
ABSTRACT

Title of dissertation: ACCURATE SLAM WITH APPLICATION
FOR AERIAL PATH PLANNING

Chen Friedman , Doctor of Philosophy, 2013

Dissertation directed by: Professor Inderjit Chopra
Alfred Gessow Rotorcraft Center
Department of Aerospace Engineering
University of Maryland

and: Professor Omri Rand
Faculty of Aerospace Engineering
Technion–Israel Institute of Technology

This thesis focuses on operation of Micro Aerial Vehicles (MAVs), in previously

unexplored, GPS-denied environments. For this purpose, a refined Simultaneous Lo-

calization And Mapping (SLAM) algorithm using a laser range scanner is developed,

capable of producing a map of the traversed environment, and estimating the posi-

tion of the MAV within the evolving map. The algorithm’s accuracy is quantitatively

assessed using several dedicated metrics, showing significant advantages over current

methods. Repeatability and robustness are shown using a set of 12 repeated experi-

ments in a benchmark scenario.

The SLAM algorithm is primarily based on an innovative scan matching approach,

dubbed Perimeter Based Polar Scan Matching (PB-PSM), which introduces a max-

imum overlap term to the cost function. This term, along with a tailored cost min-

imization technique, are found to yield highly accurate solutions for scan matching

pairs of range scans. The algorithm is extensively tested on both ground and aerial

platforms, in indoor as well as outdoor scenarios, using both in-house and previously

published datasets, utilizing several different laser scanners.

The SLAM algorithm is then coupled with a global A* path planner, and applied

on a single rotor helicopter, performing targeted flight missions using a pilot-in-the-

loop implementation. Targeted flight is defined as navigating to a goal position,

defined by relative distance from a known initial position. It differs from the more

common task of mapping, as it may not rely on loop closure opportunities to smooth

out errors and optimize the generated map. Therefore, the importance of position

estimates accuracy increases dramatically.

The complete algorithm is then used for targeted flight experiments with a pilot

in the loop. The algorithm presents the pilot with nothing but heading information.

In order to further prevent the pilot from interfering with the obstacle avoidance task,

the evolving map and position are not shown to the human pilot. Furthermore, the

scenario is introduced with artificial (invisible) obstacles, apparent only to the path

planner. The pilot therefore has to adhere to the path planner directions in order to

reach the goal while avoiding all obstacles. The resulting paths show the helicopter

successfully avoid both real and artificial obstacles, while following the planned path

to the goal.

ACCURATE SLAM WITH APPLICATION FOR AERIAL PATH
PLANNING

by

Chen Friedman

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Inderjit Chopra, Chair/Advisor
Professor Omri Rand, Co-Advisor
Professor Norman Wereley
Professor Robert Sanner
Professor Derek Paley
Professor Rama Chellappa

c© Copyright by

Chen Friedman
2013

Acknowledgments

I would love to take this opportunity to thank the people who helped make this

thesis possible. This experience has definitely been one for the books, and it would

not be the same without the endless support I received from my loving wife Mor.

As one of UMD’s aerospace graduate herself, Mor was always there to hear both my

success stories and my rants. Mor was always able to lend an ear, even when she

knew (almost) exactly what I was about to say.

My loving parents were a true positive influence. Although both are not so tech-

nical people, they had quite an interest in me sharing this experience with them.

As for people directly responsible for the success of this thesis, my sincere thanks

goes to Shane Boyer, the MAV pilot who had the audacity to attempt flying indoors,

through corridors not much larger than the helicopter’s rotor itself, while tethering

the helicopter to a 10 meters data cord. I see a direct connection between the success

of any helicopter-related results in this thesis and Shane’s flying capabilities. His

endless availability and willingness to attempt all of my rather crazy experimental

ideas, as well as his dedication and interest in my project have played a key role in

the aerial portion of this thesis.

I’d like to thank Graham Bowen-Davies for being the friend that he is. As part

of the same research group, Graham was often my address to run ideas by, invent

experimental techniques, and solutions that satisfied various requirements of this

project. Graham had the patience to endure my spirit while contributing original

ideas, and checking extrinsic issues, which were out of the group’s scope, in most

ii

cases.

My thanks is also extended to all the students at the rotorcraft center, specifically

those who shared the weekly meeting experience, and contributed from their time to

ask questions, offer ideas, and criticize my work. Same goes for those students who

simply were at UMD at the same time, to share the Ph.D. degree experience with me.

