ditions. It will provide sufficient test times for investigating unsteady, transient

flow effects while maintaining high flow quality due to the absence of vitiation con-

taminants and shocks in the generating flow. An electrically preheated Ludwieg

tube provides the initial means of heating while the piston-compression is used

to further increase the pressure and temperature. Preliminary constraints on the

design space for optimal operation are presented through the method of charac-

teristics (MOC). Further characterization is performed with quasi-one-dimensional

Euler computations. The MOC approach shows the optimal operating condition

constrains the compression ratio and Ludwieg tube to nozzle exit diameter ratio,

assuming proper simulation of flight conditions. The unsteady Euler computations

predict the presence of pressure oscillations generated during the piston-compression

process. Methods are investigated to mitigate these oscillations.
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Chapter 1: Introduction

The accurate replication of hypersonic flight conditions (Mach number, tem-

perature, pressure, and flow composition) by a single ground-test facility is often lim-

ited by cost and complexity. For simulations involving scramjet combustors, many

researchers turn to either direct-connect facilities which simulate the conditions en-

tering the combustor, or free-jet facilities which simulate the free-stream conditions

of the scramjet inlet, allowing for the modeling of the entire scramjet flowpath (sub

or full-scale). These facilities simulate hypersonic conditions by expanding a high-

enthalpy, high-pressure flow through a converging-diverging nozzle. Although the

requirement of total-enthalpy reproduction is often relaxed for purely aerodynamic

or aerothermodynamic testing at lower hypersonic Mach numbers (5-7), matching

the correct total-enthalpy is especially critical for an accurate simulation of flows

involving combustion. Direct-connect facilities typically match the flight enthalpy

of lower Mach numbers (4 - 7) while free-jet facilities include and extend available

testing conditions well beyond this range.

The high-temperatures necessary for accurately simulating combustion in the

supersonic flows seen in scramjet combustors present difficult challenges in the de-

sign, development, and operation of these facilities. Many compromise test time,
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flow quality, and/or cost to achieve their desired test conditions. A novel, free-jet

facility (with potential direct-connect capability) is proposed to be built at the Uni-

versity of Maryland that addresses these compromises by matching temperature,

pressure, and chemical composition while providing high flow quality with sufficient

test times, at low operational cost. This work presents the operational concept of

the proposed facility, the calculation of its available conditions, and the unsteady

quasi-one-dimensional numerical modeling used to determine the potential quality

of the test flow.

1.1 High Temperature Hypersonic Facilities

Scramjet ground-testing facilities can be loosely categorized into two areas:

direct-connect and free-jet. Direct-connect facilities simulate the entrance condi-

tions of the scramjet combustor, allowing for relaxed constraints on total-pressure

reproduction. They are used to assess and characterize the mixing, ignition, and

flameholding performance of a combustor. While traditionally providing long test

times, they are unable to model the inlet influence on the combustor which would re-

quire a fully integrated scramjet flowpath. Free-jet facilities simulate the free-stream

conditions of the scramjet flight path, allowing for the full (sometimes partial) ex-

perimental integration of its internal flowpath components. This added capability

comes at the cost of requiring higher pressures and larger scale facilities; in addition,

due to energy and size limitations, sacrifices are often made in available test times.
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1.1.1 Direct-Connect Facilities

An example of a direct-connect facility with clean flow quality is the electri-

cally heated facility of University of Virginia (UVA) [1]. This facility is vertically

mounted, with the high pressure reservoir at the bottom, a converging-diverging

nozzle, then an isolator which leads into the combustor; the exhaust gas is ejected

into atmospheric conditions rather than into an evacuated dump tank. The experi-

ments performed in this facility have traditionally focused on dual-mode combustors,

which are designed for both subsonic and supersonic combustion. It provides clean

flow quality with nearly continuous testing capability, but material limitations re-

strict reservoir temperatures to 1200 K (equivalent to a freestream Mach number of

5), making it undesirable for purely hypersonic scramjet testing.

One example of a high-enthalpy vitiated direct-connect facility is the vitiated-

air generator blown tunnel (VAG) of Kakuda Research Center, National Aerospace

Laboratory in Japan [2]. It can attain stagnation temperatures up to 2700 K with

4 seconds of steady test time. The combustion of hydrogen provides the heating

source with additional oxygen supplied to the test flow to match atmospheric mole

fractions. Similar facilities exist in the United States, one being the direct-connect

supersonic combustion test facility at the NASA Langley Research Center Scramjet

Test Complex [7]. This facility has a 2100 K stagnation temperature capability,

again with the added complexity of oxygen replenishment and fuel pressure regula-

tion.

The supersonic combustion facility at the University of Michigan [8] is a hybrid
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direct-connect facility utilizing both an electric heater and hydrogen vitiation. The

stagnation temperatures here can reach 1800 K for a test time of 2 seconds, with

longer test times available at lower temperatures (for example, 10 seconds at 1400

K).

However, the drawbacks of using a vitiated test gas were demonstrated by an

experimental comparison [2] performed between the VAG vitiated test gas and a

non-vitiated test gas with similar stagnation temperatures and pressures (1600 K

and 47 MPa). The vitiated test gas induced a higher likelihood of autoignition within

the scramjet combustor when compared to the non-vitiated condition, which in the

latter case was only possible in the boundary layer. They attribute this phenomenon

to radicals introduced into the test flow, generated by the vitiation process. However,

the vitiated gas also changed the location of the flame, moving it downstream to

the divergent section of their combustor. This is attributed to the increased water

content from the heating process. For the same equivalence ratios and combustor

entrance conditions (except for chemical composition), they found reduced thrust

performance with the vitiated gas. Scram to ram mode transition also occurred at

nearly twice the fuel flow rate for the vitiated condition. The critical result from this

study is that combustion characteristics and transition within the test combustor

can change drastically when combustion is used to heat the generating flow.

Another experimental study [3] was carried out at the UVA electrically heated

facility to investigate the effects of vitiation gas on scramjet combustion. The re-

sults agree with [2] in nearly all aspects. In this experiment, additional contaminants

(H2O,CO2) were added to a heated clean flow. With the introduction of water va-
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por, the experiments also saw reduced thrust, the flame move downstream, and

scram to ram mode transition occurring at higher equivalence ratios. These experi-

ments also show that increasing the water mole fraction beyond 3% has diminishing

effects on changing the combustor performance, suggesting hybrid-heating schemes

offer little advantage compared to fully vitiated facilities.

1.1.2 Free-Jet Facilities

Various types of high enthalpy free-jet facilities exist, many employing different

methods to heat the test flow from those seen in direct-connect facilities. The arc-

heated facility of Notre-Dame [4] has a 4000 K stagnation temperature capability,

with stagnation pressures up to 9 bar, and test times on the order of a second.

Scramjet combustor experiments in this facility simulate only a partial inlet to

account for the relatively low stagnation pressures. Although the high stagnation

temperature allows for a wide range of operating conditions, experiments from this

facility must also deal with contaminants from the arc-heating. This introduction

of non-atmospheric chemical species can produce results uncharacteristic of flight

conditions, as seen in the vitiated vs. non-vitiated comparison [2] and also numerical

simulations for the NASA Langley arc-heated facility [9].

The hypervelocity expansion tube at the University of Illinois [ref] is a free-jet

facility with no external flow contamination and extremely high stagnation temper-

atures of up to 8000 K. However, the small scale (9 m) of this facility leads to short

test times, typically on the order of a few hundred micro-seconds. The longer expan-
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sion tube at Stanford [6] ( 12 m) can increase this test time closer to a millisecond

with similarly high stagnation temperatures and pressures. These expansion tunnels

exploit the unsteady shock-expansion interaction to achieve these high stagnation

conditions. The piston driven T5 reflected shock tunnel at Caltech [5] similarly

exploits unsteady shock heating and compression of the test gas, utilizing a short-

duration piston-compression process to pressurize the driver gas. At 45 meters in

length, this facility is significantly longer than the previous two mentioned, allowing

for up to 2 ms in test times. Their achievable stagnation temperature is 10,000 K

at 100 MPa in stagnation pressure.

Although expansion and shock tunnels can provide atmospherically matched

flow composition, the flow quality suffers from diaphragm contamination and noise

resulting from a shock in the generating flow. Their extremely short test times can

also limit investigations of unsteady flow.

1.2 Ludwieg Tubes

A Ludwieg tube is a simplified alternative to traditional blow-down wind tun-

nels that was introduced to reduce the costs associated with generating supersonic

and hypersonic flows. Traditionally, facilities utilizing Ludwieg tubes have been

used for strictly aerodynamic testing due to material heating limitations. Many hy-

personic and supersonic Ludwieg tubes are in operation today [10] utilizing various

methods to heat and pressurize the test fluid. An illustration oh the Ludwieg tube

operation is presented in figure 1.1. The Ludwieg tube is initially pressurized with
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a chosen test gas (which can be heated) while the test section, nozzle, and dump

tank are evacuated. Once the chosen pressure is reached, the diaphragm bursts (or

valve opens) discharging the gas in the Ludwieg tube. This gas moves through a

converging-diverging nozzle and is supersonically expanded to the desired test con-

dition. A subsequent expansion wave moves towards the opposite end of the tube

(left in figure 1.1), which then reflects off the end wall and eventually arrives back

at the nozzle. Until the time of the expansion returning, the conditions within the

Ludwieg tube are nearly steady. The test time here is limited by the length of the

tube and the speed of sound of the test gas.

Figure 1.1: Illustration of a traditional Ludwieg tube operation.

The Ludwieg tube is essentially a specialized blow-down wind tunnel that

exploits a small region of steady conditions during the unsteady expansion process.
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These facilities do not require any pressure or temperature regulation devices during

the run time which greatly simplifies operation. The flow generated by the tube

is extremely clean when compared to expansion or shock tunnels. Although the

test times are generally limited to the order of tens of milliseconds, this is still

significantly greater than what is available in shock and expansion tunnels (at the

cost of lower stagnation temperature and pressures).

1.3 Proposed Facility

A challenge exists in developing a cost-effective hypersonic facility for accu-

rate scramjet simulations. This is especially important for university level research,

where the development and operational costs associated with larger facilities can

be prohibitive. Vitiation heated test-flow can lead to undesirable effects on the

test results whereas a solely electrically heated facility faces material limitations,

preventing full simulation of hypersonic conditions. Shock and expansion tunnels

can generate these conditions at the expense of available test times, preventing a

comprehensive investigation of unsteady flow processes within the combustor. The

proposed facility addresses these issues by relaxing the temperature constraint of

the traditional Ludwieg tube (or other purely electrically heated facilities), allowing

for longer test times than shock or expansion tunnels, but cleaner flow than arc or

vitiation heated facilities and higher temperatures.

This facility extends upon the operational concept of the LICH (Ludwieg Tube

with Isentropic Compression) by Oldfield, Schultz, & Jones [11] by preheating the
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Ludwieg tube (LT) before the free-piston compression. Figure 1.3 illustrates the

components and conceptual operation of the proposed facility. The initial oper-

Figure 1.2: Operational concept of the adiabatic-compression preheated Ludwieg

tube.

ational state categorizes the facility into pressurized and evacuated components,

which are isolated by a closed fast-acting-valve. The major pressurized components

include (from left to right in Fig. 1) the secondary reservoir (2R), the compression

tube (CT), and the Ludwieg tube (LT). The evacuated components are the nozzle,

test section, and dump tank. A free piston is placed between the 2R and CT, while

a dog-leg section between the CT and LT is included to mitigate temperature strat-

ification. Provided this radius of curvature is sufficiently large, this dog-leg section

is not expected to present any major flow obstruction.
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The pressurized components can be further categorized into initially high and

low pressure sections. The CT and LT comprise the low pressure section, filled to

an initial pressure constrained by the volumetric compression ratio resulting from

the piston motion and desired stagnation pressure. The 2R is filled to an initially

high pressure state, such that the unconstrained free piston motion is terminated

at exactly the end of the CT. The piston motion is prevented until the initial fill

pressures reach the desired states and downstream components of the fast-acting-

valve are evacuated. Reverse motion of the piston is prevented by directional brakes.

Correctly determining this initial 2R fill pressure is critical: the piston must lose

all momentum when it reaches the area contraction of the CT to LT while enough

pressure is maintained in the 2R for the piston motion to achieve full compression.

The LT is electrically heated before the piston is released, allowing for higher

temperatures than would otherwise be available with electrical heating alone. This

heated slug of gas (which we refer to as the test slug) in the LT and unheated slug in

the CT are both compressed. The large volume ratio of the CT to the LT causes the

test slug to occupy a small volume of the LT upon full compression. The expected

short time scale of the piston-compression allows for the relaxation of the containing

LT material’s temperature constraint. The LT material is chosen to be Inconel 601,

limiting the maximum initial fill temperature to 900 K. This heating process is

similar to the ITAM AT-303 tunnel [12] with two distinct differences which simplify

operation: 1. the adiabatic compression process is performed within the unheated

section section of the facility and 2. no pressure regulation devices are required to

control the piston trajectory after the piston is released.
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Figure 1.3: Effect of changing the LT diameter, holding the compression ratio, initial

LT fill temperature, LT length, and throat size constant.

After the piston motion has terminated, the fast-acting-valve is opened. From

this point forward, the facility operates as a conventional Ludwieg tube: the re-

sulting expansion from the valve opening causes the test slug to accelerate through

the LT and into the nozzle which accelerates the test slug to the desired supersonic

test conditions. Test conditions will be nearly steady until either the hot test slug

completely discharges or the expansion reflects off the piston face and reaches the

nozzle. We define the optimal operating condition to be when these two events occur

simultaneously.

Figure 1.3 illustrates the effect of changing the LT diameter on operating

conditions, while constraining the volumetric compression ratio and initial LT fill

temperature. The LT diameter is too large if the reflected expansion reaches the

nozzle before the test slug completely discharges. A larger LT diameter increases the

surface area of heating, thereby increasing heating and manufacturing costs along

11



with fill times. The size of the CT and 2R must also increase to accommodate the

larger LT volume, increasing overall facility size. A LT diameter that is too small

causes the test slug to discharge too quickly, which would mean the LT length and

overall facility size could be decreased without a performance penalty.

