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A source of accurate and reliable heading is vital for the navigation of au-

tonomous systems such as micro-air vehicles (MAVs). It is desirous that a passive

computationally efficient measure of heading is available even when magnetic head-

ing is not. To confront this scenario, a biologically inspired methodology to deter-

mine heading based on atmospheric scattering patterns is proposed. A simplified

model of the atmosphere is presented, and a hardware analog to the insect Dorsal

Rim Area (DRA) photodetection is introduced. Several algorithms are developed

to map the patterns of polarized and unpolarized celestial light to heading relative

to the sun. Temporal information is used to determine current solar position, and

then merged with solar relative heading resulting in absolute heading. Simulation

and outdoor experimentation are used to validate the proposed heading determi-

nation methodology. Celestial heading measurements are shown to provide closed

loop heading control of a ground based robot.
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Chapter 1: Introduction

Autonomous Unmanned Air Vehicles (UAVs) are capable of executing a large

and diverse array of tasks, both military and civilian. UAVs have been used and are

being developed for applications including military intelligence reconnaissance and

surveillance (ISR), hazardous chemical detection, disaster relief, commercial delivery

service, and farming. Much of recent research has focused on developing Micro Air

Vehicles (MAVs), small UAVs designed to nimbly negotiate cluttered environments

at low altitudes while remaining relatively covert.

A reliable navigation system is vital to the success of a UAV mission. Finding

a suitable method for UAV navigation is especially challenging for smaller UAVs

such as MAVs which have a very limited payload capacity and are thereby con-

strained by computational power and weight. Additionally, MAVs often function

around buildings where electromagnetic interference can disrupt magnetic based

heading measurements. Furthermore, GPS frequently cannot, or is preferred not

to be used. This means that common navigational strategies employing GPS and

magnetic compass are not always appropriate solutions.

Several visual methods have been developed to assist UAV navigation in GPS

denied scenarios including Simultaneous Localization and Mapping (SLAM), optic
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flow, and path integration techniques. SLAM is a very useful technique for getting

complete situational awareness of a limited area, however it is rather computa-

tionally cumbersome, and is prone to accumulation in position estimation errors

without some sort of loop closure method. Optic flow has proven to be a very com-

putationally light obstacle avoidance tool, however optic flow is a relative measure

and requires fusion with additional sensors to provide more useful distance or head-

ing measurements. Path integration is the name given to the type of dead reckoning

methods that animals are thought to use for navigation. However, all dead reckon-

ing methods are prone to error accumulation over time without a way to accurately

measure heading or distance.

It is supposed that many of nature’s MAVs, including insects [1] [2] [3], birds

[4], fish [5] [6], and even bats [7], are able to overcome these navigational challenges

by making use of the predictable pattern of atmospherically scattered light. These

celestial cues are used to determine solar relative heading. Insects, equipped with

an internal clock in the form of circadian rhythm [8] [9], are able to locate where

the sun should be at any given time of the day. Absolute heading is then resolved

by summing solar azimuth with current heading relative to the sun.

The objective of this thesis is to develop and compare strategies for utilizing

atmospheric scattering patterns for navigation based on biological principals. These

methods are developed in a simulation environment, and then analyzed through

outdoor testing. Autonomous real time heading control, using atmospheric heading

determination methods, is then demonstrated on a ground based robot and through

simulation of a quadrotor.
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1.1 Celestial Navigation in Nature

In the mid 1940’s, Karl von Frisch noticed that after a single honeybee leaves

a feeding ground, a swarm of bees often returns to feed at that same location [10].

This observation instigated several questions. Did the initial honeybee somehow

communicate the whereabouts of the food to his companions? If so, how was this

information encoded? Several studies have led to the conclusion that honeybees are

able to disclose the location of a food source to the rest of the hive by performing a

“waggle dance [11]”.

The dance codes a vector including the current heading angle relative to the

sun and the amount of energy, as a function of wind conditions, needed to get to

the desired destination. The angle of the dance changes over the course of the day

indicating that honeybees keep track of solar position changes. Successful communi-

cation was shown to rely on the bees’ ability to see a small portion of blue sky from

the hive. The sun itself did not need to be seen [12]. It was thus concluded that

honeybee navigational cues are based on atmospheric scattering patterns [13] [14],

specifically relying on the angle of polarization.

Behaviors, indicating the use of atmospheric scattering patterns, have been

observed in several other species including crickets [15], birds [4], bats [7], desert

ants [16], and the migrating desert locust [17]. Monarch butterflies have also been

shown to rely on celestial cues for navigation [18] [19]. However, while monarch

butterflies are sensitive to polarized light, they primarily rely on the sun itself as a

celestial navigational cue [20].
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The anatomical origin for polarization vision in insects is the Dorsal Rim Area

(DRA) of the compound eye [21]. Insects who employ atmospheric scattering pat-

terns possess a uniquely structured DRA where Microvilli of each rhabdomere are

arranged in linear rows. The majority of rhabdomers within an ommatidium have

microvilli oriented in a single primary direction, while the remaining rhabdomers

have microvilli oriented in a secondary orientation perpendicular to this primary

direction. The primary directions of ommatidia are arranged in a fan-like pattern

across the DRA [22]. In this way, the highly structured monochromatic photode-

tectors of the DRA essentially act as a wide field array of linear polarizing filters.

It is supposed by many that the signals from the secondary perpendicular direction

are subtracted from the primary signals thereby feeding through only the polar-

ized component of the light, or the second Stokes parameter. This is known as

polarization opponency. Across species, the wavelength of peak sensitivity for these

photodetectors is in the blue to UV range. This is likely due to the fact that the

atmospheric scattering pattern of smaller wavelength light is less affected by clouds.

Photodetection in the DRA is the initial stage in a polarization sensitive (POL)

sensory-motor pathway that resolves spatial celestial cues into yaw commands. Po-

larization sensitive neurons are easily distinguishable from other neurons since they

respond sinusoidally to angle of polarization. From the DRA, polarization informa-

tion passes into the Optic Lobe (OL) consisting of the Lamina and the Medulla.

Extensive research has been performed here on what have been termed he POL1

neurons in crickets [21]. Three “types” of POL1 neurons have been found in each

compound eye of the cricket [23], each type with a different polarization tuning angle
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at approximately 10◦, 60◦, and 130◦. However, since there is currently no evidence

that these POL1 neurons connect to the central complex [24], it is uncertain what

the function of these neurons are.

Additional inputs to this pathway include temporal information extracted from

circadian rhythm [8], and non-polarized light information. Circadian rhythm infor-

mation allows the insect to compensate for changes in the pattern of atmospheric

scattering due to the migration of the solar azimuth throughout the day. As the

pattern of polarized light can be nearly symmetric, the patterns of unpolarized light

can allow an insect to distinguish between the solar and anti-solar hemispheres. It

is possible that some insects recognize the solar hemisphere as the region in the sky

possessing the greatest overall intensity. Evidence suggests that the desert locust can

identify the anti-solar hemisphere by its higher concentration of short wavelength

light, and the solar hemisphere by its higher concentration of larger wavelength

light [25]. Temporal and chromatic information are integrated with polarization

signals from both eyes in the Anterior Optic Tubercle (AUTu) [26].

Processing of the signals from the polarization pathway into compass direc-

tion takes place in the Central Complex (CC) [27]. Here, there are highly organized

arrays and stacks [28] of neurons which possibly correspond to a “maplike represen-

tation of the sky [29].” Evidence suggests that the CC is the location of the internal

“sun compass” of the insect [30]. It is possible that the stacks of the protocerebral

bridge code for different e-vectors, and population coding is used to resolve the re-

sponses from the neuron stacks into a single e-vector. Compass signals from the CC

are then sent down the descending motor pathways to produce yaw responses [31].
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Figure 1.1: Flow diagram model of resolution of polarized light into yaw

response

Sakura et al. [32] propose a neural network model of how the resolution of POL1

neuron signals is increased over several stages of neurons, and how the CC resolves a

single e-vector from this information. An electrophysiological study is performed to

support their claim that some form of population code is used to represent e-vector

direction in the CC.

1.2 Detecting Atmospheric Scattering Patterns

The idea of employing atmospheric scattering patterns for navigation is not

new. Vikings [33] who sailed near the North Pole where earth’s magnetic poles are

hard to detect, are said to have used a “sunstone”, which essentially acted as a

linear polarizing filter, for a compass. The “solar compass” was developed in 1851

to allow surveyors and minors to find true north from the sun when surrounding

iron deposits interfered with magnetic north. Early pilots who flew around the north

pole adapted similar compasses. A “sky compass” based on polarized light patterns

was developed in 1954 to allow field geologists to get their bearing when the sun

was not in the line of sight [34].
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In order to understand what navigational cues are used by desert ants, Horvath

and Wehner [35] performed the first “wide-field, video-polarimetric study of skylight

polarization.” This revealed that day to day changes in degree of polarization are

much more prominent than changes in angle of polarization. The results of this study

are consistent with biological findings that polarization sensitive neurons primarily

respond to changes in angle of polarization rather than degree of polarization [32].

Further investigation by Pomozi et al. [36] led to a potential resolution of the UV

paradox1. They suggested that insects’ DRA ommatidia are tuned to light in the

UV wavelength since polarization patterns are best preserved through clouds for

smaller wavelength rays.

Based on biological observations, Lambrinos et al. [37] [38] developed a method

for ground robot navigation based on polarization patterns. This method analyti-

cally solves for the angle of polarization based on modeled log-amplified inputs from

3 POL-OP units each consisting of 2 POL-sensors. Ambient light sensors were used

to resolve solar/anti-solar ambiguity. Results show successful completion of both

15 and 30 segment trajectories, and demonstrate feasibility of a polarization based

method for ground robot navigation.

Chu et al. [39] [40] [40] implemented the methodology developed by Lambrinos

on a microcontroller, and systematically investigated polarization sensor accuracy

through various controlled indoor calibrations. Zhao et al. [41] further improve

upon this methodology by using a piecewise definition of the atan function, thereby

1The UV paradox questions why insect DRA ommatidia are tuned to UV light while longer

wavelengths of light in the sky provide higher intensity and degree of polarization
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preventing undefined solutions and forcing results into the correct quadrant. Higashi

et al. [42] proposed a simplified version of the sensor model by eliminating the

polarization opponent crossed analyzers.

The polarization sensors used in the methods discussed above rely on point

measurements and are therefore prone to error from obstructions such as birds and

clouds. Wider field methodologies have been employed that have the potential to

mitigate these issues to some degree. Wang et al. [43] proposed a multi-camera

solution which greatly increases field of view, but is rather bulky. Sarkar et al. [44]

developed a compact CMOS polarization sensor. Both of these methods utilize

Stokes parameters for measurements and require polarization filters angles of 0, 45,

and 90 degrees. Stokes parameter methods require calculating the angle and degree

of polarization. As discussed above, biological systems likely do not rely heavily

degree of polarization for navigation. Consequently these methods require a look up

table or continuous calibration since degree of polarization and atmospheric intensity

vary over the course of the day. Successful control of a vehicle using either of these

methods is yet to be shown.

1.3 Thesis Contributions and Organization

Thus far, only a handful of methods have been proposed and developed for

determining relative solar azimuth from atmospheric scattering patterns. In this

thesis, several new algorithms are presented for celestial based navigation. A purely

linear computational approach is also provided for more straightforward implemen-
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tation in an analogue sensor framework. The algorithms are introduced for a low

cost, off the shelf, three camera based hardware configuration, but can readily be

generalized to various single and multi-camera configurations and polarization filter

directions. Cameras are chosen over photodiodes to increase field of view, thereby

reducing measurement error due to visual disturbances. Cameras also allow the

spatial pattern of atmospheric pattern to be utilized. Simulation and experimental

results are used to analyze and compare the various methods. It is then demon-

strated how celestial based heading can be used for reliable closed loop heading

control.

Chapter 2 introduces a model of polarized light and atmospheric scattering.

This model is used to generate a simulation environment, and to motivate algo-

rithm development and sensor design. Chapter 3 proposes several algorithms for

determining the relative azimuth of the sun based on the patterns of polarized and

unpolarized atmospheric radiation. In Chapter 4 these methods are analyzed and

compared using simulation and experimental results. Chapter 5 then provides an

implementation of the sensing methodology for control of a ground based differen-

tial wheeled robot. Further, a simulation of closed loop control of a quadrotor is

presented. A discussion of conclusions and future work is provided in Chapter 6.
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Chapter 2: Model and Simulation of Atmospheric Scattering

The optical principles behind transmittance of light through a medium such

as the atmosphere are rather complex. In order to gain a practical understanding

of the polarization and intensity distributions observed in the sky, assumptions and

simplifications need to be made. This chapter first presents a Rayleigh scattering

based model of the atmosphere. Then a model of how a set of idealized zenith facing

cameras, fitted with linear polarizing filters, might perceive the sky, is introduced.

2.1 What is Polarized Light?

A light wave’s motion can be described by its direction of propagation and os-

cillatory behavior. The direction of light propagation is a radial line from the source

of light. Oscillatory behavior is divided into two categories: linear and circular. Cir-

cular oscillation is characterized by tangential looping motion perpendicular to the

direction of propagation. Circular oscillations in time can be visualized as spirals

about the axis of propagation. Linear oscillation is characterized by radial back and

forth motions perpendicular to the direction of propagation. One can picture these

linear oscillations in time as sinusoidal waves rotated about the axis of propagation.

Atmospherically scattered light is dominated by linear oscillations. Therefore the
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Figure 2.1: Scattering of light by atmospheric air particle

remainder of this discussion will be restrained to linear polarization.

