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and dynamic calibration using acceleration compensation.
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Chapter 1: Introduction

One of the major challenges in developing dynamic force measurement tools for

use in a hypervelocity blowdown wind tunnel is the reduced test time as compared to

low-speed wind tunnels which may be operated continuously. In low-speed tunnels,

the test article has time to come to equilibrium during the duration of the test and

therefore pressure and drag loads on the article can be straightforwardly measured.

For high speed wind tunnels, pressure and drag loads are much more di�cult to

separate from vibration of the test article or model support structure. Therefore, an

important research goal is whether high frequency force measurement can contribute

to the accurate measurement of impulsive loads for models in a hypervelocity wind

tunnel.

In many cases, the load measurement tool employed in wind tunnel testing

is a strain gauge force balance, as this technology is proven to give accurate mea-

surements at low frequency. The frequency response of conventional strain gauge

balances is typically below 30 Hz so that the high sensitivity and low crosstalk re-

quirements for this measurement system are met, however this range is insu�cient

for accurate measurement of transient loads incurred during impulsive events. A

high frequency measurement tool is needed to characterize loads on test articles
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associated with events such as the unstart of scramjet inlets [1, 2], mode switch-

ing [3], shroud separation [1,4,5], stage separation [6], and divert thrusters firing [7].

These dynamic events involve large unsteady forces on millisecond time scales and

are generated by complex flow physics such as shock interaction and boundary layer

separation, both of which pose considerable modeling challenges and are active areas

of research [12]. Because large uncertainties exist when computing these complex

flows, accurate measurement of unsteady forces and moments in ground test facilities

is essential to reduce the risks during development of hypersonic systems.

1.1 Research Question

This thesis presents work towards the research goal stated above by investi-

gating two specific questions:

1. How can a static calibration methodology be developed using high frequency

force measurements to recover static loads in an abstract case as well as the

case of a generic test article?

2. How should the development of a similar methodology for recovery of transient

forces and moments be approached?

This work therefore consists of studies to look at the e�ects of test article design

parameters as well as sensor placement on the ability to recover static and dynamic

forces and moments. The majority of the work presented herein is computational,

aided by commercial finite element tools, and presents a testbed for sensitivity

analyses to assess various design parameters. For this work, experimental facilities
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are provided by Arnold Engineering Development Center (AEDC) in White Oak,

Maryland, home of AEDC’s Hypervelocity Tunnel 9, which is capable of Mach 14

air flow and continuous pitch sweep [13]. Further laboratory work to corroborate

the computational model is an ongoing e�ort between the University of Maryland

and Tunnel 9.

1.2 Outline

In Chapter 2, a novel high frequency force balance system is presented along

with a review of past research that provides a foundation for this work. In Chapter 3,

the first research question is partially answered with a discussion of the development

of a static calibration methodology as applied to an abstract case. Section 3.7

extends this methodology to a generic test article, thus concluding the first research

question. The answer to the second research question is found in Chapter 4, where

an approach is considered for the extension of the calibration methodology described

herein to the case of transient load recovery. Recommendations for future work are

included in Chapter 5.
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Chapter 2: Literature Review

This literature review covers current force measurement technology, both for

high frequency and low frequency applications. Following this introduction, pre-

vious use of these measurement technologies for high-speed wind tunnel testing is

described. Next, this thesis is placed in context relative to the previous work and

the specific test article used in the thesis is described.

2.1 Force Balances

The most common measurement tool for recording forces on test articles in

ground test facilities is a strain gauge balance, accurate and extremely reliable for

quasi-static loads. The restriction to the quasi-static regime is due to the frequency

limitation of the measurement system based on the sti�ness requirements of the

balance itself to minimize crosstalk between orthogonal sensor components. This

means that typical strain gauge balances are not suitable for measurement of high

frequency inertial loads, however we continue to use a strain gauge balance in our

proposed force balance hardware because it is well-suited to low frequency measure-

ment, thus allowing broadband measurement.
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2.2 Piezoelectrics

Piezoelectricity is an intrinsic and reversible mechanical property of a few types

of crystals where electric charges accumulate in a crystal due to applied strain. This

accumulation of charge upon force application can be measured as voltage. This

e�ect typically occurs along material axes, defined by the crystallographic planes of

the material, which allows for selective measurement of loads along these axes. In

contrast to many common force sensors, including strain gauge force sensors, this

property allows for a simpler sensor design: these materials can directly measure

force and do not require separate sensing and transduction elements [14]. This

combination of simplicity, sti�ness, and high sensitivity makes piezoelectric sensors

ideal for our application.

2.3 Past Work

A prototype force balance utilizing piezoelectric force sensors was designed

for the high-enthalpy and extremely short test times in the LENS-XX reflected

shock tunnel, and further implemented successfully on a reentry capsule tested in

the Mach 9 expansion tunnel at CUBRC [9]. To complement the high frequency

force measurements, high-frequency acceleration measurements can be made, which

allows for calculation of inertial loads due to vibrations of the test article. This

technique, denoted acceleration compensation, was introduced with the piezoelectric

force measurement system and excellent agreement was found between simulations

and acceleration compensated strain gauge results presented by Marineau et al in
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2012 [10], as well as increased accuracy over previous capsule measurements from

Störkmann et al [11].

Drawing on these successes, a new hybrid force balance system is presented in

this thesis. The hybrid system consists of high frequency piezoelectric force sensors

in parallel with conventional low frequency strain gauge measurements. The goal of

this system is to enable accurate determination of both dynamic loading as well as

quasi-static forces and moments for a full frequency characterization. A step towards

this goal is the subject of this thesis, which covers static calibration methodology

and a plan for dynamic calibration methodology using this hybrid force balance.

2.4 Test Article and Rationale

The generic test article designed for this work, shown in Figure 2.1, was de-

signed to facilitate development of the hybrid force balance technology and has

dimensions, weight, inertia, and natural frequencies similar to typical Tunnel 9 test

articles. The orthogonal surfaces will facilitate the attachment of single-component

calibration weights and accelerometers at known positions and orientations. The

number and location of points where calibration loads are applied and accelerome-

ters are located can be determined from computational sensitivity analyses.

