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In recent years, there has been significant effort put into the design and use

small, autonomous, multi-agent, aerial teams for a variety of military and commer-

cial applications. In particular, small multi-rotor systems have been shown to be

especially useful for carrying sensors as they have the ability to rapidly transit be-

tween locations as well as hover in place. This dissertation seeks to use multi-agent

teams of autonomous rotorcraft to sample spatiotemporal fields in windy conditions.

For many sampling objectives, there is the problem of how to accomplish the sam-

pling objective in the presence of strong wind fields caused by external means or by

other rotorcraft flying in close proximity. This dissertation develops several flight

control strategies for both wind compensation, using nonlinear control techniques,

and wind avoidance, using artificial potential-based control. To showcase the utility

of teams of unmanned rotorcraft for spatiotemporal sampling, optimal algorithms

are developed for two sampling objectives: (1) sampling continuous spatiotemporal

fields modeled as Gaussian processes, and (2) optimal motion planning for coordi-

nated target detection, which is an example of a discrete spatiotemporal field. All



algorithms are tested in simulation and several are tested in a motion capture based

experimental testbed.
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Chapter 1: Introduction

1.1 Motivation

In the past decade, there has been growing interest in the use of unmanned

aerial vehicles for both government [1] and commercial applications [2]. Small un-

manned aerial vehicles present new opportunities for multi-agent sensor deployment

as they can transit rapidly between locations. Rotorcraft in particular can be used

to hover sensors in areas of interest and can redeploy based on collected information.

The ability to rapidly transit opens new possibilities for information gathering and

multi-agent coordination. As such, this dissertation explores the possibility of using

multiple, small, unmanned rotorcraft for the purpose of sampling spatiotemporal

processes.

Figure 1.1 shows a flowchart of how spatiotemporal fields are represented and

how multi-agent teams of unmanned rotorcraft can be used to estimate them. Spa-

tiotemporal processes are split into two categories: continuous and discrete pro-

cesses. Examples of continuous processes include scalar fields such as temperature,

humidity, pollution, etc. Conversely, discrete processes encompass applications such

as target tracking and moving vehicle surveillance. The methods for estimating

these processes generally fall into one of two categories: interpolation and proba-
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bilistic. Interpolation includes strategies such as Gaussian process and least squares

estimation, whereas probabilistic strategies include distributed parameter estima-

tion and recursive Bayesian inference. With regards to using unmanned rotorcraft

for sampling spatiotemporal processes, there are two levels of control. First is a

path planning level. In this level, vehicles coordinate motions to accomplish a de-

sired global goal, e.g., to maximize information gain. The second level is rigid-body

motion, i.e., the ability to follow the motion prescribed by the path planner.

Spa$otemporal	  Processes	  

Con$nuous	   Discrete	  

Interpola$on	   Probabilis$c	  

•  Mapping	  fields	  
•  Plume	  detec$on	  
	  

•  Target	  search	  
•  Surveillance	  

Process	  

Es$ma$on	  

Control	   Path	  Planning	   Rigid-‐Body	  

•  Trajectory	  Tracking	  
•  Informa$on	  gain	  

•  Wind	  compensa$on	  
•  Stability	  
	  

•  Gaussian	  Process	  es$ma$on	  
•  Least	  squares	  	  
	  

•  Distributed	  parameter	  es$ma$on	  
•  Recursive	  Bayesian	  

Figure 1.1: Representation of estimation of spatiotemporal fields for the purpose of sampling and

estimation using multi-agent teams of unmanned rotorcraft.

One contribution of this dissertation is dealing with the issue of rigid-body

control of the rotorcraft. One of the concerns with small unmanned aerial vehicles

such as quadrotors is their susceptibility to wind fields and gusts, which can not

only degrade the performance of the vehicle but can also make them dangerous to
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operate in populated areas. Even without external wind gusts, quadrotors operating

in proximity to one another are affected by the downwash from other quadrotors.

Therefore, controllers are designed to stabilize rotorcraft in the presence of strong

wind fields caused both by external means as well as other vehicles in close proximity.

The focus of this dissertation is to showcase how rotorcraft can be used in

real-world, windy environments for sampling spatiotemporal processes. As such,

another contribution of this dissertation is to design path planning algorithms and

control teams of rotorcraft to sample two types of spatiotemporal processes. The

first type of process is scalar, spatiotemporal Gaussian processes with two spatial

dimensions and one temporal dimension. Specifically, the scope of the Gaussian

process sampling is to focus on optimally sampling nonstationary fields, i.e., fields

whose variability is nonuniform. This dissertation also seeks to solve the explore vs.

exploit problem for Gaussian processes, i.e., where the statistics of the field must

be estimated before the field can be mapped. The second type of spatiotemporal

process is the discrete process of target detection. In the problem of target detection,

the focus is on vehicles with low quality cameras, for which vehicle coordination is

crucial to optimally detect an unknown number of potentially moving targets.

1.2 Related Work

The related work is split into three sections according to subproblem. The

three sections are: multi-rotor flight in wind, distributed target detection, and sam-

pling of continuous Gaussian processes.
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1.2.1 Multi-Rotor Flight in Wind

Many prior works in the area of quadrotor control, e.g., [3–5], approximate the

quadrotor dynamics by a linear system, for which standard linear controllers can

be designed. More recent dissertations [6–8] use nonlinear control techniques like

feedback linearization, backstepping, and sliding mode control. It is common for

linear and nonlinear control techniques applied in the literature to use a six-degree-

of-freedom (6DOF) model for the quadrotor dynamics that neglects the effects of

aerodynamic forces on the vehicle. Some notable exceptions [9,10] model rotor effects

such as blade flapping and induced thrust, which are important to the results in this

dissertation. Other papers [11, 12] account for wind gust disturbances, but only as

linear perturbations.

The use of flow sensing has been employed with great success on naturally

evolved flyers [13]. Using distributed measurements of relative wind, sufficiently

large creatures such as birds align themselves with their intended direction of travel

and account for the effects of wind gusts. By detecting fine details of the ambient flow

field, small creatures like insects improve their flight performance by finely tuning

their flap stroke to suit flight conditions [13]. Gewecke and Woike [14] showed that

directing airflow over avian feathers could cause steering impulses, and as shown in

more recent work by Brown and Fedde [15], birds have the necessary sensor-feather

mechanisms in the wing to predict stall and measure airspeed.

In contrast to natural flyers, the current paradigm of small unmanned system

instrumentation is to integrate inertial measurements supplemented by (scalar) air-
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speed. A five-hole probe providing air-data measurements that include airspeed, an-

gle of attack, and sideslip has been successful in applications involving conventional

fixed wing flight within the traditional flight envelope [16–18]. These platforms

provide a baseline capability for more advanced tests in areas such as cooperative

control [19] and ocean-borne operations [20] for both fixed-wing and rotary-wing

vehicles [21,22].

Seeking improved platform performance, researchers have looked to expand

the notion of onboard flow sensing and apply it to various levels of vehicle control.

For example, flow information can be used to fine-tune aerodynamic parameters for

performance. Patel and Corke [23, 24] considered the time-domain response from

a high-bandwidth pressure sensor to predict incipient flow separation at the wing

leading edge and trigger a plasma flow actuator to alleviate flow separation.

Flow sensing can also improve flight control. Xu et al. [25] implemented arrays

of micro-machined shear-stress sensors on the leading edge of a low aspect-ratio delta

wing. The sensor system was developed to support control strategies that effected

aerodynamic flight control through boundary-layer manipulation [26]. The AVO-

CET project [27] aims to continuously tailor the pressure distribution and resulting

forces and moments across the wing using advanced micro-tuft sensors and hybrid

fluidic flow actuators. Under attached flow conditions, NASA has supported wind

tunnel-based implementation and testing of a distributed actuation and sensing ar-

ray for use on a blended-wing-body UAV, using a series of pressure measurements to

study the effectiveness of a morphing-wing control strategy [28, 29]. More recently,

Watkins et al. have demonstrated improved attitude control of a small fixed-wing
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vehicle in turbulent flow conditions through the integration of pressure sensors em-

bedded in the main wings.

1.2.2 Distributed Target Detection

There are many approaches to multiple target tracking in the literature. Prob-

abilistic approaches such as [30–36] use Bayesian inference combined with maximum

likelihood or multiple hypothesis trackers to track multiple (moving) targets. Al-

though the above approaches address how to combine sensor measurements to track

and detect targets, only a few techniques [37–39] effectively move the mobile plat-

forms to find targets and most of these techniques focus on the use of a single sensor

platform. Other approaches [40] focus on optimal sensor selection. Recently, several

authors, e.g., [41, 42], have used information-based approaches to design optimal

sensor placement/control, but it is difficult to scale these approaches to a large

number of vehicles due to the complexity in calculating mutual information. Most

similar to the work presented here are physics-inspired swarm controllers [43–45],

where vehicles switch behaviors based on their “temperature” to improve the speed

and quality of information gathering. However, the behavior in these approaches

is explicitly imposed, leading to a large number of tuning parameters. Addition-

ally, these strategies tend to be heuristic, and hence may not have performance

guarantees.
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1.2.3 Sampling of Continuous Gaussian Processes

There are several approaches in the literature pertaining to sampling a spa-

tiotemporal field using a mobile sensor network. In distributed parameter estima-

tion, the field is modeled by an underlying process, usually a partial differential

equation, for which the parameters are estimated by routing vehicles to maximize

an objective function based on optimal experimental design [46–48]. In Bayesian

estimation [49–52], the mean of the field is modeled as a combination of known ba-

sis functions and a (partially) known covariance function. A maximum-likelihood,

recursive (gridded or particle) filter is used to determine the unknown coefficients

of the covariance function as well as regression coefficients for the basis functions.

In the coverage control approach [53–57], vehicles are routed to maximize the area

that the sensor measurements cover, often using heuristic measures for coverage.

Another approach is based on mapping error [58, 59], where vehicles are routed to

minimize the error in the estimation of the field.

Unlike prior work that focuses on sampling stationary spatiotemporal fields,

e.g., [58, 60, 61]; this dissertation studies the problem of sampling a spatiotemporal

field in which the second-order statistics may change as a function of space and time,

i.e., the field is nonstationary [62]. Some recent works on sampling a nonstationary

field focus on coverage control [63,64], where vehicles are controlled such that there

are no gaps in the coverage of the field; these works use a heuristic measure of sam-

pling need to measure sampling performance. For example, Leonard and Olshevskyi

in [64] sample a time-invariant field by routing vehicles to fixed locations. Sampson
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et al. and Schmidt et al. estimate the covariance structure of a time-invariant non-

stationary field using fixed measurement locations as in [65,66]. In [65], a coordinate

transformation is used to ensure the covariance structure of the transformed field

is stationary. The covariance function is parameterized by its characteristic spatial

and temporal length scales, called decorrelation scales. The approach in [65] is to

numerically map the locations of several fixed sampling stations to a new set of co-

ordinates such that the spatial dispersion between locations in the new coordinates

is approximately stationary. The new coordinates are found by numerically mini-

mizing a cost function that includes a heuristic measure of stationarity. While not

identical, this approach strongly influenced the development of the main result for

Gaussian process estimation, which extends the approach to permit mobile sensors.

1.3 Contributions

The contributions of this dissertation are as follows:

1. Created a layered, feedback linearization controller for a 6DOF quadrotor

model including the effects of blade flapping and aerodynamic moment. Unlike

other models in the field, this controller allows the wind field to be different

over each rotor, which can cause severe and undesired motions of the vehicle.

The controller uses an estimated wind field found using a recursive Bayesian

filter in the feedback loop.

2. Designed and implemented a path planner that estimated the position of an-

other quadrotor and avoids the downwash. The path planner uses an estimate
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of the position of another quadrotor as input to the path planner, which uses

artificial potential field control to guide the vehicle safely around the impinging

downwash. The estimate of the proximal quadrotor is found using a recursive

Bayesian estimator.

3. Created a feedback linearization controller for a 1DOF pitch stand that in-

cludes blade flapping and aerodynamic drag. Unlike the simplified momentum

theory based models used for the quadrotor controller, this controller uses an

aerodynamic model where motor RPM is the input. This allows for a finer

level of control, which may be required in strong wind fields.

4. Developed physics-inspired multi-sensor path planner for detecting an un-

known number of targets. The path planner uses only local information for

guidance, and hence scales linearly with the number of vehicles in the field.

5. Proved that the physics-inspired path planner locally maximizes the expected

information gain. By assuming a binary sensor model, it is shown that locally

moving vehicles along the gradient of a Likelihood Ratio Surface maximizes

the mutual information between the collected measurement and likely target

location.

6. Designed optimal control for sampling along a closed path in a stationary

field. The control design is based on the concept of sampling speed, where the

statistics of the field are used to determine how to space vehicles to provide

full coverage. The control design is a speed control on the path to acheive a
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splay formation amongst vehicles.

7. Developed a coordinate transformation to render a nonstationary field locally

stationary. The transformation assumes a Gaussian covariance function be-

tween space-time locations. This coordinate transformation is crucial to vehi-

cle path planning design as it allows for the use of coverage algorithms based

on sampling stationary fields, for with the sampling need is uniform.

8. Created a path planner that maximizes sensor coverage of a two dimensional

nonstationary field. The path planner the Spanning Tree Coverage algorithm

to create a path through the domain that concentrates measurements in areas

where there is a higher sampling need. The control is then a combination of

path following plus speed control to maintain a splay formation.

9. Developed a strategy for sampling a stationary field with unknown decorre-

lation scales. The strategy for sampling uses the concept of explore versus

exploit. Vehicles first travel in a formation that is beneficial for determining

the decorrelation scales (using a recursive Bayesian estimator), then transition

into an STC based mapping formation.

1.4 Outline of Dissertation

The rest of the dissertation is outline as follows. Chapter 2 introduces several

mathematical frameworks that are necessary for the understanding of the contri-

butions made in the remaining chapters. This includes a detailed discussion of
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recursive Bayesian estimation and likelihood ratio tracking, estimation of Gaussian

processes, as well as an introduction to nonlinear feedback linearization.

Chapter 3 designs several controllers for flight stability for multi-rotor vehicles

in the presence of unknown wind fields. This includes the development of both

stability controllers, as well as a path planning strategy for flight near other multi-

rotor vehicles.

Chapter 4 presents a framework for using aerial vehicles with low-quality down-

ward facing cameras to detect an unknown number of potentially moving targets.

In this chapter, it is shown that the physics-inspired coordination strategy that is

presented is locally optimal in the sense of maximizing information gain.

Chapter 5 develops the theory for sampling stationary and nonstationary spa-

tiotemporal Gaussian processes. It details how to sample one dimensional and two

dimensional spatial fields with both known and unknown decorrelation scales.

Chapter 6 summarizes the dissertation and provides suggestions for future

work.
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Chapter 2: Background Information

In this chapter, I discuss three mathematical frameworks used in this disserta-

tion. The first is recursive Bayesian estimation, which is a probabilistic parameter

estimation technique. The second is the estimation of Gaussian processes. Gaus-

sian processes are used to model continuous spatiotemporal field in Chapter 5. The

final framework is feedback linearization, which is a nonlinear control design tech-

nique that is used to globally linearize nonlinear systems. This technique is used in

Chapter 3 to control the dynamics of multi-rotor vehicles.