Preliminary numerical results predict the formation of standing waves due

to the piston-compression cycle. The strength of these waves are related to the

compression time scale. Faster compression cycles are expected to increase the

strength of the pressure oscillations. The presence of pressure oscillations induced

by a piston compression has been documented in [11]. The source of the oscillations

in [11] is the interaction of the compression waves generated by the piston and the

rarefaction generated by the valve opening. In the facility described in this work, the

valve is opened during the piston motion, before deceleration. The rarefaction in our

proposed facility is generated by the deceleration of the piston. The area contraction

of the CT to LT is also expected to impact the strength of the oscillations. It is

critical to predict the impact the facility geometry and piston mass have on these

oscillations, to both constrain the design space and determine methods to mitigate

their strength.

1.4 Objectives

The objectives of this work are as follows:

1. Characterize the facility design space under the constraints of the optimal

operating condition.
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2. Develop a computationally efficient numerical solver to more accurately predict

the piston compression trajectory and characterize the available test stagna-

tion conditions.

3. Determine the strength of the standing waves the piston compression cycle

induces for a given optimized facility geometry and identify possible mitigation

techniques.

13



Chapter 2: Available Test Times

As noted in chapter 1, the principle difference of the proposed facility from a

traditional Ludwieg tube is the presence of a free-piston compression cycle acting

on two slugs of air at different temperatures. The test time of a traditional Lud-

wieg tube scales linearly with the tube’s length and the sound speed of the test

gas (assuming a weak rarefaction). In our proposed facility, the rarefaction must

propagate through two slugs of air at unequal temperatures and volumes. Assuming

the optimal operating condition is satisfied, the effective test time is constrained by

the arrival of the reflected rarefaction at the nozzle (as is the case in a traditional

Ludwieg tube).

This chapter presents the estimation of the expected maximum test times for

the facility. The calculations presented here assume the absence of any unsteady

pressure oscillations from the piston compression cycle. The valve opening is also

assumed to be instantaneous with the resulting rarefaction propagating into a qui-

escent gas. We first derive an analytical expression for test time as a function of the

LT fill temperature, LT length, and desired test stagnation temperature assuming

a perfect gas. The second section presents the simplified method of characteristics

(MOC) test time estimation, relaxing the finite wave and perfect gas assumptions.

14



Numerical results presented in the third section (methods presented in chapter 4)

agree well with the simplified MOC model.

2.1 Analytical Estimation

Figure 2.1: x-t diagram of the compression process and valve opening, assuming a

single reflection of the rarefaction off the piston face and noncontinuous

wave.

The following assumptions are made to simplify the derivation of the analytical

expression for test time: 1. the compressed unheated and heated slugs are perfect

gasses, with the specific heat ratio remaining constant through compression and

across the temperature interface, 2. the gas is quiescent before valve opening, 3.
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all waves are finite, 4. the only reflection is at the solid boundary of the piston

face, 5. the rarefaction is weak so the temperatures remain constant across the

expansion, and 6. the optimal operating condition is satisfied. Figure 2.1 illustrates

the simplifying assumptions and denotes the different states of interest. The red

line represents the temperature interface separating the cold and hot slugs of gas

through the compression and discharge processes. States 1 and 2 (denoted in square

boxes on the time axis) represent the initial fill state and final compressed state,

respectively. C denotes the cold slug while H denotes the hot slug. First, we define

the volumetric compression ratio to be

r =
V1

V2

(2.1)

where V1 = VLT + VCT and V2 = VLT . VLT and VCT are the internal volumes of

the Ludwieg tube and compression tube, respectively. This definition assumes full

compression is achieved. The pressure matching constraint along with the constant

specific heat ratio (γ) assumption across the cold and hot slugs allows for the fol-

lowing equality:

r =
VLT + VCT

VLT
=

(
TH2

TH1

) 1
γ−1

=

(
TC2

TC1

) 1
γ−1

. (2.2)

Here, TC1 is the initial temperature of the gas within the CT (it is unheated, so

room temperature 300 K), TC2 is the compressed temperature of this gas, TH1 is

the initial LT fill temperature, and TH2 is the resulting compressed temperature of

the heated gas slug which is also the desired test stagnation temperature. With

the temperatures known, we subsequently know the sound speeds of the compressed
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slugs which also dictate the rate of propagation for the finite rarefaction. The steady

test time can be expressed as

ttest =
2LLT − LH2

aC2

+
LH2

aH2

(2.3)

where LLT is the length of the LT, LH2 is the length within the LT which compressed

test slug occupies, aC2 is the speed of sound in the compressed unheated slug, and

aH2 is the speed of sound in the compressed test slug. The numerator 2LLT − LH2

defines the distance the rarefaction travels within the unheated slug while LH2 is the

distance it travels in the heated test slug. From the pressure matching constraint

and constant specific heat ratio, LH2 is simply given by the compression ratio r.

Using equation 2.2 we can make substitutions such that

ttest = LLT

[
2− (TH1/TH2)

1
γ−1√

γRTC1(TH2/TH1)
+

(TH1/TH2)
1

γ−1

√
γRTH2

]
. (2.4)

As expected, it is clear to see in the above formulation that the test time varies

linearly with the LT length (under the simplifying assumptions stated). Equation

2.4 also indicates that test time is a monotonically decreasing function of the test

stagnation temperature TH2 and is monotonically increasing for the initial LT fill

temperature. Decreasing the LT fill temperature to test stagnation temperature

ratio, TH1/TH2, increases the required compression ratio for the same TH2.

2.2 Simplified Method of Characteristics

Figure 1.3 illustrates a continuous rarefaction with only a single reflection off

the piston face. Figure 2.2a illustrates the series of reflections off the cold-hot gas
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Figure 2.2: a) An illustration of the series of weakening expansions through multiple

reflections off the cold-hot gas interface and area contraction at the right

boundary. b) Simplifying assumptions are made due to the weakening

of these reflected waves.

interface and area contraction to the throat at the right-side boundary. Stagna-

tion conditions change through these reflections as does the contact surface velocity.

However, these reflected waves lose strength through the throat opening and at the

contact surface. This allows us to make some simplifying assumptions in the method

of characteristics (MOC) calculation. This simplified MOC solver is used to deter-

mine more accurately the contact surface trajectory and propagation of the strongest

rarefaction generated by the valve opening. Figure 2.2b illustrates the simplifying

assumptions we use, where only the first reflection through the contact surface and

head of the reflected wave from the area contraction are taken into account. MOC

(in this application) decouples hyperbolic partial differential equations (PDEs), such

as the inviscid gas dynamic conservation laws , into a series of ordinary differential
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Figure 2.3: Illustration of characteristic lines and their intersection as adapted from

[19].

equations (ODEs) along characteristic lines in time and space. Figure 2.3 is an

illustration of two characteristic lines of opposite families along which the govern-

ing hyperbolic PDEs reduce to ODEs. We use the MOC to investigate further the

facility design space in the absence of standing waves from the compression cycle.

It is a computationally cheaper alternative when compared to other time-resolved

numerical methods while providing a more accurate solution compared to a purely

analytical approach.

The Riemann invariants are the integration contants of these ODEs. The

unsteady expansions are expected to cause measurable, but weak, variations in the

temperature of the cold and hot slugs. This allows us to assume a calorically perfect

gas for the MOC analysis. It thus follows from [19], [20], and [21] that the Riemann

invariants can be expressed as

J+ = u+
2a

γ − 1
, J− = u− 2a

γ − 1
(2.5)

where u is the fluid velocity, a is the speed of sound, and γ is the specific heat ratio.
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The integration constant J+ holds along the C+ characteristic while J− holds along

the C− characteristic. The slopes of the incoming characteristics at each intersection

point, as illustrated in figure 2.3, are given by

dt

dx

∣∣∣∣
C+

=
1

u+ a
,

dt

dx

∣∣∣∣
C−

=
1

u− a
(2.6)

respectively. The flow upstream of the fast acting valve within the LT remains sub-

sonic, so the C+ characteristic maintains a positive slope and the C− characteristic’s

slope remains negative. The intersection of these incoming characteristics allows us

to determine the sound speed and velocity at the intersection location along with

the outgoing positive and negative characteristics. The contact surface trajectory

is determined by the incoming characteristics along with the velocity and pressure

matching constraints for both slugs of gas at the temperature interface.

Figure 2.4: Numbered regions used in MOC solver.

As stated earlier, the MOC calculations assume an instantaneous opening of
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the valve. The temperature interface is treated as a contact surface separating

calorically perfect gasses. The specific heat ratio for each slug is determined using

the initial compressed temperature at state 2 in figure 2.1 with equations which

follow further in this section.

The stagnation temperature drops through the unsteady expansions, meaning

the compression ratio must be adjusted to account for this change. The temperature

in region 4 of the hot slug (illustrated in figure 2.4) is used to determine the speed

of sound in region 5. The stagnation temperature of region 4 is used to match the

required stagnation temperature for the desired test section Mach number at 216.5

K, consistent with a flight altitude of 11 km to 25 km. The Mach numbers in regions

3 and 5 of the hot slug are given by the steady state mass conservation,

ALT
A∗

=
ρ∗a∗

(ρaM)LT
(2.7)

where ALT , (ρaM)LT are the area, density, speed of sound, and Mach number at

either of regions 3 or 5 in the LT, and similarly at the throat for A∗, ρ∗a∗M∗. The

velocity of region 4 is determined by the reflected expansion off the contact surface

between regions 4 and 3. The velocity in region 5 is given by the Mach number

solution and temperature in region 4. Region 2 in the cold and hot slugs are the

states immediately after full compression.

The calorically perfect gas assumption is relaxed for the quasi-one-dimensional

relations in the MOC solution. We use the diatomic vibrating gas energy and

enthalpy equations to account for the varying specific heat ratio,

e(T ) = cvp

[
T +

θ(γp − 1)

exp
(
θ
T

)
− 1

]
(2.8)
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where cvp is the constant volume specific heat at 273 K, T is the temperature, θ is

27500 ·9−1 K, and γp is the specific heat ratio at 273 K (1.4). Similarly, the enthalpy

for a diatomic thermally perfect gas can be expressed as,

h(T ) = cpp

[
T +

θ(γp − 1)/γp

exp
(
θ
T

)
− 1

]
(2.9)

where cpp is the specific heat at constant pressure for 273 K. These equations are

derived from Berthelot’s equation of state in [13],

p =
ρRT

1− bρ
− cρ2

T
(2.10)

where b is the molecular size constant and c is the intermolecular force constant.

The derivation in [13] uses a first order approximation to 2.10,

p = ρRT

(
1 + bρ− cρ

RT 2

)
. (2.11)

Using these equations, [13] also presents the derivation for the isentropic, thermally

perfect flow relations. The compression ratio is given by

v2

v1

=

(
eθ/T1 − 1

eθ/T2 − 1

)(
T2

T1

) 1
γp−1

exp

[(
θ

T2

)
eθ/T2

eθ/T2 − 1
−
(
θ

T1

)
eθ/T1

eθ/T1 − 1

]
(2.12)

where v1 and v2 are the specific volumes are two different states. The pressure ratio

is given by

p1

p2

=

(
eθ/T1 − 1

eθ/T2 − 1

)(
T2

T1

) γp
γp−1

exp

[(
θ

T2

)
eθ/T2

eθ/T2 − 1
−
(
θ

T1

)
eθ/T1

eθ/T1 − 1

]
. (2.13)

These relations are used to determine the state within the Ludwieg tube after com-

pression and the nozzle size relation to the throat. The volumetric compression

ratio is nonlinear across both slugs (unlike calorically perfect slugs with matching
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specific heat ratios), so the initial and desired final temperature of the test slug is

used to determine the pressure ratio. This pressure ratio is then used to implicitly

solve for the cold slug temperature after compression. The test slug temperature

after compression is chosen so that the stagnation temperature after the unsteady

expansions matches the required stagnation temperature for the desired test section

Mach number.

2.3 Numerical Verification

The unsteady thermally perfect Euler equations for duct flow are explicitly

solved for numerical verification of the MOC solution. The numerical methods used

are further detailed in chapter 3.

Figure 2.5: Initial conditions for numerical simulation. Notice a convergent section

is added between the LT and throat (to the right of x = 0) to prevent

instabilities in the simulation. The axes are not scaled proportionally

for illustration purposes.

Figure 2.5 shows the initial conditions used in the numerical simulation. An

additional convergent section is added between the compression tube and Ludwieg

tube to prevent numerical instability from a discontinuous step transition. The full
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nozzle is not simulated here to save in computational cost. The diameter of the

LT and throat are determined using the MOC solver for an initial fill temperature

of 900 K and LT length of 8 meters. The target Mach number here is M = 6.

An additional divergent section is added after the throat to provide a supersonic

outlet, preventing any reflections propagating upstream. Using this geometry and

initial conditions determined from the MOC solver, figure 2.6 shows the numerical

x-t diagram of the Mach number within the Ludwieg tube. The arrival of the

Figure 2.6: A numerical x-t diagram of the Mach number within the Ludwieg tube;

here, ∆x = 0.004553 m and n = 1850, where n is the number of points

in the spatial domain.

temperature interface at the convergent location agrees well with the arrival of the

expansion using the initial conditions found from the MOC solver. This is further
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illustrated in the plot of Mach number and temperature seen in figure 2.7. A decrease

Figure 2.7: Mach number and Temperature time trace at the x = 0 location.

in temperature can be seen after the arrival of an unsteady expansion. The first

reflection from the temperature interface has the strongest effect. This effect of this

unsteady expansion is also seen in the Mach number profile. The conditions are also

nearly steady after the first reflection, similar to a traditional Ludwieg tube. Figure

2.8 is a numerical Schlieren demonstrating the propagation of the unsteady waves

through the LT. The log of the absolute value of the density gradient is plotted to

make the weaker and subsequent waves visible; although these waves are present,

they leave no measurable effects beyond the first couple of reflections as seen in

figure 2.7.