For these analyses, the strain gauge will be replaced with a rigid steel bar as

a dummy balance, machined to match the dimensions of the true balance. This

is done to evaluate the piezoelectric balance alone in preliminary studies, and the

true strain gauge balance may be incorporated in later studies. The devised balance

assembly architecture is shown in Figure 2.2.
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Figure 2.1. SolidWorks model of custom test article

Figure 2.2. New hybrid force balance concept
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Chapter 3: Static Calibration

The calibration procedures for a force balance result in a calibration matrix

that ideally can be used to recover any unknown loading on a test article during

a test by relating sensor measurements to applied forces and moments. For use

in dynamic force measurements, both static and dynamic calibration matrices are

required - the former for recovery of instantaneous loading and the latter providing

a correlation between acceleration measurements and dynamic force profiles. There

are several challenges of determining an accurate calibration methodology, perhaps

the most important of which is the simple fact that the calibration load schedules

are individual point loads, whereas the expected loads during a wind tunnel test are

generally shear or pressure distributions. Since calibrating loads at every point on

a model is unreasonable, it is a worthwhile exercise to determine whether certain

points on the model or a specific arrangement of load locations add to the ability

of the calibration matrix to recover unknown loads. Here, we examine the e�ects of

load schedule and test article design on errors in force and moment recovery.
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3.1 Computational Analysis

The simplified model used for static calibration tests, shown in Figure 3.1,

is comprised of two steel plates of thickness 25.4 mm and 100 mm on each side,

with all translational degrees of freedom fully constrained on the bottom surface.

Four toroidal quartz sensors are sandwiched between the two plates at a center-to-

center spacing of 0.065 mm, approximately the maximum spacing that is allowed

by the force sensor hardware enclosure. For the case of the computational model,

this enclosure is omitted as the contact surfaces are designed to be only those areas

directly above and below the cylindrical force sensors themselves, so this omission

is consistent with the hardware operation. Note that for all of these analyses, the

shear force components are F
x

and F
z

, and the normal force component is F
y

, as

indicated by the coordinate system drawn in Figure 3.1.

Figure 3.1. Mesh of simplied 2-plate geometry; sensor elements highlighted in orange

The numerical analysis was performed using Abaqus commercial finite element

software in conjunction with MATLAB for processing of output data. The finite
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element model is mostly formed of quadratic tetrahedral (C3D10) elements, with

the piezo sensor modeled by quadratic prism (C3D15) elements. For this model

and all subsequent models presented herein, part interactions are fully tied, equat-

ing displacements at matching nodes across part boundaries. This use of a surface

constraint rather than modeling connections between parts allows for a simple char-

acterization of part interactions. Three-component nodal force data is extracted

from each surface of the toroidal sensor elements. For the case of ideal sensors, this

force output is directly proportional to the device’s measured voltage output.

This simplified model was chosen for its ease of modeling as well as its sim-

plicity; the high symmetry allows for validation of computational results against

expected behaviors. In addition, this model provides a way to isolate specific design

properties such as plate thickness, sensor spacing, and material usage. The simpli-

fied model may also be easily updated in the future to investigate further design

properties, such as a reduced number of sensors or asymmetry in the design.

Data was extracted from this model via nodal force measurement reports from

the surface of each sensor. Checks were done internally throughout the analysis to

ensure that all applied forces can be recovered and are consistent with free-body

diagrams. The moment center is calculated as the midpoint between the four sensors,

in the plane of the contacting upper surface of these sensor elements. Using this

definition, the measured sensor data can be used to calculate resultant moment data

by approximating the total force measured by each sensor as a single concentrated

force at the center of each toroidal sensor element.
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3.2 Calibration Methodology

Using a linear interaction model, N
C

components of applied forces and mo-

ments can be related to each of N
S

components of the measured force transducer

outputs as in Equation 3.1. This is done for N distinct load cases, to give a N ◊N
C

matrix of force components F and a N ◊ N
S

matrix of force sensor outputs S
F

. An

expression for the static calibration coe�cient matrix C that relates the measured

sensor data to known applied loads, therefore of size N
S

◊ N
C

, directly follows and

is shown in Equation 3.2.

F = S
F

C (3.1)

C =
1
ST

F

S
F

2≠1
ST

F

F (3.2)

Figure 3.2. Cutaway schematic of sensor array for two-plate model

As an example, for a set of N three-component forces F applied at various

calibration points to our sandwiched sensor array, we can first label the sensors as

shown in Figure 3.2. Using this notation, Equation 3.1 expands to that described
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in Equation 3.3, where both F and S
F

are known, allowing for calculation of the

unknown calibration matrix C. Note that for the case of three-component forces,

the force-and-moment vector has N
C

= 6 components, and for a system of four

triaxial force sensors, there are N
S

= 12 measured sensor outputs. Therefore our

calibration matrix C has dimensions 12 ◊ 6.

S

WWWWWWWWWWWWWU

F
x1 F

y1 F
z1 M

x1 M
y1 M

z1

F
x2 F

y2 F
z2 M

x2 M
y2 M

z2

... ...

F
x

N

F
y

N

F
z

N

M
x

N

M
y

N

M
z

N

T

XXXXXXXXXXXXXV

=

S

WWWWWWWWWWWWWU

S1x1 S1y1 S1z1 S2x1 . . . S4z1

S1x2 S1y2 S1z2 S2x2 . . . S4z2

... ...

S1x

N

S1y

N

S1z

N

S2x

N

. . . S4z

N

T

XXXXXXXXXXXXXV

·

S

WWWWWWWWU

C1,1 C1,2 . . . C1,5 C1,6

... ...