2.1 Recursive Bayesian Estimation

A Bayes filter is a probabilistic approach for assimilating noisy measurements

into a probability density function over a given state space. The filter implemen-

tation comprises the discrete steps of predicting and updating. Let θk denote the

state to be estimated at time step k and zk denote the measurement at time k. The

predict step involves computing the conditional probability [32]

p(θk|zk−1) =

∫
Ω

p(θk|θk−1)p(θk−1|zk−1)dθk−1. (2.1)
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The measurement update is proportional to the product of the measurement likeli-

hood p(zk|θk) and the predicted state [32]:

p(θk|zk) =
p(zk|θk)p(θk|zk−1)

p(zk|zk−1)
, (2.2)

where

p(zk|zk−1) =

∫
Ω

p(zk|θk)p(θk|zk−1)dθk

is the integral of the numerator. p(zk|zk−1) is referred to as the prior, i.e., the

information known from previous time steps, and p(θk|zk) is the posterior, which

takes into account information provided by the likelihood function. The posterior

at time step k is used as the prior at time step k + 1, and thus, (2.2) can be

applied recursively to estimate θ. Note that measurements from multiple sensors

are assimilated by executing multiple, independent update steps. The importance

of the Bayesian filter for the work in this dissertation is that it allows for nonlinear

state dynamics and measurement equations.

For the work in Chapter 4, a likelihood ratio tracker is used to detect targets

from unmanned rotorcraft. A likelihood ratio tracker is exactly like the recursive

Bayesian filter except the measurement likelihood function is replaced by the mea-

surement likelihood ratio, i.e., the ratio of two likelihood functions. The numerator

of the likelihood ratio represents the conditional probability of the measurement

given that the target is in state θ+
k , whereas the denominator represents the condi-

tional probability of the measurement given that the target is not in state θ−k . Thus,
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the log likelihood ratio is

logL(zk|θk) = log
p(zk|θ+

k )

p(zk|θ−k )
(2.3)

= log(p(zk|θ+
k ))− log(p(zk|θ−k )). (2.4)

Let P = log(p). The update step in the log likelihood ratio tracker becomes

P (θk|zk) = log
L(zk|θk)p(θk|zk−1)

p(zk|zk−1)

= P (zk|θ+
k )− P (zk|θ−k ) + P (θk|zk−1)− P (zk|zk−1). (2.5)

The first term in (2.5) represents the new, positive information, whereas the second

term represents the new, negative information. The third term represents the prior

information and the fourth term is a normalization constant. When the probability

reaches a critical threshold, the target is declared detected; otherwise, the sub-

threshold target probabilities are maintained as hypotheses. Note, the inverse log

likelihood ratio posterior represented by temperature in Chapter 4 is −P (θk|zk).

2.2 Estimation of Gaussian Processes

Let A(rk) be the value of an unknown, continuous spatiotemporal field at

rk , [xk, yk, tk]
T ∈ R2×R+, which is the space-time location of point k. (The sub-

script on r is dropped to indicate the entire field.) The field is statistically described

by its mean Ā(rk) and the covariance function C(ri, rj) between any two points ri

and rj. A covariance function is a positive-definite function that describes the vari-

ability of the field between the ith and jth location, as described in [67]. A field is

stationary if its covariance function depends only on the difference ri−rj and is non-
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stationary if it depends on ri and rj independently. There are a number of choices

for the form of C(ri, rj), e.g., Matern, rational quadratic, Ornstein-Uhlenbeck and

squared-exponential forms as described in [62]. For the sampling strategy in this dis-

sertation, a covariance function that is a product of a spatial covariance function and

a temporal covariance function is required, i.e., C(ri, rj) = Cs(xi, yi, xj, yj)Ct(ti, tj),

where Cs and Ct are the spatial and temporal portions of the covariance, which

depend on space and time, respectively.

To represent spatiotemporal fields with non-uniform coverage requirements,

a nonstationary squared exponential covariance function of the following form is

adopted, as introduced in [62]:

C(ri, rj) =
|Σ(ri)|1/4|Σ(rj)|1/4∣∣∣Σ(ri)+Σ(rj)

2

∣∣∣1/2 exp

[
−1

2
(ri − rj)T

(
Σ(ri) + Σ(rj)

2

)−1

(ri − rj)
]
,

(2.6)

where Σ(rk) ∈ R3×3 is a positive definite symmetric matrix that is continuous in

rk. I require that Σ(rk) = diag{σ2
x(xk, yk), σ

2
y(xk, yk), τ

2(tk)}. The square roots of

the diagonal elements of Σ(rk) are the spatial and temporal decorrelation scales

of the field. The decorrelation scales dictate the spatial and temporal separations

between the ith and jth locations at which the covariance function evaluates to

1/e ≈ 0.368 and are the characteristic scales of the field. Note, for a stationary

field, the decorrelation scales are constant, but for a nonstationary field they may

vary in space and time. The Gaussian covariance function (2.6) is used to derive

the coordinate transformation in Section 5.3, which clusters measurements in space-

time regions with shorter decorrelation scales, and spreads measurements where
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the decorrelation scales are larger. Other covariance functions, e.g., Matern, may

contain these decorrelation scales, but they are embedded in a different function,

e.g., a Bessel function. The extension of the coverage strategy to the case where

Σ(rk) is not diagonal is not considered here.

To determine the mapping error, optimal interpolation is employed as in [68–

70], which treats the field as a discrete random field in space and time. Let r̃d =

[x̃d, ỹd, t̃d]
T be the space-time location of measurement d = 1, ..., D and εd be the

measurement noise, so that the value of measurement d is zd = A(r̃d) + εd. It is

assumed that E[εmεl] = σ̃0δml, where E[·] denotes the expected value, σ̃0 is the

standard deviation of the measurement noise, and δml is the Kronecker delta, which

implies that the noise from any two distinct measurements is uncorrelated and the

variance of the noise is σ̃0.

Let Ce denote the covariance of the error in the estimate Â(r) of the field A(r)

after assimilating the set of measurements r̃ = [r̃1, . . . , r̃D]T . I have

Ce(ri, rj; r̃) = C(ri, rj)−
D∑
d=1

D∑
l=1

C(ri, r̃d)(M
−1)dlC(rj, r̃l), (2.7)

as explained in [69, 71], where M−1 is the inverse of the measurement covariance

matrix whose entries are

Mdl = E[zdzl] = C(r̃d, r̃l) + σ̃0δdl,

as from [72]. The mapping error is the diagonal Ce(ri, ri; r̃) of the error covariance

matrix. The average (resp. maximum) mapping error is computed by averaging

(resp. finding the maximum of) all of the elements of the mapping error. The
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(mean-square) optimally interpolated estimate Â(ri) of A(ri) is

Â(ri) = Ā(ri) +
D∑
d=1

C(ri, r̃d)

(
D∑
l=1

(M−1)dlzd

)
,

as provided in [67], where Ā(ri) is the assumed known mean (first-order statistics)

of the field.

2.3 Feedback Linearization

In this dissertation I use input/ouput feedback linearization of the nonlinear

dynamics of the quadrotor and a one degree of freedom pitch stand [73]. Let x ∈ Rn

be the state vector of the quadrotor, u ∈ Rm be the control, and y ∈ Rm be the

output. Consider (nonlinear) system dynamics of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui (2.8)

y = [y1, ..., ym], (2.9)

where f, g ∈ Rn. The feedback linearization technique described next allows us to

design u to linearize (2.9) using state feedback control.

Let rk be the relative degree of the kth output, where k = 1, ...,m, and let

Lkf (yi(x)) denote the kth Lie derivative of yi(x) with respect to f [73]. A control

that linearizes the system (2.8)–(2.9) is [73]

u = ∆−1(x)(ν − b(x)), (2.10)

where

∆ij(x) = LgjL
ri−1
f yi(x), and bi(x) = Lri−1

f yi(x). (2.11)
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∆(x) is the decoupling matrix for the system and the (linear) control ν can be

designed to achieve the desired closed-loop behavior of the new system [73]
dr1y

dtr1

...

drmy

dtrm

 =


ν1

...

νm

 .

Note that u requires the inverse ∆−1(x) of the decoupling matrix, which means

that ∆(x) must be invertible for all x ∈ Rn in order for (2.8) to be feedback lin-

earizable.

2.4 Wind Field Modeling

I adopt an approach [74] to model a separated flow behind the ship using a

complex potential in a simplified domain, called the Z-domain. The flow in the Z-

domain contains elementary potentials, such as uniform flows, to represent ambient

motion and vortices to represent separation. This flow is transformed to the physical

domain, called the z-domain, using a conformal mapping designed so that vortices in

the Z-domain are placed after sharp bends or in notches in the z-domain. Note that

without vortices, this technique would not produce separated flow in the z-domain.

Locations in the Z-domain are represented in complex coordinates as Z =

X + iY . Adding the potential of a vortex pair and a uniform flow yields

Ω(Z) =
U∞
2π

{
Z − p− i(p+ 1)2 + s2

2s
log

[
Z − p+ is

Z − p− is

]}
, (2.12)

where p± is are the locations of the vortex centers. Since the vortices are of equal

and opposite strength, there is a virtual surface on the real line through which flow
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cannot pass. The uniform flow represents the ambient flow and the vortex at p+ is

produces the separated flow in the z-domain.

Let z = F (Z) be a conformal map from the Z-domain to the z-domain. The

mapping F (Z) takes the real line and shapes it to whatever the physical domain

looks like. For example, for a backwards step, which is an approximation to the

geometry of the deck of a ship suitable for landing an unmanned aerial system, the

map F (Z) is [74]

z =
h

π
{
√
Z2 − 1 + log[Z +

√
Z2 − 1]}. (2.13)

From [74], the magnitude q and direction θ of the flow at location Z are

q = Re

{
log

[
dΩ

dZ

(
dF

dZ

)−1
]}

(2.14)

θ = −Im

{
log

[
dΩ

dZ

(
dF

dZ

)−1
]}

. (2.15)

For the backwards step [74]

dΩ

dz
=

(Z − 2p− 1)
√
Z + 1

√
Z − 1

(Z − p+ is)(Z − p− is) . (2.16)

Using (2.14) and (2.16) the flow magnitude and direction are [74]

q =

√
(X − 2p− 1)2 + Y 2

[(X − p)2 + (Y + s)2][(X − p)2 + (Y − s)2]
×

([(X + 1)2 + Y 2][(X − 1)2 + Y 2])
1/4

(2.17)

θ = tan−1
(
Y+s
X−p

)
+ tan−1

(
Y−s
X−p

)
− 1

2
tan−1

(
Y

X−1

)
+

−tan−1
(

Y
X−2p−1

)
− 1

2
tan−1

(
Y

X+1

)
. (2.18)

Figure 2.1 illustrates the flowfield in the z-domain generated by this transformation.

Assuming that the complex plane represents the horizontal (x) and vertical (z)
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directions, the mean wind field is

wx,m = q cos θ (2.19)

wy,m = 0 (2.20)

wz,m = q sin θ. (2.21)
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Figure 2.1: Flowfield in the z-domain

For the application of proximity flight, an expression for the downwash of a

quadrotor based on [75] momentum theory derived here to describe the downwash

of each rotor. Let vi be the induced velocity of a rotor, which is the vertical velocity

directly underneath it. Then, the vertical velocity wc at any point z below the rotor

height zr is [75]

wc = vi + vi tanh

(
−kzr − z

h

)
, (2.22)

where k and h are shaping parameters that control how rapidly the area of the

streamtube below the rotor contracts to its steady-state value. Momentum theory
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[76] assumes that wc is uniform over the xy plane for a given z position. However,

the boundary of the downwash contracts as it speeds up, so the radial condition for

when the vertical velocity goes to zero can be identified. Let ρ be the radial distance

of the downwash boundary from the rotor center (xr, yr, zr) and R be the radius of

the rotor. Using momentum theory [74]

wz,m =


wc if ρ < R/

√
1 + tanh

(
−k zr−z

h

)
0 otherwise.

(2.23)

To get the full flowfield for all four rotors the flowfield generated by all the rotors

are added together. Figure 2.2 shows an example of the quadrotor downwash with

vi = 4 m/s, where negligible or zero velocity vectors have been omitted.

Figure 2.2: Flow beneath a quadrotor using (2.23) as the downwash model.

Note that it is assumed that the downwash has no radial component of velocity.

The justification for this assumption lies in the observation that the downwash

tends to contract to its steady-state condition within 1–2 rotor radii, after which

the flowfield is primarily vertical [76]. Thus, the model is valid only for proximity

flight with separation greater than 1–2 rotor radii.
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Since the wind fields described above are smooth, which is unrealistic for the

air wake behind a ship or the downwash of a quadrotor, a frozen (spatially constant)

Dryden gust model is added to the mean wind field to simulate turbulence. The

turbulent component of w(·) is [77]

w(·),t =
N∑
n=1

√
∆ωΦ(ωn) sin(ωnt+ φ(·),n), (2.24)

where ωn is the frequency of the nth mode, ∆ω is the spacing of the frequencies,

φ(·),n is a random phase shift, and

Φ(ωn) = σ2
t

2Lt
π

1

1 + (Ltωn)2

is the power spectral density for a Dryden gust model [77]. Thus, the total wind

field is

w(·) = w(·),m +
N∑
n=1

√
∆ωΦ(ωn) sin(ωnt+ φ(·),n), (2.25)

where the phase shifts are different for each spatial dimension.

In general, the wind field is not known a priori, thus a recursive Bayesian

filter is employed to produce an estimated wind field for use in the controller. For

this, a likelihood function, which relates the measurements to the wind and vehicle

state, is needed. As an example, consider a uniform wind field. Assume the wind

field is parameterized by parameter set β, e.g. wind magnitude and direction for

a uniform wind. Assume the ground velocity v = ẋex + ẏey + żez is available

from GPS measurements (outdoors) or motion capture (indoors) and air velocity

vrel = ubx + vby + wbz is measured by a pitot tube array (pitot tubes pointing

along all axes so relative wind can be determined in each direction). (If the GPS
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updates are too slow for realtime control, a combination of GPS and an IMU could

be used to determine position.) The expected air velocity measurement is

vrel,e(β,v) ,


ue

ve

we

 = IRB


wx,m(β)− ẋ

wy,m(β)− ẏ

wz,m(β)− ż

 , (2.26)

where the vehicle ground speed is defined as the wind velocity plus the vehicle veloc-

ity relative to the wind. It is assumed that the pitot tubes are mounted orthogonally

to the rotation of the vehicle such that vehicle rotation does not induce a velocity

in the sensors. Using (2.26), the following (Gaussian) likelihood function is chosen

p(zi(tk)|β) = exp
[
−(vrel − vrel)

T (vrel − vrel,e)/σ
2
]
, (2.27)

where zi(tk) = [ẋ ẏ ż u v w]T and σ2 represents measurement noise variance.

This form for the likelihood function produces the desired behavior, namely that the

likelihood increases when the parameters are close to the true value, and decreases

when they are not.

As an example of using (2.27) to estimate a uniform wind, Figure 2.3 shows

the estimator performance for a single quadrotor. In the simulation, the quadrotor

is subjected to a uniform wind of 1 m/s directed along the positive y axis (π/2 rad).

Figure 2.3 shows the probability marginal distributions of wind speed (left) and

direction (right) as measurements are incorporated in time. The dashed white line

indicates the maximum likelihood estimate, which converges to the correct value,

despite a noise level of σ = 0.1 m/s.
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Figure 2.3: Estimation marginals of wind speed (left) and direction (right).
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Chapter 3: Rotorcraft Guidance and Control in Wind

For small, unmanned rotorcraft to be viable for widespread use, it is imperative

that they be a able to handle real-world, outdoor conditions. In this chapter, I

discuss several strategies for operating small-scale rotorcraft in the presence of strong

wind fields. Here, strong wind fields are quantified as winds that are at least of the

order of the induced velocity of the rotor.

3.1 Quadrotor Dynamics and Control in Wind

This section presents a nonlinear controller for a model quadrotor flying in an

unknown, turbulent wind field. In this scenario, the rotor forces are commanded to

counteract the effect of an unknown windfield. I start by deriving the dynamics of

the vehicle in Section 3.1.1, where I include aerodynamic loads and perturbations

not normally considered in the literature. In Section 3.1.2 I derive a layered feedback

linearization controller that determines the thrust for each rotor. For this controller,

I assume that the desired pitch and roll angles are small. In the final section, I

present a Bayesian estimator that determines an estimate of an unknown wind field

given (noisy) measurements of groundspeed, airspeed, and position of the vehicle.
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3.1.1 Quadrotor Dynamics in Wind

The following 6DOF model for quadrotor flight in wind includes the effects

of rotor blade flapping, induced thrust due to translational flight, and aerodynamic

drag. Also novel is the individual treatment of blade flapping and induced thrust

on each of the rotors, which is crucial to flight in the downwash of another vehicle

or in the presence of a spatially varying flowfield.