Some of these students include (alphabetical order): Brandon Bush, Jared Grauer,

Jörgen Rauleder, Kumar Ravichandran, Robert Vocke III, and Kan Yang.

It may seem odd, but many parts of this thesis work were carried out outside the

office, in one of many air-conditioned branches of “Starbucks Coffee”. This includes

all aspects of coding, debugging, and thesis writing (much to the astonishment of my

peers). The great work environment is hereby much appreciated, as is the great coffee

and occasional snacks. This “thank you” is also extended to the understanding and

kind employees, who did not kick me out after many 5 hour straight shifts, with no

less than two laptops on one table.

Finally, I’d like to thank both my advisors for their contribution towards this

thesis. Thanks is due to Dr. Omri Rand, for his advice throughout this process, his

thoughts and ideas, and his willingness to travel many times to the USA. The funding

for this projects came with much help from Dr. Inderjit Chopra, who secured funding

for both the project and my degree. I extend my thanks to him for that as well.

iii

Contents

Contents iv

List of tables vii

List of figures viii

List of symbols xi

1 Introduction 1
1.1 Autonomous Operation in GPS Denied Environments 2

1.1.1 Mapping Vs Targeted Flight 2
1.1.2 Importance of SLAM Accuracy 4

1.2 Background and Technical Challenges 5
1.2.1 SLAM Techniques . 5
1.2.2 Environmental Sensors for SLAM 13
1.2.3 Platforms Used for SLAM . 17
1.2.4 Mapping Forms . 18
1.2.5 Loop Closure Algorithms . 18
1.2.6 Static and Dynamic Environments 19
1.2.7 Scan Matching Techniques . 20
1.2.8 Path Planning . 22
1.2.9 Accuracy Survey . 23

1.3 Thesis Outline . 28
1.4 Summary of Contributions . 29

1.4.1 Major Contributions . 29
1.4.2 Additional Contributions . 30

2 Existing Algorithms 31
2.1 Occupancy Grid . 31

2.1.1 Occupancy Grid Map Update 33
2.1.2 Occupancy Grid Scalability 34

2.2 Virtual Scan . 34
2.2.1 Obstacle Rendering Algorithm 35
2.2.2 Spacial Accuracy . 36

2.3 Scan Matching . 38

iv

2.3.1 Point Filtering . 38
2.3.2 Linear Complexity Data Association 44

2.4 PSM Scan Matching Algorithm . 46
2.4.1 Translation Estimation . 46
2.4.2 Rotation Estimation . 48

2.5 Scan Matching Using ICP . 48
2.6 Navigation Algorithm . 49

2.6.1 Definition of the Path Planning Problem 50
2.6.2 Path Planning over a Graph 50
2.6.3 Goal Definition . 52
2.6.4 A* Formulation Using an Occupancy Grid 53
2.6.5 A* Algorithmic Pseudo-Code 56

2.7 Summary - Existing Algorithms . 56

3 Novel Algorithms 58
3.1 Scan Matching Using PB-PSM . 58

3.1.1 Cost Function Construction 59
3.1.2 Cost Function Rewarding . 62
3.1.3 Cost Function Minimization 68
3.1.4 Multiple Minima . 70

3.2 Statistical Properties Extraction . 75
3.2.1 Calculation of Mean and Covariance 75

3.3 SLAM Algorithm . 78
3.3.1 General Description . 79
3.3.2 Initial Guess for the Virtual Scan 80
3.3.3 Isolated Point Filter . 84
3.3.4 Computational Complexity . 85

3.4 Coupled Path Planning-SLAM Algorithm 85
3.5 Assumptions and Limitations . 87

3.5.1 General Assumptions . 87
3.5.2 Platform Speed Limitations Analysis 88
3.5.3 Dynamic Environments . 94
3.5.4 Object Detection Limitations 98

3.6 Proposed Accuracy Metrics . 100
3.6.1 Measured Lengths Comparison 100
3.6.2 Average Cell Distance . 101
3.6.3 Loop Closure Seamlessness . 102

3.7 Summary - Novel Algorithms . 102

4 Experimental Setup 103
4.1 Laser Range Scanners . 103

4.1.1 Hokuyo URG 04LX-UG01 . 103
4.1.2 Hokuyo UTM-30LX . 105

4.2 Platforms . 106
4.2.1 Wheeled Platform . 106

v

4.2.2 Human Platform . 107
4.2.3 Aerial Platform . 107

4.3 Scenarios . 108
4.3.1 Martin Hall, UMD . 108
4.3.2 Kim Engineering Building, UMD 109
4.3.3 Physics Building, UMD . 110
4.3.4 Northwestern Highschool, Maryland 112
4.3.5 Greenbelt Park, Maryland . 113