A light wave that oscillates in all possible directions perpendicular to the

direction of propagation is called unpolarized light. Light in a vacuum will remain

unpolarized. However, when light travels through a medium, it is possible that some

of its directions of oscillation are impeded. When a light wave oscillates in only one

direction it is called polarized light, and when a light wave oscillates in more than one

direction it is called partially-polarized light. If light is prevented from oscillating in

all directions, it will not pass through the medium.

Light waves propagate radially from the sun, and oscillate in all directions

perpendicular to the direction of propagation. However, upon reaching the earth’s

atmosphere, these light waves are refracted and reflected by air particles resulting

in oscillation in only a limited number of directions. Thus atmospherically scattered

light is partially polarized. The primary direction of oscillation is termed the angle

of polarization, α. The ratio of the wave oscillating in this primary direction to the

wave not oscillating in this primary direction is called the degree of polarization, p.

A sky gazer will notice that these reflections and refraction of sunlight do not
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create a uniform intensity firmament. Rather, such an observer will see a sublime

gradient of light and color. Bright ivory shades encircling the sun and horizon, gently

fade into deep rich hues of periwinkle blue. This variation of sky intensities is caused

by the distribution of air particles throughout the atmosphere. Air density decreases

with increased elevation from the horizon to zenith, as does the average particle size.

Light scattered by particles larger than or about the same size as the wavelength of

light is generally modeled by Mie Scattering. The scattering of light by particles that

are much smaller than the wavelength of light are modeled by Rayleigh scattering.

Since the insect DRA is directed zenithally where air particles are generally much

smaller than the wavelength of light, Rayleigh scattering is an appropriate model.

Furthermore, Pomozi et al. [36] have shown that the Rayleigh single scattering model

provides a very good approximation of the behavior of atmospheric scattering at

higher elevations.

2.2 Geometry of Atmospheric Scattering

Before proceeding with a discussion of the principles of atmospheric scattering,

a description of atmospheric geometry and notation is presented. We begin with a

hemisphere of unit radius. The planar surface of this hemisphere is centered at the

location of the observer, O, and is concentric with the horizon. O is the origin of

an inertial North-East-Down (NED) coordinate system (see Appendix A), defined

as INED = (O, eN , eE, eD). The location of any point on the hemisphere can be

described by a rotation about INED’s 3-axis, eD, followed by a rotation about an
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intermediate frame’s 2-axis. The resulting reference frame is the observer reference

frame. The 1-axis of the observer frame will be along the direction of the point of

interest.

The rotation about the 3-axis is the azimuth angle, ψ ∈ (−180◦, 180◦], and

the rotation about the 2-axis is the elevation angle, θ ∈ (−90◦, 90◦]. Azimuth angle

is measured from eN , and elevation angle is measured from the horizon. Positive

rotations are defined as counterclockwise, while negative rotations are defined as

clockwise. The zenith, Z, is the point located at an elevation angle of 90◦. Zenith

angle, ζ ∈ (−90◦, 90◦], is the angle along a meridian line between the Z and some

point of interest. Otherwise stated,

ζ = 90◦ − θ. (2.1)

Now suppose that this observer O is looking at some point in the sky, P, with

coordinates (ψP , θP ), while the sun, S, is located at (ψS, θS). The scattering plane is

defined as the plane containing O, P, and S. Next, the observation angle γ is defined

as the angular distance along the scattering plane between the observed point and

the sun. The observation angle of an observed point with azimuth and zenith angles

(ψp, ζp), given solar position (ψs, ζs), can be calculated via spherical trigonometry

as follows.

cos(γ) = cos(ζs)cos(ζp) + sin(ζs)sin(ζp)cos(ψs − ψp) (2.2)

The angle of polarization, α, as mentioned above, is the dominant angle of
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Figure 2.2: Geometry of Atmospheric Scattering

oscillation that a light wave exhibits. Relative to the observer located at O, the

angle of polarization of incident sunlight is determined as follows. First a vector

perpendicular to the scattering plane, n, is determined. Letting rS/O be the vector

to S from O, and rP/O be the vector to P from O,

n = rS/O × rP/O. (2.3)

Next a vector, m, tangent to the local meridian where the meridian intersects

the scattering plane is found. The angle of polarization is defined as the angle from

m to n. The angle, θ, between any two vectors, a and b, can be found using the

geometric definition of the dot product.

a · b = ||a|| ||b|| cos(θ)
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Therefore

α = cos−1
(

m · n
||m|| ||n||

)
(2.4)

can be used to find the angle of polarization.

2.3 Rayleigh Scattering Based Model

Rayleigh scattering is the theory developed in the late 19th century by British

physicist Lord Rayleigh. The theory describes the dispersion of electromagnetic ra-

diation by particles with radius much smaller than the wavelength of the light waves

being dispersed. The permanent gasses of earth’s atmosphere are well described by

the Rayleigh atmosphere. These permanent gases consist of approximately 78%

nitrogen, 21% oxygen, and 1% trace gasses. Generally dry atmospheric air can be

modeled as an ideal gas.

The law of Rayleigh scattering of electromagnetic energy through atmospheric

permanent gases is based on five assumptions [45].

1. The scattering particles are much smaller than the wavelength of the light

being scattered.

2. The scattering particles are non-ionized.

3. The index of refraction, n, of the particles is approximately 1.

4. The scattering particles are isotropic, or have no preferred oscillation direction

when penetrated by light waves.
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5. The resonance frequency of the scattering particle is not close to the light

wave’s frequency.

Following the works of McCartney [46] and Coulson [45], Rayleigh scattering

principles are applied to quantify polarization and intensity throughout the sky. Us-

ing the Rayleigh single scattering model, it is assumed that scattering is performed

by a small, spherical, isotropic particle. The prototypical air particle is modeled

by the average properties, weighted by particle prevalence, of the atmosphere’s per-

manent gases. Since photon energies are not changed during Rayleigh scattering,

particle interaction is described by the lightly damped elastic model.

Monochromatic light with intensity I(γ) will have intensity I(γ) + dI(γ) after

exiting a medium such as air. Introducing a volume scattering coefficient, βm(γ),

the differential intensity change over path increment ds is

dI(γ) = βm(γ)I(γ)ds (2.5)

Now imagine a vertical column of unit cross section from the observer, O, to

the top of the atmosphere. The ratio of the total mass of air in this column per

cross sectional area, to the air density at sea level is called the reduced height, z′.

When the observer is around sea level, the reduced sea level height, z′0, can be used,

where

Z ′0 =
RT0
g

= 7.997× 103m. (2.6)

By assuming that the earth and its atmosphere are plane parallel, ds = sec(ζP )
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along the path from observer to observed point. The irradiance of solar energy from

the top of the atmosphere, E0, will be reduced to irradiance

E = E0e
−βmz′ sec(ζS) (2.7)

after traveling the distance z′ to the observer, where βm is the total scattering

coefficient. Thus, (2.5) becomes

dI(γ) = E0e
−βmz′ sec(ζS)β(γ) sec(ζP ) (2.8)

where I(γ) = Bm(γ)E. Furthermore, the intensity will be attenuated by a factor of

e−βm(z′0−z′) sec(ζP ) making the overall differential intensity change

dI(γ) = E0e
−βmz′ sec(ζS)e−βm(z′0−z′) sec(ζP )β(γ) sec(ζP ) (2.9)

Integrating (2.9), the intensity observed at a given observation angle is

I(γ) =
E0βm(γ)

βm

[
−e−βmZ′0sec(ζs) − e−βmZ′0sec(ζp)

1− sec(ζs)cos(ζp)

]
. (2.10)

The scattering coefficients in (2.10) are derived from electromagnetic theory of

dipole interaction, using the assumptions of Rayleigh scattering listed above. A dis-

cussion of scattering performed by a model elemental scatter on an electromagnetic

wave, as well as derivations for scattering constants, can be found in McCartney’s

“Optics of the Atmosphere [46].” The volume scattering coefficient of a molecule is
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found to be

βm =
8π3(n2 − 1)2

3Nλ4
. (2.11)

The total scattering coefficient, which describes “the ratio of flux completely scat-

tered in all directions, by a unit volume of gas, to the irradiance of the incident

light” is

βm(γ) =
π2(n2 − 1)2

2Nλ4
(1 + cos2(γ)). (2.12)

One can observe that the total scattering coefficient (2.12) can be solved for in terms

of the volume scattering coefficient (2.11) as

βm(γ) =
3

16π
βm(1 + cos2(γ)). (2.13)

By substituting (2.13) into (2.10), an estimate of observed atmospheric intensity at

observation angle, γ is

I(γ) =
3

16π
E0(1 + cos2(γ))

[
−e−βmZ′0sec(ζs) − e−βmZ′0sec(ζp)

1− sec(ζs)cos(ζp)

]
. (2.14)

It was mentioned earlier that the degree of polarization is the ratio of the light

wave oscillating in the primary direction to the wave not oscillating in this primary

direction. Letting I⊥(γ) be the intensity of the polarized light wave vibrating per-

pendicular to scattering plane, and I‖(γ) be the intensity of the polarized light wave

vibrating parallel to the scattering plane, the degree of polarization can be defined
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as

p =
I⊥(γ)− I‖(γ)

I⊥(γ) + I‖(γ)
. (2.15)

For small isotropic molecules, it is found that I⊥(γ) remains constant for all values

of γ while I‖(γ) is proportional to cos2(γ). Thus, for these conditions the degree of

polarization becomes

p = pmax
sin2(γ)

1 + cos2(γ)
(2.16)

where pmax is the maximum atmospheric degree of polarization.

2.4 Sensor Model

The previous section presented expressions for determining atmospheric inten-

sity and polarization parameters at any given location in the sky. These values can

now be used to estimate the intensity, Iχ(γ), that a camera fitted with a linear po-

larizing filter at a given orientation, χ, might detect. This observed intensity should

be a sum of the polarized and non-polarized components of light.

I(γ) = Iunpolarized(γ) + Ipolarized(γ) (2.17)

Since p represents the fraction of light that is polarized, 1 − p represents the

portion of light that is not polarized. The intensity of the unpolarized light viewed

through a polarizing filter should be directly proportional to the total ambient in-

19



tensity.

Iunpolarized(γ) = (1− p)I(γ) (2.18)

The observed intensity of polarized light on the other hand, is also a function

of filter angle. Malus’s law can be used to describe what happens to polarized light

of initial intensity, I0, that travels through two linear polarizing filters.

I = I0 cos2(∆χ) (2.19)

In (2.19), ∆χ is the angle between the axes of the two polarizers. From this one

can see that the full initial intensity will be transmitted when the two polarizers are

oriented parallelly, and the light will be fully extinguished when the two polarizers

are oriented perpendicularly. It is also important to note here that Malus’s law

is 2π-periodic. The maximal intensity of atmospherically polarized light will be

observed when the filter angle is aligned with the angle of polarization, and the

minimal intensity will be observed when the filter angle and angle of polarization

are perpendicular.

As discussed earlier, the angle of polarization is measured with respect to the

intersection of the local meridian with the scattering plane, and is therefore measured

in the observer frame C. However, the filter angle is measured with respect to the

vertical axis of the camera’s image plane in the body frame B, as described in

Appendix A. The azimuthal rotation between the B and C reference frames is ψc.

Consequently the angular distance between the polarization axis of the filter and
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the observer’s meridian is ψc − χ, and the angular distance between the observed

angle of polarization and filter angle is α− (ψc − χ).

Combining the effects of Malus’s law (2.19) with the above, the following ex-

pression can be used to describe the intensity of polarized light at a given observation

angle.

Ipolarized(γ) = pI(γ) cos2(α− (ψc − χ)) (2.20)

Consequently, the intensity observed at observation angle, γ, through a polarization

filter at angle, χ is

Iχ(γ) = (1− p)I(γ) + pI(γ) cos2(α− (ψc − χ)). (2.21)

2.5 Creating a Simulation

The goal of the simulation is to model the intensity patterns picked up by the

3 camera sensory system. The resulting simulated images can then be fed into the

atmospheric scattering based heading algorithms in order to analyze and compare

methodologies. The method presented can be used for simulating camera images on

a ground based vehicle or a low flying MAV.

We start out by defining an image plane. It is assumed that all three cameras

are identical and planarly mounted very close to each other. It is further assumed

that all pixels are square and of the same size. Since the distance to points of

interest in the sky are much greater than the distances between the cameras, it can
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be assumed that all three cameras will observe identical images without polarization

filters. Additionally, since generally the principal point of the image is close to the

center of the image, it can also be assumed that the center pixel of the image is

viewing the zenith when the camera image planes are parallel with the horizon.

The observable atmosphere can be modeled as a sphere of “large” radius cen-

tered at the robot or observer. This allows for the assumption that the distance from

the observer to an observed point in the atmosphere is the same for any observed

point. It should be noted that this model is unrealistic, but nonetheless very useful.

One might realize that the radius of the earth is about 2 orders of magnitude

larger than the distance from the surface of the earth to the stratosphere. This

implies that the distance from the observer to the sky would increase with decreasing

observer elevation. However, the effect of keeping the distance to the sky constant

is a radial distortion centered at the image principle point. Since this distortion

is radially symmetric it should have little effect on determining heading, which

is radially symmetric about the same axis. Furthermore, since fisheye lenses are

being attached to the cameras, realistically the image is a projection of a spherical

surface onto another spherical surface. This factor counteracts the effect of the

radial distortion.

Using the proposed model for atmospheric geometry, one can determine the

corresponding azimuth and elevation of an observed point in the sky based on its

pixel location in an image. The image figure fame F discussed in Appendix A can

be used to describe a location in the sky with pixel coordinates (xF , yF ). The origin

of F is defined as the top left corner of the image, F . An up-looking camera with
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the top of the image plane facing north will have the 1-axis pointing West, the 2-axis

pointing South, and the 3-axis pointing down.