The free-body diagram of the quadrotor in Figure 3.1 shows six forces acting

on the quadrotor (gravity, aerodynamic drag, and the four thrust forces) and two

reference frames (the inertial reference frame I, which is centered at origin O and

has unit vectors ex, ey, and ez, and the body reference frame B, centered at G with

unit vectors bx, by, and bz). The inertial orientation of the body frame is described

using a 3-2-1 Euler angle sequence of yaw (ψ), pitch (θ), and roll (φ) angles.

ex

ey

ez
I

B

bx

by

bz

D
W

T1

T2

T3

T4

O

Figure 3.1: Reference frames and free body diagram for quadrotor.

Figure 3.2 shows how the thrust vector Tk is deflected away from the bz axis
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due to rotor blade flapping [76], which can be understood as follows. As the relative

wind hits the rotor, the advancing side of the blade experiences increased flow and

lift, whereas the retreating side sees decreased flow and lift, causing the blades

to tilt due to the change in aerodynamic load. However, since the loading cycles

occur at the same frequency as the rotation of the blade, there is a resonance effect

that causes the maximum deflection to occur 90 degrees out of phase with the load

location [76]. Thus, the rotor plane tilts away from the relative velocity vector, and

redirects the thrust force.

vrel,k

Tkbz

↵k

Figure 3.2: Flap angle of the rotor due to a relative wind.

The air-relative velocity incident upon the kth rotor is denoted vrel,k = ukbx+

vkby + wkbz. Blade flapping occurs due to the component of vrel,k in the body xy

plane [9]. Following [78], the approximation is made that the blade flap angle

αk is proportional to the magnitude of the velocity in the body xy plane. Thus,

αk = kf
√
u2 + v2, where kf is a proportionality constant that is common to all four

rotors. To find Tk, the geometry in Figure 3.2 with the flap angle αk is used to
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determine

Tk = Tk(ūk sinαkbx + v̄k sinαkby + cosαkbz), (3.1)

where ūk , uk/
√
u2
k + v2

k, v̄k , vk/
√
u2
k + v2

k, and Tk is the magnitude of the thrust

of the kth rotor.

In addition to the tilt of the thrust vector due to blade flapping, I also model

the change in the magnitude of the thrust due to the relative wind velocity. There

are two effects that cause this change [76]: the first is an increase in thrust due to

horizontal translation, which is known as induced thrust; the second is a decrease in

thrust if the component of relative wind in the bz direction is negative. Essentially,

the rotor loses thrust when it is in climb and gains thrust in horizontal translation.

Note that the tilt in the rotor plane due to blade flap is ignored, which is justified

because flap angles tend to be on the order of one degree in moderate relative

wind [9]. Let vh be the induced velocity of the rotor in hover, is assumed known

(either using momentum theory or experimentally). The modified thrust can be

calculated using [76]

vi,k =
v2
h√

u2
k + v2

k + (vi,k + wk)2
and (3.2)

Tk =
Fkvi,k
vi,k + wk

, (3.3)

where Fk is the thrust applied to the airmass for a given power (the control input)

to the rotor. Equations (3.2)–(3.3) assume that the motor dynamics are sufficiently

fast so that their transient behavior can be ignored. Note also that the equation

for vi,k produces a fourth-order polynomial in induced velocity citehoffman. For the

case of climb, there is only one positive root, which represents the physical solution
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for induced velocity and can be found numerically or analytically [76]. In hover, the

induced velocity is vh, whereas in descent the momentum theory solution above is

not valid as the airflow through the rotor is not steady.

An important limitation of the model (3.2)–(3.3) is that it only holds when

wk ≤ 0 or wk > 2|vh| [9]; otherwise, the rotor is in Vortex Ring State (VRS), which is

a region in which the aerodynamics are unsteady and momentum theory results due

not apply. In practice, helicopters fly quickly through VRS to avoid any dynamic

instabilities. It has also been shown that the thrust tends not to vary greatly in

descent [9]. Ground effect is also not modeled by (3.2)–(3.3).

It is assumed that the drag force acts at the center of mass of the vehicle and

hence causes no moments on the vehicle. The drag force is [9]

D = Cd||vG||2v̂G, (3.4)

where CD is a drag coefficient and vG = uGbx+vGby +wGbz is the relative velocity

at the center of mass (the hatˆdenotes a unit vector). Note that (3.4) is a point-

particle assumption for the drag force, which is a reasonable approximation since

the other aerodynamic effects dominate the moments [9].

To get the equations of motion for the translational dynamics all of the forces

are expressed in terms of the unit vectors in the inertial frame using the rotation

matrix

IRB =


cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 . (3.5)
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Let

C1 =

(
CD||vrel,CM ||uCM +

4∑
k=1

ūk sinαk
Fkvi,k
vi,k + wk

)
(3.6)

C2 =

(
CD||vrel,CM ||vCM +

4∑
k=1

v̄k sinαk
Fkvi,k
vi,k + wk

)
(3.7)

C3 =

(
CD||vrel,CM ||wCM +

4∑
k=1

cosαk
Fkvi,k
vi,k + wk

)
. (3.8)

Using (3.5) and (3.6)–(3.7), the equations of motion for translation expressed in the

inertial frame are

m


ẍ

ÿ

z̈


I

= IRB


C1

C2

C3


B

−


0

0

mg


I

. (3.9)

To determine the rotational dynamics , the moments on the quadrotor caused

by the forces in Figure 3.1 are needed. Gravity acts through the center of mass, so it

does not contribute to the moments on the vehicle. (It is also assume that the drag

force acts through the center of mass, so it does not generate a moment.) Thus, the

only moments are caused by the thrust forces and a yawing moment to counteract

the rotor torques, such that the total angular momentum about the center of mass

G is conserved. Assume a symmetric geometry, where all the rotors are a horizontal

distance L and vertical distance d from the center of mass, and that rotors 1 and

2 are situated along the bx axis and rotors 3 and 4 are along the by axis. In order

to balance the moment produced by spinning the rotors, assume that rotors 1 and

2 spin in the opposite direction of rotors 3 and 4. Note that a controlled imbalance

of the rotor moments is what achieves yaw rotation in a quadrotor.
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Let ω , pbx + qby + rbz be the angular velocity of the quadrotor body frame

with respect to the inertial frame. Let I , diag(Ix, Iy, Iz) is the moment of inertia

matrix for the quadrotor and My be a yawing moment produced by spinning the

motors. (Note that the up-down symmetry of the quadrotor is sufficiently small

enough that the off diagonal terms of the moment of inertia matrix can be ignored.)

The rotational dynamics are

Iω̇ = −ω × Iω +
4∑

k=1

rk/G ×Tk +My


0

0

1

 , (3.10)

where rk/G is the distance vector from G to the kth rotor. Performing the requisite

cross products yields the following rotational equations of motion:

Ixṗ = −(Iz − Iy)qr −
4∑
i=1

dv̄k sinαk
Fkvi,k
vi,k + wk

+ L(cosα3
F3vi,3
vi,3 + w3

− cosα4
F4vi,4
vi,4 + w4

) (3.11)

Iy q̇ = −(Ix − Iz)rp−
4∑
i=1

dū sinαk
Fkvi,k
vi,k + wk

+ L(cosα2
F2vi,2
vi,2 + w2

− cosα1
F1vi,1
vi,1 + w1

) (3.12)

Iz ṙ = −(Iy − Ix)pq − L(v̄1 sinα1
F1vi,1
vi,1 + w1

− v̄2 sinα2
F2vi,2
vi,2 + w2

)− L(ū3 sinα3
F3vi,3
vi,3 + w3

− ū4 sinα4
F4vi,4
vi,4 + w4

) + cm

4∑
k=1

Fk, (3.13)

where cm is a constant that relates the applied thrust to the moment induced by

spinning the rotor. In order to simulate the motion of the vehicle, I use the rotational
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kinematics for a 3-2-1 Euler angle sequence [79]:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (3.14)

θ̇ = q cosφ− r sinφ (3.15)

ψ̇ = q sinφ sec θ + r cosφ sec θ. (3.16)

Equations (3.11)–(3.13) along with (3.9) fully describe the translational and

rotational motion of the quadrotor. In the case of hover with no external wind field,

these equations of motion reduce to the standard equations for a (rigid) quadrotor,

e.g., [7] (omitted due to space constraints).

3.1.2 Feedback Linearization Control

I now derive an input/output feedback linearization of the quadrotor con-

trol system. First, the system is transformed to the form of (2.8) using x ,

[x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T and u , [F1, F2, F3, F4]T . The outputs to be con-

trolled are the 3D position and heading (yaw) of the vehicle, i.e., y = [x, y, z, ψ]T .

A calculation of the relative degree [73] shows that each output has relative degree

two (omitted for space constraints). Since the decoupling matrix ∆(x) defined in

Section 3.1.2 is singular for this set of outputs, I cannot determine a control u to

make the input-output system linear using position and heading as the outputs.

As an alternative, I first feedback linearize the system with output yin =

[φ, θ, ψ, z]T , i.e., the attitude and altitude of the vehicle, and then feedback linearize

the planar position. The first system represents the inner loop, whose inputs are the

desired attitude and altitude. In this case, the relative degree for each output is two
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and the decoupling matrix ∆(x) is invertible everywhere except when φ = π/2 or

θ = π/2. The feedback linearized system is ÿin = νin. I design νin to stabilize the

system to a desired altitude and (small) attitude yin,d = [φd, θd, ψd, zd]
T and then

transform νin to u using (2.10).

The outer loop takes as input the desired (planar) position and yaw, and

outputs the desired pitch and roll values to be used by the inner loop. I seek planar

position dynamics of the form ẍ = νout1 and ÿ = νout2 , where νout is the outer loop

control. Let φd = φd(νout1 , νout2) and θd = θd(νout1 , νout2). Assuming that the desired

pitch θd and roll φd are small, the desired mapping (using (3.9)) is

φd = (sinψνout1 − cosψνout2 + C2)/C3 (3.17)

θd =
(cosψνout1 + sinψνout2 − C1)

(C2 sinφd + C3 cosφd)
. (3.18)

The full control architecture is shown in Figure 3.3. The inputs to the closed-

loop system are xd, yd, zd, and ψd. Given xd and yd I calculate νout, which are the

(linear) control for the outer loop. Then I use νout to calculate φd and θd according

to (3.17)–(3.18), which are used along with zd and ψd to calculate the linear control

νin for the inner-tracking loop.

The following two-vehicle simulation illustrates the benefit of accounting for

the aerodynamics of the vehicle in the feedback linearization. The vehicles are

commanded using PID controllers on the inner and outer loops to a waypoint at

the origin. Both vehicles start at the waypoint, and encounter a wind with a profile

of u = 2 m/s, v = 2 m/s, and w = −2(1 − cos(x)) m/s. The first vehicle accounts

for the aerodynamic loads, whereas the second vehicle does not, i.e., it neglects the
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Linear Controller

Linear Controller

νin

xd, yd

zd, ψd

θd, φd

x

Eq. (37)-(38)

∆−1

∆−1b

ẋ = f(x) + G(x)u

νout

Inner Loop

Figure 3.3: Two-layer feedback linearization control system for 6DOF quadrotor.

flap angles, drag, and the thrust modification. Figure 3.4 shows that the vehicle

accounting for the aerodynamics has a lower overshoot and a smaller settling time.

3.1.3 Application: Autonomous Ship Landing

Autonomous ship landings is an area of great interest for military application

[80]. The task of landing autonomously onboard a moving ship is made challenging

by the separated flow that occurs on the deck of the ship, which can cause the

autonomous vehicle to pitch and roll undesirably. The geometry of this situation is

shown in Figure 3.5(a). Air flows over the forward section of the ship and then passes

a sharp corner, where the flow separates and produces a vortex in the rear section

of the ship where the quadrotor seeks to land. The flowfield parameters β are the

speed of the prevailing wind and the location of the vortex to determine the mean

(nonuniform) wind field. Frozen Dryden turbulence is added to the mean wind field

34



0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

time (s)

P
o

s
it
io

n
 (

m
)

 

 

x

y

z

0 5 10 15 20 25
−10

−5

0

5

10

time(s)

O
ri
e

n
ta

ti
o

n
 (

d
e

g
)

 

 

φ

θ

ψ

Figure 3.4: Waypoint holding with (solid) and without (dashed) accounting for aerodynamic loads.

to simulate random eddies and flow fluctuations with a range of frequencies from

1-10 rad/s and randomly generated phase shifts.

In the simulation, the vehicle is commanded to go from (x, y, z) = (4, 0, 2)

to a landing location of (xd, yd, zd) = (2, 0, 0). Figure 3.5 shows the controller

performance. The colormap on the far right shows the estimation result for the wind

speed. Observe that the vehicle converges to the desired landing location despite

the unknown turbulence and the time it takes for the the parameter estimates to

converge.

3.1.4 Application: Quadrotor Proximity Flight

In this application I show how the dynamic controller in Section 3.1 can be

used to fly one quadrotor directly underneath another, e.g., for formation flight. In

the simulation, one quadrotor is commanded to hover at (x, y, z) = (0, 0, 1) and a
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Figure 3.5: Simulation of an autonomous ship landing with unknown turbulence. (a) The vehicle

trajectory in 3D; (b) vehicle trajectories vs. time; (c) probability marginal for prevailing wind

speed estimation.
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second quadrotor is commanded to fly underneath it to the origin. For comparison,

I show a third (virtual) vehicle that does not compensate for the aerodynamics,

i.e., the flap angles, drag coefficient, and climb velocity are all set to zero. In

this simulation, β is the induced velocity of the hovering quadrotor. In addition,

(frozen) Dryden turbulence affects all three vehicles. The results of the simulation

are shown in Figure 3.6. The vehicle accounting for the aerodynamic loads settles

at the appropriate location with no adverse affects, while estimating the induced

velocity and shaping parameters of the downwash flowfield of the first vehicle. The

probability density is flat for the first three seconds before the quadrotor enters

the downwash, then converges quickly once it enters the field. The third vehicle,

however, experiences a sharp decent rate once it hits the flowfield as it has no

knowledge of the wind (dashed lines in Figure 5.2(b)). In reality, this causes a

turbulent, unsteady aerodynamic condition over each rotor, which is not modeled

here, and would cause the vehicle to become unstable.

3.2 Pitch Dynamics and Control

The previous sections studied the problem of flight stability for a full 6DOF

quadrotor. As an intermediate step, this section develops the dynamics and for-

mulates a feedback linearization based controller for a two-rotor system that is

constrained to rotation about its pitch axis.
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Figure 3.6: Simulation of quadrotor proximity flight with unknown turbulence. (a) The vehicle

trajectories in 3D with the shaded vehicle representing the quadrotor with no flow compensation;

(b) vehicle trajectories vs. time; (c) probability marginal for induced velocity estimation.
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3.2.1 Pitch Dynamics

I start by introducing several reference frames. See Figure 3.7 for a sketch of

the test stand with the relevant forces and reference frames. Let I = {O, ê1, ê2, ê3}

be an inertial reference frame centered at the origin O. There is also a body fixed

frame B = {G, b̂1, b̂2, b̂3} that is attached to the test stand at the pivot point with

the b̂1 axis along the bar and the b̂3 axis aligned with the propellor attachment

rods. Two more reference frames, C = {P1, ĉ1, ĉ2, ĉ3} and D = {P2, d̂1, d̂2, d̂3}, are

attached to propellors 1 and 2 respectively. These last two frames are frame B tilted

up by the flap angle of each propellor.