5 Experimental Results 116
5.1 Single Scene Matching . 116

5.1.1 Convergence Pattern . 117
5.1.2 Estimation Error . 118

5.2 Mapping Accuracy . 119
5.2.1 Ground Platform Evaluation 119
5.2.2 Human Platform Evaluation 132
5.2.3 Aerial Platform Evaluation . 136

5.3 Algorithm Limitations . 141
5.3.1 Effect of Laser Measurement Noise 141
5.3.2 Effect of Virtual Scan Resolution 142
5.3.3 Effect of Laser Scanner Parameters 145
5.3.4 Effect of Occupancy Grid Resolution 147
5.3.5 Failure Modes . 149

5.4 Results Using Existing Datasets . 155
5.4.1 Comparison With Existing Full Scale Datasets 155

5.5 Outdoor Experiments . 157
5.5.1 Kim Engineering, UMD: Front area 157
5.5.2 Kim Engineering, UMD: Back area 160
5.5.3 Greenbelt Park, MD . 160
5.5.4 Northwestern High School, MD 160

5.6 Path Planning and Obstacle Avoidance 164
5.6.1 Targeted Flight - Outdoors . 167
5.6.2 Path Planning With Artificial Obstacle Avoidance 168

6 Conclusion 173
6.1 Summary . 173
6.2 Conclusions . 175

6.2.1 Major Conclusions . 175
6.2.2 Additional Conclusions . 176

6.3 Future Work . 177

vi

List of Tables

1.1 SLAM Sensors comparison . 16
1.2 Previous work reports on accuracy 24

4.1 Hokuyo URG-04LX-UG01 manufacturer specification 104
4.2 Hokuyo UTM-30LX manufacturer specification 105

5.1 Hokuyo UTM-30LX manufacturer specification 146

vii

List of Figures

1.1 Scenario with no loop closure opportunities 3
1.2 Differential drive robot schematics . 8

2.1 Occupancy grid schematics . 32
2.2 Example of an occupancy grid . 32
2.3 Example of a map evolution for a vertical wall 33
2.4 Virtual scan Illustration of a corner 35
2.5 Misrepresentation of true objects when using an occupancy grid . . . 37
2.6 Example scan matching with occluded points 39
2.7 Schematics of occlusion detection by angle order switching 39
2.8 The two possible occlusion scenarios 40
2.9 Example of a case that introduces object occlusion 42
2.10 A laser scan before and after applying the outlier filter 42
2.11 Example of identifying a mixed pixel 43
2.12 An example of the A* process development 52
2.13 A* search grid directions . 54
2.14 Bresenham’s algorithm for drawing a line 55

3.1 Example of a virtual ray penetrating virtual obstacles 61
3.2 Possible scenarios with objects of different scale 62
3.3 Effect of perimeter matching term on the cost function shape 68
3.4 Scan matching example on a simple corner-like geometry 69
3.5 Examples of cost function Multiple local minima 71
3.6 Multiple local minima analytical test function 73
3.7 Multiple local minima, with contradicting requirements 74
3.8 Mapping cost contributions around the origin 76
3.9 Mapping cost contributions around the origin for added ∆y 77
3.10 Mapping cost contributions around the origin for added ∆ψ 78
3.11 Block diagram for the SLAM process 79
3.12 The complete algorithm, coupling SLAM and path planning 86
3.13 Laser scanner moving towards a wall 90
3.14 Distorted wall as a function of platform speed 92
3.15 Relative scan error as a function of platform speed 93
3.16 Example of moving objects caught by the laser scanner 94
3.17 Schematics of moving object effect analysis 95
3.18 Effect of moving object distance . 97

viii

3.19 Effect of moving object size . 98
3.20 Detectable obstacle size bounds . 99
3.21 Schematics of the proposed occupancy grid metric 101

4.1 Hokuyo laser range scanner URG 04LX-UG01 103
4.2 A single distance measurement statistical distribution 104
4.3 Hokuyo laser range scanner: UTM-30LX 105
4.4 UTM-30LX noise characteristics (Experimental) 106
4.5 Cart and laser sensor . 107
4.6 Blade 450 helicopter . 107
4.7 Martin Hall environment layout . 108
4.8 Kim Engineering Building, ground floor rotunda 109
4.9 Kim Engineering Building, outdoors, front view 110
4.10 Kim Engineering Building, back view 111
4.11 Physics Building, UMD, floor plan 112
4.12 Northwestern High School scenario, top view 113
4.13 Northwestern High School scenario, outdoors pictures 114
4.14 Greenbelt Park scenario, outdoors pictures 115