C12,1 C12,2 . . . C12,5 C12,6

T

XXXXXXXXV

(3.3)

The goal of this calibration process is therefore to have a robust calibration

matrix such that any unknown forces can then be recovered from the force transducer

measurements. Errors for all loads are calculated as ‘ = F ≠ S
F

C, between the

applied load F
j

and those loads calculated from sensor data.
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3.3 Sensitivity Analyses

This simplified model presented serves two main goals, the first of which is to

serve as a preliminary testbed for development of the static calibration methodol-

ogy, and the second is to run sensitivity analyses to determine the e�ects of design

parameters on the accuracy of the resulting static calibration matrix. The param-

eters considered for these sensitivity analyses include load location arrangement,

plate thickness, plate modulus, and sensor position with the goal of determining the

e�ect these properties have on the accuracy of the static calibration matrix.

3.3.1 Load Locations

While it is important that the static calibration process accurately recovers

those loads that go into the calibration procedure, as this indicates a well-fitted

calibration curve, the resultant calibration matrix should also be universal such that

any applied point load or distributed load may be recovered with good accuracy.

Therefore several di�erent load locations to define the input of the calibration matrix

were examined, and the errors calculated for the recovery of both the input loads

as well as varied pressure distributions.

Initially, three arrangements of potential load locations were considered, as

shown in Figure 3.3, each including nine distinct points on the top surface of the

upper plate. For each case, a series of 81 point loads were generated by using single-

component loads in each of three coordinate directions at each of three magnitudes:

10N, 20N, and 40N, chosen to approximately span the range of typical loads used
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Figure 3.3. Load cases for static calibration tests on simplified plate model

for calibration. From these input loads, a calibration matrix was determined as in

Equation 3.2. The errors between the actual applied load and the calculated load via

the calibration matrix and force output for all six components of forces and moments

are calculated and subsequently normalized by the euclidean norm of the applied

force or moment vector, respectively. This normalization allows for verification of the

linear nature of this system, as the normalized errors should (and do) agree for loads

of varying magnitude, as seen in Figure 3.4. Plotted against the magnitude of applied

loads, for the 81 loads used to generate the calibration matrix the errors in forces and

moments appear roughly in triplicate, as is expected for these data given a linear

model. The forces are recovered nearly perfectly, with normalized errors within

order 10≠14. The recovered moments have much more significant errors, though

all fall within a normalized error of ±2 percent. Normalized errors in recovered

moments for the case of zero applied moment, e.g. for points at the center of the

plate, are excluded from the plot due to their misleadingly high normalized errors.

The absolute errors for these recovered moments are of equivalent magnitude to

those at all other load points considered, however, and fall within ±5 ◊ 10≠3 N/m.
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Figure 3.4. Error in recovered forces for each of three loading configurations
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A second metric to compare these three load schedules is to attempt recovery of

an applied shear load or pressure distributions. Here, the analysis of three pressure

distributions, as shown in Figure 3.5, is discussed. These distributions span uniform

to 2nd order distributions in spatial coordinates, chosen with the expectation that

if simple pressure loads can be recovered, then also superpositions of these pressure

distributions should be equally recoverable. We expect load distributions on a test

article to be well-approximated as a 2nd order function of the model geometry, so

we limit our scope to these three distributions.

For each calibration matrix generated via a loading pattern in Figure 3.3, the

sensor output data was used to determine calculated net forces and moments on the

plate. The corresponding normalized errors in the resulting calculated forces and

moments are plotted against the magnitude of applied load in Figure 3.6.

From these results, we see comparably good recovery of the three pressure

distributions for each of the calibration matrices previously defined. The applied

forces are recovered with normalized errors below 5 ◊ 10≠4 in all three cases, with

larger errors present for increasingly asymmetric load distributions. Once again, for

the case of zero moment, as in the uniform pressure case for a symmetric model,

plots of normalized data are omitted as these errors are visually misleading. For

this uniform distribution, the normalized errors in recovered forces are on the order

of 10≠7, which is substantially lower than those for nonuniform distributions. The

largest errors in force recovery come from the quadratic distribution, amounting to

just under a tenth of a percent. Of the three load cases, however, there is not a

clear best calibration load arrangement. Since the total applied force and moment
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Figure 3.5. Pressure distributions applied to 2-plate model
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(b) Quadratic pressure load

Figure 3.6. Normalized errors in recovered pressure loads for each of three load cases

17



can be reasonably recovered from each of these distributions, it suggests that any

superposition of these 0th, 1st, and 2nd order pressure distributions is also recoverable

to similar accuracy.

3.3.2 Plate Thickness

Practically, the plate thickness represents a measure of how far away from the

load surface we can put our force sensors without compromising accuracy. As the

plate thickness is increased, however, we also expect a corresponding increase in

bending sti�ness proportional to the cube of the thickness as the moment of inertia

increases. To examine a potential trend as a function of plate thickness, models

with five di�erent plate thicknesses ranging from 0.25” - 2”, or 6.35 mm to 50.8

mm, shown in Figure 3.7, were created and tested. For each model, an identical

pattern of nine load points was created on the top plate surface, and 27 load cases

were generated by applying 40N single-component loads at each location in each of

three coordinate directions. The number of loads was reduced from the 81 loads

previously used, because the linearity of the model has been clearly demonstrated.

The load pattern approximately matches load case 2 in Figure 3.3 above, a uniformly

distributed square pattern. A calibration matrix was made for each model, and

once again the errors in recovered loads can be compared. To visualize a trend as

a function of plate thickness, the normalized errors were again computed for each

case, and the average of these errors taken for each component, shown in Figure 3.8.

What we observe is that the recovered errors in moment are inversely proportional

to the cube of the thickness, or equivalently proportional to the bending sti�ness of
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(a) Plate A: 6.35mm (b) Plate B: 12.7mm (c) Plate C: 25.4mm

(d) Plate D: 38.1mm (e) Plate E: 50.8mm

Figure 3.7. Two-plate models with varying thicknesses
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Figure 3.8. Average normalized errors for recovered forces and moments plotted against plate

thickness
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the plate. This strong correlation therefore suggests that plate thickness has little

e�ect on moment measurement accuracy, and instead the dominant parameter is

the plate sti�ness.