Another simulation is considered here to demonstrate the agreement between

the MOC and numerical solutions. This following case targets a test section Mach

number of 5 at 216.5 K with the same initial fill temperature at 900 K. The same

grid size is again used. The LT diameter and length remain the same; however, the
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Figure 2.8: Numerical Schlieren illustrating the wave propagation through the sys-

tem for a test section Mach number of 6.

throat size is now larger to accommodate the larger test slug volume (see figure 2.9).

The test slug is larger in this case because a lower Mach number corresponds to a

lower stagnation temperature, thereby decreasing the compression ratio required to

match the desired test conditions. The results for this case agree well with the MOC

solution, as seen in the first case. A larger Mach number is seen in the tube (see

figure 2.11), as expected. This case is also a good test for the MOC solver due to the

increased strength of the expansion generated by the valve opening. The Schlieren

presented for the test section Mach number 5 case (see figure 2.10) captures the

qualitative features of the wave interactions. The red lines highlight the strongest

features expected and seen in the numerical simulations, that is accounted for in the
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Figure 2.9: Initial conditions for numerical simulation for a test section Mach num-

ber of 5.

assumptions of our simplified MOC model. The strength of the expansion wave is

expected to decrease for higher compression ratios due to the increasing area ratio

between the LT and throat. The next section elaborates on this further.

The trends identified in the two cases here also hold for various various initial

conditions. The conclusion is that the simplified MOC model is an acceptable

alternative to full numerical simulations for determining ideal sizing constraints.

2.3.1 Results

This section presents the results of the MOC calculations, pertaining to general

facility characteristics. Figure 2.12 presents the desired test-section Mach number

and its relationship to the available test times, facility volumetric compression ratio,

the sizing ratio between the nozzle exit diameter and LT diameter, and also the

ratio between the LT and throat. These are determined assuming the optimal

operating condition mentioned earlier. The test time and compression ratio results

are compared to the analytical results. Here, the analytical compression ratio is

determined by the initial fill temperature and stagnation temperature for a given
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Figure 2.10: Numerical Schlieren illustrating the wave propagation through the sys-

tem for a test section Mach number of 5. The red lines indicate the

important features captured by the simplified MOC analysis.

test section Mach number at 216.5 K, assuming a specific heat ratio of 1.4. The

MOC compression ratio is chosen such that the stagnation temperature after the

expansions, rather than the temperature immediately after compression, will match

the chosen flight Mach number, assuming a free-stream temperature of 216.5 K.

The maximum available test times presented in figure 2.12a demonstrate an

inverse relationship with test section Mach number and initial LT fill temperature.

This effect is seen in equation 2.4, where an increase in TH2/TH1 will decrease the

test time. Increasing this temperature ratio requires an increase in the facility’s

volumetric compression ratio, thereby increasing the temperature (subsequently the
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Figure 2.11: Mach number and Temperature time trace at the x = 0 location for

test section Mach number 5 case.

sound speed) of the unheated gas. An increase in the unheated gas temperature has

a more dominant effect on test time rather than the heated test slug itself. This is

attributed to the unheated gas occupying a majority of the Ludwieg tube volume.

Figure 2.12a also shows the analytical results demonstrate good agreement with the

MOC solution over a wide range of test section Mach numbers. This agreement is

not as strong in figure 2.12b, where the required compression ratio is predicted to

be higher for the real gas MOC solution. This can be attributed to our choice in

specific heat ratio. However, adjusting the specific heat ratio such that the analytical

compression ratio better matches the thermally perfect gas compression will result

in a larger deviation in the test times. Figures 2.12b and 2.12a demonstrate the

benefit for a higher initial fill temperature to lower the required facility compression

ratio, thereby decreasing overall facility size and increasing available test times (for

the same LT length). The test times listed here are 22 ms to 33 ms, and although

short, it is still a magnitude of order greater than what is available in shock and
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expansion tunnels.

Figure 2.12c shows a decreasing throat diameter for higher test section Mach

numbers and lower initial fill temperatures. This sizing relationship is derived from

the optimal operating condition. Figures 2.12b and 2.12a demonstrate the acceler-

ation of the rarefaction from increasing compression ratio, but figure 2.12c shows

that the decreasing test slug volume for higher compression ratios has the dominant

effect on the throat to LT sizing relationship. The throat diameter decreases for

increasing compression ratios to slow the discharge rate of the test slug due to its

decreasing size. An interesting relationship is seen in figure 2.12d in the nozzle exit

to LT diameter ratio for varying test section Mach numbers. For a given initial fill

temperature, the variation in nozzle exit to LT diameter ratio is small.
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Figure 2.12: MOC results are represented by the solid lines. Analytical results are

shown by the dashed lines. All results assume the optimal operating

condition is satisfied and an LT length of 8 m. Test section Mach

number vs. a) maximum test times, b) nozzle exit to LT diameter

ratio, c) volumetric compression ratio, and d) LT to throat diameter

ratio.
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Chapter 3: Numerical Methods

Analytical solutions have traditionally provided unsatisfactory results [11] for

accurately predicting pressure oscillations from an unsteady piston compression cy-

cle. The presence of a step-wise area-contraction between the CT and LT further

complicates this issue for our application. As stated in chapter 1, it is impera-

tive to accurately characterize these oscillations to determine methods of mitigation

and prevent significant detrimental effects on the test flow quality. It is also crit-

ical to determine correct fill pressures to accurately predict piston trajectory. For

these reasons, we have implemented a numerical methodology to explicitly solve

the unsteady inviscid Euler equations for quasi-one-dimensional duct flow using

modern edge reconstruction methods and an approximate Riemann solver. A quasi-

one-dimensional formulation is the preferred alternative to more computationally

expensive two-dimensional or three-dimensional simulations for the purposes of an

extensive design space characterization. Although many physical flow features are

not captured, the quasi-one-dimensional formulation is nonetheless a useful tool in

predicting the propagation of unsteady waves. This chapter details the methods

employed to obtain highly resolved solutions in space and time while mitigating

computational costs.
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3.1 Previous Quasi-One-Dimensional Facility Modeling

The numerical tool that has traditionally been used to model piston-driven

shock-tunnel facilities is known as the quasi-1D Lagrangian code (L1d) [ref]. L1d

divides the facility into its separate components such as the compression and shock

(in our case, Ludwieg) tubes, and secondary reservoir for the piston driver. Slugs

of gas fill these components at their respective initial conditions, and are further

divided into a number of smaller control-mass cells. The gas-dynamics of these cells

are treated through a Lagrangian framework, with the pressures and velocities at

the cell edges estimated through a Riemann solver. The code tracks the trajectory

of these cells through the domain along with changes in their state variables. This

scheme is second-order accurate in time. Further details on the numerical method

are found in [24] and also in [25] as they apply to L1d. L1d treats the stepwise area

variations as gradual transitions while engineering correlations are used to account

for viscous flow effects, shear stress at the wall, boundary layer mass entrainment,

and any losses associated with sudden area changes. A chemical solver is included

to account for the nonequilibrium flows that high-enthalpy facilities experience in

the reservoir and fast expansion to hypervelocity conditions.

The same year [25] was published, Tani et al. [22] published their application

of a fourth-order pointwise non-oscillatory scheme to the piston-driven shock-tunnel.

This scheme is applied in the Eulerian frame, solving the inviscid Euler equations by

using a non-oscillatory interpolation on the conserved variables to the cell bound-

aries and then obtaining the flux through an approximate, two-wave-speed Riemann
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solver. Their model also incorporates a turbulent heat transfer model for heat loss

and an analytical boundary layer model. The code was applied to experimental

data from T4 [17] and T5 [5] and was shown to have good agreement, despite the

one-dimensional formulation. Predictions of available conditions are not exact, but

major flow features are captured with the scheme.

L1d was recently validated [14] by modeling the T-ADFA [15], T3 [16], T4 [17],

and HEG [18] piston-driven shock tunnel facilities and comparing the results to the

experimental data. Similar to [22], it was able to accurately reproduce the primary

shock speeds, piston dynamics, and onset of nozzle supply pressure decay.

Parziale et al. [23] used a standard Roe Riemann solver to perform quasi-one-

dimensional Euler computations, characterizing the performance benefits of their

proposed vertical expansion tunnel. Their model differs from the previous two men-

tioned by not incorporating any source terms other than the area variation and also

by the absence of a moving boundary which was not necessary for the investigated

problem.

Figure 3.1: Pressure oscillation predicted from the L1d simulation.

The major flow features present in our proposed facility differ from these for

which the previous three codes were developed in that the generating flow is free
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of shocks and will remain subsonic upstream of the nozzle. L1d has proven to be

a valuable design tool and good performance indicator of existing high-enthalpy

facilities, and so it was used to perform initial simulations of our proposed facility.

The results of a single simulation are presented in figure 3.1. In this particular

simulation, the 2R length is 8 meters with a 30 cm diameter, the CT length is 8

meters with a 20 cm diameter, and the LT length is 8 meters with a 9 cm diameter.

The piston mass is 100 kg with the 2R fill pressure tailored such that the piston

attains zero velocity at the end of the CT. The initial temperature in the LT is

900 K with a fill pressure of 2 bar. Figure 3.1 shows the pressure oscillations as

measured at the end of the LT. At higher pressures, the amplitude of the oscillations

increases, causing degradation to the flow quality. These simulations were adiabatic

and inviscid.

The time scales of the previously mentioned shock-tunnels are limited to a few

tens of milliseconds for the compression cycle and a few milliseconds for the test

times. The test time of the vertical expansion tunnel of [23] is on the order of a sub-

millisecond. Our proposed facility is expected to have a run-time of approximately 30

milliseconds while the compression cycle is on the order of hundreds of milliseconds.

An L1d simulation with a grid size of 1300 points with a CFL condition of 0.5 can

take up to an hour for such time-scales on a modern personal computer.

The prediction of pressure oscillations by L1d indicate an undesirable flow

quality. We develop a different solver to compare solutions with the L1d simula-

tions without resorting to a computationally expensive two or three dimensional

model. Excessive run-times can be prohibitive in the solver’s usage as an effective
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design tool, so higher order methods are used to minimize the grid size for con-

vergence, thereby maximizing the available time step and minimizing simulation

run-times. Quasi-one-dimensional simulations have traditionally been a strong pre-

dictor of unsteady flow features within these facilities as indicated above, further

justifying their use for our application. Furthermore, the full sophistication of a

real-gas model provided by L1d is not needed in this application, as the flow is

expected to stay below the dissociation regime.

3.2 Governing Equations

The inviscid Euler equations for duct flow are discretized using a finite volume

method. Figure 3.2 shows a computational cell for the governing equations,

∂~Ui
∂t

+
~Fi+1/2Ai+1/2 − ~Fi−1/2Ai−1/2

Vi
=
~Si
Vi

(3.1)

where Ai±1/2 is the cross-sectional area at the right and left faces of the cell and Vi

is the cell volume. ~U is the vector of conserved variables and ~F is the flux vector,

~U =

[
ρ, ρu, E

]T
, ~F =

[
ρu, p+ ρu2, u(E + p)

]T
. (3.2)

Here, ρ is the fluid density, u is the velocity, E is the energy as defined by 2.8, and

p is the pressure. The source term resulting from the area change for cell i is given

by the force balance to be

~Si =

[
0, pi(Ai+1/2 − Ai−1/2), 0

]T
. (3.3)
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Figure 3.2: A control volume for an ith computational cell.

Figure 3.3: Illustration of the edge reconstruction for a cell i.

3.3 Riemann Solver

The flux vector is evaluated at the cell edges using the Harten, Lax, and van

Leer with contact restoration (HLLC) Riemann solver introduced by Toro [28]. Edge

reconstruction is done on the conserved variables such that

~Fi±1/2 = ~F
(
~Ui±1/2L ,

~Ui±1/2R

)
, (3.4)

where ~Ui±1/2L and ~Ui±1/2R are the reconstructed conserved variables at the left and

right sides of the i± 1/2 cell edges, respectively (see figure 3.3 ).
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Figure 3.4: Schematic of the HLLC approximate Riemann solver as adapted from

Toro [38].

The HLLC Riemann solver approximates the Riemann solution by identifying

three wave speeds: the largest wave speed SR, the smallest wave speed SL, and the

contact wave speed S∗ as illustrated in 3.2. The contact wave separates the two

intermediate state vectors ~U∗L and ~U∗R bounded by the left and right waves. These

intermediate state vectors are used to compute the intermediate fluxes ~F∗L and ~F∗L

within these regions. The HLLC numerical flux is defined as

~FHLLC
i+1/2 =



~FL, if 0 ≤ SL

~F∗L, if SL ≤ 0 ≤ S∗

~F∗R, if S∗ ≤ 0 ≤ SR

~FR, if 0 ≥ SR

(3.5)

.