L
d

êx

êy

êz

b̂z

b̂x
✓

↵1

↵2

T1

T2

M2

M1

v1

Figure 3.7: Free body diagram of pitch stand system.

Figure 3.7 shows a free body diagram of the system, where T1 and T2 are the

thrust forces from the propellors, and M1 and M2 are pure moments induced by

the blades as they flex due to blade flapping. The dynamics of the test stand are
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determined through the relation

Id

dt
hG = Mext, (3.19)

which states that the time rate of change angular momentum of the body about the

center of mass in the inertial frame is equal to the total external moment acting on

the body.

To evaluate (3.19), the angular momentum of the system must be determined.

Let I be the moment of inertia of the test stand and J be the moment of inertia of

an individual rotor. Then, the angular momentum of the system is

hG = −Iθ̇b̂2 + JΩ1ĉ3 − JΩ2d̂3, (3.20)

where θ̇ is the pitch rate of the stand and Ω1 and Ω2 are the rates of revolution of

the two propellors. Note that the angular velocity of the body is

IωB = −θ̇b̂2. (3.21)

Expanding the LHS of (3.19) and substitute (3.20) and (3.21) to yield

Id

dt
hG =

Bd

dt
hG + IωB × hG (3.22)

= Iθ̈b̂2 + (−θ̇b̂2)× (−Iθ̇b̂2 + JΩ1ĉ3 − JΩ2d̂3). (3.23)

To further evaluate this expression, ĉ3 and d̂3 need to be expressed as components

in the body frame. Using the flap angles α1 and α2 I have

ĉ3 = cosα1b̂3 − sinα1b̂1 (3.24)

d̂3 = cosα2b̂3 − sinα2b̂1. (3.25)
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Substituting the above expressions into (3.23) and evaluating the cross product

yields

Id

dt
hG = [−Iθ̈−θ̇(JΩ1 cosα1−JΩ2 cosα2)]b̂2+θ̇(−JΩ1 sinα1+JΩ2 sinα2)b̂3 (3.26)

Making the substitution Mext = M2b̂2 +M3b̂3 yields the following two equations

−Iθ̈ − θ̇(JΩ1 cosα1 − JΩ2 cosα2) = M2 (3.27)

θ̇(−JΩ1 sinα1 + JΩ2 sinα2) = M3. (3.28)

Note, equation (3.28) is not needed since it describes the yaw motion of the test

stand, which is constrained to be fixed in that direction, i.e., this is a constraint

that say that there is a reaction moment at the base of the test stand that has the

value in (3.28).

The task now is to calculate M2 for the system. There are four moments acting

on the vehicle: two from the thrusts of each rotor and a pure bending moment caused

by the structural flexing of the blades due to blade flap. As a first step, I calculate

the thrust vector for each propellor. For this I need to account for the change in

magnitude of the thrust do to relative climb/descent and the direction change due

to forward velocity.

Let v∞ be the magnitude of the velocity along the negative x direction (see

Figure 3.7), then the speed of the flow through the rotor is

w1 = v∞ sin(θ + α1) + lθ̇ (3.29)

w2 = v∞ sin(θ + α2)− lθ̇. (3.30)
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Using momentum theory, the thrust from a propellor is

Tk = 2ρAvi,k(wk + vi,k), (3.31)

where vi,k is the induced velocity through the kth propellor. From Blade Element

Momentum Theory, the thrust is

Tk = k(1)
m Ω2

k − k(2)
m (wk + vi,k)Ωk. (3.32)

Using equations (3.31) and (3.32), the induced velocity through the kth propellor

for a given rpm can be calculated. Equation (3.32) also gives an expression that can

be used for the magnitude of the thrust from the rotor as a function of rpm, which

is the control input. Note that k
(1)
m and k

(2)
m are found experimentally.

For the direction of the thrust vector, I note that T1 and T2 are along the

ĉ3 and d̂3 axes respectively. For the flap angle, the approximation is used that the

angle is proportional to the component of the relative wind parallel to the test stand,

i.e.,

αk = kfv∞ cos θ. (3.33)

Using the moment arms from the pivot points to the center of each rotor, the total

moment due to the thrust vectors is

Mt = −(k(1)
m Ω2

1 − k(2)
m (w1 + vi,1)Ω1)(l cosα1 + d sinα1) (3.34)

+(k(1)
m Ω2

2 − k(2)
m (w2 + vi,2)Ω2)(l cosα2 − d sinα2). (3.35)

The second two moments are from the structural moment applied to the pro-

pellor hub due to the blades flexing when flapping, and is calculated as

Ms = −ks(Ω2
1α1 + Ω2

2α2). (3.36)
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Substituting (3.34) and (3.36) into (3.27) and rearranging yields the equation

of motion (in second order form)

θ̈ = −1

I

[
θ̇(JΩ1 cosα1 − JΩ2 cosα2)− (k(1)

m Ω2
1 − k(2)

m (w1 + vi,1)Ω1)(l cosα1 + d sinα1)+

(k(1)
m Ω2

2 − k(2)
m (w2 + vi,2)Ω2)(l cosα2 − d sinα2)− ksΩ2

1α1 − ksΩ2
2α2

]
. (3.37)

3.2.2 Control Design

To design a controller I start by simplifying (3.37) and putting it in state

space form. First I assume that the rotor inertia terms are insignificant, i.e., J = 0.

Furthermore assume the flap angle is equal for both rotors (α1 = α2 = α) and that

d << l. I also make a small angle assumption on α (cosα = 1 and sinα = α). Then

(3.37) reduces to

θ̈ = −1

I

[
−(k(1)

m Ω2
1 − k(2)

m l(v∞ sin(θ + α) + lθ̇ + vi)Ω1)+

(k(1)
m Ω2

2 − k(2)
m l(v∞ sin(θ + α)− lθ̇ + vi)Ω2)− ksΩ2

1α1 − ksΩ2
2α2

]
. (3.38)

Let x = [x1 x2]T , [θ θ̇]T , then the modified equation of motion in state space

form is

ẋ1 = x2 (3.39)

ẋ2 = −1

I

[
−(k(1)

m Ω2
1 − k(2)

m l(v∞ sin(x1 + α) + lx2 + vi)Ω1)+

(k(1)
m Ω2

2 − k(2)
m l(v∞ sin(x1 + α)− lx2 + vi)Ω2)− ksΩ2

1α1 − ksΩ2
2α2

]
.(3.40)

Now let Ω1 = Ω+u and Ω2 = Ω−u. This effectively allows us to reduce the number

of controls from two (the two rotation rates of the propellors) to one (a differential
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rotation rate u). Then the state space form becomes

ẋ1 = x2 (3.41)

ẋ2 = −1

I

[
−2ksαu

2 + (2k(2)
m l(v∞ sin(x1 + α) + vi)

−4Ωlk(1)
m )u+ 2l2k(2)

m Ωx1 − 2ksαΩ2
]
. (3.42)

Let

a =
2

I
(ksα)

b = −1

I
(2k(2)

m l(v∞ sin(x1 + α) + vi)− 4Ωlk(1)
m )

c = −1

I
(2l2k(2)

m Ωx1 − 2ks).

Then the control

u = − b

2a
−
√
b2 − 4a(c− ν)

2a
(3.43)

transforms the equations of motion to

ẋ1 = x2 (3.44)

ẋ2 = ν. (3.45)

which is a linear system.

To test the feedback system, simulations were conducted where the rotor sys-

tem must stabilize to a predetermined pitch angle of π/4 in the presence of a uniform

wind using a PID controller in the linearized system. In the simulation, the wind

field is estimated using a recursive Bayesian filter. Without loss of generality, it is

assumed that the body reference of zero pitch is the axis along which the uniform

wind is acting, i.e., the wind direction is known, and only the wind magnitude must

be estimated.
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Figure 3.8: Simulation results of pitch dynamics with (a) no control enabled and (b) with feedback

linearization control. (c) Results of recursive Bayesian estimator for wind speed

Figure 3.8 shows the results of the simulation. Figure 3.8(a) shows the results

of the open-loop system with no feedback, for which the rotor system stabilizes to

an angle of π/2, and Figure 3.8(b) shows the results of the closed loop system. The

rotor-system quickly stabilizes to the reference angle, though there is a slight jitter

due to simulated measurement noise. The results of the estimator with wind speed

are shown in Figure 3.8(c).

3.3 Path Planning for Downwash Avoidance

The last two sections seemed to design flight controllers in the presence of

unknown wind fields. However, it may be the case that it is desirable to avoid

harmful wind fields all together. In multi-vehicle scenarios, such as those presented

in Chapters 3 and 4, on such wind field is the downwash of other local vehicles. This

section showcases the utility of a flow sensing and control system for proximity flight.

The scenario involves multiple quadrotors operating at different altitudes. The
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downwash of a quadrotor causes extreme, undesired changes in attitude and altitude

of a quadrotor flying below [81]. The flight-path planner and flow measurement

system were implemented on the lower quadrotor. The planner generates an estimate

of the position of the higher quadrotor to determine the direction the lower quadrotor

must travel to reach a desired waypoint while avoiding the downwash. The flow

measurement system and path planner were validated in simulation and experiment.

3.3.1 Estimation of Nearby Rotorcraft

Consider a two-dimensional flow field with a rotor generating thrust along the

z-axis. Velocity components w and v lie along the z and y coordinates respectively

[82]. The momentum equation in the z direction is

∂w

∂t
+ w

∂w

∂z
+ v

∂w

∂y
= gz −

1

ρ

∂p

∂z
+
µ

ρ

(
∂2w

∂z2
+
∂2w

∂y2

)
(3.46)

where ρ is air density, µ is the dynamic viscosity of the air, and gz represents

body forces due to effects such as bouyancy. The following set of assumptions are

applied as follows: (1) the mean flow field is unchanging, so ∂w/∂t is zero; although

rotorwash is highly turbulent, a rotorcraft in a steady flight condition will generate

a steady mean flow field velocity. (2) Cross-stream flow is small compared to the

downstream velocity; this assumption is based on the intuition that even with the

helical structure common to propeller-driven flow s, cross-stream velocity plays a

secondary role in thrust generation. For simplicity, only the thrust-aligned velocity

component is considered and ∂w/∂y is neglected. (3) At each z location, the stream-

wise variation in w is small compared to the cross stream changes; hence, ∂2w/∂z2
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is zero. (4) Lastly, bouyancy and external pressure gradients are not present, so gz

and ∂p/∂z are neglected.

Eq. (3.46) is further simplified by linearizing about a constant peak velocity

W0 based on the intuition that center-line flow velocities obey a 1/z decay. The

result is

W0
∂w

∂z
=
µ

ρ

(
∂2w

∂y2

)
. (3.47)

Solving (3.47) in cylindrical coordinates yields a Gaussian velocity profile

reminiscent of the velocity variation observed in established turbulent jet profiles

[83]. The expected vertical velocity measured at a lateral distance

r(β) =
√

(x− xs)2 + (y − ys)2 (3.48)

and a downstream distance z from the center of an idealized rotorcraft is

w(β) =
C

z
W0 exp

(
−W0r(β)2ρ

4zµ

)
. (3.49)

The measurement zi(tk) of the ith sensor at time tk is assimilated into the Gaussian

likelihood function

p(zi(tk)|β) = exp((zi − w)/σ2), (3.50)

where σ2 is the variance of the measurement noise (chosen based on sensor charac-

teristics).

To validate the Bayesian methodology and evaluate the performance of the

generalized flow model, a series of ground-based experiments were conducted. A
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common 32 inch-diameter household fan, recast as a source of vertical flow distur-

bance, generated the flow. A test stand suspended the airspeed probes over the

vertical source while data from an OptiTrack motion-capture system provided po-

sition information. To test the methodology in a more complex flow field than was

modeled, experiments were conducted within the zone of flow establishment where

velocity profiles have twin velocity peaks near the center line [84]. Even though this

flow feature was unmodeled, a series of localization tests were successfully carried

out using a single probe, followed by a set of tests with a quadrotor mockup. The

quadrotor mock-up stand is shown in Fig. (3.9). Velocity measurements were taken

at a number of probe locations, simulating a series of trajectories within the flow

field. The spinning rotors simulated the self-noise generated in flight.

The idealized flow model and Bayesian framework provided accurate fan lo-

cation estimates. The algorithm typically estimated the center of the fan to within

2 cm, or under 3% of the fan diameter. Results from a sample test run are pre-

sented in Fig. (3.9) showing estimates within 2% of fan diameter in four time steps.

The colormap shows the posterior distribution of the location of the fan, with red

indicating high probability and blue indicating low probability. The green and red

asterisks denote probe location and the red circle indicates the actual location of

the fan, unknown to the estimator.
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(a) Test Setup

(b) Position 1 (c) Position 2

(d) Position 3 (e) Position 4

Figure 3.9: Quadcopter mock-up and sample localization results
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3.3.2 Path Planning for Downwash Avoidance

Consider a vehicle with the dynamics

ẋ = ux (3.51)

ẏ = uy, (3.52)

where x and y are the coordinates the vehicle and ux and uy are control inputs. The

goal is to design ux and uy to drive the vehicle to a waypoint and avoid the vertical

jet produced by the higher quadrotor. The cost function J(x, y, tk) incorporates the

desired goal and the presence of a vertical flow field, i.e.,

J(x, y, tk) = p(z̄(tk)|β) + kJ
√

(x− xd)2 + (y − yd)2, (3.53)

where (xd, yd) is the location of the goal and kJ is a weighting variable. Intuitively,

the cost is high when the vehicle is far away from the waypoint and/or near the

downwash of the higher quadrotor. The goal is to find a path C through the domain

such that the integral of J along the path is locally minimized. Formally, the problem

is stated as

minimize
ux,uy

∫
C

J(x, y, tk)ds

subject to ẋ = ux

ẏ = uy,

(3.54)

where ds is an increment along the path.

To decrease the computational complexity, a receding horizon version of (3.54)

looks only one time step ahead. In this case the cost function reduces to

JRH = J(x, y, tk) + J(x+ ∆x, y + ∆y, tk) (3.55)
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Since the first term on the right-hand side is fixed by the current vehicle location,

the cost function is minimized by moving in the direction of greatest decrease. Thus,

in the zero limit of ∆x and ∆y, (3.55) is minimized using the control

ux = −K∂J

∂x
(3.56)

uy = −K∂J

∂y
, (3.57)

where K is a control gain. This choice of control moves the vehicle in the direction

of greatest decrease in cost.

The algorithm was first tested in simulation. The hovering quadrotor was

commanded to hover at an altitude of 2.5 m, and the instrumented quadrotor was

given a waypoint at (2.0, 0.0) m. Fig. 4.4 shows the results of the algorithm. Each

subfigure shows a snapshot of the simulation at a different timestep, starting from

the initial time until the vehicle reaches the goal. The colormap at the bottom shows

the posterior distribution for the position of the hovering quad, with red and blue

denoting high and low probability respectively. The black dot indicates the position

of the hovering quadrotor, the green dot is the position of the instrumented quadro-

tor, and the red X shows the destination of the instrumented vehicle. The trajectory

of the quadrotor is shown as a white line on top of the posterior distribution. The

estimate of the position of the hovering quadrotor is shown as a magenta dot. The

results show that the instrumented quadrotor travels towards the waypoint, then

diverts once it detects the higher quadrotor using simulated flow measurement data.

Note that the estimate does not achieve zero steady-state error due to noise in the

sensor measurements.
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(a) t = 0 s (b) t = 5 s

(c) t = 10 s (d) t = 15 s

Figure 3.10: Trajectory of an instrumented quadrotor in proximity flight. The colormap indicates

the posterior distribution of the probability of the hovering quadrotor location.