Given a square n × n pixel image with equal longitudinal and lateral fields

of view, FOV , the required simulation radius, R, can be determined using the

definition of the chord of a circle. The chord length, n, forming a subtended angle,

FOV , with respect to the center of a circle of radius, R, is

n = 2R sin

(
FOV

2

)
. (2.22)

Consequently

R =
n

2 sin
(
FOV
2

) . (2.23)

The distance between an observed point and the image origin in the F frame is

FrP/F = xF f1 + yF f2 −Rf3, (2.24)

and the distance between the origin of the F and B frames is

FrG/F =
n

2
f1 +

n

2
f2. (2.25)

Via vector arithmetic, one will readily see that the distance between the observed

point and the B frame origin is

FrP/G = FrP/F − FrG/F = (xF −
n

2
)f1 + (yF −

n

2
)f2 −Rf3. (2.26)
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One can determine the components of this vector in the I frame by performing the

following sequence of rotations.

IrP/G =


xI

yI

zI

 = IRB BRF FrP/G (2.27)

In (2.27), the rotation from the F to the B frame is

BRF =


0 −1 0

−1 0 0

0 0 1

 , (2.28)

and the rotation from the B to the I frame is

IRB =


cψbcθb cψbsθbsφb − sψbcφb sψbsφb + cψbsθbcφb

sψbcθbs cφbcψb + sψbsθbsφb sψbsθcφb − cψbsφb

−sθb cθbsφb cθbcφb

 (2.29)

where sψb = sin(ψb), sθb = sin(θb), sφb = sin(φb), cψb = cos(ψb), cθb = cos(θb), and

cφb = cos(φb).

Based on the components of rP/G in the inertial frame, the azimuth and ele-

vation angles of the observed point relative to B can be determined. The azimuth

of the observed point is

ψp = atan2(yI , xI), (2.30)
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and the elevation of the observed point in the sky is

θp = acos
( r
R

)
(2.31)

where

r =
√
y2I + x2I . (2.32)

The zenith angle of the observed point is simply

ζp = θp − 90◦. (2.33)

Once the azimuth and zenith angles of the observed point with pixel location

(xF , yF ) are known, the observation angle can be found using (2.2), provided that

the solar azimuth and zenith are known. Using this observation angle, the local

degree of polarization and ambient intensity are determined using (2.16) and (2.14)

respectively.

The angle of polarization is determined using (2.4). A vector along the local

meridian, m, is

m = −1c3 (2.34)

which is along the 1-axis of the observer frame B. To find a vector normal to the

scattering plane, (2.3) is used. Letting G ≈ O the distance between the observed
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point and O is succinctly described in the observer frame as

CrP/O = Rc1. (2.35)

However, rS/O is not readily written in terms of C. In terms of the sun frame,

S,

SrS/O = Rs1. (2.36)

rS/O can be transformed to the observer frame as follows.

CrS/O = CRI IRS SrS/O, (2.37)

where the rotation from S to I is

IRS =


cos(ψs) cos(θs) − sin(ψs) cos(ψs) sin(θs)

sin(ψs) cos(θs) cos(ψs) sin(θs) sin(ψs)

− sin(θs) 0 cos(θs)

 , (2.38)

and the transformation from C to I is

CRI =


cos(ψp) cos(θp) sin(ψp) cos(θp) − sin(θp)

− sin(ψp) cos(ψp) 0

cos(ψp) sin(θp) sin(ψp) sin(θp) cos(θp)

 . (2.39)

Once the intensity, degree of polarization, and angle of polarization are computed

for each pixel location, the intensities viewed through a camera with polarizing filter
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Figure 2.3: Simulated results for 4 solar positions (ψs, θs)

at orientation χ can be determined using (2.21).

Figure 2.3 shows the simulation results for 4 solar positions. For this simula-

tion, 3 cameras with 180◦ field of view and 100 × 100 pixel image size are shown.

The 3 cameras have filter angles at orientations of −60◦, 0◦, and 60◦ respectively.

The rigid body position of the cameras was fixed to (φb, θb, ψb) = 0, 0, 0.

For this simulation it was assumed that λ = 0.45µm, Z ′0 = 7.997x10−3m,

and dmax = 0.9. The λ value was chosen under the assumption that most of the
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detected atmospheric light would be in the UV to blue range. The chosen Z ′0 is the

calculated value for standard atmospheric conditions. dmax was chosen arbitrarily

since it varies significantly over the course of the day. Varying dmax however as

desired has little qualitative effect on the simulation results as shown in Table 4.3.

As shown in the simulation above, the degree of polarization exists in bands

of parallels around the sun and anti-sun with the highest valued band perpendicular

to the sun. The angle of polarization forms meridian line from zenith to sun and

anti-sun. Angles of polarization along the solar/anti-solar azimuth are 90◦, and

angles of polarization perpendicular to the solar/anti-solar azimuth are 0◦ = 180◦.
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Chapter 3: Algorithms

Atmospheric and biological principals behind how insects “see” the sky provide

initial insight into how celestial cues can be used for navigation. The next piece of

the puzzle is to understand how these visual inputs are converted into yaw responses.

Biologists have hypothesized the existence of an internal “sky compass” [24] implying

that absolute heading information can be determined based on atmospheric visual

cues. Evidence supports that biological systems may use their internal circadian

rhythms to predict the absolute location of the sun at any given time of day [47]

[48]. Thus visual information can be used to determine heading relative to the sun,

and absolute heading can be determined from the combined visual and temporal

information.

There are several methods for extracting relative heading from visual atmo-

spheric information. Insects such as Monarch butterflies have been shown to navi-

gate using unpolarized celestial cues [20]. This might involve detection of the sun

as a large bright mass in the sky and navigating relative to it. However, this could

also involve making use of the predictable atmospheric luminescence patterns, or

detecting chromatic gradients across the sky.

Insects such as the desert ant [16] and dessert locust [17] primarily make use of
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the patterns of partially polarized light. It is likely that they are able to interpolate

between the different firing rates of the ommatidia, and determine what microvilli

orientation would produce the maximal firing rate. However, other neural compu-

tations are also possible. It is also feasible that insects are able to narrow in on

the correct solar azimuth by saccading along the yaw axis and utilizing intensity

patterns over a limited time span similar to desert ants [49]. Regardless of compu-

tational method, the angle of polarization is 180◦-periodic, so there are 2 candidate

heading angles for every angle of polarization. Non-polarized atmospheric cues can

be used to resolve solar/anti-solar ambiguity and uniquely determine the relative

solar azimuth [50]. This section discusses methods for determining relative solar

azimuth and resolving solar/anti-solar ambiguity.

3.1 Polarization Based Algorithms

Polarization based algorithms make use of the patterns of polarized light

throughout the sky. As can be seen from the second column of Figure 2.3, the

observed angle of polarization, α, for atmospheric light increases azimuthally. Fur-

thermore angles of polarization range between 0◦ and 180◦, and each angle of po-

larization can be viewed at two unique azimuths. One will observe that the angle

of polarization at both solar and anti-solar azimuths is 90◦, and that an angle of

polarization of 0◦ is found at ±90◦ from the solar azimuth. The 180◦-periodic angle

at which α = 0◦ corresponds to an imaginary line through the zenith, dividing the

solar and anti-solar hemispheres. This line is termed the solar/anti-solar meridian,

30



and the 180◦-periodic angle describing the azimuth of this line is represented as ψs/a.

In columns 4-6 of Figure 2.3, the cameras’ vertical axes are aligned with north,

and therefore the body and inertial axes are aligned. Consequently in this scenario

camera filter angle, χ is also measured from north. One will notice that the overall

intensity of each camera is maximal when χ = ψs/a. In general, the overall intensity

of a zenith facing camera will be maximized when camera filter angle is aligned with

the solar/anti-solar meridian. The goal of polarization based algorithms therefore

becomes to determine ψs/a based on intensity measurements from a limited number

of cameras each fitted with a polarizing filter at a unique orientation.

In this section, several algorithms are proposed to meet the proposed objective.

The first of these methods utilizes spline interpolation, the second analytically solves

for ψs/a based on a model of camera outputs, and the third is a linearized version

of the analytically method.

All of the methods use the average intensities of each camera as inputs. Using

average intensities over a wide field of view, as opposed to individual photodiodes,

allows small visual disturbances, including birds and small clouds, to be effectively

filtered out. Future studies might benefit from utilizing weighted pixel averages.

Weighting strategies might include the following:

1. Weighting pixel importance proportional to each pixel’s corresponding eleva-

tion angle. Higher elevations would correspond to stronger weighting since

Rayleigh model accuracy increases with elevation angle.

2. Pixel weighting corresponding to distance from the sun in the sky. Pixels
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within a certain radius from the sun would be weighted less due to the fact

that pixels in this area are generally over saturated.

3. Pixel weighting based on a quasi-HSV method. For a 3 camera system, this

would work by treating each of the cameras as one of the “RGB” channels

for each pixel location. Low “saturation” values correspond to low degrees

of polarization which would be weighted lower. High “Value” numbers occur

when at least one camera is detecting a high intensity. A pixel with a high

“value” and a relatively low “saturation” is likely overexposed and should

consequently be given a lower weighting. “Hue” values roughly correspond to

the angle of polarization and can potentially be used as a standalone method

to determine ψs/a.

4. The ratio of blue channel to red channel values for each pixel can be taken

for each camera. Pixels with high blue to red ratios across the cameras would

be weighted higher since these pixels are more likely to not correspond with

cloud locations.

Many of these methods were peripherally investigated for the purposes of this

thesis. They overall seemed to positively impact heading estimation accuracy. How-

ever, in an effort to increase computational efficiency they were left out of this study.

These methods would likely be beneficial in a future analogue implementation of the

sensor.
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3.1.1 Spline Interpolation Method

The filter orientation angle at which the incoming intensity will be maximal,

χmax, can be found by interpolating between the intensities coming in through mul-

tiple filters, each at a different orientation angle. As the number of filters at different

orientations increases, and consequently the incremental angular distance between

filter angles decreases, the sinusoidal relationship between orientation angle and re-

sulting intensity becomes approximately linear. The large spread of DRA microvilli

primary orientations observed by Homberg et al. [22], and the variation of tuning

directions for polarization sensitive neurons shown by Heinze et al. [30] in the sup-

plemental material section indicate that the desert locust might in fact perform

some form of linear interpolation or population coding to determine χmax.

However, in the simplified model of the insect DRA proposed here, there are

only 3 orientation angles, and therefore linear interpolation is no longer appropriate.

Instead, spline interpolation can be used to relate the N = 3 average camera inten-

sities to their respective filter orientation angle. For the vector of filter orientation

angles, χ, the resulting average camera intensities, y(χ), can be represented by a

spline function, s(χ), which is a continuous function composed of piecewise poly-

nomial functions, si(χ). Each piecewise polynomial, si(χ), is defined on the range,

[χi, χi+1). Represented symbolically,

y(χ) ≈ s(χ) =
N∑
i=1

si(χ)1[χi,χi+1)(χ) (3.1)
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where the indicator function, 1A(x), is defined as follows for the range A.

1A(x) :=


1, if x ∈ A

0, if x /∈ A

(3.2)

There are N = 3 polynomial equations corresponding to the 3 filter orientation

angles, χi, or knots, of known values. A fourth knot is required to fully define the

third polynomial. Each spline, si(χ), is chosen to be a third order polynomial, p = 3,

of the form

si(χ) = ai + bi(χi − χ) + ci(χi − χ)2 + di(χi − χ)3 (3.3)

where ai, bi, ci, and di are unknown constants to be determined. The spline function

[51], s(χ), is defined such that the transition between each of the polynomials is

smooth. Specifically continuity and continuous differentiability up to the p − 1th

order are required.

s
(n)
i (χi) = s

(n)
i−1(χi), i = 2, ..., N, n = 0, 1, 2. (3.4)

Furthermore, the interpolation conditions of the spline require that

s(χi) = yi, i = 1, ..., N + 1. (3.5)

The N polynomial equations, each with 4 unknown constants produce a total

of 4N unknown constants. The constraints above will produce 4N − 2 of these
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constants. An endpoint condition is imposed to produce the remaining constants.

Periodic endpoint constraints are selected since the spline function is being used to

approximate a sinusoid. Periodic endpoint conditions require that

s(n)(χ1) = s(n)(χN+1), i = 2, n = 0, 1, 2. (3.6)

Since the sinusoid being approximating is 180◦-periodic, we can let χN+1 = χ1+180◦.

Determining the first set of constants, ai, is very straightforward since one will

notice from (3.5) that

yi = si(χi) = ai, i = 1..., N + 1. (3.7)

The smoothness and endpoint conditions are required to determine the remaining

constants. These conditions impose restrictions on the first derivative

s′i(χ) = bi + 2ci(χ− χi) + 3di(χ− χi)2,

and second derivative

s′′i (χ) = 2ci + 6di(χ− χi)

of the polynomial functions. Now let

hi = χi+1 − χi, i = 1..., N.