A number of methods exist to estimate the pressure p∗ within the intermediate

38



region and the wave speeds SL, SR, and S∗. In the present work, we employ a

pressure-based wave speed estimate (proposed by Toro et al. [38]), where an estimate

for the pressure p∗ is found using the PVRS scheme [29]. The PVRS pressure is

defined as

ppvrs =
1

2
(pL + pR)− 1

2
(uR − uL)ρ̃ã, (3.6)

where the subscripts L and R refer to the left and right states, and ρ̃, ã refer to

the average density and sound speed of the left and right states. Here, either a

geometric mean or a Roe average [30] can be used. We use the Roe averaged values

defined as

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

, H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

, ρ̃ =
√
ρLρR, (3.7)

with H as the enthalpy,

H =
E + p

ρ
. (3.8)

The average speed of sound is then computed as

ã =

√
(γ − 1)(H̃ − 1

2
ũ2). (3.9)

The pressure p∗ is then given by

p∗ = max(0, ppvrs), (3.10)

which is used to determine

qK =


1, if p∗ ≤ pK

[
1 + γ+1

2γ
( p∗
pK
− 1)

]1/2
, if p∗ > pK

(3.11)
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where K refers to either the left L or right R states. The wave speeds can then be

estimated as

SL = uL − aLqL, SR = uR + aRqR. (3.12)

These wave speed estimations SK , as suggested by Toro [28], correspond to either

the characteristic speed of the head of the rarefaction if the K wave is a rarefaction

or an approximation of the shock speed if the wave is a shock. With the right and

left state wave speeds known, we then compute the intermediate wave speed

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
. (3.13)

Knowledge of the different wave speeds allows for the correct flux determination as

described in equation 3.5. ~FL and ~FR are trivial to find since the right and left

states are known. Determining the star region fluxes ~F∗K requires finding the star

region state variables,

~U∗K = ρK

(
SK − uK
SK − S∗

)


1

S∗

EK
ρK

+ (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]

 , (3.14)

with the fluxes given as

~F∗K = ~FK + SK(~U∗K − ~UK). (3.15)

This choice of an intermediate star region state vector allows for a simple addition

of multicomponent continuity equations. In practice, we find the different wave

speed and pressure estimates of [38] to have negligible impact on the numerical

performance for our application. This HLLC Riemann solver has low numerical
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dissipation when compared to a Rusanov flux, maintaining high resolution for any

discontinuities such as shocks or contact surfaces due to the nature of its wave speed

estimations.

3.4 Weighted Essentially Non-Oscillatory Edge Reconstruction

A fifth-order weighted essentially non-oscillatory (WENO) scheme ( [26], [27])

is used here for edge reconstruction. This choice is constrained by the moving

boundary method further elaborated on in a later section of this chapter. Higher

numerical dissipation was observed when using higher order WENO schemes with

the chosen moving boundary method, negating the benefits of a higher order scheme.

The WENO schemes are an extension of the essentially non-oscillatory (ENO)

scheme introduced by Harten et al. [31] in 1987. Their scheme design uses an adap-

tive polynomial reconstruction to avoid the Gibbs phenomenon (oscillations that oc-

cur due to interpolation across discontinuities: increasing order decreases frequency

but peak oscillation amplitude remains constant, moving closer to the discontinu-

ity). The first WENO scheme was introduced by Liu, Oscher, and Chan [27] in 1994

and extended upon the ENO scheme. Their idea was to use a linear combination of

multiple, weighted lower order reconstructions to obtain a higher order approxima-

tion. Adaptive stencils are used, where more weight is given to stencils containing

smooth regions while stencils that contain undesirable oscillations or discontinuities

are dropped. Thus, the choice of weights is dependent on the smoothness of the

stencils. WENO schemes have been applied extensively to compressible flows. A
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further review of its applications can be found in [45] while its derivation is presented

in [27]).

Figure 3.5: Illustration of WENO interpolation stencils for a computational cell i.

The fifth order, three-stencil, three-point WENO interpolation (as used in this

work) is given as

ui+1/2 =
2∑

k=0

ωkuki+1/2
, (3.16)

where k indicates the stencil number as illustrated in figure [3.5], ui+1/2 is the inter-

polated variable at the i + 1/2 cell edge, and ωk is the kth WENO weight given to

a kth stencil. The WENO weights are calculated as

ωk =
αk∑2
l=0 αl

(3.17)

and here, the choice of αk (referred to as the unnormalized weights) can vary. Jiang

and Shu [26] suggest using

αk =
dk

(βk + ε)q
(3.18)

where dk are the ideal weights, βk are the smoothness indicators, ε is a small number

to prevent a singularity, and q is an exponent set to 2 in this work as suggested by
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Liu et al. [27]. The ideal weights are suggested to be

d0 =
3

10
, d1 =

3

5
, d2 =

1

10
. (3.19)

The smoothness indicators βk measure the smoothness of the polynomial approxi-

mation pk(x) of each stencil. The most commonly used is given by

βk =
2∑
l−1

∆x2l−1

∫ xi+1/2

xi−1/2

(
dlpk(x)

dxl

)2

dx (3.20)

and their explicit expressions for stencils k = 0, 1, 2 are

β0 = 13
12

(ui−2 − 2ui−1 + ui)
2 + 1

4
(ui−1 − 4ui−1 + 3ui)

2

β1 = 13
12

(ui−1 − 2ui + ui+1)2 + 1
4
(ui−1 − ui+1)2

β2 = 13
12

(ui − 2ui+1 + ui+2)2 + 1
4
(ui+2 − 4ui+1 + 3ui)

2.

(3.21)

The three third order interpolations for the given stencils are given by

u1i+1/2
=

1

3
ui−2 −

7

6
ui−1 +

11

6
ui

u2i+1/2
= −1

6
ui−1 +

5

6
ui +

1

3
ui+1

u3i+1/2
=

1

3
ui +

5

6
ui+1 −

1

6
ui+2.

(3.22)

3.4.1 Improved WENO Weights

The above traditional smoothness indicators assign smoothness values to each

stencil independent of the other stencils. Borges et al. [46] suggest using new smooth-

ness indicators which take advantage of the entire five point stencil of the 5th order

WENO scheme,

βzk =

(
βk + ε

βk + τ5 + ε

)
, (3.23)
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where

τ5 = |β0 − β2|. (3.24)

βk and ε are the same as before. Although Borges et al. suggest using a smaller

value of ε than previously suggested, we find no measurable difference for our appli-

cation. Using this new smoothness indicator βzk , the unnormalized weights αk are

now defined as

αk = dk

(
1 +

(
τ

βk + ε

)q)
, (3.25)

where the ideal weights dk remain the same as previously used. In [46], Borges et al.

show that q = 1 leads to a 4th order accuracy at critical points in smooth solutions

whereas q = 2 maintains fifth order accuracy. For this reason q = 2 is used in this

work.

This choice of improved WENO weights decreases numerical dissipation and

increases resolution. This is important when achieving grid convergence, maximizing

the allowable cell size and thereby making the CFL condition less prohibitive in

computational time.

3.4.2 Relative Limiter

Jiang and Shu [26] comment on the over-aggressiveness of WENO methods in

unnecessarily reducing the weights of candidate stencils. Taylor et al. [39] propose

a solution to adaptively apply the smoothness measurement such that

βk =


0, R(β) < αRL

βk, otherwise,

(3.26)
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where

R(β) =
max0≤k≤rβk

ε+ min0≤k≤rβk
. (3.27)

The smoothness indicators used for this measurement are the standard expressions as

shown in equation 3.21. αRL in equation 3.26 is referred to as the relative smoothness

limiter which is set to 10 as recommended by Taylor et al. [39].

3.4.3 Slope Limiter

A generic slope limiter [40] is applied to the interpolated variable,

ui+1/2 = ui +
1

2
(ui − ui−1)φ, (3.28)

where φ is the slope limiter. The total variation diminishing (TVD) limiter used

here is adapted from [41] and is given as

φTVD = max

[
0, min

(
α, α

ui+1 − ui
ui − ui−1

, 2
ûi+1/2 − ui
ui − ui−1

)]
, (3.29)

where ûi+1/2 is the original interpolated variable. As done in [41], α is set to 2.

3.5 Energy Relaxation

The proposed facility will operate at temperatures well beyond the range where

calorically perfect state equations are valid. However, the choice of simulating lower

hypersonic Mach numbers at a 25 km altitude limits the required stagnation tem-

perature to 1900 K, below the dissociation regime of diatomic nitrogen and oxygen.

So to obtain a more accurate prediction of the gasdynamic processes for this temper-
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ature regime, the diatomic vibrating gas equations (2.8 and 2.9) are used to model

the flow.

Coquel and Perthame [32] introduced a method in 1998 for solving the Euler

equations with a more general pressure law for non-perfect fluids. In the same

year, Montarnal and Shu [33] published their application of Coquel and Perthame’s

method to WENO schemes. This method is known as the energy relaxation method.

The idea is to decompose the real specific internal energy e into a combination of

e1 and e2, where e1 is the energy resulting from the perfect gas pressure law, and

e2 is the difference between e and e1. This decomposition allows the perturbed

difference e2 to be tracked as an additional term convected by the flow. Coquel

and Perthame [32] outline their theory and its application to the Euler equations,

while [33] introduces their extension to fifth-order WENO. Here, we outline the

relaxed WENO scheme as it applies to the quasi-one-dimensional Euler equations.

Suppose there exists a pressure law such that

p = p
(
ρ(x, t), e(x, t)

)
. (3.30)

where e(x, t) is the energy as determined by equation 2.8, x is the spatial coordinate,

and t is the temporal coordinate. The energy decomposition is given as

e = e1 + e2. (3.31)

Coquel and Perthame [32] then define the following as the ”consistency relation”,

p
(
ρ, e1 + e2

)
= p1(ρ, e1) = (γ1 − 1)ρe1, (3.32)
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where γ1 is some constant larger than 1. Then, from 3.32 we can define

e1(x, t) =
p
(
ρ(x, t), e(x, t)

)
(γ1 − 1)ρ(x, t)

(3.33)

e2(x, t) = e(x, t)− e1(x, t). (3.34)

For a given state at time step tn we have,

ρ(x, tn), u(x, tn), e(x, tn), (3.35)

and the first step to marching the solution forward to time step tn+1 is to apply

equations 3.33 and 3.34 to the current n state. The second step is to solve the

modified set of Euler equations 3.2, where

~U = [ρ, ρu, E1, ρe2]T (3.36)

~F =
[
ρu, p1 + ρu2, u(E1 + p), ρue2

]T
, (3.37)

and the new source term is,

~Si =

[
0, pi(Ai+1/2 − Ai−1/2), 0, 0

]T
. (3.38)

Notice that we add only a single continuity equation,

∂

∂t
(ρe2) +

∂

∂x
(ρue2) = 0, (3.39)

with the perfect gas energy E1 given as

E1 =
1

2
ρu2 + ρe1. (3.40)

47



However, to correctly compute the flux using the HLLC Riemann solver with the

additional continuity equation, a slight modification must be made to the interme-

diate state vector calculation from equation 3.14. Adapting the method described

by Toro [38] for multicomponent flows, the new intermediate state vector is now

~U∗K = ρK

(
SK − uK
SK − S∗

)


1

S∗

EK
ρK

+ (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

]
e2


. (3.41)

Notice in equation 3.41 that the only term added is e2; all other calculations remain

the same in the Riemann solver.

After solving the system of equations 3.2 with the conserved variables of equa-

tion 3.36, flux vector of equation 3.37, and the source term of equation 3.38, we

obtain the solution at the tn+1− time step,

ρ(x, tn+1−), u(x, tn+1−), e1(x, tn+1−), e2(x, tn+1−), (3.42)

from which we can compute the solution at the next time step

ρ(x, tn+1) = ρ(x, tn+1−)

u(x, tn+1) = u(x, tn+1−)

e(x, tn+1) = e1(x, tn+1−) + e2(x, tn+1−).

(3.43)

The energy relaxation method allows for the real energy to be conserved by

introducing equation 3.39. After the energy is obtained in equation 3.43, we im-

plicitly solve equation 2.8 to obtain the correct pressure and temperature. It is also

important to note here that the value of γ1 is chosen to be 1.41 for this work.
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3.6 Characteristic Transformation

Consider the one-dimensional Euler equations for a perfect gas in their quasi-

linear form,

∂~U

∂t
+ A

∂~U

∂x
= 0 (3.44)

where A is the flux Jacobian defined as

A =
∂ ~F

∂~U
. (3.45)

A can either be expressed in terms of the conserved variables,

A =


0 1 0

−1

2
(γ − 3)

(
u2

u1

)2

(3− γ)

(
u2

u1

)
γ − 1

−γu2u3

u2
1

+ (γ − 1)

(
u2

u1

)3
γu3

u1

− 3

2
(γ − 1)

(
u2

u1

)2

γ

(
u2

u1

)


, (3.46)

where

u1 = ρ, u2 = ρu, u3 = E, (3.47)

or in terms of the u and a,

A =


0 1 0

1

2
(γ − 3)u2 (3− γ)u γ − 1

1

2
(γ − 2)u3 − a2u

γ − 1

3− 2γ

2
u2 +

a2

γ − 1
γu

 . (3.48)

Since equation 3.44 is hyperbolic, the matrix A is diagonalizable and so it follows

that

X−1AX = Λ, (3.49)
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where Λ is a diagonal matrix with its elements as the eigenvalues of A, X is the ma-

trix of right eigenvectors, and X−1 is the matrix of left eigenvectors. The eigenvalues

of A are

λ1 = u− a, λ2 = u, λ = u+ a, (3.50)

with the right eigenvectors,

X =


1 1 1

u− a u u+ a

H − ua 1
2
u2 H + ua

 . (3.51)

Finally, we can transform the conserved variables to characteristic variables,

~α = X−1~U, (3.52)

where ~α is the vector of characteristic variables. Equation 3.44 can then be expressed

as

∂~α

∂t
+ Λ

∂~α

∂x
= 0. (3.53)

Λ is a diagonal matrix, so it follows that equations 3.53 decouple into independent

ODEs. The diagonal values of Λ are also referred to as wave speeds, along which

each of the above decoupled ODEs holds true.

In this work, we choose to interpolate the characteristic variables rather than

the primitive or conserved variables. This allows for reduced oscillations near dis-

continuities and boundaries, although at the loss of computational speed. The Roe

averaged values of a and u at cell i and i + 1 (see figure 3.5) are used for the

transformation. The transformation matrix X−1 is applied to the entire five-point

WENO stencil. Only the first three equations of the relaxed WENO system are
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transformed. Interpolation for equation 3.39 is done on e2. Montarnal and Shu [33]

show that this partial characteristic decomposition has good agreement with the

full decomposition. The slope limiter is applied to the interpolated characteristic

variables, before transforming back to the conserved variables.