3.3.3 Experimental Results

To validate the flow measurment system and proximity flight path planner,

experiments were performed at the Naval Research Laboratory in the Laboratory

for Autonomous Systems Research (LASR). The experiments were performed in a

motion-capture testbed in the Prototyping Highbay at LASR, which is 150 by 75 ft

and equipped with 115 Vicon motion-capture cameras. Flight tests were conducted

using two Ascending Technologies Pelican quadrotors. The Pelican has two onboard
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computers, one for flight stabilization and a Linux computer for sensor integration

and control calculations. The Linux computer runs the Robot Operating System

(ROS), which is a message-passing architecture for autonomous robots.

In the experiment, the high-altitude quadrotor was commanded to hover at

the origin at an altitude of 2.5 m. The instrumented quadrotor was commanded

to go to the waypoint (2.5, 0.0) m while an altitude of 1.5 m from five separate

initial conditions. Fig. 3.11 shows the results of the flight test for all of the runs.

Fig. 3.11(a) shows the trajectory of two quadrotors. The black X indicates the

position of the hovering quadrotor and the green X shows the desired waypoint.

The dashed black circle shows the approximate area where the downwash of the

hovering quadrotor is significant. The dashed red trajectory shows the path of

the vehicle with the flow measurement system and control disabled to show the

nominal trajectory the vehicle takes. (Note that for safety reasons the nominal

trajectory was implemented without the presence of the hovering quadrotor.) The

other trajectories show the quadrotor with the flow measurement system and control

enabled. Fig. 3.11(b) shows the measurements (colored dots) taken by the flow

measurement system for the red colored run as well as the estimation error (solid

lines) of the hovering quadrotor’s position for all five runs that included the hovering

vehicle (the estimates are color coded to match the trajectories in Fig. 3.11(a)). Fig.

?? shows the x and y position estimates of the hovering quadrotor for the red run.

The experiments illustrates the necessity of the flow measurement system and

the flight-path planner. A vehicle without the combined system travels in a straight

trajectory towards the waypoint, as indicated by the dashed red line in Fig. 3.11(a).
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Figure 3.11: (a) Trajectory of the quadrotor from five separate initial conditions with the hovering

vehicle located at the origin and one initial condition without the hovering vehicle. (b) measure-

ments from the airspeed probes and hovering quadrotor estimation error from red trial; (c) position

estimate of the hovering quadrotor for the red run (middle trajectory)

This trajectory would place the vehicle directly in the downwash of the higher

quadrotor. The vehicle with the flow measurement and flight-path planner detects

the downwash of the higher quadrotor at approximately t = 3.0 seconds for the red,

blue, and green trajectories, as seen in Fig. 3.11(b). As soon as the sensor measures

a positive airspeed, the error in the estimate of the position of the higher quadrotor

drops to close to the desired position. Note that the error in the estimate is likely due

to a combination of sensor noise and uncertainty in the choice of parameters in the

likelihood function. Once the estimate of the higher quadrotors position converges,

the instrumented vehicle maneuvers to avoid the downwash, as shown by the red,

blue, and green trajectory in Fig. 3.11(a). The position estimates for the red run

seen in Fig. 3.11(c) show how the estimate converges to near the correct value

when the instrumented vehicle passes close to the hovering quadrotor. Note that
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the estimate drifts away once the downwash is no longer detected, due to process

noise that is added to the recursive Bayesian filter to avoid probability collapse. The

magenta and black trajectories do not travel close enough to the hovering quadrotor

to even detect the downwash. This is apparent in both Figures 3.11(a) and 3.11(b)

as the vehicle does not maneuver to avoid the downwash and the estimate never

converges.
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Chapter 4: Distributed Detection of Mobile Targets

In the previous chapter, controllers were designed to stabilize rotorcraft in

strong wind fields. With this capability, it is now possible to design algorithms for

rotorcraft for sampling spatiotemporal processes, as is done in this chapter. In this

chapter, an aerial sensor network composed of quadrotors is used to sample a discrete

spatiotemporal process, namely, to detect an unknown number of moving ground

targets. First, the problem formulation is discussed, followed by the development of

the multi-agent coordination strategy and experimental validation of the detection

architecture.

4.1 Problem Formulation

Consider the following problem. There are N aerial vehicles equipped with

downward facing cameras. They are searching for an unknown number of moving

targets in a given domain. Furthermore, the sensors are of low quality, i.e., com-

plex vision-based detection algorithms cannot be used. The proposed problem is:

how does one coordinate the vehicle motion to maximize the probability of target

detection?

The approach used in this dissertation consists of a two step process. First,
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vehicles assimilate camera measurements into a Likelihood Ratio Tracker (LRT),

which calculates the likelihood of target locations throughout the domain. Second,

vehicles use the output of the LRT in a physics-inspired control strategy to coor-

dinate their motions so as to maximize probability of detection. In this section, I

discuss the details of the update and predict steps for the LRT.

4.2 Likelihood Ratio Tracker for Target Detection

4.2.1 Update step: The sensor measurement model

Consider a measurement data model based on an imperfect binary sensor.

Suppose the criterion location for a positive response is chosen such that targets

within range ρtarget are detected with probability Pd and false alarms occur with

probability Pf per time step. The sensitivity m of each sensor is [85]

m = z(Pd)− z(Pf ), (4.1)

where z(·) represents the z-transformation into standard deviation units given by

the quantile function [85]

z(p) =
√

2erf−1(2p− 1).

For example, Pd = 0.95 and Pf = 0.1 yields m = 2.92. Let wk represent unit-normal

measurement noise in standard deviation units at time step k. When the target

is absent, the measurement data is zk = wk, whereas when the target is present

the measurement data is zk = m + wk. Assuming a zero-mean Gaussian sensor
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model [86] yields

p(zk|θ−k ) =
1√
2π

exp

(
−z

2
k

2

)
(4.2)

p(zk|θ+
k ) =

1√
2π

exp

(
−(zk −m)2

2

)
. (4.3)

(The sensor noise variance is absent because zk and m are already assumed to be in

standard deviation units.) The log likelihood ratio (2.3) becomes

logL(zk|θk) = −(zk −m)2

2
+
z2
k

2
= m

(
zk −

m

2

)
, (4.4)

where m is a function of the sensor Pd and Pf given by (4.1).

While the methodology above would apply to any sensor characterized by its Pd

and Pf , in this dissertation the sensor is a camera with a known field of view (FOV)

and resolution. Using standard image processing techniques [87], the camera places

a bounding box around targets within the FOV. When there is a target present,

(4.4) with zk = m+wk is applied to the prior uniformly inside a disc of radius ρtarget

located at the center of the bounding box. In areas of the FOV where there is no

target, (4.4) with zk = wk is applied to the prior uniformly. Pd and Pf for a camera

are complicated functions of the camera resolution, the size of the object in the FOV,

and the quality of the image processing algorithm. For the experiments presented in

this dissertation, Pd and Pf were treated as tuning parameters for the tracker and

were chosen to improve the performance of the control and estimation/detection

strategy.
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4.2.2 Predict step: Integrating the diffusion equation

The predict step (2.2) involves updating the target probability density function

in the absence of measurement information. Targets are allowed to move randomly,

though I do not estimate their velocities. The target motion model is a random

walk, which can be described mathematically by the diffusion equation with constant

diffusivity, also called the heat equation.

Consider the two-dimensional heat equation with diffusivity α, i.e.,

∂P

∂t
= α

(
∂2P

∂x2
+
∂2P

∂y2

)
.

The alternating direction implicit (ADI) method [88] is a fractional-step method

for integrating the heat equation. ADI employs the difference operators Ax and

Ay representing the spatial derivatives in the x and y directions, respectively. For

example, if probability P is discretized over n× n grid points, then AxP is a vector

of length n× n with elements

Pi+1,j − 2Pi,j + Pi−1,j

∆x2
, i = 1, . . . , n, j = 1, . . . , n.

Let I be the n×n identity matrix. The solution is obtained from P (θk−1|zk−1) using

matrix inversion to solve the following equation for P (θk|zk−1):

(
I − α∆t

2
Ax
) (
I − α∆t

2
Ay
)
P (θk|zk−1) =(

I + α∆t
2
Ax
) (
I + α∆t

2
Ay
)
P (θk−1|zk−1).

To ensure that no information crosses the boundary of the search domain, I enforce

Neumann boundary conditions around the perimeter of Ω by specifying that the

normal gradient is zero.
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4.3 Physics-Inspired Motion Planning

The agent motion is driven by a combination of two artificial forces. The first

force guides the vehicle down the gradient of the inverse log likelihood surface, i.e.,

the temperature surface, in a manner that resembles a flowing liquid. The speed

of movement down the gradient is determined by the temperature at the vehicle

location, where colder temperatures correspond to slower speeds. The second force

is the gradient of a Lennard-Jones potential [89] between the agents. The Lennard-

Jones potential is a common approximation used in physical chemistry to model

molecular gas dynamics. Figure 4.1 shows the vehicles moving like gas molecules

in areas where there are no targets and gathering like solid molecules with other

agents where there are likely to be targets. In this algorithm, as opposed to other

physics-inspired swarm controllers, the states-of-matter behavior is emergent.

Let rjk denote the position of agent j ∈ {1, . . . , N} at time step k. The

Lennard-Jones potential is [89]

V j
k =

N∑
i 6=j

4ε
(
σ12||rjk − rik||−12 − σ6||rjk − rik||−6

)
, (4.5)

where ε is the depth of the well and σ is the distance at which the potential between

two agents is zero. An example of the Lennard-Jones potential between two agents

is shown in Figure 4.2. Note that the strength of the potential drops quickly to zero

for large distances. Thus, the interaction between two agents only happens when

they are close to one another.

Let T jk = −P (θk|zk, j) in (2.5) be the temperature at vehicle j at time k and
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Figure 4.1: Diagram depicting the three emergent behaviors of the proposed algorithm. Vehicles

in cold areas that are near a target will form a crystalline formation with nearby agents. Vehicles

that are in warm areas will flow on the temperature surface like a liquid. Agents in hot areas will

travel quickly in a random, gas-like fashion.
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Figure 4.2: Example of a Lennard-Jones potential with ε = σ = 1.0.
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V j
k be the Lennard-Jones potential (4.5) for the jth vehicle. IThe desired velocity

for each vehicle is prescribed using a feedback controller. The desired velocity for

the jth vehicle is given by

ṙjk = −min(1 + eT
j
k , vmax)kP∇T jk − kV∇V j

k , (4.6)

where kP and kV are control gains and vmax is the maximum speed of the agent

(assumed to be the same for all agents). The dependence on temperature causes the

vehicles to slow down when they are near a possible target in order to collect more

measurements in that area. This behavior, along with the sensor aggregation caused

by the Lennard-Jones potential, seeks to increase the chances that a target will be

detected. The algorithm works well in simulations when the gain on the Lennard-

Jones potential is one order of magnitude smaller than the gradient-following gain.

Additionally, σ is set to ensure that the vehicles do not collide with each other, which

depends on the scale of the vehicle. Consequently, there are only three parameters

to tune: either kP or kV , ε (the well depth), and T0 (the detection threshold).

As seen in equation (4.6), the gradient of the temperature potential is mul-

tiplied by a heuristic scaling factor. This scaling factor, in combination with the

Lennard-Jones potential, is what causes the states-of-matter behavior to be emer-

gent. In the scaling factor, the speed of the vehicle is scaled by the temperature

such that the speed increases when the temperature is high, and decreases when the

temperature is slow. This causes vehicles to “freeze” in place when they are near an

area of high probability and, conversely, to speed up when they are in areas of low

probability. The full architecture (in pseudocode form) is shown in Algorithm 1.
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Algorithm 1 Physics-Inspired Target Search and Detection Algorithm

Require: N, ε,σ, kP , kV

1: Initialize log likelihood ratio P0(θ|z)

2: for k = 1 till end of task do

3: for j . . . N do

4: Get measurement zjk

5: Calculate likelihood ratio logL(zjk|θk) using (4.4)

6: Update: Pk(θ|z) = Pk−1 + logL(zjk|θk)

7: end for

8: Normalize likelihood ratio: Pk(θ|z) = Pk(θ|z)− sum((Pk(θ|z)))

9: Get rk for every vehicle

10: for j = 1 . . . N do

11: Compute ∇V j
k (rk) and ∇P (θk|zk)

12: Calculate desired velocity ṙjk

13: Apply control input to platform to achieve ṙjk

14: end for

15: end for
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Unlike of other works in the field, the architecture shown in Algorithm 1 avoids

local minima in an informative, non-heuristic fashion. A vehicle can fall into a local

minima if it is surrounded by hills of low target probability. However, if there is no

target present underneath the vehicle, the temperature will increase (from negative

information) to the point where the vehicle is pushed away from its location. Note,

this behavior is completely emergent and is provided inherently by connecting the

detection scheme to the vehicle control. In addition to informatively handling local

minima, there is the following theorem.

Theorem 4.3.1 The mutual information between sensor measurement zk and target

location θk using the sensor model given by (4.2)–(4.3) is locally maximized when

the vehicle moves along the gradient of the prior target distribution p(θk).

Proof Let ξk = (xk, yk) be the position of the kth quadrotor. For readability I drop

the temporal subscript on all the variables in this proof. The mutual information

between z and θ is

I(z, θ) =

∫
z+,z−

∫
Ω

p(θ, z|ξ) log(p(z|θ, ξ)dθdz

−
∫

z+,z−

p(z|ξ) log p(z|ξ)dz, (4.7)

where p(z|ξ) is the marginal probability density function of the observation in ob-

servation space. Since the sensor model is Gaussian, the logarithm in the first term

on the right hand side of (4.7) evaluates to a constant. Hence, the double integral

is independent of ξ. Thus, the mutual information is maximized by maximizing

the second term, which is the entropy of the observation, H(z|ξ), given the vehicle
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location. The marginal probability p(z|ξ) can be written as

p(z|ξ) =

∫
θ∈D

p(z|θ, ξ)p(θ)dθ. (4.8)

Therefore, H(z|ξ) can be expressed as

H(z|ξ) = −
∫

z+,z−

∫
θ∈D

p(z|θ, ξ)p(θ)dθ × log

∫
θ∈D

p(z|θ, ξ)p(θ)dθ

 dz. (4.9)

Evaluating the integral over z yields

H(z|ξ) = −
∫
θ∈D

p(z+|θ, ξ)p(θ)dθ × log

∫
θ∈D

p(z+|θ, ξ)p(θ)dθ


−

∫
θ∈D

p(z−|θ, ξ)p(θ)dθ log

∫
θ∈D

p(z−|θ, ξ)p(θ)dθ

 . (4.10)

Both terms on the right hand side of (4.10) have the form f(x) = x log(1/x), which

is an increasing function of x as long as x ≤ 1/e ≈ 0.36. In (4.10), the argument

is the integral of p(θ) scaled by either p(z+|θ, ξ) or p(z−|θ, ξ). Since these are both

less than 1/e (see (4.2)–(4.3)) and the integral of p(θ) is less than one in domain D,

H(z|ξ) is guaranteed to be an increasing function of the integral of p(θ).

Because the mutual information is an increasing function of the integral of p(θ),

moving along the gradient of the integral will maximize the mutual information at

the next time step. As a first-order approximation, assume that p(θ) is given by the

first-order Taylor expansion

p(θ) ≈ a0 + axx+ ayy, (4.11)

where it is assumed that coordinates in D are given by the pair (x, y). Then I have

∫
θ∈D

p(θ)dθ ≈
xk+ s

2∫
xk− s2

yk+ s
2∫

yk− s2

(a0 + axx+ ayy)dydx, (4.12)
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where I have assumed that D is a square region with side length s for simplicity.

The gradient of (5.38) yields

∇

∫
θ∈D

p(θ)dθ

 ≈ axs
2êx + ays

2êy, (4.13)

where êx and êy are unit vectors in the x and y directions respectively. Taking the

gradient of p(θ) directly shows that

∇p(θ) ≈ axêx + ayêy =
1

s2
∇

∫
θ∈D

p(θ)dθ

 . (4.14)

Thus, moving along the gradient of p(θ) is locally the same as moving along the

gradient of its integral, which completes the proof.