5.1 Two representative scan matching scenes 117
5.2 Scan matching convergence plots . 118
5.3 Single scene matching - algorithm comparison 120
5.4 Closed loop hallway. Dataset of 200 laser scans 121
5.5 Closed loop hallway, close up on four corners 122
5.6 Loop closure area, velocity: 50 cm/s 123
5.7 Detailed close ups on a closed loop hallway, velocity: 1m/s 124
5.8 Closed loop hallway – complete map with 1.5 laps 125
5.9 Cost function over 300 steps for the case of 1.5 laps 125
5.10 Effect of using virtual scans and perimeter matching 126
5.11 Perimeter matching term effect on measured lengths 127
5.12 Effect of convergence criterions on the final map cost 128
5.13 Perimeter matching term effect with closed doors 129
5.14 Benchmark scenario, comparison to other algorithms 130
5.15 Benchmark scenario, ICP using exhaustive search, and PM term . . . 131
5.16 Diosi and Keelam’s dataset, first mapped room 133
5.17 Martin Hall, results using a walking person 134
5.18 Physics Building, closed loop course with a human platform 135
5.19 Physics Building, challenging walking pattern 135
5.20 Physics Building, challenging walking pattern, close up 136
5.21 Corridor mapping with a helicopter - single pass 137
5.22 Corridor mapping with a helicopter, close up insets 138
5.23 Corridor mapping using a helicopter - 8 passes 139
5.24 Single room mapping using a helicopter 139
5.25 Closed loop course using a helicopter 140
5.26 Effect of laser noise on cost . 142

ix

5.27 Effect of noise on map quality . 143
5.28 Effect of virtual scan resolution . 144
5.29 Single corridor maps - laser sensor comparison 146
5.30 Single corridor map-modified UTM30LX scanner 147
5.31 Effect of occupancy grid resolution on the final cost 148
5.32 Maps with different OG resolution . 150
5.33 Maps with different OG resolution - close ups 151
5.34 Example of a repetitive structure . 152
5.35 Failure mode for a scan with only two long corridors 152
5.36 Moving too fast, causing small scan overlap 153
5.37 A partially featureless laser scan . 154
5.38 Monash University dataset . 156
5.39 Results using Andrew Howard’s database 158
5.40 Kim Engineering Building, front area map 159
5.41 Kim Engineering Building, map of the back area 161
5.42 Greenbelt Park - forest environment 162
5.43 Northwestern High School, closed loop course, human platform 163
5.44 Mapping insensitivity to motion velocity 165
5.45 Mapping insensitivity to traveled path 166
5.46 Start and goal position in the Northwestern High School scenario . . 167
5.47 Outdoor path planning experiment 169
5.48 Outdoor experiment, final step - arrival to goal 170
5.49 Indoor path planning experiment . 171
5.50 Path planning with artificial obstacles, final map and zoom-ins 172

x

List of symbols

Ck,l The current occupancy of the [k, l] cell
Fi The ith point’s cost contribution
I The index of the final representative cell for a virtual

ray casting operation
Ncells The number of occupied cells found by the current cast

ray
Nempty Threshold for defining the beginning of a new object

in a ray casting operation
Nthickness Threshold for the number of occupied cells along a

single ray that can be considered as a single obstacle
P Perimeter length created by all the points that were

successfully matched in the Current scan
P0 Perimeter length created by all valid Reference Scan

points
Rmin, Rmax Minimum/maximum considered range, respectively
TE Threshold for eliminating a point’s cost contribution

(“matching anomaly”
TF Threshold for disqualifying a scan matching solution
TM threshold for successfully matched points
TO Occupancy threshold for the isolated point filter
V1, V2 Linear translation velocity of the right and left driven

wheels of a ground platform, respectively
W The occupancy value of a cell in the occupancy grid
d The occupancy grid’s resolution
f Total cost function value
nc Total number of points that contribute to a given cost

function (used for normalization)
ns Parameter for the size of the inspected area for the

isolated point filter
r Range measurement
x, y, z Position coordinates in x, y, and z directions, respec-

tively
∆x,∆y Translation distance in x and y directions, respectively
α Angle definition used in the outlier filter
ψ Platform’s azimuth angle
∆ψ Change in azimuth