3.7 Time Integration

This work uses a third order total variation diminishing Runge-Kutta (TVD-

RK3) method [35] for explicitly moving the solution forward in time. Once the

fluxes and source terms are determined, equation 3.2 simplifies into an ODE. Let L

be the operator that is defined as

L
(
~U
)

=
∂~U

∂t
. (3.54)

The TVD-RK3 method for moving a solution at time step tn to tn+1 is then given

by

~U (1) = ~Un + ∆tL(~Un)

~U (2) =
3

4
~Un +

1

4
~U (1) +

1

4
∆tL(~U (1))

~U (n+1) =
1

3
~Un +

2

3
~U (2) +

2

3
∆tL(~U (2)).

(3.55)

The standard CFL condition dictates the size of ∆t,

∆t = nCFL
∆x

max(|λj|)
(3.56)

where λj are the wave speeds of the entire domain. We use a CFL number of

nCFL = 0.5 unless otherwise stated.

It is important to note the update step for the energy relaxation (equation 3.43)
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is done outside of the TVD-RK3 loop to save on computational costs associated with

implicitly solving the energy equation.

3.8 Boundary Conditions

The presence of a moving piston in the facility presents a challenge in the

numerical modeling. The treatment of boundaries nonaligned with the grid re-

mains a topic of current research interests. One approach is to resize the entire

mesh at each time step to align the boundary cell edge with the boundary, impos-

ing costly transformations on the system. After fitting the mesh to the boundary

location, questions still remain in determining the ghost-cell values which should

impose the moving boundary forcing onto the fluid. Cut-cell methods [36] exist to

address the computational costs of body-fitted meshes. The boundary treatment is

done locally at the boundary-occupying cell, but the local reduction of cell size can

lead to a prohibitive time-step due to the CFL condition. Immersed boundary [37]

and penalization [34] methods allow for a constant grid without the detrimental

effects of the cut-cell approximations. This gives the benefit of imposing an arbi-

trary, non-penetrating boundary in a constant, Cartesian grid, but these methods

are theoretically less accurate than procedures which use hybrid or full Lagrangian

schemes or body-fitted grids. However, the convenience and acceptable accuracy

of immersed boundary methods have made them extremely popular in simulations

involving complex physical boundaries.

Recently, in 2010, Tan and Shu [42] published their treatment of a boundary
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that is unaligned with the Cartesian mesh. It is a third-order accurate method,

and although more complex than traditional immersed boundary and penalization

methods, it allows for higher-order accuracy with similar computational benefits.

In 2011 [44], they extended their scheme to moving boundaries; this is the chosen

boundary treatment for the present work. This section further describes the ghost

cell filling procedures for the end wall, nozzle outflow, and piston.

3.8.1 Grid Aligned Boundary Treatment

Figure 3.6: Illustration of ghost cell filling procedure for a stationary wall, no pen-

etration condition.

A traditional and popular method of imposing boundary conditions is the

ghost cell filling technique. For a stationary wall with the boundary aligned to the

cell edge, the reflecting ghost cell filling procedure is illustrated in figure 3.6. The

density and pressures are copied over such that

p−1 = p1, p−2 = p2, p−3 = p3

ρ−1 = ρ1, ρ−2 = ρ2, ρ−3 = ρ3.

(3.57)

The no-penetration condition of the solid wall is imposed by reflecting the
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velocity in the opposite direction,

u−1 = −u1, u−2 = −u2, u−3 = −u3. (3.58)

Three cells are used in the filling procedure because the fifth-order WENO scheme

requires five points. The left edge, left side interpolation of cell 1 in figure 3.6

requires three points to the left and two points to the right.

Figure 3.7: Illustration of ghost cell filling procedure for a supersonic outflow.

Figure 3.7 illustrates the ghost cell filling procedure for a supersonic outflow,

or a non-reflecting outflow condition. In this case, the outer most cell is copied over

to the three ghost cells. This boundary is non-reflecting, so the velocity remains the

same direction as in cell 1 for the ghost cells.

3.8.2 Inverse Lax-Wendroff Procedure for Boundary Conditions

Tan and Shu [42] introduced their inverse Lax-Wendroff (IL-W) procedure as

a third order accurate treatment of a boundary that arbitrarily intersects a Carte-

sian grid, and then extended it a year later in 2011 [44] to moving boundaries. In

practice, it is a novel ghost cell filling technique that accurately predicts the state of
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the boundary occupying cell with no changes to the interior interpolation scheme.

This method provides the further benefit of simple extension to higher order in-

terpolations which require large stencils. The principle idea of their scheme is to

accurately predict the spatial derivatives at the boundary location to impose ghost

cell values using a Taylor expansion. In one dimension, the IL-W procedure takes

advantage of available time derivative information in the governing PDEs to ob-

tain this interpolation to the boundary edge of the spatial derivatives. Tan and

Shu’s numerical examples [44] suggest their method is third-order accurate, with no

detriment to numerical stability with standard interior CFL limitations. Here, their

one-dimensional scheme is outlined as it applies to the facility model. A further

description of their two-dimensional formulation is available at [44].

First, we consider the one-dimensional inviscid Euler equations in their prim-

itive form,

∂ ~W

∂t
+ A( ~W )

∂ ~W

∂x
= 0. (3.59)

where

~W =


W1

W2

W3

 =


ρ

u

p

 , A( ~W ) =


u ρ p

0 u 1/ρ

0 ρa2 u

 . (3.60)

Figure 3.8 illustrates a new cell being uncovered by the movement of the boundary.

The number of ghost cells remains the same as the standard ghost cell filling pro-

cedure. i = −3,−2,−1 are the ghost points, and i = 0 is the newly emerging point.

i = 1, 2, 3 are the cells within the fluid used to construct the ghost cells and newly

emerging cell. This newly emerging cell can also be thought of as the cell which
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Figure 3.8: Illustration of ghost cell filling procedure for a moving boundary and

the newly emerging cell.

the boundary occupies for boundaries moving in the opposite direction. All interior

points are updated to the current time step tn for determining the boundary and

ghost cells. The cell values ~Wi, i = −3, −2, −1, 0 are determined by the Taylor

expansion,

(Wm)i =
2∑

k=0

(xi −Xb(tn))2

k!
W ∗(k)
m , m = 1, 2, 3, i = −3, −2, −1, 0 (3.61)

where W
∗(k)
m is a (3− k)th order approximation of

W ∗(k)
m ≈ ∂kWm

∂xk

∣∣∣∣
(x=Xb(tn), t=tn)

. (3.62)

The first step in the procedure is to determine the transformation matrix used

to map the primitive variables to characteristic space. A( ~W ) has the same properties

as the conservative formulation A(~U), meaning it is diagonalizable. The eigenvalues

remain the same as equation 3.50. The primitive variable formulation of the right

eigenvectors is

K =


ρ 1 ρ

−a 0 a

ρa2 0 ρa2

 , (3.63)
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which also gives us the left eigenvectors,

K−1 =


l1,1 l1,2 l1,3

l2,1 l2,2 l2,3

l3,1 l2,2 l2,3

 . (3.64)

The values of cell 1 are used for this transformation matrix in the present work.

The Roe averaged values of the i and i+ 1 states introduce increased instability in

the solution. Using the left eigenvectors, we obtain the characteristic variables at

cells 1, 2, and 3,

~Vi = K−1 ~Wi, i = 1, 2, 3, (3.65)

from which we use to do either a WENO type extrapolation or a Lagrange polyno-

mial extrapolation to the boundary. In [44], Tan and Shu indicate that a Lagrange

polynomial extrapolation should be used if the stencil in front of the boundary is

smooth, and otherwise recommend the use of the WENO type extrapolation (intro-

duced in [42], demonstrated to fifth-order in [43]). However, in [43], they suggest

only using a WENO extrapolation rather than a Lagrange extrapolation because of

the stability issues that may arise. This problem is also seen in our one-dimensional

tests. The Lagrange extrapolation for a variable v is given by

v∗(k) =
dkp3(x)

dxk

∣∣∣∣
x=Xb(tn)

(3.66)

where p3(x) is a three-point Lagrange polynomial, interpolating the three cells just

outside the boundary. The idealized WENO type extrapolation that is suggested

for smooth solutions is given by

v∗(k) =
2∑
r

dr
dkpr(x)

dxk

∣∣∣∣∣
x=Xb(tn)

, (3.67)
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where

d1 = ∆x2, d2 = ∆x, d3 = 1−∆x−∆x2. (3.68)

pr(x) are Lagrange polynomials of degree r, which are formulated for three sub-

stencils. ∆x is the size of each cell in the stencil. This is similar to a traditional

fifth-order WENO extrapolation, where three sub-stencils, each consisting of three

points, are used. In the extrapolation used here, each sub-stencil increases in size.

The candidate sub-stencils here are given by

S1 = [x1]

S2 = [x1, x2]

S3 = [x1, x2, x3] ,

(3.69)

and their subsequent Lagrange polynomials are

p1(x) = v1

p2(x) =
v2 − v1

∆x
+ v1

p3(x) =
v1 − 2v2 + v3

2∆x2
x2 +

−3v1 + 4v2 − v3

2∆x
x+ v1.

. (3.70)

The weights need to be adjusted for solutions containing discontinuities near the

boundary (i.e. shocks) and so this WENO-type extrapolation chooses weights ac-

cording to their stencil smoothness. This form is similar to the fifth-order WENO

interpolation used in the interior scheme. It is given by

v∗(k) =
2∑
r

ωr
dkpr(x)

dxk

∣∣∣∣∣
x=Xb(tn)

, (3.71)

where ωr are the nonlinear WENO-type weights. These weights are chosen according

to the standard WENO method (see equation 3.17),

ωr =
αr∑2
s=0 αs

, (3.72)
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and αr is given by its standard definition,

αr =
dr

(ε+ βr)q
. (3.73)

Here, the choice of q can vary. In [42], Tan and Shu suggest using q = 2, however in

[44] and [43], the authors suggest using q = 3. For our one-dimensional application,

the choice of this parameter does not produce a meaningful difference in the results.

Their more recent suggestion of q = 3 is used here in this work along with the

suggested value of ε = 10−6. The smoothness indicators used here are given by

β1 = ∆x2

β2 =
2∑
l−1

∫ Xb(tn)+∆x

Xb(tn)

∆x2l−1

(
dlp2(x)

dxl

)2

dx

β3 =
2∑
l−1

∫ Xb(tn)+∆x

Xb(tn)

∆x2l−1

(
dlp3(x)

dxl

)2

dx.

(3.74)

Their explicit expressions are

β1 = ∆x2

β2 = (v2 − v1)2

β3 =
1

12
(61v2

1 + 160v2
2 + 74v1v3 + 25v2

3 − 196v2v1 + 124v2v3).

(3.75)

Applying either the WENO-type or Lagrange extrapolation to the characteristic

variables, ~Vi, i = 1, 2, 3, provides the estimation of the characteristic variable spatial

derivatives at the boundary location. This extrapolated kth order spatial derivative

at the boundary is herein denoted as V
∗(k)
m for k = 0, 1, and 2.

Obtaining the spatial derivatives of the primitive variables requires a transfor-

mation of the extrapolated characteristic derivatives. Here is where we impose the

boundary conditions. If the boundary is moving are some velocity Vb(tn) = X ′b(tn)
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at the current time step, then we know that W
∗(0)
2 = u(Xb(tn), tn) = Vb(tn) (recall

equation 3.60). This allows us to formulate and solve the following linear system,
0 1 0

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3




W
∗(0)
1

W
∗(0)
2

W
∗(0)
3

 =


Vb(tn)

V
∗(0)

1

V
∗(0)

2

 (3.76)

where W
∗(0)
1 , W

∗(0)
2 , and W

∗(0)
3 are the unknowns. To obtain the first order deriva-

tives, Tan and Shu apply their IL-W procedure for the boundary cell velocity. The

definition of a material derivative is given by

D

dt
=

∂

∂t
+ u

∂

∂x
(3.77)

from which we can rewrite the second equation of the original Euler system (equation

3.59),

Du

Dt
+

1

ρ

∂p

∂x
= 0. (3.78)

Here, we can see that Du/Dt is merely the local acceleration in Lagrangian form.

First, by isolating the acceleration,

Du

dt
= −1

ρ

∂p

∂x
(3.79)

we can impose the acceleration of the boundary (assuming this is known to us),

Du

Dt
= V ′b (tn) = −1

ρ

∂p

∂x
. (3.80)

Recall that ρ here is the density at the boundary location (and consequently the

boundary occupying cell), which has been determined by solving the first equation

3.76. The same applies to ∂p/∂x (the spatial derivative of pressure at the boundary
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location), and so we can set

∂p

∂x
=
∂p

∂x

∣∣∣∣
Xb(tn)

= W
∗(1)
3 , ρ = ρXb(tn) = W

∗(0)
1 . (3.81)

This allows us to solve the following system,
0 0 −1/W

∗(0)
1

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3




W
∗(1)
1

W
∗(1)
2

W
∗(1)
3

 =


V ′b (tn)

V
∗(1)

1

V
∗(1)

2

 (3.82)

where W
∗(1)
m are the unknowns. It is clear to see here that equation 3.80 is recovered

from the above system. The algebra for the second order derivatives is tedious and

is omitted in [44], but for the sake of completeness the derivation is presented here.