Theorem 1 shows that the binary sensor model coupled with a gradient control

allows each vehicle to greedily maximize the expected gain in information without

explicitly having to calculate it. This property has significant benefit on the ability

of the search strategy to scale with numbers of vehicles and targets, as compared to

the calculation of mutual information, which generally scales exponentially. Theo-

rem 1 only holds locally. Since the Lennard-Jones potential drops off dramatically

with distance, each vehicle need only consider the position of other nearby agents.

Therefore, the algorithm scales linearly with the number of vehicles. Note that if the

algorithm was distributed, the complexity would be fixed by local vehicle density

under a distance-based communication topology.

Algorithm performance is evaluated via simulation in the operating domain

Ω = [−5 5] × [−5 5] m. Agents and targets are constrained to remain in Ω at

all times. Parameter definitions and values used in the simulation are provided in
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Figure 4.3. The local temperatures of the agents and targets are obtained via linear

interpolation between the grid points. The overall temperature surface is normalized

by subtracting its mean every time step. To avoid overheating in the temperature

surface, the individual sensor updates are scaled by N , i.e., the number of agents.

This scaling has the effect of making the collective detection performance in terms

of the cumulative number of targets detected over time roughly independent of N .

Figure 4.4 shows the results of the simulation. In Figures 4.4(a) and 4.4(b)

there are snapshots of the vehicles, targets, and temperature (inverse log likelihood)

surface at time steps k = 125 and 425 respectively. Vehicles are shown as red

circles, undiscovered targets as white crosses, and discovered targets as red crosses.

At any given time there are only three undiscovered targets in the domain. Once a

target is detected, it turns red and another target appears with uniform probability

somewhere in the domain. The heat map, which describes the temperature, is blue

in areas of low temperature (high likelihood) and red in areas of high temperature

(low likelihood).

In Figure 4.4(a), one target has been detected. There are several vehicles

scanning the warmer regions like gas molecules, while others are clustering around

potential targets in a semi-solid configuration. Figure 4.4(c) shows the cumulative

number of targets captured during the simulation (solid line) and the amount of time

it takes for the vehicles to fully cover the domain once (dashed line). The vertical

red lines indicate the times the snapshots were taken. This algorithm follows a

typical coverage curve seen for greedy algorithms, with approximately linear growth

in coverage early on, followed by slower asymptotic convergence to full coverage.
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Also of note is that the target capture rate is also approximately linear.

4.4 Experimental Results

I implemented the algorithm in hardware using a quadrotor testbed at the

Laboratory for Autonomous Systems Research located at the Naval Research Lab-

oratory. The testbed is composed of Ascending Technologies Pelican quadrotors

operated in a facility with 115 Vicon motion capture cameras. Figure 4.5 shows the

prototyping high bay where the experiments were conducted. The quadrotors are

equipped with active LED motion capture markers in order to be seen by the Vicon

cameras.

The quadrotors each have a downward facing Point Grey Chameleon 1.3

megapixel camera with a resolution of 1296 × 964 pixels. The camera is equipped

with a Tamron CCTV manual lens to adjust zoom and focus. The camera has a

global shutter to minimize motion blur and adjustable white balance and shutter

speed. The quadrotors have an onboard Linux computer that processes camera

frames at 15 Hz, which is limited by how fast images can be captured by the cam-

era. The binary signal sent to the LRT is whether or not a blob of a predetermined

color is in the image. For the experiments, the blobs were Sphero robots, a spherical

rolling toy which has an orange covering. Figure 4.6 shows an example of the blob

tracking software used to detect two Spheros in the field of view of the Point Grey

camera.

Pose and target information from each vehicle is sent to a laptop, which uses
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the Robot Operating System (ROS) [90] to process the data and compute control

commands in a control node. ROS is an open-source software architecture that

contains software libraries and tools to build robotic applications. The binary signal

is generated by using a standard blob segmentation algorithm [87] in a camera

processing ROS node onboard the vehicle. The vehicle also has a ROS node to handle

passing measurements to the control node running on a laptop as well as receiving

position and control commands from the external laptop and motion capture system.

Control commands are sent to the vehicle through a WiFi connection to the message

processing node at approximately 30 Hz. The full architecture for the experiment

is shown in Figure 4.7.

4.4.1 Single-Vehicle, Single-Target Experiment

To verify the algorithm using the hardware testbed, experiments were first

conducted with a single vehicle and a single moving target. Figure 4.8 shows a

snapshot of an experiment. The targets are seen using the Point Grey camera,

where the targets (and false alarms) were found in the image. The blob detections

are fed into the LRT to calculate the inverse log likelihood surface, from which the

desired control can be calculated. Once detected, any blob detected within a 0.5

m radius of the detected target are ignored by the LRT tracker. The Sphero was

commanded to move in a random walk, so multiple detections of the target were

possible.

In this experiment, the Sphero was detected three times as it performed the
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random walk. The locations where the target was detected are indicated by the red

crosses. Figures 4.8(a) and 4.8(b) show snapshots of the experiment at timesteps

k = 120 after the first detection and k = 220 after the third detection. The number

of targets captured over time is shown in Figure 4.8(c), where the vertical red

lines indicate the times of the snapshot shown in Figures 4.8(a) and 4.8(b). In a

real target-tracking application, once the target is detected using Algorithm 1 the

vehicle would switch to another controller to maintain a line-of-sight on the detected

target such that multiple detections become unnecessary. For illustrative purposes,

the vehicle in this experiment continued using Algorithm 1 even after a detection

was called. The single-vehicle experiments used the same gains that were used in

simulation; the Lennard-Jones potential was omitted as it is a purely collaborative

term.

4.4.2 Multi-Vehicle, Multi-Target Experiment

Multi-vehicle experiments were also conducted with stationary targets located

at (-0.25, -0.35), (1.60, 0.40), and (1.90, -1.00) meters. Figures 4.9(a) and 4.9(b)

show snapshots of the inverse log likelihood surface at time steps k = 60 and 155

with the position of the undetected targets shown as black crosses and detected

targets shown as red crosses. At the depicted timestep, there is one target that has

been recently detected, one that has yet to be discovered, and a third that in the

process of being detected. Figure 4.9(c) shows the number of targets captured and

the area covered over time. With two vehicles, all targets were captured within 200
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time steps and the vehicles covered the full domain in approximately 400 time steps,

which corresponds to 40 seconds.

Comparing Figure 4.4(c) to Figure 4.9(c), it is seen that the coverage rate in

the experiment follows the same patterns as the simulated experiments, i.e., initial

linear growth followed by asymptotic convergence. It was also determined that,

in general, the vehicles must have lower gains than in simulation. As observed by

comparing Figure 4.4(c) to Figure 4.9(c), lower gains result in a slower capture

rate. With higher gains, the vehicles tended to overshoot the targets before the

temperature was cool enough to slow down the vehicles. The discrepancy between

simulation and experiment can be explained by observing that the dynamics of the

quadrotors are inherently second-order, whereas the desired velocity stated in (4.6)

is for vehicles with first-order dynamics. The Pelicans approximate this control by

treating the output of (4.6) as a desired velocity to be achieved by the onboard

flight controller.
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Parameter Value Definition

N 10 number of agents

M 3 instantaneous number of targets

α 0.5 target diffusivity

σ 1.5 m repulsive threshold

ε 0.2 Lennard-Jones potential depth

T0 -15 ◦ target detection threshold

KP 5 gradient-following gain

KV 0.05 Lennard-Jones gain

vmax 0.3 m/s maximum agent speed

Pd 0.95 probability of detection

Pf 0.10 probability of false alarm

ρtarget α Sensor detection range

n 50 number of grid points

in each dimension

∆x 2/n grid spacing

∆t 0.03 s time step

Figure 4.3: Parameter values and definitions
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Figure 4.4: (a)(b) Snapshot of the simulation; (c) The number of targets captured throughout

the simulation and the amount of time taken to cover the entire domain once. Vehicles cluster

like solid molecules in cold regions near the target and explore randomly like gas particles in hot

regions, while flowing down the temperature gradient from hot to cold.

Figure 4.5: Prototyping high bay in the Laboratory for Autonomous Systems Research at the

Naval Research Laboratory.
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Figure 4.6: Processed camera image showing two orange Spheros identified using a color blob

detector.
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Figure 4.7: Hardware architecture for the experiments. The quadrotors run two ROS nodes to

process camera data and handle incoming position measurements and desired velocity. An external

laptop receives position and blob detection measurements to compute the temperature surface and

calculate the desired velocity.
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(a) Time step k = 120

(b) Time step k = 220
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Figure 4.8: (a)(b) Snapshot of the single-vehicle experiment; (c) The number of targets captured

throughout the experimetn and the amount of time taken to cover the entire domain once.
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(a) Time step k = 60

(b) Time step k = 155
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Figure 4.9: a)(b) Snapshot of the multi-vehicle experiment; (c) The number of targets captured

throughout the experiment and the amount of time taken to cover the entire domain once.
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Chapter 5: Distributed Sampling of Gaussian Processes

5.1 Problem Formulation

While the previous chapter used rotorcraft to sample a discrete process, this

chapter samples a continuous spatiotemoral process. In particular, I investigate the

use of an aerial, multivehicle, sensor network to sample a continuous spatiotemporal

field A(r), where the field is modeled as a Gaussian process with covariance func-

tion (2.6)is nonstationary. Specifically, I seek to provide optimal coverage of the

field, where the coverage is optimal in the sense that the measurement density is

proportional to the variability of the field. To determine when measurements are

redundant, I consider the footprint of a measurement, which is defined as the volume

in space and time contained in an ellipsoid centered at the measurement location

with principle axes equal to the decorrelation scales of the field. The coverage task

is illustrated in Figure 5.1, which depicts two vehicles taking measurements along

a circular trajectory in the space-time domain. The red and blue tubes along the

vehicles’ trajectories are the sensor swaths created by the measurement footprints.

Figure 5.1(a) shows the swaths for a stationary field and Figure 5.1(b) shows the

swaths for a nonstationary field in which the temporal scales contract at t = 10

hours. The first goal is to design the vehicle trajectories xk(t) and yk(t) so that the
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(a) (b)

Figure 5.1: Two vehicles traveling through (a) stationary and (b) nonstationary spatiotemporal

fields. The tubes represent the volume covered by sensor measurements.

swaths created by the set of all measurement footprints cover the entire field with

minimal overlaps or gaps when the decorrelation scales of the field vary in space and

time. Measurements contain Gaussian noise with zero mean and known variance.

The second goal is to optimally sample the field to determine the decorrelation scales

and the switch to a mapping formation, a notion known as explore versus exploit.

5.2 Sampling a Stationary Spatiotemporal Field

The sampling strategy presented in this dissertation relies on the ability to

sample a one-dimensional spatiotemporal field, as considered in [60] and reviewed

here. The field is modeled as a continuous spatiotemporal Gaussian process as de-

scribed in 2.2. Consider a closed path, where θk ∈ S1 is a path variable that denotes
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the non-dimensional location of the kth vehicle along the path. Each vehicle collects

measurements at a sufficiently high rate such that the time between measurements

is much less than the temporal decorrelation scale (to ensure that its sensor swath is

approximately continuous). Under speed control uk, the dynamics of the kth vehicle

is

θ̇k = uk(θ1, ..., θN) = uk(θ),

where θ = [θ1, · · · , θN ]T . Note, if the path is a circle of radius ρ, then rk =

(ρ cos θk, ρ sin θk, tk), where tk is time. Note that for the remainder of this chapter,

all dynamics are assumed to be first-order. In reality, multi-rotor systems behave as

a second-order system. This means that the controllers developed in this chapter are

treated as an input to a trajectory following controller or a flight stabilizer, which

are discussed in Chapter 5.

Since the vehicles sample uniformly in time, the mapping error is minimized in

a stationary field by traveling at maximum speed to place as many measurements as

possible in the domain, as further illustrated in [58, 60]. To determine the number

of vehicles necessary to optimally sample the domain, the sampling speed of the

vehicle is used, defined as [72]

sk = vk
τ

σ
, (5.1)

where vk is the vehicle speed and τ and σ = σx = σy are the temporal and spatial

scales of the field, respectively. Note that θ̇k = vk only when the vehicle is exactly

on the path.

In one spatial dimension (plus time), the sensor swath is the portion of the
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domain covered by the set of coverage ellipses generated along the sampling trajec-

tory. A sensor swath is considered spatially constrained if sk < 1 and temporally

constrained if sk > 1, as illustrated in [60]. Figures 5.2(a) and 5.2(b) show the sen-

sor swaths for spatially and temporally constrained sampling patterns, respectively.

(Vehicles exiting on the right reappear on the left since the path is closed.) The

(a)
Position

T
im
e

sk < 1

σ

2

(b)
Position

T
im
e

sk > 1

τ

2

(c)
Position

T
im
e

Figure 5.2: Sensor swaths for (a) spatially constrained and (b) temporally constrained vehicles in

a stationary field; (c) Tiling the domain with three spatially constrained vehicles ensures complete

coverage.

number of vehicles required to fully cover a closed path in a stationary domain is

determined by the value of sk as shown in [60].

Theorem 5.2.1 The minimum number N of vehicles with sampling speed sk re-

quired to cover a stationary, spatiotemporal field that is periodic in its one spatial
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dimension is

N =


d2π/σe if sk < 1,

dT/τe if sk ≥ 1,

where dxe is the smallest integer larger than x, and T = 2π/vk is the period of a

single revolution around the path that has nondimensional length 2π .

Proof As depicted in Figure 5.2, if the vehicle is spatially constrained, then σ

determines the swath width. Since (without loss of generality) the length of the

path is taken as 2π, the minimum number of vehicles needed to cover the domain

is the smallest integer greater than 2π/σ. If the vehicle is temporally constrained,

then τ determines the swath width and, if T is the period of one revolution, the

number of vehicles needed to cover the domain is the smallest integer greater than

T/τ .

To minimize the overlap in coverage, the vehicles are spaced evenly along the

path, as depicted in Figure 5.2(c), using a splay controller from [91], as follows.

Consider the splay phase potential

S(θ) ,

bN2 c∑
m=1

KmUm(θ), Km > 0, (5.2)

as used in [91], where bxc is the largest integer less than x ,

Um(θ) ,
N

2
|pmθ|2, and pmθ ,

1

mN

N∑
j=1

eimθj .

Choosing the control law

uk = − ∂S
∂θk

= −Km

N

N∑
j=1

bN2 c∑
m=1

1

m
sin(m(θk − θj)), (5.3)
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from [91], locally stabilizes the set of critical points of S, which includes the set of

splay formations [91, Theorem 7]. Note that, while the set of splay formations is

only one of the critical points of S, all other critical points are unstable [91], thus,

(5.3) will drive the vehicles to a splay formation. Also, adding a constant drift vector

field to the right-hand side of (5.3) to represent motion around the path does not

change the result [91], i.e., a term may be added to the right of (5.3) to represent

the vehicle speed. Hence, adding a constant (representing the steady-state speed of

the vehicle) to (5.3) allows us to drive the vehicles to a constant speed around the

path while maintaining a splay formation.

5.3 Transformation to a Locally Stationary Field

In this section, a nonlinear coordinate transformation is defined that renders a

nonstationary field locally stationary. The significance of this transformation is that

it permits the use of multivehicle sampling algorithms designed for use in stationary

fields. I derive two transformations, one for which the spatial decorrelation scales

are coupled, i.e., σx = σx(xk, yk) and σy = σy(xk, yk), and another for which the

spatial scales are decoupled, i.e., σx = σx(xk) and σy = σy(yk).