xi

σ Standard deviation for a laser range measurement
θ A scan point angle
(̇) Derivative with respect to time
()′ Roto-translated coordinate system
()′′ Interpolated values in the roto-translated coordinate

system
()C , ()R Quantity with respect to the Current and Reference

scan, respectively, during scan matching
()L Quantity with respect to a laser scan
()V Quantity with respect to a virtual scan
()g Global reference frame

xii

Chapter 1

Introduction

The motivation for this work is to provide the capability for path planning missions
using rotary-wing micro aerial vehicles (MAVs), in previously unexplored, GPS-denied
environments. In particular, targeted flight is considered as a path planning case
study. Targeted flight is defined as navigating to a goal position, defined by relative
distance from a known initial position. Operation in GPS denied environments is
imperative for a variety of unmanned vehicle mission scenarios including surveillance,
search and rescue, and biological chemical agent detection.

A successful targeted flight mission would accurately navigate a robotic platform
from an initial point to a final point, while avoiding obstacles that are discovered along
the traversed path. Targeted flight differs from the more common task of mapping,
as it may not rely on returning to previously explored areas, in order to obtain
opportunities for loop closure, which may be used to smooth out errors and optimize
the generated map. Therefore, position estimates accuracy becomes a necessity.

Therefore, targeted flight requires a highly accurate mapping and localization algo-
rithm, which may not depend on loop closure opportunities. This is typically obtained
using a combination of accurate sensors and algorithms. The mapping and position
estimates are required to be accurate throughout the traversed path. Targeted flight
may not depend upon optimizing the map for error reduction. In addition, an algo-
rithm for obstacle avoidance and path planning is required to navigate the platform
towards the final target.

In this thesis, a refined Simultaneous Localization And Mapping (SLAM) [1] al-
gorithm is developed, and its accuracy is quantitatively assessed using a dedicated
metric, showing comparative advantages over current methods. Repeatability and ro-
bustness are checked using a set of 12 repeated experiments in a benchmark scenario.

The SLAM algorithm is then coupled with a global A* path planner, and applied
on a single rotor helicopter, performing targeted flight missions using a pilot-in-the-
loop implementation. The pilot is provided with only heading information and artifi-
cial (invisible) obstacles are introduced, apparent only to the path planner, to prevent
the pilot from interfering with the obstacle avoidance task. The resulting path shows
the helicopter successfully avoid both real and artificial obstacles, while following the
planned path to the goal.

In the current chapter, a general description of autonomous operation in GPS-

1

denied environments is given, followed by a literature review of both SLAM techniques
and scan matching, highlighting the potential advantages and possible shortcomings
of various currently available algorithms. The constituting elements of SLAM are
reviewed with respect to sensors, platforms, the loop closure problem, and several
algorithm identifiers.

One of the main contributions of this thesis is a refined highly accurate scan
matching technique, for performing SLAM. Therefore, the available literature will
be reviewed focusing primarily on the accuracy reported by other authors using dif-
ferent SLAM algorithms. The rationale for the required accuracy is also discussed,
particularly with respect to targeted flight mission types.

1.1 Autonomous Operation in GPS Denied Envi-

ronments

For an unmanned Micro Aerial Vehicle (MAV) operation, assuming position in-
formation is given (GPS, beacons, etc.), on board sensory data (e.g. laser scanner,
vision sensor, etc.) can be combined to build a map (since the position information
input is independent of sensor’s readings). On the other hand, if the map is known
a priori, the MAV can position itself inside the known map using sensory data and
appropriate tools (such as scan matching). These techniques are quite robust as the
map is known and serves as a deterministic anchor in the estimation process.

However, when both the map and position are unknown, the MAV is required
to simultaneously estimate both at the same time. A map can be built by sequen-
tially adding sensory data (e.g. laser scans, visual pictures, extracted features, etc.)
to a database, as the MAV moves in space. The sensory data is added based on
the estimated location of the platform and the map is interchangeably used to esti-
mate position. Thus, estimating the map and the position within the map is a joint
estimation process, which is widely referred to as Simultaneous Localization And
Mapping [1, 2].

SLAM is therefore a bootstrapping process, coupling position and map estima-
tions. As such, the accuracy of the map is imperative for accurate position estimates,
and simultaneously, estimated position information must be precise enough to allow
accurate map evolution. Inaccurate position would register measurements of the en-
vironment in the wrong locations in the map, and thus would degrade the map’s
accuracy. Therefore, all subsequent position estimates would be prone to errors if
carried out using an inaccurate map.