The idea is to impose the third order time derivative of the boundary motion into

the second order spatial derivative estimation, while also making use of the known

derivatives. We again consider the conservation of momentum from the original

Euler equations 3.59,

Du

Dt
= −1

ρ

∂p

∂x
(3.83)

then after rearranging and applying the material derivative we obtain

D

Dt

(
ρ
Du

Dt
= −∂p

∂x

)
. (3.84)

Applying the product rule,

Dρ

Dt

Du

Dt
+ ρ

D

Dt

(
Du

Dt

)
= − D

Dt

(
∂p

∂x

)
(3.85)

and here, we impose the boundary condition,

D

Dt

(
Du

Dt

)
= V ′′b (tn) (3.86)
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substitute in the first equation of the primitive Euler system 3.59,

Dρ

Dt
= −ρ∂u

∂x
(3.87)

along with the conservation of momentum (3.83) to obtain

(
−ρ∂u

∂x

)(
−1

ρ

∂p

∂x

)
+ ρV ′′b (tn) = − D

Dt

(
∂p

∂x

)
. (3.88)

Expanding the material derivative of the pressure gradient in the third term,

D

Dt

(
∂p

∂x

)
=

∂

∂t

(
∂p

∂x

)
+ u

∂

∂x

(
∂p

∂x

)
(3.89)

and then rearranging,

D

Dt

(
∂p

∂x

)
=

∂

∂x

(
∂p

∂t

)
− u ∂

∂x

(
∂p

∂x

)
(3.90)

from which we can factor out ∂/∂x,

D

Dt

(
∂p

∂x

)
=

∂

∂x

(
∂p

∂t
+ u

∂p

∂x

)
− ∂u

∂x

∂p

∂x
=

∂

∂x

(
Dp

Dt

)
− ∂u

∂x

∂p

∂x
. (3.91)

Now, we substitute equation 3.91 into equation 3.88,

∂u

∂x

∂p

∂x
+ ρV ′′b (tn) = − ∂

∂x

(
Dp

Dt

)
+
∂u

∂x

∂p

∂x

ρV ′′b (tn) = − ∂

∂x

(
Dp

Dt

)
.

(3.92)

We once again refer to the original Euler system 3.59,

Dp

Dt
= −γp∂u

∂x
(3.93)

from which we can substitute into 3.92

ρV ′′b (tn) =
∂

∂x

(
γp
∂u

∂x

)
= γ

∂p

∂x

∂u

∂x
+ γp

∂2u

∂x2

γp
∂2u

∂x2
= ρV ′′b (tn)− γ ∂p

∂x

∂u

∂x
.

(3.94)
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We now have the second order spatial derivative of velocity, which is a value to be

estimated, as a function of the known values of the first order velocity and pressure

spatial derivatives. Recalling that

W
∗(0)
1 = ρ, W

∗(0)
3 = p, W

∗(1)
2 =

∂u

∂x
, W

∗(1)
3 =

∂p

∂x
, W

∗(2)
2 =

∂2u

∂x2
(3.95)

we can formulate and solve the following system for the second order derivatives,
0 γW

∗(0)
3 0

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3




W
∗(2)
1

W
∗(2)
2

W
∗(2)
3

 =


W
∗(0)
1 V ′′b (tn)− γW ∗(1)

2 W
∗(1)
3

V
∗(2)

1

V
∗(2)

2

 . (3.96)

It is clear to see above that equation 3.94 is recovered. To maintain third order

accuracy, Tan and Shu [44] suggest updating the boundary occupying cell’s velocity

by

u(1) = Vb(tn) + ∆t ∂u

∂t

∣∣∣∣
x=Xb(tn),t=tn

u(2) = Vb(tn) +
1

2
∆t ∂u

∂t

∣∣∣∣
x=Xb(tn),t=tn

+
1

4
∆t2 ∂

2u

∂t2

∣∣∣∣
x=Xb(tn),t=tn

(3.97)

where u(1) replaces the Vb(tn) term (equation 3.76) at the first TVD-RK3 step, and

u(2) is at the second step. They use a standard Lax-Wendroff procedure to obtain

values for the Eulerian time derivatives, using the spatial derivatives obtained by

solving the linear systems 3.76, 3.82, and 3.96. By expanding equation 3.79 and

isoluting the Eulerian time derivative we obtain

∂u

∂t
= −u∂u

∂x
− 1

ρ

∂p

∂x
(3.98)

and then differentiating with respect to time,

∂u

∂t
= −∂u

∂t

∂u

∂x
− u ∂

2u

∂x∂t
− 1

ρ

∂2p

∂x∂t
+

1

ρ2

∂p

∂x

∂ρ

∂t
. (3.99)
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Some of the terms in the above equation are still not known to us, and so we can

continue making use of the original Euler system to express the above in known

quantities by differentiating equation 3.98 with respect to space,

∂2u

∂x∂t
= −

(
∂u

∂x

)2

− u∂
2u

∂x2
+

1

ρ2

∂p

∂x

∂ρ

∂x
−−1

ρ

∂2p

∂x2
(3.100)

and then isolating the Eulerian derivative of density from equation 3.87 we have

∂ρ

∂t
= −u∂ρ

∂x
− ρ∂u

∂x
. (3.101)

Similarly, the Lax-Wendroff procedure is applied to the pressure equation from the

original Euler equations and then differentiated with respect to space resulting in

∂2p

∂x∂t
= −(γ + 1)

∂p

∂x

∂u

∂x
− γp∂

2u

∂x2
− u∂

2p

∂x2
. (3.102)

As a summary, we exploit the information available in the original Euler system

by first applying the IL-W method and then use the predicted spatial derivatives in

the standard Lax-Wendroff method to more accurately predict the Eulerian terms

to maintain third-order accuracy. Tan and Shu [44]also suggest adjusting their IL-W

procedure for the first and second TVD-RK3 stages by changing the first equation

in the system 3.82. Their suggested change for the first stage is

−W ∗(0)
2 W

∗(1)
2 − 1

W
∗(0)
1

W
∗(1)
3 =

∂u

∂t

∣∣∣∣
x=Xb(tn),t=tn

+ ∆t
∂2u

∂t2

∣∣∣∣
x=Xb(tn),t=tn

(3.103)

and the second stage is changed to

−W ∗(0)
2 W

∗(1)
2 − 1

W
∗(0)
1

W
∗(1)
3 =

∂u

∂t

∣∣∣∣
x=Xb(tn),t=tn

+
∆t

2

∂2u

∂t2

∣∣∣∣
x=Xb(tn),t=tn

. (3.104)

So equation 3.82 is replaced by the following in the first and second stages, respec-

tively:
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0 −W ∗(0)

2 −1/W
∗(0)
1

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3




W
∗(1)
1

W
∗(1)
2

W
∗(1)
3

=



∂u

∂t

∣∣∣∣
Xb(tn),tn

+ ∆t
∂2u

∂t2

∣∣∣∣
Xb(tn),tn

V
∗(1)

1

V
∗(1)

2


(3.105)


0 −W ∗(0)

2 −1/W
∗(0)
1

l1,1 l1,2 l1,3

l2,1 l2,2 l2,3




W
∗(1)
1

W
∗(1)
2

W
∗(1)
3

=



∂u

∂t

∣∣∣∣
Xb(tn),tn

+
∆t

2

∂2u

∂t2

∣∣∣∣
Xb(tn),tn

V
∗(1)

1

V
∗(1)

2


(3.106)

3.9 Piston Dynamics

The piston dynamics for this work is adapted from L1d. The piston mass

is specified by mp and its area by Ap. The area of the piston is specified by its

containing vessel, which in this case is the compression tube. Let dCT be the diameter

of the compression tube. Then it follows that

Ap =
1

4
πd2

CT. (3.107)

Figure 3.9 illustrates the pressure and friction forces acting on the piston at any

given point in time. PL is the pressure at the left face of the piston, and PR at the

right face. Ff is the frictional force due to the seal near the right face of the piston

(piston is moving right). This model is adapted from the piston treatment seen in
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Figure 3.9: Schematic of the friction and pressure forces acting on the piston.

L1d [25]. The maximum friction force is given by

|Ff |max = µfAsealPR (3.108)

where µf is the coefficient of friction of the seal and CT material and Aseal is the

area of the seal facing the side of piston motion. µf = 2 is used in this work, as

done in [25]. The seal area used in this work is determined by matching the initial

piston acceleration for given initial pressures from the L1d code using the T5 piston

parameters. The frictional force applied to the piston is given by

Ff =


−sign (Vp(t)) |Ff |max if |Ap(PR − PL) ≥ |Ff |max

−Ap(PR − PL) if |Ap(PR − PL) < |Ff |max

(3.109)

The above formulation for friction prevents a frictional force from being applied to

the piston unless the pressure force is large enough to cause motion. The resulting

equations of motion for the piston are

d

dt
(Xp(t)) = Vp(t)

d

dt
(Vp(t)) =

1

mp

[Ap(PL − PR) + Ff ]

(3.110)
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3.10 Code Algorithm

The general algorithm for determining the initial conditions is as follows:

1. Define the length of the Ludwieg tube, nozzle exit diameter, fill temperature in

the Ludwieg tube, length of the compression tube, diameter and length of the

secondary reservoir, test Mach number, and fill pressure in the compression

side.

2. Use the MOC solver to find the optimized facility geometry in the absence

of standing waves. This outputs the compression tube’s volume, diameter,

Ludwieg tube diameter, and throat diameter.

3. Determine the secondary reservoir fill pressure from the idealized piston tra-

jectory equations.

4. Use the idealized piston equations to estimate the secondary reservoir fill pres-

sure for the optimized piston trajectory.

5. Initialize all variables using the above estimations and begin the simulation.

The algorithm for the Euler solver is as follows:

1. If the time step index is below 500, then constrain the CFL number to 0.002

and suppress the third time derivative of piston position for stability.

2. Fill in all ghost cells, using the reflecting conditions for the end wall and

throat (before valve is opened), and the IL-W procedure for the moving piston

boundary.
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3. Do the WENO interpolation then calculate all fluxes and source terms.

4. Update the time derivative of the conserved variables and proceed with the

TVD-RK3 integration.

5. Do the force balance on the piston and update the piston position according

to Tan and Shu’s [44] suggestion.

6. Outside of the TVD-RK3 integration, update the pressure and temperature

with the energy relaxation procedure.

7a. Once the piston stops moving, open the valve at the throat. Here, the CFL

number is reduced by a factor of the pressure ratio across the throat. This is

done to prevent instability from the strong shock that forms due to the high

pressure ratio. Also, α in the slope limiter is set to 1 for the nozzle until the

unsteady expansion passes. The initial pressure in the nozzle and test section

is assumed to be 100 Pa.

7b. For simulations not involving the valve opening, the iterations continue beyond

the piston termination until the time value becomes larger than the specified

maximum. Computations behind the piston in the secondary reservoir and

compression tube are suppressed due to computational costs.

3.11 Verification

The accuracy of the numerical methodology is assessed by comparing the nu-

merical solutions to known analytical solutions. This section presents the results of
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these verification tests.

3.11.1 Shock Tube

The Riemann shock tube is first considered to assess the accuracy of the un-

steady solution. The results are presented in figure 3.10. The solid blue lines in

figures 3.10b and 3.10c present the MOC and analytical solution, while the red

circles present the numerical solution. Figure 3.10a presents the numerical x − t

density diagram overlaid with the MOC solution (black lines) and the analytical

shock speed (red line). The analytical contact surface trajectory is presented in the

dashed red line.

The numerical solution demonstrates strong agreement with the MOC and

analytical solution. The contact surface is captured within six cells, while the shock

is contained within five cells. The solution also maintains high resolution within the

non-simple region of the rarefaction.

3.11.2 Laval Nozzle

The transonic Laval nozzle is considered to verify the source term in equa-

tion 3.2. The outlet pressure (specified in figure 3.11) is set to cause a standing

shock within the nozzle. The results are presented in figure 3.11. The numerical

results agree well with the theoretical solution. The shock location is accurately pre-

dicted by the numerical solution, along with the Mach number and pressure profile

throughout the nozzle.
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3.11.3 Moving Boundary

The numerical moving boundary solution is compared to the MOC and analyt-

ical solution for an impulsively started piston moving at 200 m/s. The numerical x-t

velocity diagram is presented in figure 3.12a, with the spatial velocity and pressure

profiles in figures 3.12b and 3.12c, respectively. Here, the numerical solution agrees

well with the MOC solution for the rarefaction and the analytical solution for the

induced shock.

3.11.4 Comparison with L1d

A comparison between our numerical methodology and L1d is made. The

results are presented in figure 3.13; details on the numerical model can be found in

figure 4.1 of chapter four. The comparison presented here shows a 7.8 m long 2R

with a 30 cm diameter, 8.4 m long CT with a 20 cm diameter, a 7.8 m long LT with

a 9 cm diameter, and a 3 cm throat diameter. The piston mass is 100 kg, with an

initial driver pressure of 8.4 bar and driven pressure of 2 bar. The grid size used in

L1d is 300 in the 2R, 500 in the CT, 500 in the LT, and 100 in the nozzle. The grid

size of our numerical model is 900 with uniform spacing across the entire domain.

Upon final compression, the Lagrangian nature of L1d’s methodology brings the

initial 500 cells of the CT into the LT, increasing the final LT resolution to 1000

points. The effects of viscosity and heat-transfer are ignored in this L1d simulation

for a more fair comparison. In both simulations, the throat remains closed and acts

as a reflecting end-wall until 450 ms, from which the throat is opened.
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The pressure oscillation predicted by L1d is seen in figure 3.13b. As stated

before, the strength of this oscillation is expected to increase as the pressure in-

creases. Although the present numerical scheme and L1d show strong agreement

on the predicted piston trajectory (see figure 3.13a), the present scheme predicts

a higher pressure and temperature, seen in figures 3.13b and 3.13c. This can be

attributed to the different equation of states. Despite the small differences, the

agreement is good between our Eulerian scheme and L1d’s Lagrangian scheme. The

significance of this agreement is twofold: 1. the standing waves persist in both a

finite-volume Eulerian approach and Lagrangian control-mass approach, indicating

further investigation of these waves is warranted and 2. this agreement between the

numerical methodology of this work and the more well established L1d code (in-

cluding the previous verification tests) justifies the use of the present work’s scheme

for this investigation.
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Figure 3.10: This simulation has an initial driver pressure (x < 0) of 15 bar with an

800 K temperature, and a driven (x > 0) pressure of 2 bar with a 300

K temperature. The grid size is 180 cells with a 0.5 CFL number. a) A

numerical x − t diagram of the density. b) The spatial density profile

at t = 0.941449 ms. c) The spatial density profile at t = 0.619688 ms.
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Figure 3.11: The flow is moving left to right. The inlet Mach number is 0.05 with a

stagnation pressure of 94.899 atm. The exit pressure is set to 45.5296

atm. The grid size is 125 points. a) The nozzle radial profile as a

function of distance. b) The steady-state Mach number profile through

the nozzle. c) The steady-state pressure profile through the nozzle.
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Figure 3.12: The piston is impulsively started and is moving at 200 m/s. a) Nu-

merical x-t velocity diagram, overlaid with the characteristics from the

MOC solution (black lines) and the analytical shock solution (red line).