From the continuous differentiability of the second derivative, after some reorganiz-
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ing and index substitution one will get that

di =
ci+1 − ci

3hi
, i = 1..., N. (3.8)

Next, from the continuous differentiability of the first derivative, after substituting

in values from (3.8), bi can also be solved for as a function of ci and ci+1.

bi =
yi+1 − yi

hi
− (ci+1 + 2ci)hi

3
, i = 1..., N (3.9)

Finally, from the 0th order continuity condition and (3.7), (3.9), and (3.8),

3
yi+1 − yi

hi
− 3

yi − yi−1
hi−1

= ci−1hi−1 + 2ci(hi + hi−1) + ci+1hi, i = 2..., N − 1. (3.10)

(3.10) can also be applied to the indices i = 1, N by applying the periodic endpoint

condition. Since the function is assumed to be periodic, we can let y0 = yN , and

χ0 = χN − 180◦. Consequently,

h0 = χ1 − χ0 = χ1 − (χN − 180◦) = χN .

The linear set of equation from (3.10) for i = 1, ..N is used to solve for ci. The

matrix interpretation of this system of equations for N = 3 is


2(h3 + h1) h1 h3

h1 2(h1 + h2) h2

h3 h2 2(h2 + h3)




c1

c2

c3

 =


3(y2−y1)

h1
− 3(y1−y3)

h3

3(y3−y2)
h2

− 3(y2−y1)
h1

3(y1−y3)
h3

− 3(y3−y2)
h2

 .
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Figure 3.1: Third order spline interpolation of y = A cos(2(B − χi)) +

C, with B = 40◦, sampled at χ1 = −60◦, χ2 = 0◦, and χ3 = 60◦.

It is apparent that the maximum of this function is approximately 40◦

corresponding to B.

Alternately the same linear system of equations can be analytically solved

for using a symbolic solver. Once the coefficients for the 3 polynomial equations

are determined, y(χ) can be solved for over a full 180 degree period at desired

increments of χ. Figure 3.1 depicts a third order spline approximation of a sinusoidal

function using the method discussed above. The member of χ at which y(χ) is

maximal approximately corresponds to the filter orientation angle at which the

incoming intensity will be maximal, χmax, and hence the solar/anti-solar azimuth,

ψs/a = χmax + 90◦.
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3.1.2 Non-Linear Analytical Method

An analytical method can alternately be used to determine the filter orien-

tation angle at which the incoming intensity will be maximal. The relationship

between average camera intensity, yi, and the filter orientation angle χi through

which it was measured can be modeled by the following 180◦-periodic sinusoidal

equation.

yi = A cos(2(B − χi)) + C (3.11)

In the above equation (3.11), A is the unknown amplitude of the sinusoid, C

is the unknown vertical shift, and B is the unknown relative heading of 0◦ angle

of polarization. The following change in variable can then be made to simplify

algebraic manipulation.

zi = χi −
χ3 + χ1

2
(3.12)

The consequence of this change in variable is that z1 = −z3. In this way the

3 equations modeling the 3 cameras in the form of (3.11) become

y1 = A cos(2(B + z1)) + C (3.13a)

y2 = A cos(2(B − z2)) + C (3.13b)

y3 = A cos(2(B − z1)) + C. (3.13c)
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Using trigonometric identities, (3.13) can be rewritten as:

y1 = A cos(2B + 2z1) + C = A cos(2B) cos(2z1)− A sin(2B) sin(2z1) + C (3.14a)

y2 = A cos(2B − 2z2) + C = A cos(2B) cos(2z2) + A sin(2B) sin(2z2) + C (3.14b)

y3 = A cos(2B − 2z1) + C = A cos(2B) cos(2z1) + A sin(2B) sin(2z1) + C. (3.14c)

This system of 3 equations has 3 unknowns, namely A, B, and C. The desired

unknown is B. From basic trigonometry definitions it is readily seen that

tan−1(
A sin(2B)

A cos(2B)
) = 2B,

and consequently

B =
1

2
tan−1

(
A sin(2B)

A cos(2B)

)
(3.15)

where

ψs/a = B + 90◦.

The problem is now reduced to solving for the terms inside of the tan−1 function of

(3.15). The denominator can be solved for by rearranging (3.14b).

A cos(2B) =
y2 − A sin(2B) sin(2z2)− C

cos(2z2)
(3.16)

The unknown variable C appearing in (3.16) can be determined by summing (3.14c)
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and (3.14a) then rearranging.

C =
y3 + y1 − 2y2 cos(2z1)

2(1− cos(2z1))
(3.17)

Finally, the numerator of the tan−1 function in (3.15) is then found by subtracting

(3.14c) from (3.14a) and rearranging.

A sin(2B) =
y3 − y1

2 sin(2z1)
(3.18)

To mitigate singularity issues, and to make use of input sign information for

the tan−1 function in (3.15), the atan2 function was used instead. It can be shown

that for 3 unique filter angles, B has precisely one singularity when using the atan2

function. The atan2 function is piecewise and defined as follows

atan2(a, b) :=



tan−1(a/b), if b > 0

tan−1(a/b) + π, if a ≥ 0, b < 0

tan−1(a/b)− π, if a < 0, b < 0

+π/2, if a > 0, b = 0

−π/2, if a < 0, b = 0

undefined, if a = b = 0

for some inputs a, and b. One will see from this definition that the atan2 function

will only be undefined if both a and b are null. From (3.15), a = A sin(2B), which

is defined by (3.18). This term will be null when y3 = y1, which based on the sensor
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model can only be true when χ1 = χ3. Since it has already been assumed that all

filter angles are unique, this scenario is not an option.

However, since the terms a and b are functions themselves, they must also be

individually analyzed to ensure that they are always defined. a has a discontinuity

when sin(2z1) = 0, or when z1 = πn, n ∈ Z. From (3.12), one will see that this only

occurs when χ1 = χ3, which as already stated contradicts the problem statement.

b, as defined in (3.16) will have a singularity when cos(2z2) = 0, and when C is not

defined. C is defined except for where cos(2z1) = 1 which is where z1 = πn. As

above, this situation will not occur. However, cos(2z2) will take the null value when

z2 = π/4 + π/2n, which will occur when

2χ2 − χ3 − χ1 = π/2 + πn (3.19)

with n ∈ Z. This case is a theoretical possibility. For instance, if filter angles χ1 and

χ3 were chosen to be 4◦ and −10◦ respectively, choosing χ2 = 38◦ would result in an

undefined solution for B. In order to avoid an undefined solution in solar/anti-solar

meridian B, one must make sure that the 3 chosen filter angles do not follow the

relationship described in (3.19).

3.1.3 Linearized Analytical Method

A careful look at the above method will reveal that the analytical method

discussed in the previous section only requires one non-linear operation. This is

the inverse tangent function found in (3.15). Since the filter angles are constant,
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zi and their respective sines and cosines will also be constant. A completely linear

analytical model can be achieved by finding a suitable linear approximation of the

inverse tangent function. In general, an expansion of a function, f(x), about a

reference point x0 is provided by the Taylor series.

∞∑
n=0

f (n)(x0)

n!
(x− x0)n (3.20)

A useful approximation of a function near reference point x0 can be found

by replacing the infinite sum upper bound with a finite integer N . The Taylor

approximation of f(x) generally diverges from f(x) as x gets farther away from x0.

In order to more accurately approximate the inverse tangent function over a full

360◦ period, a piecewise function of Taylor approximations about P evenly spaced

reference points can be generated. A P -piece, N th order approximation of the inverse

tangent function will take the form

atan(x) ≈
P∑
p=1

1[x0,p−180◦/P , x0,p+180◦/P )(x)
N∑
n=0

atan(n)(x0,p)

n!
(x0,p − x)n

where 1 is the indicator function defined by (3.2). The optimal approximation,

f̂(N,P, x), of the atan(x) function will minimize both the divergence of f̂(N,P, x)

from atan(x) as well as the time, tcomp, needed to compute f̂(N,P, x). A simple

cost function

J(N,P ) = A|| atan(x)− f̂(N,P, x)||22 +Btcomp (3.21)
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Figure 3.2: Computational time and error costs as functions of Taylor

approximation order and number of piece-wise segments

with weighting constants A and B can be used for this purpose. For the constants

A = 1 and B = 50, the lowest J occurred for a 16-piece second order Taylor

approximation. The corresponding computational time was tcomp = 0.0016 sec-

onds per approximation of the atan function, and the square of the normed error,

|| atan(x) − f̂(N,P, x)||22, was 0.0152. Obviously different weighting constants or

functions can be used in order to elicit desired performance.

Figure 3.2 depicts the computational times and norm squared errors result-

ing from various P -piece, N th order Taylor approximations of the inverse tangent

function.

3.2 Non-Polarization Based Algorithms and Hemispheric Resolution

Polarization based methods produce ψs/a rather than the desired ψs. A non-

polarization based method must be used to uniquely determine the 360◦ periodic ψs

from the 180◦ periodic B.
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One method for resolving the solar azimuth from ψs/a is to make use of the

chromatic gradient across the sky. There is evidence to support that the desert

locust makes use of this gradient for celestial based navigation [25]. It is a known

phenomenon that a higher concentration of larger wavelength light exists in the

solar hemisphere, whereas the anti-solar hemisphere is dominated mostly by smaller

wavelength light. For the webcam based application discussed in this paper, one

can quantify this chromatic concentration by determining the ratio of red channel

to blue channel intensities for all pixels. A single image is then created by summing

the red:blue chromatic ratio for all 3 cameras. This image will be called Ir/b.

Additionally, the solar azimuth will also have a greater total light intensity

than the anti-solar hemisphere. Making use of this fact, one can begin with the sum

of grayscale images from the 3 cameras. This image will be called Igray.

3.2.1 Radial Summing

The radial averaging method is based on the pattern of unpolarized celestial

intensities. On a clear day, the brightest part of the sky will be where the sun is, as

reflected in Figure 2.3. This is true even when the sun itself is covered by a cloud

or has dropped below the horizon. Consequently, if an image of sky intensities is

projected onto a plane, and if a vector v(ψ) is created containing all the intensities

radially from zenith to horizon at a given azimuth angle ψ, then the vector along

the solar azimuth v(ψs) will contain the largest average value of intensities.

In this way, a methodology for computing relative solar orientation from an
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image can be achieved as follows. First, create a vector, ψ, of azimuth values, ψi,

from −180◦ to 180◦. Assuming a square image of even side length `, there will be

at least one heading for every pixel along the image circumference when the length

of ψ is 4`. For now it is assumed that the cameras are level to the horizon, and

therefore the zenith is located at the center of the image plane. Thus a set of `/2

pixels can be defined for every member, ψi, of ψ, where the x and y coordinates in

the image frame of these pixels are determined by the following:

x(ψi) = dr sin(ψi) + `/2e (3.22a)

y(ψi) = dr cos(ψi) + `/2e (3.22b)

In the above equation, r represents the length `/2 vector of distances in pixels

from the zenith, and d e denotes the ceiling function. This process is represented in

Figure 3.3 (b).

Once a set of pixels has been assigned to every azimuth, the maximal average

pixel value and its corresponding azimuth are determined to be the solar location.

For a simulation with side length ` = 200, the error between solar azimuth input

to simulation and resolved solar azimuth output from radial summing was always

within ±1◦.

3.2.2 Solar/Anti-solar Hemispheric Resolution

The radial averaging method can be used as a standalone relative heading

determination method. This algorithm or a simplified version of it can also be
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(a) (b) (c)

Figure 3.3: Resolving a summed intensity image into relative azimuth of

sun. (a) Schematic of radial sum algorithm. (b) 200× 200 pixel summed

intensity image for ψs = 120◦, θs = 25◦. Purple line indicates calculated

sun orientation. (c) Results of radial sum algorithm on summed inten-

sity image (b). Maximum averaged radial intensity estimated at relative

azimuth of 120.90◦. Total error of 0.90◦
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used in conjunction with a polarization based method to resolve solar/anti-solar

ambiguity.

One such simplified version for resolving ψs from ψs/a using either Ir/b or Igray

is the image segmentation method. First the summed intensity image is divided

into 9 equal square regions. A 9 pixel image is created by taking the average pixel

values of these 9 regions. Next, a vector,

v = {vi}; i = 1, 2, ..., 8

of length 8 is created from the 9 pixel image by discarding the center pixel, and ap-

pending pixels clockwise from the top center pixel through the top left pixel. In this

way the 8 components of v correspond to relative heading angles of 0◦, 45◦, ..., 315◦,

and the maximum entry in v approximately corresponds with the solar azimuth.

Otherwise stated:

45◦(arg max
i
{vi} − 1) = ψ̂s ≈ ψs; i = 1, 2, ..., 8.

Therefore if the minimum angular distance between ψs and ψ̂s is small (< 90◦) then

ψs = ψs/a. Otherwise ψs = ψs/a + 180◦.

While the above method is generally effective, decreased signal to noise ratios

due to increased camera exposure settings decreases method accuracy. In such

scenarios, the Radial Averaging Method discussed above can be used to find the

approximate solar azimuth, ψ̂s, from either Ir/b or Igray.
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Figure 3.4: Image segmentation method
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Chapter 4: Demonstration and Application of Sensing Methodology

This chapter discusses the results of applying the various heading methodolo-

gies discussed in the previous chapter for heading estimation. First the methods

are applied in the simulation environment, and the results are compared for various

solar elevations, image sizes, maximal degree of polarization, and polarization filter

angles. Next, a hardware implementation is developed, and the various methods

are applied to outdoor imagery at various conditions. The results of both simula-

tion and outdoor experimentation demonstrate the accuracy and feasibility of using

atmospheric scattering patterns for heading determination.

4.1 Simulation Results

The 3 heading algorithms were applied to the modeled camera intensity images

produced by the simulation environment. For these simulations it was assumed that

the solar azimuth remained fixed at 0◦ (north). The cameras were then rotated

clockwise at 10◦ increments over a full 360◦ revolution. Radial Averaging of the

summed intensity image was used for resolving the fsolar from anti-solar hemisphere.