5.3.1 Coupled Decorrelation Scales

Let rk , [xk, yk, tk]
T be the space-time coordinates in the original domain,

called the r-domain, and Rk , [Xk, Yk, Tk]
T be a set of transformed coordinates

in a new domain, called the R-domain. Also, let G(V,E) be a lattice graph with
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nodes V placed at each Rk and undirected edges E connecting adjacent cells (the

four nearest neighbors in two dimensions). The lattice graph ensures that adjacent

nodes are locally stationary under the transformation. The goal is to find Rk such

that the field with covariance (2.6) becomes locally stationary, i.e., all adjacent

nodes in G are (approximately) stationary, as in [65]. Intuitively, this corresponds

to ensuring that the field is stationary in the neighborhood of each point Rk. Let

Σ̄(ri, rj) = (Σ(ri) + Σ(rj))/2, rij , ri − rj, and Rij , Ri − Rj. Thus, the relation

to satisfy is

|Σ(ri)|1/4|Σ(rj)|1/4√∣∣Σ̄(ri, rj)
∣∣ e[−r

T
ij(Σ̄(ri,rj))

−1rij] = e[−R
T
ijRij] (5.4)

between all adjacent points i and j. The left-hand side of (5.4) is the nonstationary

covariance function in the r-domain and the right hand side is the covariance func-

tion in the R-domain, which is desire to be stationary. Without loss of generality,

the spatial and temporal decrorrelation scales in the R-domain are chosen to be

σX = σY = τT = 1. Since the spatial decorrelation scales are coupled, the transfor-

mations are also coupled; however, the temporal component of (5.4) is decoupled,

by assumption. Let σxi , σx(xi, yi), σyi , σy(xi, yi), and τi , τ(ti). Then, (5.4)

yields the following two relations:

(Xi −Xj)
2 + (Yi − Yj)2 =

2(xi − xj)2

σ2
xi + σ2

xj

+
2(yi − yj)2

σ2
yi + σ2

yj

+ ln

[(
σ2
xi + σ2

xj

2σxiσxj

)(
σ2
yi + σ2

yj

2σyiσyj

)]
and (5.5)

(Ti − Tj)2 =
2(ti − tj)2

τ 2
i + τ 2

j

+ ln

(
τ 2
i + τ 2

j

2τiτj

)
. (5.6)

Equations (5.5) and (5.6) show how the space-time separation between two
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points in the R-domain depends on the nonstationarity in the r-domain. However,

to complete the spatial transformation another relationship is needed between Xij ,

Xi−Xj and Yij , Yi−Yj to separate (5.5) into two equations. I propose to use the

orientation between points in the R-domain and r-domain. The relation

tan

(
Yi − Yj
Xi −Xj

)
= tan

(
yi − yj
xi − xj

)
(5.7)

preserves the relative orientation between points i and j, which ensures that the

transformation will not rotate the coordinates in the R-domain, as it does in [65].

Substituting (5.7) in (5.5) yields

Xij = ±
[

2(xi − xj)2

σ2
xi + σ2

xj

+
2(yi − yj)2

σ2
yi + σ2

yj

+ ln

[(
σ2
xi + σ2

xj

2σxiσxj

)(
σ2
yi + σ2

yj

2σyiσyj

)]]1/2

×(
1 +

yi − yj
xi − xj

)−1

, dX,ij, (5.8)

Yij = ±
[

2(xi − xj)2

σ2
i + σ2

j

+
2(yi − yj)2

σ2
i + σ2

j

+ ln

[(
σ2
xi + σ2

xj

2σxiσxj

)(
σ2
yi + σ2

yj

2σyiσyj

)]]1/2

×(
1 +

xi − xj
yi − yj

)−1

, dY,ij, and (5.9)

Ti − Tj = ±
[

2(ti − tj)2

τ 2
i + τ 2

j

+ ln

(
τ 2
i + τ 2

j

2τiτj

)]1/2

, dT,ij. (5.10)

Equations (5.8)–(5.10) represent the transformation from the r-domain to the R-

domain. Note that the choice of plus or minus in (5.8)–(5.10) is arbitrary as it

represents flipping the new coordinates about the corresponding axis. Thus, the

positive root is used.

Let B be the incidence matrix of the lattice graph G. (5.8)–(5.10) are rewritten
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as

BTX = dX , BTY = dY , and BTT = dT , (5.11)

where dX is the vector of all terms dX,ij and dY and dT are defined similarly. These

equations are, in general, overdetermined. The least-squares solution to (5.11) is

obtained using the pseudoinverse:

X = (BBT )−1BdX , (5.12)

Y = (BBT )−1BdY , and (5.13)

T = (BBT )−1BdT . (5.14)

A coordinate transformation is locally stationary if equations (5.12)–(5.14) are sat-

isfied. The use of the lattice graph topology is justified since points with short

separation (in space or time) have a stronger impact on the mapping error than

points with large separation. I have also found the lattice topology to be particu-

larly sensitive to nonstationarities in the r-domain; higher connected graphs tend

to concentrate measurements less.

The inverse transformation from the R-domain to the r-domain is solved by

creating a lookup table as follows. A uniform grid is created in the r-domain and

mapped to the R-domain using (5.12)–(5.14), which produces a nonuniform grid of

locations in the R-domain. Trajectories generated in the R-domain are discretized

and mapped back to the r-domain by interpolating this grid.

Theorem 5.3.1 The coordinate transformation given by (5.12)–(5.14), with B as

the incidence matrix of a lattice graph and the entries of dX , dY , dT given by (5.8)–
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(5.10), renders a nonstationary field with covariance (2.6) locally stationary. Fur-

thermore, the transformation exists if σx(x, y), σy(x, y), and τ(t) are positive; it is

invertible if the derivatives dX,ij/dxi, dX,ij/dxj, dX,ij/dyi, and dX,ij/dyj are greater

than zero (and similarly for dY,ij and dT,ij).

Proof The lemma is proved for (5.10); the proof is similar for (5.8) and (5.9). The

transformation renders the field locally stationary because it satisfies (5.12)–(5.14).

To prove existence, equation (5.10) is written as

Ti − Tj =
1

2
ln

(
τ 2
i + τ 2

j

2τiτj
exp

[
2(ti − tj)2

τ 2
i + τ 2

j

])
.

If τi and τj are positive, then the natural log is real, and hence the forward trans-

formation exists. If dT,ij/dti, dT,ij/dtj > 0, then dT,ij is a strictly increasing function

of ti and tj. This implies that dT,ij is one-to-one and invertible.

Figure 5.3 shows an example of the two-dimensional spatial transformation using

decorrelation scales σx and σy of the form

σx = σy = σ0 − µ1

A∑
a=1

e−µ2((xk−x0,a)2+(yk−y0,a)2), (5.15)

where a = 1, ..., A is the index of A nonstationarities, and x0,a and y0,a are their

locations. The above function represents a varying spatial decorrelation scale where

“dips” in the scale are centered at (x0,a, y0,a). On the right is the r-domain, which

has a square boundary. When the r-domain boundary is mapped to the R-domain, it

generates a new, curved boundary as shown in Figure 5.3. A uniform grid mapped

from the R-domain to the r-domain shows how space is warped to concentrate

measurements near the nonstationarity at (3,3).
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R-domain r-domain

Figure 5.3: Example of the spatial transformation given by (5.12)–(5.13) with a nonstationarity of

form (5.15).

5.3.2 Decoupled Decorrelation Scales

Next, consider when the spatial decorrelation scales are decoupled, i.e., σxi =

σx(xi) and σyi = σy(yi). In this case, (5.8)–(5.10) reduce to

Xi −Xj =

[
2(xi − xj)2

σ2
xi + σ2

xj

+ ln

(
σ2
xi + σ2

xj

2σxiσxj

)]1/2

, (5.16)

Yi − Yj =

[
2(yi − yj)2

σ2
yi + σ2

yj

+ ln

(
σ2
yi + σ2

yj

2σyiσyj

)]1/2

, and (5.17)

Ti − Tj =

[
2(ti − tj)2

τ 2
i + τ 2

j

+ ln

(
τ 2
i + τ 2

j

2τiτj

)]1/2

. (5.18)

For a lattice topology with decoupled decorrelation scales, j = i + 1, i.e., Xj =

Xi + ∆Xi, xj = xi + ∆xi (and similarly for Y , y, T , and t). The following result

provides an analytical representation of (5.16)–(5.18) in the continuous limit as the
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lattice spacing goes to zero.

Theorem 5.3.2 The following coordinate transformation for a nonstationary field

with covariance (2.6) and decoupled decorrelation scales ensures the R-domain is

locally stationary:

Xk =

xk∫
0

1

σx(x′)
dx′, (5.19)

Yk =

yk∫
0

1

σy(y′)
dy′, and (5.20)

Tk =

tk∫
0

1

τ(t′)
dt′. (5.21)

Furthermore, the transformation (5.19)–(5.21) exists and is invertible if σ(xk), σ(yk),

and τ(tk) are positive, bounded, and continuous functions.

Proof Assuming j = i + 1, i.e., Xj = Xi + ∆X and xj = xi + ∆x, then (5.16)

reduces to

∆X =

(
2(∆x)2

σ2(xi) + σ2(xi + ∆x)
+ ln

(
σ2(xi) + σ2(xi + ∆x)

2σ(xi)σ(xi + ∆x)

))1/2

.

Dividing both sides by ∆x and taking the limit as ∆x,∆X → 0 yields

dXk

dxk
=

1

σ(xk)
.

Integrating both sides yields the desired result. (The derivation of the temporal

transformation is similar.) If σk and τk are bounded and continuous, then the

integrals in both transformations exist. If the decorrelation scales are both positive,

then Xk, Yk, and Tk are increasing, invertible functions of xk, yk, and tk.
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Either the numerical or analytical form of the transformation presented above can be

used for sampling a nonstationary spatiotemporal field, but the numerical transfor-

mation has the advantage that it is valid for any function of the decorrelation scales

(as long as they are continuous and positive); however, it has (relatively) stringent

conditions for invertibility. The analytical transformation is always invertible when

the decorrelation scales are positive, but it is only valid when the spatial scales are

decoupled. The analytical form of the transformation is of particular importance

when regarding the sampling speed of the vehicles. In the next section, I show

that performing control action in a domain that is transformed according to Lemma

5.3.2 drives vehicles to a constant sampling speed in the r-domain, which simplifies

mission planning.

5.4 Multivehicle Coverage Control

In the previous section, a numerical transformation and its continuous limit

(where the grid spacing is reduced to zero) are derived under which a nonstationary

spatiotemporal field is rendered locally stationary. In this section, I design a multi-

vehicle coverage algorithm that invokes the transformation to generate nonuniform

sampling trajectories. Note, again, that the control laws developed here are used

as input to a trajectory tracking and flight stability controller on the rotorcraft. I

first implement a multivehicle controller that uniformly covers the R-domain. The

resulting trajectories are mapped back to the r-domain.

To ensure that the R-domain is uniformly covered with no gaps or overlaps
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between sensor measurements, I employ a coverage algorithm called Spanning Tree

Coverage (STC), introduced in [92].1 Intuitively, the algorithm works like a lawn-

mowing algorithm along a closed path. Path closure is crucial due to the temporal

nature of the field; locations are revisited to ensure that the temporal variation of

the field is captured. The STC algorithm is summarized as follows. Let D be a

spatial domain that is divided into square cells of size 2σ, where the constant σ will

later be chosen to be the spatial decorrelation scale. Let G(V,E) be a lattice graph

with nodes V placed at the center of each cell and undirected edges E connecting

adjacent cells. Starting in initial cell S, create a spanning tree for G, i.e., a graph

with the maximal set of edges of G that contains no cycles. Then, the set of points

that are a distance σ away from the spanning tree creates a closed path around the

spanning tree. Since the spanning tree is formed using nodes that are 2σ apart, and

the path is always σ/2 away from the tree, a vehicle with sensor size σ is guaranteed

to cover the entire domain with no gaps or overlaps in the coverage. As an example,

consider the spatial scale function given by (5.15) and the sampling boundary in

Figure 5.3. Figure 5.4 shows the spanning tree and generated path in the R-domain

(left) and the r-domain (right).

Next, I seek to steer a set of mobile vehicles to motion along the path generated

1Any algorithm that generates a single closed path that guarantees spatial coverage could

potentially be used in lieu of the STC algorithm. I select this algorithm as opposed to classical

lawn-mowing or milling [93], because it works for any simply connected spatial domain and allows

us to apply intuition from sampling of stationary fields to nonstationary fields because the paths

generated by the algorithm are closed.
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Figure 5.4: Example of the spatial transformation (5.12)–(5.13) with the generated STC path.

by the STC algorithm. Assume there is a mapping that converts the path coordinate

θk to the location on the path (Xp
k , Y

p
k ), i.e., Xp

k = f(θk) = fk and Y p
k = g(θk) =

gk, where fk and gk are differentiable everywhere. Given the path from the STC

algorithm, fk and gk can be found numerically using a lookup table from the path

coordinate to Xp and Yp. The lookup table is created by discretizing the path

and associating with each discrete point a value of θk such that θk increases in

the counterclockwise direction. Consider the spatial coordinates (lk, θk) in the R-

domain, where lk is the shortest distance between the vehicle and the path and θk

is the distance along the path from an arbitrary fixed point θ0. These coordinates

are illustrated in Figure 5.5.

Using the (lk, θk) coordinates I design a distributed gradient controller to sta-

bilize a set of vehicles to the desired cross-path and along-path motion. Let the
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Figure 5.5: Control coordinates in the R-domain.

kinematics of the kth vehicle be

dlk
dTk

= ul,k and
dθk
dTk

= uθ,k. (5.22)

Accordingly, there is the following result.

Theorem 5.4.1 Consider the vehicle dynamics (5.22), where k = 1, ..., N , along a

smooth, closed path. Assuming that lk and θk are unique, choosing

ul,k = −dV
dlk

and uθ,k = s0 −
dS

dθk
, (5.23)

where V = 1
2

N∑
k=1

l2k and S is given by (5.2), stabilizes the set of splay formations

along the path with constant speed s0.

Proof The dynamics of lk and θk are decoupled, so their stability properties are

determined independently. The closed-loop θk dynamics are studied in [91], which

establishes that the system converges to the critical set of S, including the set of

splay formations. For the lk dynamics, the derivative of V with respect to time Tk

is negative semi-definite and zero only when lk is zero. Application of the invariance

principle from [73] completes the proof.
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Note that θk may not be uniquely defined depending on f(θk) and g(θk). The STC

algorithm gives paths that resemble lawnmower patterns (as shown in Figure 5.4),

so the non-unique points sit on lines that are equidistant from two tracks. If a

vehicle does happen onto one of these locations, the value of θk that is closest to

the value of θk at the previous time step is used to ensure continuity. I have found,

in simulation, that vehicles pass unaffected through these problematic points when

using this strategy.

In order to implement (5.22), the control is converted to the (Xk, Yk) coordi-

nates. I start by defining the normal vector en (using a Frenet-Serret path frame as

in [94]) at the kth location:

en = −dgk
dθk

ex +
dfk
dθk

ey,

where ex and ey are orthogonal unit vectors in an inertial frame. Using Figure 5.5,

Xk = Xp
k + lk cosαk and Yk = Y p

k + lk sinαk, (5.24)

where αk is the angle between en and ex.

Taking the derivative of (5.24) with respect to Tk yields

dXk

dTk
=
dfk
dθk

dθk
dTk

+
dlk
dTk

cosαk − lk
dαk
dθk

dθk
dTk

sinαk and

dYk
dTk

=
dgk
dθk

dθk
dTk

+
dlk
dTk

sinαk + lk
dαk
dθk

dθk
dTk

cosαk,

where

dαk
dθk

= −
(

1 +

(
dfk
dθk
dgk
dθk

))−1
 dgk
dθk

d2fk
dφ2
− dfk

dθk

d2gk
dθ2k(

dgk
dθk

)2

 .
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The control in the R-domain is

dXk

dTk
=
dfk
dθk

uθ,k + ul,k cosαk − lk
dαk
dθk

uθk sinαk = uX,k, (5.25)

dYk
dTk

=
dgk
dθk

uθ,k + ul,k sinαk + lk
dαk
dθk

uθ,k cosαk = uY,k. (5.26)

Table 5.1 contains a pseudocode version of the Multivehicle Coverage Control Algo-

rithm. The inputs are the boundary of the r-domain, the decorrelation scales and

the initial positions of all the vehicles. The output is the set of trajectories that the

vehicles follow in the r-domain.