3.3.3 Plate Modulus

We have already seen that the sti�ness of the plate plays a large role in the ac-

curacy of recovered forces and moments as introduced by varying the plate thickness.

To isolate the e�ect of the elastic modulus alone, a model with plate thickness of

25.4 mm was used, using three di�erent material models listed in Table 3.1 to see

the e�ects of the elastic modulus on the calibration matrix. An identical set of load

conditions to that in the plate thickness above was used here. We expect that the

normalized errors vary linearly with E for a linear relationship between errors and

plate sti�ness, again as bending sti�ness is proportional to EI. As seen in Figure 3.9,

as the modulus of the plates is increased, the average error in recovered moment

decreases and that in recovered forces increases, though on a much smaller scale.

The trend of normalized errors in recovered moments can be fit well to a linear

curve, which suggests that relatively large errors in M
x

and M
z

, or pitch and roll,

are primarily due to plate sti�ness; errors are inversely proportional to the modulus.

Material fl, kg/m3 E, GPa ‹

Steel (AISI 304) 8000 197 0.29
Titanium (pure) 4500 116 0.34
Aluminum (pure) 2699 68 0.36

Table 3.1. Material properties used for plates
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Figure 3.9. Average normalized errors for recovered forces and moments plotted against plate

modulus

3.3.4 Sensor Spacing

Finally, several sensor arrangements were examined, each with the same 9-

point load case as previously used. A cutaway of the models, excluding the top

plate, to visualize the sensor positions is shown in Figure 3.10. Here, we expect

that as the sensors are moved closer together, loads applied farther outside the

range of the sensors may be more di�cult to recover. Very low variation between

the arrays can be seen in Figure 3.11. The errors in force and moment for the

array with skewed geometry are not plotted due to the nonlinear geometric trend,

but the calculated errors do fall linearly between the two symmetric arrangements.

The error in recovered forces tends to decrease and the error in recovered moments

tends to increase as the sensors are moved toward the outside of the plate, which is

consistent with the expected trend.
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(a) Small spacing (b) Asymmetric arrangement (c) Large spacing

Figure 3.10. Cutaway models with varying sensor spacing
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Figure 3.11. Average normalized errors for recovered forces and moments plotted against sensor

spacing

3.4 Crosstalk

In addition to looking at the error in recovered loads, these models allow for

an analysis of the sensor crosstalk apparent in the calculated sensor data. For

the case of perfect sensors, the crosstalk is mitigated in the calibration matrix to a

good extent, but it is still preferable to minimize the crosstalk. Crosstalk has several

sources including sensor deformation under load or intrinsic material properties such

as piezo crystal alignment, however the main contribution to crosstalk comes from

reaction forces needed to maintain static equilibrium. For example, a constant
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Figure 3.12. Crosstalk as a function of design parameters
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shear force (in X or Z) will generate an applied moment about the opposite shear

axis, and based on force balance equations can be directly related to the reactions

forces, or those forces measured by the sensors. In this case, the plate thickness

(e.g. �y) and sensor spacing (e.g. �z) are related to those forces measured by each

sensor: S

y

S

z

Ã �y

�z

. Therefore as plate thickness is increased and sensor spacing held

constant, we expect S

y

S

z

to increase, and likewise as plate thickness is held constant

and sensor spacing increased, we expect S

y

S

z

to decrease. Because the model used

here is symmetric in X and Z, three unique measures of crosstalk can be calculated:

S

x

S

y

, S

z

S

x

, and S

y

S

z

. Crosstalk values were computed from loads applied at the center

of the plate and the corresponding output data. From the results of these analyses

in Figure 3.12, it is clear that the overall crosstalk is reduced by decreased plate

thickness and a large spacing between sensor elements, as we expect. The modulus

of the plate, which a�ects the degree of sensor deformation, plays a lesser role in

the crosstalk as the crosstalk magnitude remains approximately constant.

3.5 Sensor Sensitivity

As design parameters such as plate thickness and sensor spacing are changed,

another sensor property is important to consider. Sensitivity of a sensor is a measure

of the rate of change of sensor signal output as a function of a changing input, here,

applied load. To determine how the sensitivity is a�ected by the physical design

parameters considered in the sensitivity analyses above, the sensitivity of each of

the four sensors must be calculated for each design. Loads of magnitudes 10N, 20N,

and 30N were applied along each coordinate axis at each of the nine points in the
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load array to supplement those 40N loads already applied, for a total of 27 loads

per load magnitude. The sensitivity was then calculated as the slope of the raw

sensor output as a function of the applied load. For the base design, including steel

plates of 25.4 mm thickness and maximum sensor spacing of 65 mm, the sensitivity

in all directions can be bounded by approximately 20% given an applied load at the

center of the top plate. This means that for an increase of 1N in an applied load,

a 20% increase in sensor output is expected. For load points at the corners of the

array, the sensors have higher sensitivities, closer to 50%, for this same base design.

In examining trends across the design parameters considered in previous sec-

tions, we find that the sensor sensitivity in both axial and shear is increased by

decreasing the piezo force sensor spacing, and the axial sensitivity is increased by

increasing the plate thickness. These trends indicate an increase in sensitivity of

0.5% per millimeter of decreased sensor spacing, and an increase of axial sensitivity

of 1% per mm of increased thickness. There is no apparent dependence of axial or

shear sensitivity on plate modulus, and no dependence of shear sensitivity on plate

thickness. However, the overall trends suggest that the same parameters that give

increased sensor sensitivity align with those parameters that give decreased errors

in recovered moments.

3.6 Sensor Error Propagation

Up to this point the sensor elements have been modeled as ideal sensors, in

that they fully recover any applied load, as the boundary conditions between the

sensors and the plates are kept fully constrained. However, in a laboratory setting,
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this is not necessarily the case; there will be some error in the sensor measurements.