First the effects of changes in solar elevation were analyzed. Table 4.1 shows

the effect of changes in solar elevation, θs, on the 3 methods for 100 × 100 pixel
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simulated images with dmax = 0.9, and ∆2/1 = ∆3/2 = 60◦. It was observed that ele-

vation changes have a negligible effect on the 2 polarization based methods, whereas

performance of the radial averaging method declines with increasing θs.

Table 4.1: Effect of changes in solar elevation for simulation

Radial Average Spline Interpolation Non-Linear

θs R2 av|err| σ R2 av|err| σ R2 av|err| σ

20 0.9965 4.08 6.32 0.9982 3.428 4.33 1.0000 0.03 0.037

40 0.9960 4.02 6.76 0.9982 3.43 4.33 1.0000 0.03 0.04

60 0.9962 3.87 6.60 0.9982 3.43 4.33 1.0000 0.03 0.04

80 0.9912 6.43 10.15 0.9982 3.43 4.33 1.0000 0.03 0.04

An assessment of the effects of image size was then performed. Table 4.2 shows

the effect of changes in pixel side length, `, for simulated images with θs = 20◦,

dmax = 0.9, and ∆2/1 = ∆3/2 = 60◦. The results indicate that the accuracy of all

methods increases with increased `, however the improvement is significantly more

marked for the radial average method. Additionally, increasing image size slows

down computational speed.

The performance of the 3 algorithms for varying degrees of polarization was

then evaluated. Table 4.3 shows the effect of changes in maximum degree of polar-

ization, dmax, on the 3 methods for 100× 100 pixel simulated images with θs = 20◦

and ∆2/1 = ∆3/2 = 60◦. It can be observed that dmax changes have a negligible effect
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Table 4.2: Effect of changes in pixel side length for simulation

Radial Average Spline Interpolation Non-Linear

` R2 av|err| σ R2 av|err| σ R2 av|err| σ

100 0.9965 4.08 6.32 0.9982 3.43 4.33 1.0000 0.03 0.04

200 0.9988 2.93 3.68 0.9983 3.40 4.30 1.0000 0.01 0.02

300 0.9993 1.87 2.75 0.9983 3.40 4.30 1.0000 0.01 0.01

480 0.9994 1.51 2.61 0.9983 3.40 4.30 1.0000 0.00 0.01

600 0.9997 1.26 1.97 0.9983 3.40 4.30 1.0000 0.00 0.00

on the 2 polarization based methods, whereas performance of the radial averaging

method slightly declines with decreasing dmax.

Finally the effects of changes in filter angles were considered. Table 4.4 shows

the effect of changes in filter shift angles, ∆2/1 and ∆3/2, on the 3 methods for

100 × 100 pixel simulated images with θs = 20◦ and dmax = 0.9. As might be

expected, changes in filter shift angles have little effect on the radial averaging

method. Both polarization based methods appear to perform better when both ∆

values are equal. Additionally the best results for the spline interpolation method

appear for ∆2/1 = ∆3/2 = 60◦.

Of the 3 methods, the non-linear analytical method appears to have the overall

best performance for the simulation results. This is likely in part due to the fact

that the model used for the simulation and for the method are nearly identical.
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Table 4.3: Effect of changes in maximum degree of polarization for sim-

ulation

Radial Average Spline Interpolation Non-Linear

dmax R2 av|err| σ R2 av|err| σ R2 av|err| σ

0.9 0.9965 4.08 6.32 0.9982 3.43 4.33 1.0000 0.03 0.04

0.7 0.9957 4.37 7.04 0.9982 3.43 4.33 1.0000 0.03 0.04

0.5 0.9957 4.37 7.04 0.9982 3.43 4.33 1.0000 0.03 0.04

0.3 0.9953 4.73 7.35 0.9982 3.43 4.33 1.0000 0.03 0.04

0.1 0.9950 5.14 7.59 0.9982 3.43 4.33 1.0000 0.03 0.04

In actuality this will not be the case since the variation of average intensity with

heading angle is only approximately sinusoidal.

Another interesting observation is that the radial averaging method is the

most sensitive to changes in elevation angle and degree of polarization. This indi-

cates that the robustness of this method will vary significantly over the course of

the day, although it will generally provide results in the correct ballpark. Based on

this observation, the radial averaging method is likely not the best primary method

for accurately determining solar azimuth. However, it is a reliable method for ap-

proximating solar azimuth, and thus for distinguishing the solar hemisphere from

the anti-solar hemisphere.
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Table 4.4: Effect of changes in filter shift angles for simulation

Radial Average Spline Interpolation Non-Linear

∆2/1 ∆3/2 R2 av|err| σ R2 av|err| σ R2 av|err| σ

20 20 0.9965 4.08 6.32 0.9895 8.00 10.89 0.9832 12.48 14.20

40 40 0.9965 4.08 6.32 0.9958 4.92 6.79 0.9957 6.23 7.11

60 60 0.9965 4.08 6.32 0.9982 3.43 4.33 1.0000 0.03 0.04

80 80 0.9965 4.08 6.32 0.9716 12.95 17.72 0.9889 9.42 11.20

40 80 0.9965 4.08 6.32 0.9735 15.12 7.56 0.9862 9.75 7.68

80 40 0.9965 4.08 6.32 0.9819 13.39 4.58 0.9868 9.75 7.68

4.2 Stepper Motor

Outdoor experimental results were carried out to confirm simulation results

as well as to determine method feasibility. The performance of the various methods

were analyzed and compared under various natural outdoor conditions. During

testing, maneuvering of the sensory system was accomplished using a stepper motor.

Initial data sets were used to perform a one-time calibration procedure to account

for human error in filter placement.
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Figure 4.1: Atmospheric Sensory Unit (ASU)

4.2.1 Setup and Procedure

The experimental setup consists of an atmospheric sensory unit (ASU) model-

ing the insect DRA, and a stepper motor system. These are both controlled through

a laptop using a Linux OS in a C++ environment.

The sensory unit (Figure 4.2) is based on three Logitech c210 USB webcams,

chosen for their well supported UVC interface. The cameras are extracted from

their casing and planarly mounted. A filter mount is placed above the lenses of

these cameras. On the underside of the filter mount are squares of linear polarizing

filter with polarization direction at angles of −60◦, 0◦, and 60◦ from the top of the

camera. Fisheye lenses are inserted above the filter mount to increase the cameras’

field of view.
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Figure 4.2: Experimental Setup

The stepper motor system is made up of an Animatics SmartMotor (SM2340D)

Motor mounted to an aluminum frame with adjustable legs. The motor is fitted with

a circular mounting plate, and a bull’s eye level is placed on the mounting plate.

The motor is powered by a 42 VDC 6 amp power supply. An RS232 cable connected

to a USB adapter is used for communicate with the laptop. The ASU is affixed to

the circular mounting plate.

Experiments were performed at the University of Maryland, College Park

(38.990508, -76.937658) on an open courtyard. Before each experiment, the frame

of the motor was aligned with a cement square of the courtyard, which served as

a fixed reference frame approximately along the north/south axis. The top of the
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cameras were then aligned with the motor frame so that the longitudinal axis of

the image plane would be aligned with the north/south axis of the courtyard. The

motor was then turned on, thereby setting the motor position origin to its current

orientation. Next, the pegs of the motor frame were adjusted to align the image

plane of the ASU with the horizon.

At the beginning of each experiment the current local time was acquired, and

the current solar position was computed using the freely available C++ files provided

by PSA [52]. The stepper motor would then complete a full 360◦ rotation in either

5◦ or 10◦ increments every 3 seconds, providing ample time for motor oscillations to

fully damp out and all serial signals to be sent and received. Preceding each motor

increment, the following steps occurred: 1) frames from each camera were captured,

2) relative solar azimuth was computed using the three methods discussed above,

and 3) current motor encoder position was retrieved and converted to degrees. All

acquired data was logged and saved to the laptop.

4.2.2 Calibration Results

Before data was analyzed, a calibration was performed to verify whether or not

the polarization filters were oriented as expected, and how close with true north the

cameras were initially aligned. Calibration only needs to occur once in the lifetime

of the sensor system assuming parts are not replaced. The following describes to

calibration procedure.

First, for each camera, i, of each test, the set of average image values, yi, and
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Figure 4.3: Pixel averages over full 360 degree turn for each camera

corresponding motor position, ψm, were fit to a sinusoidal function of the form

yi = Ai cos(2(ψm −Bi)) + Ci; i = 1, 2, 3. (4.1)

Figure 4.3 depicts the relationship between average image intensity and motor po-

sition over a full 360◦ rotation.

Function fitting was accomplished using the MATLABr ’fmincon’ function

by varying A, C, and ψm, where A was constrained to be positive and Bi was

constrained to be within a 360◦ range. Since the desired orientation of camera 2

is 0◦, B2 − ψs should be zero if the filter is placed as desired, and the longitudinal

camera axis is properly aligned with the north/south axis. Alternatively, the sum
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of these 2 errors is

∆2 = B2 − ψs. (4.2)

An average ∆2 value of −8.32◦ with standard deviation of 2.56◦ lends to the con-

clusion that the initial reference position is about 10◦ west of true north.

Next the relative positions between filter orientations were determined where

∆2/1 and ∆3/2 are the angular distances between filters 1 and 2, and filters 2 and

3 respectively. The average ∆2/1 value was found to be 65.68◦ with a standard

deviation of 2.76◦, and average ∆3/2 value was found to be 62.36◦ with a standard

deviation of 4.83◦. This implies that relative filter positions where within ±8◦ of

expected. The magnitude of the standard deviations is likely due to image noise

and confusion from artificial light sources for tests taken around and after sunset.

As a result of this calibration, χ1, χ2, and χ3 were taken to be 24.32◦, 90◦, and

152.26◦ respectively. These values were plugged into the algorithms for the captured

frames and used to calculate heading values.

Generally when dealing with multi-camera systems, geometric and intensity

calibrations are performed in order to provide consistency between the pixels of

all of the cameras and thus increase measurement accuracy. Geometric calibration

provides information about each camera’s focal length, principal point, and image

distortions. Geometric calibration allows image flattening, determination of varia-

tion in pixel size, as well as a comparison of position and scaling between cameras.

Intensity calibration accounts for the fact that different pixels will return different
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pixel values when presented with the same intensity of light. Furthermore, accumu-

lation of dust and lens deformities might also cause varying pixel responses.

While the increased accuracy provided by geometric and intensity calibrations

is desirable, it was determined that obtaining a useful calibration was not practi-

cal. Both calibration require near identical camera configuration during calibration

and experimentation. Since no straightforward method to disable autofocus with-

out rewriting the camera driver existed, it was impossible to guarantee consistent

camera configuration. Furthermore, the results of geometric calibration, especially

distortion constants, are only valid for a range of object at distances comparable to

those used for calibration. Since the objects of interest are air particles at various

locations throughout the atmosphere, developing a geometric calibration rig proved

challenging. However, as object distances from camera increase, the significance of

planar distance between cameras decreases. Finally, intensity calibration generally

requires a “flat field” image which is taken at about the same exposure as the ex-

perimental images are taken without underexposing or saturating the pixels. A rig

for creating nearly flat field images was constructed. However use of the calibration

results had a negligible effect on heading estimation, and thus the obtained intensity

calibration constants were not used.

4.2.3 Results

A total of 77 tests were performed following the procedure outlined in section

4.2.1 above. These tests were performed for solar elevations ranging from −5◦
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Figure 4.4: Overview of azimuth finding and hemispheric resolution

methods

to 53◦, camera exposures ranging from 1 to 500, and varying levels of cloudiness.

Captured frames of size 640 × 480 were cropped to square 480 × 480 images, and

heading calculations were performed during testing to assess feasibility of real time

processing. However, the results of these calculations were not used for analysis

purposes as calibration values had not yet been computed.

For each test, relative heading calculations for each of the methods were per-

formed at every motor position increment. Figure 4.4 shows results for the 3 solar

azimuth finding methods and the 2 hemispheric resolving methods for a single test.

The test was taken for a solar elevation of 16.6◦ and an exposure value of 10. One

can observe that the hemispheric resolving methods correctly follow the trend of the

Radial Averaging method.

Hemispheric resolution methods were then applied to the polarization based
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Figure 4.5: Comparison of methods over 360 degree turn at 10 degree

increments

azimuth finding results. Absolute heading measurements for all methods were com-

puted by applying the computed solar azimuth [53]. The calculated absolute heading

values were compared with the expected absolute heading values in order to quan-

tify the individual measurement errors as well as the overall method performance.

Figure 4.5 shows the results for another test. The average of the absolute value of

errors was determined for each test as a measure for comparing method performance

between tests.

It was observed that the heading methods all appeared to work with relative

reliability even for negative solar elevations and in the presence of clouds. However,

when the vast majority of the sky was covered with clouds, none of the methods

produced useful results as might be expected. Stratus clouds had minimal impact

on results, while cumulus clouds noticeably increased sensor error. Sensitivity to

61



clouds was markedly most noticeable for the radial averaging method, and affected

the polarization based methods almost equally.

The increased cloud sensitivity of the radial averaging method is likely due

to the fact that the RGB values for the color white correspond to a high grayscale

luminance value. Additionally, clouds reflect more light than the rest of the sky

does. The combination of these two factors can have the effect of making the

algorithm choose a cloud as the brightest region in the sky thereby confusing the

solar azimuth with a nearby cloud’s azimuth. It has been shown that atmospheric

scattering patterns penetrate clouds better for smaller wavelength light [36]. It is

likely that insects primarily rely on UV wavelengths for this reason. The methods

presented here rely on the full visible spectrum detected by the cameras since it was

noticed that the cameras’ blue channels were very noisy and unreliable.