Table 5.1: Multivehicle Coverage Control Algorithm

Inputs: Boundary of r-domain, σx(xk, yk), σy(xk, yk),

τ(tk), vehicle initial conditions for all k = 1, ...,M

Outputs: Vehicle trajectories in the r-domain

1: Calculate R-domain boundary using (5.12)–(5.14)

2: Transform initial conditions to R-domain using (5.12)–(5.14)

3: Create lattice graph within boundary of R-domain

4: Use STC algorithm to construct path in the R-domain

5: Transform R-domain initial conditions to path coordinates (θk, lk)

6: Integrate (5.22) using gradient control (5.23)

7: Transform trajectories from path coordinates

(lk, θk) in R-domain to (Xk, Yk) coordinates

8: Transform trajectories to r-domain by numeri-

cally inverting using (5.12)–(5.14)

To illustrate the algorithm, I performed a simulation of twelve vehicles with

random initial conditions. Figure 5.6(a) shows the values of θk and lk for each

vehicle, which reach a splay formation along the path. Figure 5.6(b) shows the

steady-state trajectories in the R- and r-domains. The red circles represent vehicles

and the green lines show their recent trajectories. In steady-state, in the R-domain

(on the left of Figure 5.6(b)), it is seen by examining the green tail that the vehicles

reach a splay formation around the blue path. The trajectories in the R-domain are
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Figure 5.6: Coverage algorithm example using (5.25) and (5.26).
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transformed back to the r-domain by numerically inverting transformation (5.12)–

(5.14), shown on the right of Figure 5.6(b). In the r-domain, vehicles cluster their

measurements in the area of the dip to ensure that the full domain is covered, even

in areas where the spatial and temporal decorrelation scales are small.

In the special case where the spatial scales are decoupled, the following theorem

shows that this coverage strategy corresponds to preserving the along-path steady-

state sampling speed in the r-domain.

Theorem 5.4.2 If the spatial decorrelation scales are decoupled and the R-domain

coordinates are given by (5.19)–(5.20), then the coverage-control strategy in Propo-

sition 5.4.1 preserves the steady-state sampling speed sk = s0 for all k.

Proof In steady state, ul,k = lk = 0 and uφ,k = s0. The controls uX,k and uY,k

become

uX,k = s0 cosαk and uY,k = s0 sinαk.

In the R-domain,

ẋ =
dxk
dXk

dXk

dTk

dTk
dtk

= s0 cosαk
σx(xk)

τ(tk)
,

ẏ =
dyk
dYk

dYk
dTk

dTk
dtk

= s0 sinαk
σy(yk)

τ(tk)
.

The speed and direction of motion of the kth vehicle are

vk =
s0

τ(tk)

√
σ2
x(xk) cos2 αk + σ2

y(yk) sin2 αk, (5.27)

and its direction of motion is

βk = arctan

(
ẏk
ẋk

)
= arctan

(
σy(yk)

σx(xk)
tanαk

)
. (5.28)
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The sampling speed for a vehicle in a nonstationary field is

sk = vk
τ(tk)

σc(xk, yk)
, (5.29)

where σc is the cross section of the measurement footprint along the direction of

motion of the vehicle. Using (5.28) and trigonometric relations, the along-path

spatial decorrelation scale is

σc =
√
σ2
x(xk) cos2 αk + σ2

y(yk) sin2 αk. (5.30)

Substituting (5.27) and (5.30) into (5.29) shows that sk = s0 for all k, which com-

pletes the proof.

In steady-state, the vehicles travel around a closed path, so the number of vehicles

can be selected as described in Section 5.2. In particular, the steady-state sampling

speed is chosen so that the maximum required vehicle speed does not exceed the

vehicle speed limit. Figure 5.7 shows a simulated sampling task and the resulting

mapping error. There is a dip in the decorrelation scales centered at x0,1 = y0,1 = 0

km, and t = 12 hours. Five vehicles travel along a closed path in the r-domain. The

blue curve on the t = 0 plane shows the spatial path that the vehicles track. The

average mapping error is 0.271 using uniform coverage (Figure 7(a)) and 0.178 when

using the nonstationary sampling algorithm (Figure 7(b)). Likewise, the maximum

error is reduced from 0.983 to 0.768.
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(a) (b)

Figure 5.7: Mapping error of a 3D nonstationary spatiotemporal field using (a) uniform sampling

and (b) the nonstationary sampling algorithm in Table 1.

5.5 Lag Space for Formation Control

The covariance function is dependent on the spatial separation (lag) between

ri and rj, defined as αk = ri − rj. In order to quantify the performance of a

given mapping mission the mapping error is calculated, for which the spatial and

temporal decorrelation scales of the field are needed. However, this means that I

want the vehicles to be placed at a variety of locations so that the lags between

vehicles completely cover the range in which the true decorrelation scale lies. This

desire is contrary to the goal of generating an accurate map of the field, because

optimal mapping requires all of the lags to be at one location; specifically, mapping

vehicles should be placed in a splay formation around the path so that they are
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spaced equally [58, 60]. Thus, there is a need to explore the field to determine the

decorrelation scales before exploiting the knowledge of the scales to optimally cover

the field.

Figure 5.8 shows hows a plot of the covariance function (2.6) in lag space, where

the temporal portion of the function has been neglected for simplicity. Lag space is

defined as the domain of distances between vehicles. The blue + shows where all

the lags should be placed for optimal mapping. For optimal mapping, the vehicles

are in splay, i.e., at a lag of 2π/N , where N = 6 is the number of vehicles. The

red circles show where they should be placed to estimate the spatial decorrelation

scale if there is no prior information about σ, i.e., the vehicles are spaced at specific

intervals so that they are in splay in lag space. The decorrelation scales must first

be determined before transitioning the vehicles into a splay formation for accurate

mapping. Note, for a stationary field it is not necessary to cover the field while

estimating the scales since the scales are the same everywhere, but it does become

important for mapping nonstationary fields.

To optimally determine the decorrelation scale of the fields, the vehicles need

to be in a splay formation in lag space. Figure 5.9 shows the difference between

lag splay (Figure 5.9(a)) and vehicle splay (Figure 5.9(b)) on a closed path. For

determining the decorrelation scale, it is also desirable to cover the entire domain.

Thus, in this section I design a controller to drive vehicles to lag splay on a circle

that is off-center in a rotating reference frame, i.e., the circular path to which the

vehicles are driven rotates around the origin as depicted in Figure 5.10. In the

inertial frame, the vehicles follow a spirograph trajectory. The end result is that the
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Figure 5.9: Difference between (a) lag splay and (b) vehicle splay.
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vehicles maintain lag splay, but also cover the space due to the rotation of the path

around the origin.

To stabilize to the lag splay formation on a circle, the vehicles use a controller

that is similar to that used for following the STC generated path. The cross path

controller is the same as the one proposed in Theorem 5.4.1. However uθ,k must

be modified to achieve lag splay. The following controller is used in the along-track

direction to stabilize to lag splay

uθ,k = −k sin(αk − αd,k), (5.31)

where αd,k is the desired lag between vehicles k + 1 and k. This drives the vehicles

to a formation where the lags between vehicles are in splay as depicted in Figure

5.9(a).

Both the along-track and cross-track controllers must compensate for the ro-

tation of the circle around a fixed point, denoted rc = (xc, yc), at rotation rate ωc.

To do this (5.25)–(5.26) are modified as follows:

Ẋk = uX,k + ωc||rc − rk||(xc −Xk) (5.32)

Ẏk = uY,k + ωc||rc − rk||(yc − Yk) (5.33)

The second term in the above equations account for the rotation of the circular

path.
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Figure 5.10: Spirograph formation used for maintaining lag splay while covering the domain.

5.6 Bayesian Estimation of Decorrelation Scales

I use a recursive Bayesian filter to estimate the decorrelation scales at each

time step [95]. Consider the likelihood function [96]

P (z|σ, τ) = ez
TM−1(σ,τ)z, (5.34)

where z = [z1, · · · , zD]T contains all of the available measurements and M−1(σ, τ) is

the measurement covariance (see section 2.2. The likelihood function (5.34) assumes

that the random field A is a Gaussian process with zero mean; it is commonly used

in the prediction of Gaussian processes from collected measurements [96]. The

maximum likelihood estimate of σ and τ , denoted σ̂ and τ̂ , is the mode of the

posterior distribution [96]

P (σ, τ |z) = aP (z|σ, τ)P (z), (5.35)
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where P (z) is the prior and a =
∫
P (z|σ, τ)P (z)dz. The marginal probability of σ

over all τmin ≤ τ ≤ τmax is

Pσ =

τmax∫
τmin

P (z|σ, τ)dτ, (5.36)

For details on the recursive Bayesian estimator, please see Section 2.1.

5.7 Optimal Exploration vs. Exploitation

A metric is needed in order to switch from decorrelation scale estimation to

mapping. The metric used in this dissertation is based on the Kullbach–Leibler

divergence between the posterior distribution of the scale estimate and a Dirac

delta function. The metric is

K =

∫
Pσ log (Pσ/Pδ)dσ∫
Pσ log (Pσ/P1)dσ

, (5.37)

where Pδ = δ(σ − σ̂) is a Dirac delta function centered at the mode of Pσ and P1

is a uniform distribution. (A narrow Gaussian distribution is used to approximate

Pδ because locations of zero probability yields a singular KL divergence.) Equation

(5.37) is the KL divergence between Pσ and Pδ normalized by the KL divergence

between Pσ and a uniform distribution. Thus, if there is little or no known informa-

tion about the decorrelation scales, the numerator and denominator of (5.37) will be

similar and K will be close to one, whereas if Pσ is narrow, then the numerator will

be much less than the denominator and K ≈ 0. To switch from scale estimation to

mapping, (5.37) is compared to a threshold, i.e., when K < Kthresh, the formation

switches to mapping using the STC algorithm with the estimated scale.
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Figures 5.11 and 5.12 show snapshots a simulation of the estimation/mapping

system for a 2D stationary field. In each figure, the top left shows the mapping

error (2.7), the top right shows the posterior distribution over time, the bottom left

shows the KL divergence metric, and the bottom right shows the quantities

Pθ =
1

N

N∑
j=1

(exp(iθj)) (5.38)

Plag =
1

N

N∑
j=1

(exp(ilj)), (5.39)

where lj is the jth lag. Equations (5.38) and (5.39) are when the vehicles are in

splay and lag splay respectively. Figure 5.11 shows the simulation at time step 89,

when the vehicles are in explore mode, and Figure 5.12 shows when the vehicles at

the final time step when they are in exploit mode.

There are several interesting features of the algorithm seen in the simulation.

First is that there is a sharp decrease in the mapping error once the vehicles switch

from explore to exploit, almost a 50% decrease in error. The other apparent feature

is that the slope of the KL divergence metric is higher when in explore mode.

This implies that starting with the vehicles in lag splay means that the spatial

decorrelation scale will be estimated faster than it would be in explore mode.

The extension of the algorithm to nonstationary fields is natural. There are

only two changes. First. the recursive Bayesian estimator is now estimating several

parameters. In the case of the dip function, this would include the base decorrelation

scale, the cartesian location of the dip, the strength of the dip, and its width. The

second change is that once the KL divergence metric lowers below the threshold,

the vehicles switch to an STC formation using the same formulation as that for a
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Figure 5.11: Snapshot of explore and exploit simulation for a stationary field at time step 89.
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Figure 5.12: Snapshot of explore and exploit simulation for a stationary field at time step 800.
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field with known decorrelation scales.
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Chapter 6: Conclusion

In this dissertation, I discussed and developed capabilities for mulit-agent

teams of autonomous unmanned rotorcraft for sampling spatiotemporal processes.

The dissertation treats these rotorcraft as sensor packages capable of hover and fast

transit. The purpose of this work is to design robust algorithms for sampling spa-

tiotemporal processes in the presence of strong winds using multi-rotor systems.fdsa

6.1 Summary of Results

I design estimators and controllers to guide a multi-agent aerial team to op-

timally cover a nonstationary spatiotemporal field, where the decorrelation scales

of the field can change in space and time. This section of work uses the concept

of exploration versus exploration, where vehicles first explore the region to deter-

mine the decorrelation scales, then switch to optimal mapping based on the results

of the scale estimation. The exploration strategy moves the vehicles in a rotat-

ing spirograph trajectory with the vehicle spacing decided to best sample the field

for scale determination. The mapping strategy involves using the estimate of the

decorrelation scale to create a persistent path through the domain using a spanning

tree coverage algorithm. The developed algorithm works for both stationary and
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nonstationary 2D spatiotemporal fields modeled as a Gaussian process.

Analysis of the explore vs. exploit mapping algorithms shows that the team

benefits from first determining the decorrelation scales using a spirograph formation

before transitioning to the spanning tree based coverage algorithm. This is apparent

by examining the average mapping error, which is relatively high while determining

the scales, but drops rapidly once the vehicles transition to mapping.

I also created a physics-inspired algorithms for optimal exploration of a 2D

domain for the purpose of detecting an unknown number of moving targets using a

low-quality camera as the sensor. This work relies on the Likelihood Ratio Tracker,

a modified version of a recursive Bayesian estimator, to detect targets based on

binary measurements from a camera. Vehicle motion is coordinated to maximize

the probability of target detection. The algorithm was tested both in simulation

and using an experimental motion capture based testbed.

A closer inspection of the theoretical properties of the target detection strat-

egy coupled with the physics based controller showed the optimality of moving the

vehicles along the gradient of the LRT surface. In particular, moving the vehicles

along the gradient of the surface maximizes the expected gain in information, i.e.

the mutual information, for the next time step.

With both sampling problems discussed in this dissertation, there is still the

issue of robust flight. As a first step in developing robust flight controllers, I designed

several controllers for flight stability in windy environments. Specifically, I used

nonlinear feedback linearization to create a layered flight controller to compensate

for external wind fields. The controller, which was tested in simulation, was shown
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to reduce the overshoot and settling time of a rotorcraft that is perturbed by an

external flowfield. This is true even in the case when the wind speed must be

estimated using a recursive Bayesian estimator.

In addition to the stability controllers, I also designed a artificial potential

based controller for the purpose of avoiding nearby multi-rotor systems by detecting

their downwash. This controller uses a recursive Bayesian estimator to determine

the position of a nearby rotorcraft by measuring its downwash. The downwash

avoidance algorithm was tested in a motion capture testbed using pitot tube type

pressure sensors to determine the airspeed. Experiments showed that the controller

allowed the vehicle to successfully avoid nearby rotorcraft.

6.2 Suggestions for Future Work

While this dissertation has addresses several problems in sampling and esti-

mation using multi-rotor aerial vehicles, it by no means completely solves all related

issues. In particular, there is much experimental validation to be performed on the

flight stability algorithms, as well as augmenting the algorithms to use other avail-

able sensors, such as inertial measurement units or readily available optical flow

sensors.

In the area of sampling nonstationary Gaussian processes, there is work to be

done in distributing the calculation of the map and the associated mapping error.

Additionally, while the STC algorithm has proven useful, there are other coverage

strategies, such as optimal foraging or information gathering, that may also lend
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themselves easily for this purpose.

For the target detection work, the presented algorithms is distributed with an

all-to-all communication architecture. As such, it would be interesting to develop a

strategy for distributively merging measurements taken by all the vehicles using a

different architecture, such as range limited or nearest neighbor communication.
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