For each of the sensitivity analyses presented above, a gaussian-distributed error

was applied, set so that a two standard deviation range spans values at ±2% of

the true value, and the initial calibration matrix is used to recover the original

loads. This perturbation has a significant e�ect on both the recovered force as well

as the recovered moment, though again there appears to be very little correlation

between these errors and those design parameters considered. Approximate bounds

can be given for both the force and moment errors; a conservative bound puts the

average normalized error in recovery at 0.4%, and that for moment recovery at 4%.

For smaller perturbations in sensor data, such as a 1% and 0.5% errors, a linear

trend appears; the normalized error in recovered forces is approximately 20% of the

applied perturbation, and that for recovered moments approximately 200% of the

applied perturbation.

3.7 Test Article

The final component of the static calibration studies completed thus far is to

expand this methodology to a model of our full test article. This model, shown

in Figure 3.13, includes a detailed model of the test article and is mounted on a

1 meter sting of diameter 12.7 mm that is fixed to a wall, a simplification of the

true sting assembly. The four piezoelectric force sensor discs are mounted below the

strain gauge balance assembly, and this covered by a rectangular enclosure. The

machined test article is made entirely of stainless steel, including a dummy strain

gauge balance which can be swapped out for a real strain gauge balance to assess any
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di�culties in integrating these two hardwares. Over 70 threaded holes are machined

into all sides of the test article to facilitate many combinations of calibration loads.

For the computational model, the majority of the model is meshed using quadratic

tetrahedral (C3D10) elements. The toroidal sensor elements are meshed as quadratic

prism (C3D15) elements so that nodal forces accurately represent the free-body

forces on each surface of the sensor disks.

(a) Front view

(b) Rear view

Figure 3.13. Two views of mesh of modeled prototype test article with sensors marked in orange

As with the previous analyses on a simplified model, a square matrix of points

was defined on the upper rectangular plate of the full prototype test article, as

shown in Figure 3.14 and loads from those nine points used to generate a calibration

matrix. The applied forces and moments were then recovered using the sensor

data from those points, and normalized errors calculated as in Figure 3.15. For
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this load array, the normalized moment errors have magnitudes less than 10≠3, as

compared to 2 ◊ 10≠2 for both the simplified models tested previously, showing

excellent correlation.

For a more complete analysis on the full test article, we look instead at a

load schedule comprised of points on the base calibration plate. The full model

was meshed so that the calibration points on the test article correspond to nodes

on the finite element model, and the 47 points located on the base plate shown

in Figure 3.16. Measured sensor loads were collected for three loads at each node,

40N point loads oriented along each coordinate direction, for a total of 141 load

cases. Initially, a calibration matrix was determined using all 141 load cases, and

errors calculated for attempted recovery of all input loads. Errors were found to

be consistent with those applied on the top surface of the test article. This setup

can easily be extended to determine an optimum number and position of calibration

load points for recovery of a variety of load scenarios.

Figure 3.14. Load locations for static calibration on full test article model

28



−3 −2 −1 0 1 2 3

x 10
−4

−0.5

0

0.5

x 10
−14

Applied Force, N

N
o
rm

a
liz

e
d
 e

rr
o
r

Error in Recovered Force (F−SC) for C
1

 

 

F
x

F
y

F
z

−10 −5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

Applied Moment, N/m

N
o
rm

a
liz

e
d
 e

rr
o
r

Error in Recovered Moment (F−SC) for C
1

 

 

M
x
 (roll)

M
y
 (yaw)

M
z
 (pitch)

Figure 3.15. Normalized errors for preliminary 27-load static calibration done on full model

Figure 3.16. Schematic showing all 47 possible calibration points on the base plate of test article
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3.8 Conclusions

What this calibration study illuminates is the importance of both design pa-

rameters and optimization criteria on force balance design. We would like to mini-

mize both the error in recovered forces and moments as much as possible for as wide

a range of load cases as possible, but there are clear tradeo�s to consider. Primarily,

high sensor crosstalk can be detrimental to the accuracy of force measurements, and

therefore should be minimized if possible - however the same design criteria that

tend to minimize crosstalk also are those that decrease the accuracy in moment

measurements. Preliminary analysis suggests that the designs that fall in the mid-

dle of the ranges considered here are therefore ideal to not have significant crosstalk

or errors in moment measurements. Extending the static calibration analysis to the

custom test article, see that the methodology developed holds for the test article,

with only minor deviations due to the reduced symmetry as compared to the initial

simplified model.
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Chapter 4: Dynamic Calibration: Preliminary Study

The next step towards improving the fidelity of the model that is being de-

veloped is to introduce dynamic calibration. Here, the objective is to recover not

only static loads but transient loads. Over a short measurement window, for hy-

personic ground testing up to half a second, there is too much signal noise from

inertial loading to use a quasistatic approximation in measuring transient loads so

acceleration data is used to mitigate these deflections. The dynamic calibration

method discussed here is in the time domain, and thus generates a time-dependent

calibration matrix useful for sensitivity studies.

4.1 Dynamic Calibration in the Time Domain

For the recovery of transient loads, a time-dependent calibration to correlate

N
S

components of force sensor data, N
A

components of accelerometer data, and N
C

components of applied loads can be constructed. For each of the N load cases in-

cluded in the calibration process, these loads can be separated into steady-state and

time-dependent terms, as in Equation 4.1, corresponding to static forces recovered

via model-specific static calibration matrix C (N
S

◊ N
C

elements), and dynamic

terms to be recovered via dynamic calibration matrix Ĉ (N
A

◊ N
C

elements). Re-
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arranging these terms, we find that the dynamic calibration coe�cient matrix can

be calculated as in Equation 4.2 at each timestep.

F = S
F

C + S
A

Ĉ (4.1)

Ĉ =
1
ST

A

S
A

2≠1
ST

A

(F ≠ S
F

C) (4.2)

Note that while the static calibration matrix C is unitless, the dynamic cali-

bration matrix Ĉ has units of mass as it relates input force data to acceleration data.