Next the relationship between measurement error and solar elevation was ana-

lyzed for several different exposure settings. Since as solar elevation increases, degree

of polarization decreases, it was expected that solar elevation would be proportional

to measurement error. As can be seen in Figure 4.6, a nearly exponential relation-

ship was observed for the polarization based methods. From the data presented,

solar elevation does not appear to clearly affect the radial averaging method.

A similar analysis was performed in order to analyze the effect of image ex-

posure as shown in Figure 4.7. For the polarization based methods, measurement

error appears to sharply decrease with increasing exposure then level off, while a

slightly positive relationship between measurement error and exposure appears to

be present for the radial averaging method. However, it can be observed that the
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Figure 4.6: Effects of solar elevation on method error

sharp downwards ramp is comprised of high solar elevation data where the ambient

light is primarily not polarized.

When the image sensor is underexposed, it is logical that that the image sensor

primarily responds to the unpolarized light and does not detect all of the polariza-

tion information. Furthermore one will recall that the radial averaging method

presented relies on polarized images. Since this method is based on unpolarized

light, it is understandable that increasing exposure, and thereby decreasing the ra-

tio of unpolarized to polarized light information, will decrease the reliability of the

method. A single unfiltered camera could be used in order to increase sensor accu-

racy when primarily relying on the radial averaging method for determining heading.

Nonetheless, it can be observed from this data that for a single solar elevation, a

fairly large range of exposure values will produce similar results.

Finally the overall performance of the different methods was compared by

taking the average of error, standard deviation, and R2 values for all tests for each

method. Table 4.5 shows a method comparison for 50 of the total 77 tests. Tests

63



Exposure
0 10 20M

ea
n 

ab
so

lu
te

 e
rr

or
 (

 o  )

0

20

40
Radial Averaging

Exposure
0 10 20M

ea
n 

ab
so

lu
te

 e
rr

or
 (

 o  )

0

5

10

15
POL Interpolation

Exposure
0 10 20M

ea
n 

ab
so

lu
te

 e
rr

or
 (

 o  )

0

5

10

15
Analytical

θ
11

θ
12

θ
14

θ
16

θ
30

θ
41

θ
53

Figure 4.7: Effects of exposure on method error

in which images contained relatively large cumulus clouds or significant image sat-

uration were excluded from this analysis. These results indicate an overall more

reliable performance for polarization based methods as compared to the radial av-

eraging method.

Table 4.5: Summary of Results

Radial Average Spline Interpolation Non-Linear

Average |Error| (◦) 6.61 3.26 3.00

Min Error(◦) 2.98 1.75 1.24

Max Error(◦) 36.92 12.01 12.05

Standard Deviation (◦) 6.81 4.05 3.70

R2 0.9913 0.9977 0.9979

n 50 50 50

The results presented above show that the developed algorithms are feasi-
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ble and practical methods for determining absolute heading based on atmospheric

scattering. Improvements can be made by performing camera calibration to ob-

tain intrinsic and extrinsic parameters for all cameras, in addition to calibrating

individual pixel responses. To obtain useful calibration results, the camera lens con-

figurations must be the same during calibration as for data acquisition. Since there

is no straightforward way to disable autofocus on the webcams used here, camera

calibration has not been performed. Overall performance can likely be improved by

using better quality cameras or by including a model of measurement noise in the

calculations.
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Chapter 5: Control

This chapter discusses implementations of heading algorithms on various plat-

forms, real and simulated, for closed loop heading control. Platforms include a

differential drive ground robot and simulated MAV quadrotor.

5.1 Ground robot

The ASU was implemented on a differential wheeled terrestrial robot to demon-

strate real time autonomous heading control of a vehicle. Robot heading was mea-

sured and controlled using the atmospheric scattering based methods discussed in

Chapter 3. Verification of these methods is provided through alternate heading

measurement techniques, including use of a magnetometer and wheel encoder in-

formation. This section begins by detailing the experimental setup. The methods

for acquiring alternate heading measurements are then provided. Finally the test

procedure is described, and the results are analyzed.

5.1.1 Setup

A modified Dr. Robot X80 mechanical construction set was used as the test

platform. The X80 was equipped with two 12V geared DC motors along with DC
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motor driver modules with position and current feedback, servos, and 1200 count

per wheel cycle optical encoders. Interfacing with the motors was achieved via a

PMS5005 robot sensing and motion controller. The X80 system was powered by a

7.2V Ni-MH 3800mAh battery pack. An RS232 interface module and RS232 cross-

over serial cable were used to directly communicate with the PMS5005 and the on

board PC.

The on board PC was composed of an ASUS M5A78L-M LX PLUS mother-

board equipped with a 4GB single DDR3 240-pin memory module and AMD Athlon

II X2 270 Regor 3.4 GHz Dual-Core Desktop Processor. The PC was powered by

a 4 cell 15V 5A lithium-ion battery. An internal USB to external USB female port

cable was installed to provide access to additional USB hubs and therefore better

distribute CPU for devices.

The ASU was mounted planarly atop the robot with the vertical axes of the

cameras parallel to the body 1-axis of the robot. The robot was also equipped

with a Pololu MiniIMU-9 v2 gyro, accelerometer, and compass. The Minimu was

mounted on an 8 cm post to mitigate electromagnetic interference from the robot

in magnetometer readings. A Deventech USB to I2C adapter and an USB A to

USB B cable were used for interfacing and communication between the PC and the

magnetometer.

The robot was also equipped with an USB wifi dongle. This allowed the

creation of an adhoc network between the robot’s PC and a laptop. Through this

network, robot heading control test sequences could be initiated via PuTTY SSH

and TightVNC Viewer.
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Figure 5.1: Ground Robot Configuration
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5.1.2 Magnetometer Calibration

A 3-axis magnetometer, such as the one on the Pololu Minimu-9 board, mea-

sures the strength of the surrounding magnetic field along three perpendicular di-

rections. Whilst navigating on earth’s surface, heading can be determined relative

to earth’s magnetic poles by measuring earth’s magnetic field. A magnetometer

will measure earth’s magnetic field, but it will also measure all other local elec-

tromagnetic fields. It is not practical to exclusively measure the effects of earth’s

magnetic field while in motion. However the near constant fields effects due to ma-

terial imperfections of the magnetometer, and the additional electronic hardware on

the robot can readily be corrected for. Shifts or biases in the field are called hard

iron distortions, while stretches and deflections are called soft iron distortions. The

purpose of magnetometer calibration is to remove the effects of these hard and soft

iron distortions.

If one were to plot the measurements of an ideal magnetometer at all possible

orientations in 3D Cartesian space, one would get a sphere centered at (0,0,0).

The measurements of a magnetometer subject to hard and soft iron distortions

approximately maps to an ellipsoid not necessarily centered at the origin. The

equation for such an ellipsoid is described by (5.1).

ax2m + by2m + cz2m + 2dxmym + 2exmzm + 2fymzm + 2gxm + 2hym + 2izm = 1 (5.1)

In (5.1), xm, ym, and zm are measurements from the 3 axes of the magnetometer,
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and a through i are unknown coefficients to be solved for. These coefficients can be

solved for using the solution to the linear least squares problem (5.2)

Θ̂ = (XTX)−1XTv (5.2)

where Θ̂ is an estimate of the parameter vector

Θ = [a b c d e f g h i]T ,

the regressions, X are

X = [x2 y2 z2 2xy 2xz 2yz 2x 2y 2z]T ,

and the output, v, or right hand side of (5.1) is an array of ones

v = 1.

In matrix notation, the ellipsoid equation can be written in the following form as

in [54] and Yuri Petrov’s “ellipsoid fit” function available on MATLABr Central.

xTAx + 2BTx + c = 0 (5.3)

70



where

A =


a d e

d b f

e f c

 , B =


g

h

i

 , C = 1, x =


xm

ym

zm

 .

The ellipsoid can be rotated and translated by introducing a new set of coor-

dinates x̃ such that

x = Rx̃ + t. (5.4)

Letting Ã = RTAR, B̃ = (2tTA+ 2BT )R, C̃ = tTAt+ 2BT t, and after rearranging,

(5.3) may be written as

x̃T Ãx̃ + B̃T x̃ + c̃ = 0 (5.5)

Choosing t such that B̃ = 0, the ellipsoid centroid is simply z = t = A−1B.

Then applying the principal axis theorem to the first term in (5.5), it is known that

the eigenvectors of Ã correspond to the directions of the principal axes of the ellipse.

It then follows that the lengths of the axis correspond to the eigenvalues as

r1 =
√
−c̃/λ1, r2 =

√
−c̃/λ2, r3 =

√
−c̃/λ3

where λi are the eigenvalues of Ã. The corrected magnetometer values, xcal, are
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Figure 5.2: Raw and corrected magnetometer calibration data fit to el-

lipsoids

then computed as

xcal = Ã−1x− z.

Figure 5.2 shows the raw calibration data and the ellipsoid it’s fitted to, as well as

the resultant spherical data once the data has been corrected. For a magnetometer

with x, y, and z axes aligned with the vehicle North-East-Down body axes, the

magnetic heading is simply

ψm = tan−1(ym/xm).
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5.1.3 Wheel Encoder Calibration

A wheel encoder produces an output proportional to the angular position of

the wheel relative to the wheel’s starting position. On a homogeneous surface,

wheel encoder values will be directly related to the distance traveled by the wheel.

Furthermore, if continuous readings of encoder values are available, a comparison

between incremental encoder values of the wheels of a differential wheeled robot

can be used to determine the angular distance that the robot has traveled over

time. Otherwise stated, differential changes in robot linear angular distances are

proportional to differential changes in wheel encoder values. Symbolically,

ψ̇ = K1vL +K2vR (5.6a)

u = K3vL +K4vR (5.6b)

where vL and vR are left and right wheel encoder rates respectively, ψ̇ is angular

distance rate or yaw rate, u is forward speed, and K1, K2, K3, K4 are unknown

constants. The values of these constants can be determined using linear least square

regression. (5.2) provides the solution to the linear least square problem where,

X = [vL vR]

for z = ψ̇, Θ̂ = [K1 K2]
T , and for z = u, Θ̂ = [K3 K4]

T . (5.6) can then be used to

determine the total angular,ψenc, and inertial distances, xenc and yenc, traveled at
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any time, ti, where

ψenc[ti] = (K1vL[ti] +K2vR[ti])(ti − ti−1) + ψenc[ti−1] (5.7a)

xenc[ti] = (K3vL[ti] +K4vL[ti]) cos(ψenc[ti]) + xenc[ti−1] (5.7b)

yenc[ti] = (K3vL[ti] +K4vL[ti]) sin(ψenc[ti]) + yenc[ti−1] (5.7c)

for i > 0, and ψenc[t0] = xenc[t0] = yenc[t0] = t0 = 0. These distances can be used

for robot trajectory control, and ψenc can be used to verify atmospheric scattering

based heading estimations.

For the purposes of this system identification, vehicle states were tracked using

a Vicon motion capture system consisting of 8 T-series cameras. The Vicon system

determines the positions of reflective markers attached to the robot via triangulation

at a rate of 350 Hz. Relative positions of the markers are used to find the rigid body

states of vehicle including ψ̇ and u. vL and vR were retrieved from the PMS5005 and

recorded along with a time stamp. While data was collected, the robot was remotely

given commands to turn left and right, and to increase and decrease forward speed.

After data collection, the average time difference between encoder velocity

measurements was determined and used in order to down sample the Vicon state

measurements. Data cropping was also performed in order to make sure that mea-

surements from Vicon and PMS5005 of initial robot motion were aligned, and that

z and X were the same length.

SIDPAC [55] was then used to perform linear least square regression and statis-

tical analysis, including consideration of colored residuals. The parameters resulting
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from this analysis are shown in Table 5.1.

Table 5.1: Wheel encoder coefficients

Parameter Estimate Std Error % Error

K1 1.596× 10−3 5.765× 10−5 3.6

K2 −1.617× 10−3 4.441× 10−5 2.7

K3 2.202× 10−4 7.339× 10−6 3.3

K4 2.183× 10−4 5.716× 10−6 2.6

Figure 5.3 shows a comparison between the true yaw rate and forward velocity

and the estimates calculated using (5.6).

Figure 5.4 depicts the traveled angular distance, ψenc of the robot as well as the

inertial trajectory of the robot. Estimates were determined following (5.7).

The figures shown above indicate good correlation between the estimates and true

values. Low percent errors, and standard errors of two orders less than the parameter

estimates, further indicate satisfactory model determination.

5.1.4 Procedure

Ground robot tests were performed in the courtyard of the Kim Engineering

Building at University of Maryland, College Park. Before each test, an ad-hoc

network was created between the robot and a laptop. PuTTY and TightVNC were

then used to establish secure remote communication. Next the wheels of the robot
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Figure 5.3: True and estimated yaw rate and forward velocity
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were aligned with the edge of a cement square of the courtyard. In addition to the

fact that the edges of these squares are approximately coincident with the cardinal

compass directions, the squares also served as a visual reference that the robot was

maintaining heading. Commands were then sent through the laptop to establish

which heading estimate methodology would be used for control, and to initialize the

robot test procedure.

The robot test procedure began by starting and setting the cameras of the

ASU. Communication was then initialized and established with the wheels of the

robot. Next, initial heading estimates were determined and recorded using the var-

ious methodologies discussed in Chapter 3. Additionally a heading measurement

from the magnetometer, and a relative heading approximation from the wheel en-

coders were also acquired and recorded. A timer was then initialized, and the robot

was then commanded to proceed forward at a constant speed, vF , and maintain

heading. Until a termination command was received, the following sequence of

steps were iterated.