The grey region indicates the piston trajectory. b) The spatial velocity

profile at t = 0.75 ms. The vertical black lines indicate the boundary

location. c) The spatial pressure profile at t = 0.75 ms.
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Figure 3.13: Comparison of this work’s numerical methodology with L1d using the

same geometry. Here, we compare the a) piston trajectory, b) pressure

time trace at the LT end, and c) the temperature time trace at the

same location.
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Chapter 4: Numerical Results

This chapter presents the numerical results for the piston dynamics. The

characterization of the resulting pressure oscillations is critical in assessing the per-

formance of the proposed facility. Here, the trends for the oscillation strength over

the design space are identified.

4.1 Numerical Model

Figure 4.1: Illustration of the linearized tunnel with the variables of interest labeled.

Here, L, D, V , and P refer to length, diameter, volume and pressure.

The subscripts res, CT , and LT refer to the secondary reservoir, com-

pression tube, and Ludwieg tube. Although illustrated as such here, the

compression tube diameter is not necessarily the same as the reservoir

diameter.
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Figure 1.3 in chapter 1 illustrates the operational concept of the facility, and

shows both the dogleg section between the CT and LT, and the reservoir which wraps

under the CT to save space. The numerical model brings all the facility components

into a linear, inline configuration, further illustrated in figure 4.1. The variables of

interest here are the length L, diameter D, volume V , and fill pressures Pfill,res and

Pfill,CTLT of each facility component. The volumes are constrained by the length of

the LT and the optimal operating condition for a chosen test Mach number and fill

temperature. The optimal operating condition from the MOC calculations are used

to determine all LT dimensions and CT volumes investigated in this chapter.

Figure 4.2: Illustration of how the area contractions are modeled. A sine function

is used with its minimal slope constrained to 45 degrees. The axes

presented here are in proportion. The red region indicates the initial

heated state of the Ludwieg tube, while the blue region indicates the

non-heated compression tube and area-contraction.

Figure 4.2 shows the extra cells padded between the area contractions to pre-

vent numerical instabilities. A sine function is used to determine the transitional

cell radius along the contraction.
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4.2 Idealized Piston

The fill pressures are first determined using an idealized model as an initial

estimate to the tailored piston trajectory. The tailored piston trajectory is defined

as the piston attaining zero velocity at exactly the CT end. The assumptions made

here are:

1. All wave speeds are infinite. This means the compression and expansion occurs

instantaneously and uniformly across the entire domain for every infinitesimal

movement of the piston.

2. The gas is thermally perfect, allowing for the use of the thermally perfect gas

equations that were introduced in chapter 2 to more accurately model the

compression process.

3. The compression and expansion process is isentropic. There is no heat loss or

shock formation due to the piston motion.

Figure 4.3 shows the differences in the piston trajectory prediction when using

the idealized model versus the numerical model. The deviation increases when the

length of the facility components increase, most likely due to the increased time

required for the unsteady waves to fully propagate.

The idealized piston model is used to determine the initial fill pressures for any

given reservoir, CT, and LT volumes. The reservoir pressure can be further tailored

so the piston reaches full compression for the numerical scheme. The CT and LT fill

pressure is constrained by the desired stagnation pressure and compression ratio.
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Figure 4.3: Comparison of the idealized and numerical piston trajectory for a tar-

geted compression ratio of 8.78, mp = 50 kg, LCT = Lres = 12 m,

LLT = 8 m, and DLT = 12cm. The fill pressures are Pfill,res = 20.12 bar

and Pfill,CTLT = 2.994 bar. Here, the numerical solution comes 18 cm

short of the full 12 m trajectory using the same initial conditions of the

ideal case.

4.3 Grid Convergence

The grid convergence results are presented in figure 4.4. 950 and 1850 points

show higher resolution in predicting the smaller scale oscillations, but for the pur-

poses of this work, which is to identify the larger scale oscillations, 550 points will

suffice.
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Figure 4.4: Pressure trace at the LT end-wall, just upstream of the throat. The

conditions for this simulation are the same as shown in figure 4.3

.

4.4 Pressure Oscillations

The first case presented emphasizes the importance of the numerical modeling

and characterizing the highly unsteady flow within the facility. Figure 4.5 demon-

strates the ”worst case” scenario, where the piston motion induces a shock. This

case is for a 50 kg piston mass, 8 m CT, 2R, LT lengths, 12 cm LT diameter, equiv-

alent volumes in the CT and 2R, target stagnation conditions of a 6.5 test section

Mach number with a 216.5 K temperature, and beginning with a 900 K LT fill tem-

perature. The CT volume is determined from the MOC solver, assuming optimal

operating conditions for the desired test section Mach number and temperature.

Initial temperatures in the 2R and CT are 300 K. Major features of the simulation

are indicated in figure 4.5. The two most important features to note are the forma-
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Figure 4.5: Density x-t diagram of mp = 50, LCT = Lres = 8 m, Vres = VCT ,

Tfill = 900 K, dLT = 12 cm, and dCT = 33.47 cm. Grid size is 950 cells.

tion of a shock after the piston motion terminates, and the extreme expansion of

the test slug. Both will significantly degrade steady test flow quality. The formation

of the shock can be attributed to the coalescence of the strong compression waves,

generated by the fast compression cycle of the piston. The expansion of the test slug

can be attributed to the subsequent deceleration of the piston, which generates an

expansion wave. Stronger decelerations are expected to form stronger expansions,

further strengthening the expansion of the test slug after piston motion termination.

Figure 4.6 is a numerical Schlieren diagram of the same simulation. The expected

qualitative wave features of the unsteady flow can be clearly seen in this figure.

The head of the initial compression wave accelerates as it propagates into the hot-

ter gas within the LT. A wave reflection occurs due to the area-contraction, which
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Figure 4.6: Schlieren x-t diagram of mp = 50, LCT = Lres = 8 m, Vres = VCT ,

Tfill = 900 K, dLT = 12 cm, and dCT = 33.47 cm. Grid size is 950 cells.

subsequently propagates back to the piston face. The transmitted head of the com-

pression wave reflects from the end wall (the nozzle throat) and propagates towards

the temperature interface. This wave then diverges again at the contact surface,

where it reflects off the denser, colder gas and also transmits partially into it. The

continuation of these reflections can be seen between the piston/area contraction,

and the contact surface/LT end wall.

We refer to simple wave theory to better characterize the effects of the unsteady

piston-compression, where

∆v =
∆p

ρa
. (4.1)

Here, v refers to the fluid velocity, p is the pressure, ρ is the density, and a is the

speed of sound. The significance of this relation is that a change in velocity can
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be related to a corresponding change in pressure for isentropic waves. A larger

change in velocity results in a larger change in pressure. This relation suggests

the pressure oscillations can be mitigated by minimizing the total change in fluid

velocity. In the current framework of the constrained facility design space, the total

change in fluid velocity can be mitigated in two ways: 1. a reduction in piston

velocity and 2. a reduction in the area contraction ratio between the CT and LT.

The maximum piston velocity is a function of the piston mass and the initial fill

pressures. Thus, a reduction in piston velocity can be achieved by an increase in

piston mass. The area contraction between the CT and LT accelerates the fluid to

higher Mach numbers and velocities. Decreasing this contraction ratio is expected

to decrease the acceleration of the fluid velocity. To investigate this theory, we

parametrically characterize the effects of piston mass and CT lengths on the pressure

oscillations, while constraining the compression ratio, initial fill temperature, nozzle

throat size, and LT geometry.

Figure 4.7 illustrates the measurement used for determining the strength of

the pressure oscillations. The difference of the first peak pressure and first minimum

pressure is normalized by the root-mean-square of the pressure between these two

points. The CT length and piston mass is varied to characterize their effect on this

pressure oscillation. The following simulations constrain the 2R volume and length

to the CT volume and length. The initial 2R fill pressure is determined using the

ideal theory to minimize computational cost. The LT length is 8 meters, with an

initial LT/CT fill pressure of 2.9938 bar.

Figure 4.8 presents the results for varying piston masses of 80 to 200 kg (2.5
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Figure 4.7: Pressure trace at the LT end-wall, just upstream of the throat. The

highlighted section goes from the first pressure peak to the second pres-

sure peak, denoted here as Pmax and Pmin, respectively. This region is

used to calculate the RMS value, which is then used to normalize the to-

tal peak-to-peak pressure amplitude ∆P . The simulation presented here

has the same parameters as figures 4.5 and 4.6, except here, mp = 100

kg (piston mass is doubled).

kg increments), at different CT lengths of 8 m to 12 m (1 m increments). Longer

CT lengths (smaller area contractions), for a given piston mass, result in smaller

pressure oscillations. The same is seen for heavier piston masses for a given CT

length.

Figure 4.9 plots the pressure oscillations as a function of the maximum velocity

seen in the domain. Although the pressure oscillations are more strongly dependent

on the peak fluid velocity, a stronger relationship can be seen with the time required

to complete the compression in figure 4.10. This suggests that the rate of change of

the fluid volume ahead of the piston is a stronger indicator of pressure oscillation
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Figure 4.8: Peak to peak pressure oscillation normalized by the RMS value. The CT

lengths are varied to change the area contraction ratio while maintaining

a constant CT volume. The piston masses are varied from 80 kg to 200

kg in increments of 2.5 kg.

strength.

To decrease the oscillations further, we extend the parametric domain to longer

CT lengths of 13 m to 16 m and present the results in figure 4.11. An interesting

relationship can be seen here between the oscillation strength and piston mass for

any given CT length, where unlike the shorter CT lengths, the longer CT lengths no

longer maintain the monotonicity between the piston mass and oscillation strength.

We again present the oscillation strength against the compression time cycle in figure

4.12 and see that the agreement is not as strong as the previous shorter CT cases.

However, the dependence on the compression time cycle is still stronger than the

piston mass. Also, a general trend (although not monotonic) can be seen where

longer compression time cycles may result in weaker wave strengths. This loss in

monotonicity can be attributed to the constructive and destructive interaction of the
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Figure 4.9: Peak to peak pressure oscillation normalized by the RMS value vs. max-

imum fluid velocity seen in the CT and LT.

unsteady compression and expansion waves. This interaction is highly dependent on

whether the interacting waves are right-running or left-running, thereby making the

timing of these interactions critical in whether they constructively or destructively

interact. This claim has yet to be validated for our specific application.

The results also suggest extremely high piston masses are generally favorable

to reducing oscillation strength. It is important to note that higher piston masses

are physically unfeasible solutions due to the nature of the tunnel operation. The

piston must be removed from the compression tube and moved to its starting point

at the beginning of each run. Figure 4.11 also suggests that there might exist di-

minishing returns in reducing oscillation strength for increasing piston mass. These

masses where diminishing returns occur are indicated by circles in figure 4.11. The

significance of this result is that although higher masses are generally more favorable

to reduce oscillations, lower masses could be used without a significant detrimental

effect to the flow quality.
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Figure 4.10: Peak to peak pressure oscillation normalized by the RMS value vs.

time to complete the compression cycle

4.5 Oscillation Effect on Test Conditions

We quantify the effects of the standing waves on the test conditions for a

particular case of a 16 m CT length and 125 kg piston mass. The target conditions

are a stagnation pressure of 60 bar and a test section Mach number of 6.5 with a

static temperature of 216.5 K.

The pressure and temperature measured at the downstream end of the Lud-

wieg tube (just upstream of the nozzle throat) are shown in figures 4.13 and 4.14,

respectively. The valve is opened soon after the piston motion subsides and on the

downward trend of the oscillation cycle. The effect of the wave on test conditions is

shown in figures 4.15, 4.16, and 4.17. As seen in figure 4.15, the variation in test sec-

tion Mach number is small, suggesting the strength of the wave in the Ludwieg tube

for the generating flow has minimal unsteady effect. A more significant oscillation in

the test section temperature and velocity can be seen in figures 4.16 and 4.17. The
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Figure 4.11: Peak to peak pressure oscillation normalized by the RMS value. The

CT lengths are varied from 13 m to 16 m. The piston masses are varied

from 80 kg to 200 kg in increments of 2.5 kg.

temperature varies by 6 K while the velocity varies by 25 m/s. Although conditions

are not exactly constant, it is important to note the strength of the standing waves

is most likely exaggerated by the inviscid, one-dimensional nature of the simula-

tion. This suggests the results presented here are extremes, showing the worst-case

scenario for tests conditions given this configuration.
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Figure 4.12: Peak to peak pressure oscillation normalized by the RMS value vs. the

compression time cycle for longer CT cases.

Figure 4.13: Ludwieg pressure vs. time. The valve opening time is indicated by the

black vertical line.
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Figure 4.14: Ludwieg temperature vs. time. The valve opening time is indicated by

the black vertical line.

Figure 4.15: Test section Mach number vs. time, after valve opening.
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Figure 4.16: Test section temperature vs. time, after valve opening.

Figure 4.17: Test section velocity vs. time, after valve opening.
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Chapter 5: Conclusions and Future Work

5.1 Summary of Results

In this work, the design space and available test conditions of a proposed

hypersonic facility have been characterized. A simplified, unsteady method of char-

acteristics solver was used (under the optimal operating condition) to determine the

relationship between the Ludwieg tube and nozzle exit diameters and the available

maximum test times. These solutions are verified by solving the unsteady Euler

equations for duct flow. The expected test times, for an 8 m Ludwieg tube length,

range from 33 ms to 23 ms. Higher initial fill temperatures in the Ludwieg tube

result in longer steady test times, while an increase on the stagnation temperature

requirement decreases the test times. The nozzle exit to Ludwieg tube diameter

ratio is nearly constant for various test Mach numbers while the throat to Ludwieg

tube diameter ratio decreases for increasing Mach number.