This implies for our system that since we cannot place accelerometers at the same

positions as force sensors, we have created an e�ective mass matrix that is deter-

mined from a di�erent set of nodes than the sti�ness matrix. Therefore not only do

the positions of the piezo force sensors have an e�ect on the calibration process, so

too do the positions of the accelerometers. In the present analysis, however, we focus

on the e�ect of accelerometer placement over the e�ect of force sensor placement

on the accuracy of dynamic calibration. Here, we have two goals: first, recovery

of transient loading given an accurate model of the input load profile, and second,

the robustness of this calibration method is tested by in turn reducing the number

of accelerometer components available and reducing the time-dependent calibration

matrix to a lower-resolution stepwise defined matrix to stay truer to laboratory

capabilities.

4.1.1 Simplified Computational Model

The simplified model used for dynamic calibration studies, shown in Figure 4.1,

is a modification of the two-plate model used for the static calibration studies: a
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fully constrained sting of length 500 mm and diameter 25.4 mm has been a�xed at

the center of the bottom plate. This model consists of approximately 5500 elements,

the majority of which are quadratic tetrahedral (C3D10) elements. The remaining

elements, corresponding to the piezo sensor elements, are quadratic wedge (C3D15)

elements so that nodal force data may be accurately extracted from the model.

Drawing on the results of static calibration analysis in Chapter 3, a square

array of nodes on the surface of the top plate was initially chosen for both the static

and dynamic calibration load schedules on this new model. This array of points,

denoted C1, is illustrated in Figure 4.1(b). At a separation distance of 33 mm, these

nodes span an area that is nearly equal to that which defines the toroidal force sensor

elements, whose centers are at a spacing of 65 mm. During transient loading tests, as

with the static loading tests, three-component nodal force data was extracted from

the top surface of each force sensor. Additionally, accelerometers were modeled as

nodes on the surface of the plates, and three-component acceleration data collected

at each of these points.

To proceed with dynamic calibration using the simplified plate model shown

in Figure 4.1, first a static calibration matrix was determined as in Equation 3.2.

Static loads of 40 N each were applied in each of three coordinate directions at every

point in the load array, for a total of 27 individual load cases. The calculated errors

between the applied calibration loads and those determined from the measured

sensor outputs, again normalized by the euclidean norm of applied force or moment

vector, are shown in Figure 4.2. Here we see that the normalized errors in recovered

forces are within 10≠14, and the normalized errors in recovered moments within
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(a) Mesh of simplified 2-plate geometry for dynamic calibration; sensor elements highlighted in

orange

(b) Load locations for static and dynamic calibration marked in red

Figure 4.1. Simplified two-plate model for time-domain dynamic calibration studies
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Figure 4.2. Normalized errors in recovered forces and moments from static calibration done on

2-plate model with sting
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2 ◊ 10≠2. Comparing these errors to those calculated for a similar load arrangement

on the model used for static calibration, seen in Figure, 3.4(b), we see that both sets

of errors fall within the same range for both forces and moments. This correlation

provides good similarity between models, despite the shift in boundary conditions.

Following the static calibration procedure, dynamic calibration can be com-

pleted. In this case, transient step loads of magnitude 40 N were applied at each

calibration point in the array described above in each of three coordinate directions,

again producing a total of 27 individual loads. Initially, 8 accelerometer locations

were chosen at each exterior corner of the model, as shown in Figure 4.5(a). For the

duration of the transient load, force and acceleration data were collected from the

model at each timestep.

Via the expression in Equation 4.2 above, a linear least-squares analysis was

carried out to generate a dynamic calibration matrix at each timestep of the anal-

ysis. This calibration was then used to recover input force data for these same

points, using the calculated sensor data as in Equation 4.1. Similar to the static

loads, the errors in recovered forces and moments are defined as the di�erence be-

tween the assumed applied load and the calculated forces. Again for normalization,

the resulting errors are scaled by the euclidean norm of the applied force or mo-

ment vector. These calculations are done independently at each time step for each

load. The time-dependent calibration procedure was used to recover loads at various

timesteps, as well as with varying accelerometer locations, with results shown in the

following sections.
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4.1.2 Sampling Rate

Computationally, there is a significant tradeo� between the improved resolu-

tion of a smaller timestep and the computation time that this resolution requires.

We can estimate a lower bound on the sampling rate required for accurate recovery

of loads by examining the structural modes of the model; if the sampling rate is

too low then even the base frequency will not be included. An eigenvalue analysis

of this two-plate model with sting yields the first three natural frequencies of this

model: 11.6 Hz, 101 Hz, and 152 Hz are the first bending mode, first torsion mode,

and second bending mode respectively. To capture features of each of these three

modeshapes, we would like to sample the output at a frequency at least double that

of the mode shape. This indicates that for timesteps greater than �t = 5 ◊ 10≠2,

we will not be able to recover even the first mode, and to recover the first three

modes a timestep of at least �t = 3 ◊ 10≠3 is required. Based on these values,

we investigate the accuracy of this dynamic calibration methodology based on the

number of modes measured.

To examine this trend, force and acceleration data were sampled at timesteps

of 10≠2 s, 10≠3 s, and 10≠4 s, each with identical load locations and accelerometer

locations. Here, 8 accelerometers are positioned at the exterior corners of both

the top and bottom plates. As an example, force and moment components of an

applied step load along the normal (Y ) axis at the center of the upper plate are

plotted in Figure 4.3 and 4.4, respectively. These plots show the applied step load,

the measured load on the sensors, and the calculated resultant load profile using the
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Figure 4.3. Applied and recovered force profiles for step load applied at center of plate for

increasing sampling rate, where measured force is the observed force profile without dynamic

compensation, and calculated force is after dynamic compensation. Note that the vertical scale

for each component shown di�ers to show detail.
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Figure 4.4. Applied and recovered moment profiles for step load applied at center of plate

for increasing sampling rate, where measured moments are observed profiles without dynamic

compensation, and calculated moments are obtained after dynamic compensation.
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time-dependent calibration matrix for each sampling rate considered.