1. Images from the ASU cameras were acquired.

2. Current solar position computed using ephemeris function

3. Atmospheric scattering based algorithms were used to calculate heading esti-

mates, and results were recorded.

4. Magnetometer measurements were taken, and magnetic heading was computed

5. Wheel encoder positions were read, recorded, and used to approximate relative
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heading from initial heading

6. Total time since timer initialization was determined and recorded.

7. Wheel speed commands, based on current heading error, were generated and

sent.

Inputs to the Dr. Robot were serial words encoding desired right and left wheel

speeds as encoder rates. Ideally equal encoder rates sent to both wheels would result

in straight motion, while a greater right wheel speed would result in a left turn and

a greater left wheel speed would result in a right turn.

Wheel speed commands were computed as offsets from the desired forward

constant speed distributed evenly between both wheels, vF .

vL,cmd = vF − ψ̇cmd

vR,cmd = vF + ψ̇cmd

(5.8)

A heading hold algorithm using a discrete PID controller of the following form

was used to generate the yaw offset, ψd at each time step, ti

ψ̇cmd[ti] = Kpe[ti] +Ki

i∑
j=1

e[tj] +Kd
e[ti]− e[ti−1]
ti − ti−1

(5.9)

where e[ti] = ψd[ti]− ψe[ti] and e[t0] = t0 = 0. The desired heading, ψd, was initial-

ized to the first heading measurement, but could be changed via user input anytime

while the robot was in motion. Left and right heading disturbances were periodically

introduced to the system by overriding the iterative procedure enumerated above,
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and instead commanding a steady right or left turn for a duration of 1 second.

5.1.5 Results

Nine tests were performed in order to show the real time performance of a

vehicle using atmospheric scattering patterns for navigation. During each test, the

robot was presented with a series of left and right disturbances, desired heading

changes, or a combination of both. Real time heading estimates were computed

using the spline interpolation method, the non-linear analytical method, and the

radial averaging method. However only the estimates from the non-linear analyt-

ical method were used in the control loop. Figure 5.5 shows a comparison of the

computed atmospheric based headings to each other and to the results of the de-

termined magnetic heading. In this particular test, the robot is initialized going

approximately 0◦ (north). Then a series of right and left disturbances are intro-

duces, followed by a command to change heading to 90◦ (east), and then back to

0◦.

In order to determine how well the various heading determination methods

agreed with each other, a covariance matrix, Σ, was computed between the different

methods for each test. Here, Σ is the 4 × 4 matrix of sample covariances between

the two vectors, ψi and ψj, of N heading estimates. Each entry, σ(ψi,ψj), of the

covariance matrix is defined as

Σ(i, j) = σ(ψi,ψj) =
1

N − 1

N∑
k=1

circdist(ψi[k]− ψ̄i)circdist(ψj[k]− ψ̄j)
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Figure 5.5: Comparison of heading determination methods

where ψ̄i is the average heading estimate for the N observations using method i.

The circdist() function accounts for the fact that heading angles are 360◦ periodic,

and is used to determine the shortest circular distance between to angles. It was

observed that there was approximately a 0.227 second lag between the magnetic

heading measurements and the atmospheric scattering based methods. Since all of

the atmospheric based methods lined up quite closely, it is supposed that the 0.227

second lag is primarily due to webcam image acquisition and buffering time. In

order to remove the lag from the correlation analysis, the atmospheric heading mea-

surement vectors were shifted 3 time steps (approximately 0.227 seconds) forward.

Σ was then used to compute the correlation coefficient matrix, R, where the entries

R(i, j) =
Σ(i, j)√

Σ(i, i)Σ(j, j)

measure the strength of the linear relationship between heading estimate methods
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i and j. The resulting correlation coefficient matrix is presented in Table 5.2.

Table 5.2: Correlation Coefficients

Radial Av Analytical Spline Interp Magnetometer

Radial Av 1.0000 0.8538 0.8291 0.8160

Analytical 0.8538 1.0000 0.9652 0.9713

Spline Interp 0.8291 0.9652 1.0000 0.9522

Magnetometer 0.8160 0.9713 0.9522 1.0000

Wheel encoder measurements were also used as a method of comparing heading

estimates. However, due to frequent failures and delays in reading the serial buffer

from the PMS5005, encoder values were not available during the 9 tests presented

above. Figure 5.6 presents an earlier test where encoder values were successfully read

throughout the entire test. One will notice that while the trend and directionality

of the calculated headings from these measurements follows the trend of the other

estimates quite well, the magnitude is significantly less. This is likely due to the

fact that the parameters computed in section 5.1.3 were based on data from low

friction linoleum floors, since the Vicon system could not be brought outdoors. The

outdoor concrete surfaces have a significantly higher coefficient of friction. Therefore

updated parameter estimates from outdoor data are required to produce more useful

heading estimates from encoder measurements.

Figure 5.7 shows the results of a test for which the robot was presented with
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heading

a series of right and left disturbances of various amplitudes while being commanded

to maintain a heading of approximately −3◦.

The first four disturbances are about 7◦ disturbances, the fifth disturbance is a

14◦ disturbance, and the last disturbance is a 21◦ disturbance. One will notice that

after returning from a response, overshoot is negligible. Settling time is roughly 0.5

seconds for all of the responses. A steady state oscillation of about 1◦ amplitude is

maintained likely due to sensor noise and lag.

Figure 5.8 depicts a test for which the robot was commanded to follow a series

of different headings. One will observe approximately a 15◦ overshoot after all of

these turns, and a settling time of about 2 seconds. Low amplitude steady state

oscillations are again observed.

Overall the responses of the system to the PID controller are good. The robot
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Figure 5.7: Robot response to left and right disturbances
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Figure 5.8: Robot response to changes in desired heading
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is stabilized to steady state within a relatively short settling time. High overshoot

however does indicate that the gains are likely too high. It should be noted that

the open loop robot system is not stable. When both wheels are commanded equal

encoder rate values, the robot has a tendency to drift either left or right, and not

to maintain a direction. One will notice that simple PID feedback is able to provide

heading stability.

5.2 Quadrotor Simulation

In order to study the feasibility of the developed heading measurement meth-

ods on a flight vehicle, a 3D simulation environment was created. This simulation

allowed an examination of real-time responses to heading measurements for various

camera fields of view and resolution when cameras were not necessarily zenith cen-

tered. A realistic quadrotor model was obtained using Peter Corke’s Robotic Control

Toolbox [56] for MATLABr and Simulinkr. This chapter provides an overview of

the atmospheric simulation environment used for this study, a description of the

portions of the Robotic Control Toolbox employed, and the controller. Results us-

ing each of the heading determination techniques are compared to results from pure

state feedback.

5.2.1 Quadrotor Model

The robot control toolbox contains a Simulink library including kinematics,

dynamics, and graphing tools for various types of robots. A model of an X-4 Flyer
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Figure 5.9: Diagram of quadrotor thrusts and and directional conventions

Mark II microquad was chosen for the purposes of this simulation. This model

includes dynamics for rotor thrust and flapping, frame aerodynamics, and internal

and external motors.

The “quadrotor dynamics” Simulink part takes rotor velocity inputs

u = [ω1, ω2, ω3, ω4]

corresponding to the front, right, rear, and left rotors with positive directional con-

vention as depicted in Figure 5.9.
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The output of the quadrotor model is a vector of the resulting states

x = [x, y, z, ψ, θ, φ, u, v, w, r, p, q]T

where [x, y, z]T are the inertial coordinates of the quadrotor, [φ, θ, ψ]T are the Euler

roll pitch and yaw angles corresponding to a 3-2-1 rotation sequence, BvG/O =

[u, v, w]T are the quadrotor velocities in the body frame, and IωB = [p, q, r]T are

the body angular velocities.

The equations of motion describing a quadrotor’s translational dynamics are

found by applying Newton’s second law to the aircraft center of gravity.

FG = mIaG/O = m
Bd

dt
(IvG/O) +I ωB ×I vG/O = mgeD − Tb3 (5.10)

In the above equation, aerodynamic lift is assumed negligible, and the applied

forces are gravitational force and thrust. Euler’s second law can be used to determine

the quadrotor’s rotational dynamics.

MG = [IG]B ·
Bd

dt
(IωB) +I ωB × ([IG]B ·I ωB) =

4∑
i=1

ri/G ×−Tib3 (5.11)

The quadrotor is assumed to have bidirectional symmetry, and consequently

the moment of inertia matrix, [IG]B, is diagonal. Thrust from a single rotor is

Ti = bω2
i
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where, b, the lift constant, is

b = CTρAr
2

and CT is the non-dimensional thrust coefficient. The total quadrotor thrust is

simply the sum of all the individual rotor thrusts

T = b(ω2
1 + ω2

2 + ω2
3 + ω2

4). (5.12)

To facilitate controller design, a combination of rotor speed inputs can used to define

more intuitive inputs directly relating to roll, pitch, yaw, and thrust control.

Letting r be the distance from rotor center to G, the roll and pitch torques

are respectively proportional to the following pairwise differences in rotor thrusts

τx = rb(ω2
4 − ω2

2) (5.13)

τy = rb(ω2
1 − ω2

3). (5.14)

The yaw torque is the sum of the reaction torques of the four rotors, where each

reaction torque opposes the direction of rotor rotation.

τz = k(ω2
1 + ω2

3 − ω2
2 − ω2

4) (5.15)

In the above, k is the drag constant where

k = CQρAr
3
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and CQ is the non-dimensional torque coefficient.

CQ = CT
√
CT/2.

Equations (5.12) through (5.15) can be combined to create a single matrix relation-

ship



T

τx

τy

τz


=



−b −b −b −b

0 rb 0 rb

rb 0 −rb 0

k −k k −k





ω2
1

ω2
2

ω2
3

ω2
4


= M



ω2
1

ω2
2

ω2
3

ω2
4


. (5.16)

The control mixer part provided by the robot control toolbox uses the inverse of

M to generate rotor speed inputs to the quadrotor model based on desired body

torques and thrust.

5.2.2 Navigation and control

Insects are able to successfully travel from their home to a food source and

back home again. Based on the studies of von Frisch [11] it is very likely that a

critical sensory input for foraging bees is polarization vision. This section aims to

propose a simple methodology for waypoint navigation using celestial based heading

measurements and additional biologically inspired sensing mechanisms. It is then

shown how this navigational method can be applied to a quadrotor via nested PD

control.
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Figure 5.10: Geometry of cross track error

5.2.2.1 Computing Cross and Along Track Errors

The most basic way to travel between two points, P0 and P1, on a plane is

to maintain a linear trajectory. Since it is assumed that the distances traveled by

the quadrotor are relatively short, a flat earth model can be assumed, and a linear

trajectory can be used. It is desired that the quadrotor stays as close to the desired

trajectory as possible. The distance that the quadrotor is from the desired path is

called the cross track error, ∆c. In this flat earth scenario, cross track error can be

defined as the distance between the center of gravity of the quadrotor, G, and the

line defined by the points P0 and P1 as shown in Figure 5.10.

To determine the distance between G and the vector from P0 to P1, rP1/P0 , a

line through G parallel to rP1/P0 is drawn. Next a vector perpendicular to rP1/P0 that
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intersects the inertial origin O is drawn. The intersection between this perpendicular

vector and a line coincident with rP1/P0 will be called point Q, and consequently the

perpendicular vector will be called rQ/O. If one were then to draw a vector from Q

to G, rG/Q, the scalar projection of rG/Q onto rQ/O is equivalent to the distance ∆c.

projrO/Q
rG/Q =

rO/Q · rG/Q
|rO/Q|

= ∆c (5.17)

Solving for (5.17) requires knowledge of the position of Q which can be de-

termined as follows. The equation for the line passing through P0 and P1 can be

written in terms of slope intercept form as

y = mx+ b (5.18)

where x is the distance north relative to the origin O of some inertial NED frame,

y is distance east of O, m is the slope of the line, and b is the y-intercept. Letting

P0 = x0eN + y0eE and P1 = x1eN + y1eE, then

m =
y1 − y0
x1 − x0

and

b = y0 −mx0.

The equation for the line passing through Q and O will have a slope of −1
m

, and a
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y-intercept of 0.

y =
−1

m
x (5.19)

Q is defined as the location where (x, y) is equivalent for (5.18) and (5.19). Conse-

quently

rQ/O =
−mb
m2 + 1

eN +
b

m2 + 1
eE.

Now rG/Q = rG/O − rQ/O, where rG/O = x2eN + y2eE. And therefore,

rQ/G = (x2 +
mb

m2 + 1
)eN + (y2 −

b

m2 + 1
)eE.

Solving for (5.17) and simplifying, we get that

∆c =
−mx2 + y2 − b√

m2 + 1
. (5.20)

Along track error, ∆a, is a measure of the distance along rP1/P0 between the

vehicle and the next waypoint, P1. Hence along track error is simply

∆a = projrP0/P1
rG/P1 =

rP0/P1 · rG/P1

|rP0/P1|
(5.21)

where rG/P1 = (x2 − x1)eN + (y2 − y1)eE and rP0/P1 = (x0 − x1)eN + (y0 − y1)eE.

Therefore

∆a =
(x0 − x1)(x2 − x1) + (y0 − y1)(y2 − y1)√

(x0 − x1)2 + (y0 − y1)2
(5.22)
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is the distance left along the track until the next waypoint is reached.

5.2.2.2 Waypoint Tracking and Control

Insects have been known to reliably travel from their homes to a known food

source and back again. As discussed above, evidence suggests the use of atmospheric

patterns for insect heading determination. Navigation between two waypoints does

not necessarily require a measure of distance traveled. Loizou and Kumar [57]

propose a method of navigation in the proximity of 3 landmarks with known relative

bearing. While this method is likely quite useful when multiple celestial objects,

such as the night stars, are tracked, the sun is the only daytime celestial landmark.