Modern numerical methods are employed to solve the unsteady quasi-one-

dimensional Euler equations. Fifth-order WENO interpolation is carried out on the

characteristic variables and an HLLC Riemann solver is utilized to compute the

flux. Further schemes are employed to sharpen the resolution of the contact surface.

Time integration is carried out with the third-order TVD Runge-Kutta scheme. The
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moving boundary of the piston is accounted for by the third-order accurate, inverse

Lax-Wendroff procedure of Tan and Shu [44]. The calorically perfect gas assumption

is relaxed, and the thermally perfect equations are solved using an application of

the energy relaxation method by Montarnal and Shu [33]. The numerical methods

employed have been verified to accurately capture the one-dimensional and unsteady,

gasdynamic processes.

The numerical results predict the presence of pressure oscillations originating

from the highly unsteady piston compression cycle. Ideal equations are used to pre-

dict the fill pressures within the secondary reservoir and the compression tube such

that the piston achieves full compression while attaining zero velocity at the end

of its compression cycle. Although these results overshoot the final piston displace-

ment, they are shown to be an acceptable predictor of fill pressures for the more

numerically extensive simulations. These pressures are then utilized to extensively

characterize the pressure oscillations for varying piston masses and compression tube

lengths. The oscillations are shown to be strongly dependent on the compression

completion time. The compression time cycle is increased by using either a heav-

ier piston mass or longer compression tube. The relationship of the piston mass

and compression tube with oscillation strength is not entirely monotonic for the

presented design space. The numerical results indicate increases in piston mass be-

yond certain critical masses for a given compression tube length to yield diminishing

(and sometimes worsening) returns in dampening the oscillations. This critical mass

increases for decreasing compression tube length.
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5.2 Contributions

This work has characterized the potential quality of the generating flow for

a novel hypersonic facility proposed to be built at the University of Maryland.

It has identified configurations which might significantly decrease the steady-flow

quality during the expected test-times. A configuration for optimal flow quality

has also been suggested for further investigation. The numerical tools applied for

this characterization are newly configured for this work, and their application in

predicting the unsteady fluid dynamics of this facility has been demonstrated.

5.3 Future Work

Further characterization should be carried out for varying Ludwieg tube lengths,

secondary reservoir volumes, secondary reservoir lengths, and Ludwieg tube diam-

eters. A more comprehensive analysis is needed to identify the unsteady waves

interactions and isolate the effect of the compression tube to Ludwieg tube area

contraction.

Two and three-dimensional unsteady Navier-Stokes simulations are needed to

identify flow features not captured by the one-dimensional inviscid Euler equations.

Of particular interest are the losses associated with the step-wise area contraction

and the stability of the cold-hot gas interface. Experimental validation of the one-

dimensional numerical model is currently planned at the Caltech T5 free-piston

shock tube facility.

94



Bibliography

[1] Goyne, C. P., Rodriguez, C. G., Krauss, R. H., McDaniel, J. C., and McClinton,
C. R., Experimental and Numerical Study of a Dual-mode Scramjet Combustor,
Journal of Propulsion and Power, Vol. 22, No. 3 May 2006, pp. 481-489.

[2] Mitani, T., Hiraiwa, T., Sato, S., Tomioka, S., Kanda, T., and Tani. K., Com-
parison of Scramjet Engine Performance in Mach 6 Vitiated and Storage-Heated
Air, Journal of Propulsion and Power, Vol. 13, No. 5 Sep. 1997, pp. 635-642

[3] Rockwell, R., Goyne, C. P., Haw, W., Krauss, R. H., McDaniel, J. C., and
Trefny, C. J., Experimental Study of Test-Medium Vitiation Effects on Dual-
Mode Scramjet Performance, Journal of Propulsion and Power, Vol. 27, No. 5
(2011), pp. 1135-1142.

[4] Do, H., Passaro, A., Liu, Q., Lee, T., Baccarella, D., Alta S.p.A., and Gher-
ardesca, V.A., Ethylene Flame Dynamics in an Arc-Heated Hypersonic Wind
Tunnel, 51st AIAA Aerospace Sciences Meeting including the New Horizons
Forum and Aerospace Exposition 07 - 10 January 2013, Grapevine, Texas

[5] Davis, J.A., Campbell, R.L., and Medley, J.A., Hypervelocity Scramjet Capa-
bilities of the T5 Free-Piston Tunnel at Caltech, AIAA Fourth International
Aerospace Planes Conference, 1-4 December, 1992, Orlando, Florida

[6] Heltsley, W.N., Snyder, J.A., Houle, A.J., Davidson, D.F., Mungal, M.G., and
Hanson, R.K., Design and Characterization of the Stanford 6 Inch Expansion
Tube, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit 9
- 12 July 2006, Sacramento, California

[7] Guy, R.W., Rogers, R.C., Rock, K.E., Diskin, G.S., and Puster, R.L.,
The NASA Langley Scramjet Test Complex, AIAA/ASME/SAE/ASEE Joint
Propulsion Conference, 32nd, 1-3 Jul. 1996, Lake Buena Vista, FL, United
States

95



[8] Fotia, M.L., and Driscoll, J.F., Isolator-Combustor Interactions in a Direct-
Connect Ramjet-Scramjet Experiment, Journal of Propulsion and Power, Vol.
28, No. 1 (2012), pp. 83-95.

[9] Fischer, K.E., and Rock, K.E., Calculated Effects of Nitric Oxide Flow Con-
tamination on Scramjet Performance, NASA Langley Technical Report Server,
1995, Technical Report

[10] Cummings, R.M., and McLaughlin, T.E., Hypersonic Ludwieg Tube Design
and Future Usage at the US Air Force Academy, 50th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition 09 - 12
January 2012, Nashville, Tennessee

[11] Oldfield, M.L.G., Jones, T.V., and Schultz, D.L., A Ludwieg Tube with Light
Piston Isentropic Compression Heating, Aeronautical Research Council 34 255,
1973.

[12] Kharitonov, A. M., Zvegintsev, V. I., Vasenev, L. G., Kuraeva, A. D., Nali-
vaichenko, D. G., Novikov, A. V., Paikova, M. A., Chirkashenko, V. F.,
Shakhmatova, N. V., and Shpak, S. I., Characteristics of the AT-303 hyper-
sonic wind tunnel. Part 1. Velocity Fields, Thermophysics and Aeromechanics
Vol. 13, No. 1, 1 Jun. 2001, pp. 1-16.

[13] Eggehs Jr, A.J., One-Dimensional Flows of an Imperfect Diatomic Gas, NACA
Report 959, 1950 National Advisory Committee for Aeronautics

[14] Mundt, C., Boyce, R., Jacobs, P., and Hannemann, K., Validation study of
numerical simulations by comparison to measurements in piston-driven shock-
tunnels, Aerospace and Science Technology, Vol. 11, No. 2-3, Mar. 2007, pp.
100-109.

[15] Houwing, A.F.P., Boyce, R.R., Bone, D.J., and Johnston, D.K. Measurement
of recombination rate parameters in nonequilibrium supersonic expansions of
ionised argon and neon, Shock Waves, Vol. 1 (1991) pp. 177185.

[16] Paull, A., and Stalker, R.J., Scramjet testing in the T3 and T4 hypersonic
impulse facilities, in: E.T. Curran, S.N.B. Murthy (Eds.), Scramjet Propulsion,
Progress in Astronautics and Aeronautics, Vol. 189, AIAA, 2000, pp. 146.

[17] Stalker, R.J., and Morgan, R.G., The University of Queensland free piston
shock tunnel T4 Initial operation and preliminary calibration, Fourth National
Space Engineering Symposium, Adelaide, Australia, 1988.

96



[18] Hannemann, K., Schneider, M., Reimann, B., and Schramm, J.M., The influ-
ence and the delay of driver gas contamination in HEG, AIAA 2000-2595, 21st
AIAA Aerodynamic Measurement Technology and Ground Testing Conference,
Denver, 1922 June, 2000.

[19] Anderson, J.D., Modern Compressible Flow, 2nd ed., McGraw-Hill Inc., New
York, 1990, Chap. 7.

[20] Shapiro, A.H., The Dynamics and Thermodynamics of Compressible Fluid
Flow, Vol. 2, The Ronald Press Company, New York, 1954, Chap. 23.

[21] Thompson, P.A., Compressible Fluid Dynamics, McGraw-Hill Inc., New York,
1972, Chap. 23.

[22] Tani, K., Itoh, K., Takahashi, M., Tanno, H., Komuro, T., and Miyajima,
H., Numerical Study of Free-Piston Shock Tunnel Performance, Shock Waves,
1994, Vol. 3 pp. 313-319

[23] Parziale, N. J., Rabinovitch, J. , Blanquart, G., Hornung, H. G., and Shepherd,
J. E., Propose Vertical Expansion Tunnel, AIAA Journal, Vol. 51, No. 12, Dec.
2013, pp. 2792-2799

[24] Lappas, T., Leonard, A., and Dimotakis, P.E., An Adaptive Lagrangian Method
for Computing 1D reacting and Non-Reacting Flows, Journal of Computational
Physics, Vol. 104, 1993, pp. 361-376

[25] Jacobs, P.A., Quasi-One-Dimensional Modeling of a Free-Piston Shock Tunnel,
AIAA Journal Vol. 32, No. 1, Jan. 1994, pp. 19-23.

[26] Jiang, G.S., and Shu, C.W., Efficient Implementation of Weighted ENO
Schemes, Journal of Computational Physics Vol. 126, No. 1, Jun. 1996, pp.
202-228.

[27] Liu, X.D., Osher, S., and Chan, T., Weighted Essentially Non-oscillatory
Schemes, Journal of Computational Physics Vol. 115, No. 1, Nov. 1994, pp.
200-228.

[28] Toro, E.F., Spruce, M., and Speares, W., Restoration of the Contact Surface
in the HLL-Riemann Solver, Shock Waves Vol. 4, No. 1, Jul. 1994, pp. 25-34.

[29] Toro, E.F., A Linearised Riemann Solver for the TimeDependent Euler Equa-
tions of Gas Dynamics, Proc. Roy. Soc. London,1991, pp. 683693.

97



[30] Roe, P. L., Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes, Journal of Computational Physics, Vol. 43, 1981, pp. 357372.

[31] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R., Uniformly high order
accurate essentially non-oscillatory schemes, Journal of Computational Physics,
Vol. 71, No. 2, Aug. 1987, pp. 231-303

[32] Coquel, F., and Benoit, P., Relaxation of Energy and Approximate Riemann
Solvers for General Pressure Laws in Fluid Dynamics, SIAM Journal on Nu-
merical Analysis Vol. 35, No. 6, Dec. 1998, pp. 2223-2249.

[33] Montarnal, P., and Shu, C.W., Real Gas Computation Using an Energy Re-
laxation Method and High-Order WENO Schemes, Journal of Computational
Physics Vol. 148, No. 1, 1 Dec. 1999, pp. 59-80.

[34] Liu, Q., and Vasilyev, O.V., A Brinkman penalization method for compressible
flows in complex geometries, Journal of Computational Physics, Vol. 227, No.
2, Dec. 10 2007, pp. 946-966.

[35] Shu, C.W., Total-Variation-Diminishing Time Discretizations, SIAM Journal
on Scientific and Statistical Computing, Vol. 9, No. 6, Nov. 1988, pp. 1073-
1084.

[36] Ingram, D.M., Causon, D.M., and Mingham, C.G., Developments in Cartesian
Cut Cell Methods, Mathematics and Computers in Simulation, Vol. 61, 2003,
pp. 561-572.

[37] Sotiropoulos, F., and Yang, X., Immersed Boundary Methods for Simulating
Fluid-Structure Interaction, Progress in Aerospace Sciences, Vol. 65, 2014, pp.
1-21.

[38] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd
ed., Springer Dordecht Heidelberg, London, New York

[39] Taylor, E.M., Wu, M., and Martin, M.P., Optimization of Nonlinear Error for
Weighted Essentially Non-Oscillatory Methods in Direction Numerical Simula-
tions of Compressible Turbulance, Journal of Computational Physics Vol. 223,
No. 2, Apr. 2007, pp. 384-397

[40] Kim, K.H., and Kim, C. Accurate, Efficient, and Monotonic Numerical Methods
for Multi-Dimensional Compressible Flows: Part II: Multi-Dimensional Limit-
ing Process, Journal of Computational Physics Vol. 208, No. 2, 20 Sep. 2005,
pp. 570-615

98



[41] Houim, R.W., and Kuo, K.K., A Low-Dissipation and Time-Accurate Method
for Compressible Multi-Component Flow with Variable Specific Heat Ratios,
Journal of Computational Physics Vol. 230, No. 23, 20 Sep. 2011, pp. 8527-8553

[42] Tan, S., and Shu, C.W., Inverse Lax-Wendroff Procedure for Numerical Bound-
ary Conditions of Conservation Laws, Journal of Computational Physics Vol.
229, No. 21, 20 Oct. 2010, pp. 8144-8166

[43] Tan, S., Wang, C., Shu, C.W., and Ning, J., Efficient Implementation of High
Order Inverse Lax-Wendroff Boundary Treatment for Conservation Laws, Jour-
nal of Computational Physics Vol. 231, No. 6, 20 Mar. 2012, pp. 2510-2527

[44] Tan, S., and Shu, C.W., A High Order Moving Boundary Treatment for Com-
pressible Inviscid Flows, Journal of Computational Physics Vol. 230, No. 15, 1
Jul. 2011, pp. 6023-6036

[45] Shu, C.W., High Order Weighted Essentially Non-oscillatory Schemes for Con-
vection Dominated Problems, SIAM Review, Vol. 51, No. 1, pp. 82-126.

[46] Borges, R., Carmona, M., Costa, B., and Don, W.S., An Improved Weighted
Essentially Non-Oscillatory Scheme for Hyperbolic Conservation Laws, Journal
of Computational Physics Vol. 227, No. 6, 1 Mar. 2008, pp. 3191-3211

99