The lowest sampling rate, �t = 10≠2 s, by the above reasoning should in-

clude at most the first mode, and we see generally poor recovery of applied loads,

particularly the moments which show an average error of approximately 2 ◊ 10≠1

N/m. In contrast, the mid-range sampling rate, �t = 10≠3 s, should include all of

the first three modes, and has a lower average absolute error in recovered moments,

at approximately 5 ◊ 10≠2 N/m. Decreasing the timestep further to �t = 10≠4

s shows again increased ability to recover moment profiles, with average absolute

errors of 2 ◊ 10≠3 N/m. The absolute error in recovered forces for these three

cases, meanwhile, remains roughly constant, within approximately 5 ◊ 10≠3 N for

all components, or a 0.01% error given an applied 40N load.

From these data, it is clear that higher sampling rates, thereby allowing mea-

surement of higher modes, are essential to improved accuracy in recovered loads.

However, there remains a tradeo� between accuracy and computation time, as re-

ducing the timestep requires an order of magnitude increase in computation time.

Therefore for this simplified two-plate model, we use a timestep of �t = 10≠3 for

future analyses. For a more complex model where natural frequencies may be closer

together, a higher timestep may be usefully employed as these data do provide more

accurate data, but at a higher computational cost.

4.1.3 Accelerometer Locations

The addition of acceleration measurements for the purpose of dynamic cali-

bration introduces additional degrees of freedom when optimizing sensor placement.
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Here we keep the location of piezo force sensors fixed at a separation distance of

65 mm, but vary the location of accelerometers to assess any resultant e�ect. The

three arrangements considered are shown in Figure 4.5: exterior corners of the top

and bottom plates, interior corners of top and bottom plates, and a small array, 40

mm on a side, in the center of each of the top and bottom plates. For a sampling

frequency of �t = 10≠3 s and a total duration of 0.2 s, a dynamic calibration matrix

was determined for each of these three accelerometer arrays as in previous tests,

with the same load schedule of unidirectional step loads applied at every point in

the calibration load array depicted in Figure 4.1(b) for a total of 27 load cases. For

each dynamic calibration matrix, absolute errors were calculated between the loads

applied to generate that same calibration matrix and those loads calculated from

the force sensor and accelerometer data.

The average absolute errors in recovered force and moment data are roughly

equivalent for each of these three accelerometer arrays: for a 40 N step load applied

in Y at the center of the top plate, and sampling from 0.03 seconds onwards, the

average absolute errors in recovered forces are within 2 ◊ 10≠2 N, 3 ◊ 10≠3 N, and

4 ◊ 10≠2 N for all components of force for the models depicted in Figure 4.5(a) -

(c), respectively. Including the data from 0 to 0.03 seconds, the average absolute

errors in recovered forces are approximately 1 N for the latter two accelerometer

arrays, in contrast to the results for the case of accelerometers place on the outer

exterior corners where the average absolute error in recovered forces is approximately

2 ◊ 10≠3 N. The large errors at very small times t are likely due to the limitations

of the analysis; application of a step load at time zero is not instantaneous but
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(a) Exterior corners

(b) Interior corners

(c) Exterior plate surfaces

Figure 4.5. Accelerometer positions
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instead ramped up over the initial timestep in the finite element simulation and

therefore the data for very low values of t do not agree with real test conditions of

an impulsive load. The results here show that for the accelerometer arrays that are

closer to the center of the model, the errors induced by this modeling discrepancy are

quite large, and less so for the array with accelerometers in more distant locations.

This suggests that placement of accelerometers in more distant locations from the

center of the model may provide a better calibration matrix, particularly at early

timepoints when strong impulses are expected.

This preliminary analysis of accelerometer arrangements is, however, only an

approximation of the laboratory setup – the experimental setup in use includes only

12 uniaxial accelerometers. To match this system more closely, we therefore look at a

maximum of 12 components. Some insight into optimal placement of accelerometers

is taken from a discussion by Cardou and Angeles [16] where the 9-accelerometer

3-2-2-2 array initially proposed by Padgaonkar et al [17], sketched in Figure 4.6,

is characterized. This arrangement of accelerometers allows for estimation of the

acceleration at a specific point, i.e. this array is point determined, based on the

accelerations at each of the four biaxial or triaxial accelerometer positions and the

vectors from these locations to the point of interest. This array is also tangen-

tially determined (allows for estimation of angular accelerations) for the case of a

non-coplanar array, but is not generally radially determined (does not allow for es-

timation of angular velocities). A di�erent array which allows recovery of di�erent

acceleration measures may therefore be an avenue for further studies.

To determine the e�cacy of this accelerometer array for this simplified two-
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Figure 4.6. Sketch of 3-2-2-2 accelerometer array proposed by [17]

plate model, we look at the system with accelerometers placed at the exterior corners

of the top and bottom plates as shown in Figure 4.5(a). From this model, we

can extract only the 9 acceleration elements that match the 3-2-2-2 array, and

again generate a dynamic calibration matrix from this data. From here we compare

the absolute errors in the recovered input force and moment loads to that for a

calibration matrix generated from the full set of 24 acceleration elements collected.

The input, measured, and calculated loads are plotted for both cases in Figure 4.7 for

a sample point at the center of the plate. By comparison of the resulting force and

moment data for both accelerometer arrays, there is very little loss of information

by reducing the number of acceleration components in the system. This implies

that the results using 24 uniaxial accelerometers (three-component data collected

at each exterior corner of the two-plate array) gives su�ciently redundant data

that the accuracy of recovered forces and moments is not significantly improved

over the result using 9 uniaxial accelerometers as in the 3-2-2-2 array. This result

also agrees with the assertion that this 3-2-2-2 arrangement of accelerometers can

accurately estimate an acceleration profile for a highly symmetric model, and also
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Figure 4.7. Recovered forces and moments for applied step load at the center of top plate using

two accelerometer arrays. These plots show both measured (uncompensated) forces and moments,

as well as the calculated (with compensation) forces and moments.
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gives an allowance of three sensors in our experimental setup to account for the less

symmetric shape of the full test article.