Therefore, some measure of distance is needed for daytime navigation using solar

heading. Collett et al. [58] suggest that flying insects likely rely on ventral optic

flow to approximate distance traveled.

Optic flow describes the patterns of relative motion of objects observed by

the visual system of a moving object. More specifically, it is the projection of the

velocity vector field of points in the observed environment onto the imaging surface.

Therefore the relationship between optic flow and inertial velocity depends on the

physical shape of imaging surface. Sabiron et al. [59] and Dev et al. [60] discuss

the framework for 2D optic flow projected onto a planar surface, while Hyslop and

Humbert [61] present a spherical optic flow model.

Generally speaking, optic flow will have a translational and a rotational compo-

nent. The relative motion, Q̇, between a spherical optic flow sensor and an observed
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point rP/G = p1b1 + p2b2 + p3b3 is

Q̇ = −1

d
[v − 〈v, rP/G〉rP/G]− ω × rP/G (5.23)

where v = [u, v, w]T is the body translational velocity, and ω = [p, q, r] is the body

rotational velocity. d is the distance between P and the vehicle along the line from

P to the center of the imaging sphere, passing through the projection of P onto the

imaging sphere. From (5.23) one can see that in order to directly back out traveled

distances, the distance to the observed point is needed. If it is assumed that the

environment is relatively flat, a single point measurement such as sonar can be used

to obtain d. Additionally pitch and roll rates can be extracted from a biologically

inspired ocelli sensor such as proposed by Gremillion et al. [62].

Assuming we have a biologically inspired sensor package consisting of the ASU,

ocelli sensors, a ventral optic flow sensor and a sonar sensor kept level to the hori-

zon with a gimbal, estimates of the states ψ, p, r, z, u, and v will be available.

Alternately, if the entire sensor suite is not available, but system identification has

provided a vehicle dynamic model, a state observer can be designed in order to

approximate vehicle states based on measured inputs and outputs of the system.

The along and cross track errors, discussed above, can be used as inputs to

control a quadrotor such as the one described in Section 5.2.1. Following controller

structure proposed by Peter Corke [56], the roll and pitch torque inputs can be

93



computed as follows

 τy

τx

 = KP,2


KP,1

R3(ψ − ψd)

 ∆a

∆c

−KD,1

 u

v


−

 θ

φ


−KD,2

 q

r




(5.24)

where R3 is the Euler rotation matrix about the inertial 3-axis. Desired heading is

computed as

ψd = atan2(yTO − yFROM , xTO − xFROM)

where (xTO, yTO) is the inertial position of the current TO waypoint, and (xFROM , yFROM)

is the inertial position of the current FROM waypoint. The current aircraft posi-

tion in inertial coordinates relative to initial position can then be approximated as

follows

x2[ti] = u[ti] cos(ψ[ti])− v[ti] sin(ψ[ti]) + x2[ti−1] (5.25a)

y2[ti] = u[ti] sin(ψ[ti]) + v[ti] cos(ψ[ti]) + y2[ti−1] (5.25b)

assuming small aircraft pitch and roll angles where rG/O = x2eN + y2eE. Quadrotor

yaw is commanded via a PD controller of the following form.

τz = KP,3(ψ − ψd) +KD,3ψ̇ (5.26)
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Figure 5.11: Quadrotor Results

Aircraft thrust control is provided by the model feedforward design discussed in [56].

5.2.2.3 Quadrotor Results

Using the methodology discussed above, the quadrotor simulation was pro-

vided a counterclockwise trajectory consisting of 10 waypoints shown in Figure 5.11.

The quadrotor was commanded to proceed forward towards the next waypoint while

maintaining heading such that body x-axis pointed along the direction between the

TO and FROM waypoints. The controller described in (5.24) was used to bring the

quadrotor to within 0.1 m of the TO waypoint before proceeding to the next way-

point. The integral of measured body velocities was used to approximate inertial

distances traveled as describe in (5.25).

Figure 5.11 shows the qualitative performance of the quadrotor. In the first

figure, the diamonds depict the waypoints, the dashed line depicts the desired tra-
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jectory, and the purple sold line shows the actual trajectory. One will observe that

the quadrotor successfully traveled through the desired waypoints and mostly main-

tained the desired trajectory. The second figure shows the desired heading for the

quadrotor (in blue) as a function of time, and the actual quadrotor heading (in red).

One will note that the quadrotor appeared to track the desired heading quite well.

This initial real time quadrotor simulation test indicates that implementation of a

biological sensor package on a physical quadrotor for navigation is certainly feasible.
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Chapter 6: Conclusions and Future Work

This thesis provides a methodology for determining solar relative heading from

atmospheric scattering patterns, applicable to micro-air vehicle (MAV) navigation.

The techniques introduced here provide a reliable, passive heading determination

strategy when magnetic heading is not necessarily available. The anatomical struc-

ture of the Dorsal Rim Area (DRA) of the insect eye, as well as behavioral and

electrophysiological studies, provide inspiration for the sensing design and algorithm

development presented here. A low cost, off-the-shelf based Atmospheric Sensory

Unit (ASU), consisting of 3 webcams and linear polarizing filters, modeling the

insect DRA was modeled and developed.

Several novel algorithms, based on the patterns of atmospheric polarized and

unpolarized radiation, were developed to resolve the outputs of the DRA into solar

relative heading measurements. Algorithms, based on purely linear computations,

are formulated in order to assist future analogue sensor implementations. Addi-

tionally, the algorithms presented here can readily be generalized to various sens-

ing schemes including: any polarization filter orientations, n-cameras, or a single

CMOS/CCD type sensor. This thesis is also the first work to produce a complete

simulation of atmospheric scattering in order to model and analyze sensor outputs
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and heading algorithms.

The presented heading determination techniques are demonstrated and vali-

dated both in simulation and via an outdoor hardware implementation. Real time

heading control through these strategies is then exhibited on a terrestrial differential

wheeled robot, and through simulation of a micro-quadrotor.

Several paths exist for future development of the methodology presented in

this paper.

1. While the observed errors in heading estimation for the methods developed

in this paper are roughly on par with those observed from insect behavioral

studies [12] [17], increased heading accuracy is desirable in many scenarios.

There are several ways in which estimate accuracy can be improved. The

most straightforward of these is to increase the number of pixels per each

camera as suggested by Table 4.2. This would increase the resolution of the

radial averaging method, and would decrease the effect of each individual pixel.

Alternately one could increase the number of cameras and filter angles utilized,

which would have the additional result of increasing available knots for the

spline interpolation method. Error is also present due to the lack of geometric

and intensity calibration between the cameras as discussed in section 4.2.2,

and the inability to disable the autofocus feature on the proposed webcams.

Another source of error present in the proposed hardware implementation is

sensor noise. A slight steady state oscillation in heading measurements was

observed while the ASU remained stationary. A simple low pass filter could
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be implemented on sensor outputs to reduce this noise, or a higher quality and

less noisy image sensor could be used instead of the proposed webcams.

2. While the sensing/algorithm set produced heading measurements at a fast

enough rate for closed loop control of a ground vehicle, a more efficient method-

ology might be required for faster moving vehicles, or vehicles with less compu-

tational power. As observed in section 5.1.5, an 0.227 second average lag was

observed between magnetometer and camera based heading measurements,

whereas the delay between visual based heading measurements was negligible.

This implies that image acquisition, rather than algorithm computation, is the

main source of measurement lag. Image acquisition time can be reduced by

decreasing image size, however this has the consequence of reducing estimate

accuracy. Alternate hardware is likely a better solution. It is well known that

USB transfer rate is rather slow, and that the use of multiple USB devices on

a single computer just aggravates the situation. One possibility would be the

use of a single integrated vision chip. However this would require development.

3. The presented methodology is somewhat able to compensate for the presence of

small clouds by taking the average pixel value over a wide field of view. Better

resilience to clouds can be achieved by making use of the UV wavelength rather

than visible light as discussed in section 4.2.3. Alternately cloud pixels can

be filtered out by removing “white” pixels or following one of the strategies

suggested in the introduction to section 3.1.

4. It is likely that in addition to azimuth information, elevation information can
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also be reaped from the spatial pattern of atmospheric scattering. One way

to do this would be by performing a method similar to the radial averaging

method. Once the orientation of the radius containing the highest average

intensity is established, a series of lines (or curves if the imaging surface is

curved) parallel to the selected radius can be defined. Each of these lines

will correspond to an elevation angle, and the line with the highest average

intensity will correspond to the solar elevation. Further studies into the spatial

pattern of polarized light might reveal additional ways to determine solar

elevation.

5. The methods presented here have been used to control a quadrotor in simula-

tion, but not a physical flying vehicle. Implementation of the proposed sensing

techniques for real time navigation of a small flight vehicle is a desirable future

result. A further achievement would be to develop a biological sensing suite

consisting of the ASU, optic flow sensors, and ocelli sensors. The ocelli would

provide inner loop pitch and roll stability as well as rate measurements, the

optic flow sensors would provide obstacle avoidance capabilities and inertial

velocity estimates, and the ASU would provide outer loop heading control and

path integration.

6. Many animals such as the nocturnal bee [63] have been shown to use the

atmospheric scattering pattern of the night sky for navigation. Expanding the

ASU’s capability to the dark hours would be a highly beneficial future task.
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Appendix A: Reference Frames

Throughout the course of this paper, several different reference frames and

coordinates systems are utilized. The purpose of this section is to define the various

reference frames, their relationship to each other, and the coordinates used in each

reference frame. A reference frame [64] is a “point of view from which observations

and measurements are made regarding the motion of a system.” Whereas a coor-

dinate system “is the set of scalars that locate the position of a point relative to

another point in a reference frame.” All reference frames in this paper are defined

by 3 perpendicular unit vectors and their shared origin. Rotations will generally be

defined as positive when counter-clockwise about a given axis.

Motion of the ground robot is assumed to be planar, thus rotational motion

is constrained to yawing or changes in heading. However it is assumed that a

MAV can rotate about any of its 3 body axes. It should be recalled here that

translational motions of a ground based robot or a MAV are considered negligible

when compared to the distance to celestial objects such as the sun and points in the

sky. Therefore, when determining heading from atmospheric scattering patterns,

it is assumed that at all reference frames have no translational motion relative to

one another, but are free to rotate. In this context one can say that vehicle center
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of gravity G is approximately equal to some fixed inertial origin O. For vehicle

control purpose, this assumption obviously cannot be made. Therefore body fixed

translational coordinate frames will be presented with origin G to remain general.

The default inertial1 reference frame throughout this thesis, INED, is an earth

fixed North-East-Down frame with origin, O, at some fixed latitude and longitude.

INED = (O, eN , eE, eD)

The 1-vector points north, the 2-vector points east, and the 3-vector points down

into the earth.

The sun frame, S, is a reference frame whose 1-axis is always along rS/O.

S = (O, s1, s2, s3)

The to get from the inertial NED frame to the sun frame, a rotation of ψs

about the 3-axis followed by a rotation of θs about the 2-axis is performed.

The vehicle body frame, B, has its origin at the center of gravity, G.

B = (G,b1,b2,b3)

1The term inertial here is used loosely. Generally an inertial references frame remains “fixed”

in time and space. Newtonian relativity allows this frame to translate constantly without rotation.

Since the earth rotates and nutates about the sun, an earth fixed frame is not a true inertial frame.

However, since the rotational motions of interest here are those relative to the earth, it is useful

to choose an earth fixed frame as an “inertial” frame.
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Figure A.1: Inertial NED reference frame (blue), quadrotor and body

frame B (green), and Observer frame C (red) fixed to B

For a ground robot, the 1-vector of the body frame point in the direction of forward

motion. For a quadrotor, the 1-vector points in the direction of the “front” rotor

of the quadrotor. In Figure A.1 the body frame 1 and 2-axes of the quadrotor are

depicted by the green arrows attached to the airframe body. The body 3-axis is

represented by the downward facing dotted black line. The moving aircraft frame

is show relative to the blue NED inertial frame. The 3-2-1 Euler rotation sequence

(ψB, θB, φB) is used to get from inertial to aircraft body frame.

The observer frame, C, defines a point observed by the sensor relative to the

vehicle body frame. The observer frame is fixed to the center of gravity, G. As

shown in Figure A.2 A rotation of ψc about b3 followed by a rotation of θc about b2

is used to get from the body frame to the vehicle fixed observer frame. The observer
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Figure A.2: Body frame (blue) and vehicle fixed observer frame (red)

frame fixed to the aircraft body frame is shown in Figure A.1.

C = (G, c1, c2, c3)

The image “figure” frame F describes the points in the sky in pixel coordinates

that an upward facing camera attached to a vehicle would observe. The origin, F

is defined as the top left corner of the image. The 1-axis of the image frame is

aligned with −b2, the 2-axis of the image frame is aligned with −b1, and the 3-axis

is aligned with −b3.

F = (xf1, yf2, 0f3)

The vector from the image origin to the aircraft center of gravity can be defined
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Figure A.3: Image figure frame, F , (blue), Body frame B (green), and

Observed point, P

as follows.

rG/F =
n

2
f1 +

n

2
f2

where it is assumed that the the image is square, and n is the image side length.

Figure A.3 shows the relationship between the F and B frames as well as the

vector describing the observed point P in each of these frames. Using some basic

vector arithmetic, one can determine the location of point P in the body frame using
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the following equality.

rP/G = (
n

2
− y)b1 + (

n

2
− x)b2 +Rb3
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