4.1.4 Stepwise-Defined Calibration Matrix

The time-dependent calibration matrix as defined in Section 4.1 is relatively

computationally intensive, particularly as timesteps decrease, because the elements

in this matrix are calculated at every timestep. Therefore it is instrumental to

attempt to reduce this matrix to a much simpler expression that can recover applied

loads and continue to reasonably mitigate inertial loads. A first attempt was carried

out by dividing the 0.5 second interval over which data were collected evenly into

five segments, and a reduced matrix defined stepwise by taking the value of the

calibration matrix at the final timepoint in each segment. In this reduced calibration

matrix, the first 0.1 seconds of data are recovered using the calibration matrix

calculated from instantaneous sensor output at 0.1 seconds, the next 0.1 seconds

of data recovered using the calibration matrix calculated from instantaneous sensor

output at 0.2 seconds, and so on. This new stepwise-defined matrix was then used

to recover the input transient step load, and those results are plotted in Figure 4.8.

The force and moment data can be compared to those loads recovered using the full

dynamic calibration matrix that was generated at every timestep, which is the same

data as shown in Figures 4.7(a) through 4.7(f). These results show that inertial

loads are well compensated and show good correlation to the input data over some

intervals, and are incorrectly compensated and show significant deviation over other

intervals. See again that data at small times t are poorly recovered using the constant
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calibration matrix. This error has several sources, the main e�ect being that a

constant calibration matrix defined in this way is unlikely to be a good fit to most of

the data without a careful look at the frequency content of the data. Moreover, there

is more variability in the data near t = 0 as the computational model does not apply

an instantaneous impulsive load but instead ramps to the desired value over the first

few time increments of the simulation. These results suggest that continuing with

this method requires specific tuning to the natural frequencies of the system to define

an appropriate simplification of the full time-dependent calibration matrix to ensure

that each frequency that arises from inertial loading is appropriately compensated.
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Figure 4.8. Recovered forces and moments for applied step load at the center of top plate using

stepwise defined calibration matrix. Plots show both measured forces and moments (without

dynamic compensation) and calculated forces and moments (with dynamic compensation).
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4.2 Test Article Calibration

Again we can easily extend the analyses herein to the test article. In conjunc-

tion with the static calibration matrix determined from this same array of nodes, a

dynamic calibration matrix can be determined, and further used to attempt recov-

ery of the input loads. The large set of data provided by the various load locations

on the test article allows for further optimization tests to be enacted, notably to

determine an optimal number of loads and the locations of those loads for accuracy

of both static and dynamic calibration.

4.3 Conclusions

These studies present the di�culties in balancing a computationally intensive

calibration process with the accuracy of the system. While design parameters such

as accelerometer placement play a role in the accuracy of the calibration process, a

much larger component is careful attention to the natural frequencies of the system

to choose appropriate sampling rates for accurate load recovery.

Simplifications were made in the analysis presented here to reflect ideality

of the computational model, primarily the omission of any significant structural

damping. To better match the true system for use in an experimental setting,

damping may have to be added to the system, along with any correction for out of

phase acceleration profiles. This chapter therefore represents work in progress and

provides many avenues for further research.
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Chapter 5: Conclusions and Future Work

To summarize this work, first a study of static calibration for use in recovering

unknown constant loads on a generic test article was completed, with results show-

ing good agreement between applied loading scenarios and that generated by the

calibration procedure. Further, several sensitivity analyses were conducted to assess

the e�ects of geometric properties of the test article on accuracy of the calibration

matrix, where the main finding relates sensor crosstalk to accuracy in force and

moment measurements: high sensor crosstalk can be detrimental to the accuracy of

force measurements, and low sensor crosstalk is correlated to decreased accuracy of

moment measurements.

Secondly, an approach to dynamic calibration was investigated, using data

collected in the time domain to reconstruct applied force and moment profiles. For

this calibration process, a dynamic calibration matrix must be calculated at each

timestep and is therefore also time dependent. This method remains preliminary

and have challenges moving forward. The time dependent calibration remains a

preliminary methodology, as the accuracy of the method depends on the sampling

rate of force and acceleration data, and therefore is computationally expensive and

ine�cient for general use.
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There are several additional avenues to further this work, including continued

sensitivity analyses, optimization studies, and continued work towards increasing the

fidelity of the computational models presented for static and dynamic calibration

to better reflect experimental limitations. Finally, experimental work to corrob-

orate the computational tests discussed herein is ongoing, and results from those

experiments can continue to be included in the computational model to improve the

calibration methodology.

1. These items focus on further sensitivity analyses and optimization to consider:

• Complete a full analysis of geometric properties, such as plate thickness

and force sensor placement, pertaining to the accuracy of dynamic cali-

bration for both the simplified and full model.

• Consider an optimization study of accelerometer placement in tandem

with an optimization study for force sensor placement, and determine

which, if any, has a stronger e�ect on the accuracy of dynamic calibration.

2. These items focus on increasing the fidelity of the computational model to

reflect true conditions:

• Investigate a reliable method to recover unknown transient loads via dy-

namic calibration for loads that have a di�erent functional form than the

calibration loads applied.

• Model true response of piezoelectric force sensors, including voltage read-

outs, sensor hysteresis, and signal decay, and incorporate these properties
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into computational static and dynamic calibration procedures.

• Consider internal boundaries in test article, particularly preload studs

for piezoelectric force sensors and pin connectors for strain gauge balance

enclosure.

• Consider the use of nonlinear least squares models for static and dynamic

calibration to include any true nonlinear behavior in the sensors.

• Further models for acceleration compensation may be considered to im-

prove the methodology included here, particularly those involving angu-

lar velocity measurements, as well as refinement of the methods proposed

herein to compensate high-frequency loads more accurately.
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