1.1.1 Mapping Vs Targeted Flight

The task of mapping an environment relies on returning to previously visited
locations. The drift that accumulates while a platform maps a given area may be
only be reduced if an added constraint is introduced. This may be obtained when
a relation is discovered between a currently explored area and a previously explored

2

area. Such an occasion occurs when the platform revisits previously explored areas,
in which case, new incoming data has overlap with the already evolving map.

Loop closure algorithms are capable of discovering such possible overlaps. These
algorithms may be based on feature recognition, or basic scan matching (see Sub-
Section 1.2.5 for a detailed review). The main result is a constrained relation between
pose estimate pairs. An optimization algorithm may then be employed to solve a
complete problem of relative constrained relations between complete sets of pose
estimates to obtain map consistency, thus reducing the accumulated drift.

(a) Low drift algorithm map

(b) High drift algorithm map

Figure 1.1: Example for a scenario where loop closure opportunities may not exist,
and large drift may prevent a successful mission. Initial and goal points marked with
an ‘x’ and a circle, respectively. Mapping results with low and high drift algorithms
(top and bottom, respectively). Robot path is marked by arrows.

In contrast, targeted flight may not rely on such algorithms, as loop closure oppor-
tunities may not exist. An illustration of such a scenario is presented in Figure 1.1.
The robot is directed to reach a goal on the other side of a closed door (marked with
a circle), defined as relative distance to the initial position (marked with an ‘x’). The
map on the left has very low drift, and so the robot can successfully plan a path
to the goal. However, the map on the right, which has significant drift associated
with it, would prevent the robot from reaching its goal, and completing the mission
successfully. In such a scenario, loop closure may not be used to optimize the map,
as the vehicle does not return to a previously visited area.

3

1.1.2 Importance of SLAM Accuracy

The accuracy of SLAM algorithms is poorly addressed in the majority of published
literature, as will be shown laser in this chapter. The bootstrapping nature of SLAM,
discussed above, results in a strong dependency of most algorithms on the ability to
perform loop closure detection, and map optimization to reduce the accumulated drift
(see Sub-Section 1.2.5 for additional details). The accuracy obtained before and after
employing the map optimization algorithms differ significantly (typically accumulated
drift becomes large enough to be easily recognized by the naked eye).

Algorithm accuracy is quite challenging to measure. The main reason is the size
of the experimental scenarios, with dimensions that are typically on the order of
100 m. Motion capture systems may only be used on smaller scenarios, to provide
ground truth data to which position estimates may be compared [3]. Typical larger
scale experimental scenarios may be evaluated by comparing selected dimensions [4]
or using GPS data in case of outdoor experiments [5].

In the published literature, accuracy is typically reported in a qualitative form.
This will include images of the resulting map, which are compared with floor plans
or aerial photographs (for either indoor or outdoor experiments, respectively). Due
to the scenario size, the comparison is typically performed on a global scale, showing
the entire scenario without focusing on local, smaller scale accuracy (examples may
include the works by Bachrach et al. [6], and Grisetti [7]). In some cases, the true map
is not presented, and neither quantitative nor qualitative comparison is provided [3].
In such cases, the consistency of the map, especially around loop closure opportunity
areas is typically of a higher concern.

Map consistency is described as a correct loop closure of a traversed path, as
examined by the naked eye. After loop closure and map optimization algorithm have
been carried out, the resulting SLAM-generated map is analyzed with specific regard
to the loop closure opportunities that were attempted. Algorithm comparison may
in some cases be determined based on successful loop closure abilities [8, 9].

In the rare cases when accuracy is quantified, the reported results are for a simu-
lated environment, as the information is available for both estimated and simulated
true quantities, which makes comparison fairly easy. However, the accuracy in ex-
periments conducted in real environments is significantly lower, as compared to that
achieved using simulated data. This was clearly shown in the work by Segal, Hähnel,
and Thrun [10], who employed the same algorithm on both simulated and true laser
scanner data. They showed approximately an order of magnitude difference between
the average error obtained using simulated data, as compared with true laser scanner
data, collected both indoor and outdoor.

Improving the accuracy of the SLAM estimates (prior to the use of map opti-
mization algorithms) may have a positive effect on both mapping and targeted flight
missions. As explained in Sub-Section 1.1.1, high accuracy may be a key in the success
of targeted flight mission in areas with absolutely no opportunities for loop closure.
High drift algorithms may result in a mission failure. In mapping missions, the use
of loop closure and map optimization algorithms may directly benefit from higher
accuracy SLAM estimates in two ways: the higher accuracy will provide a better

4

initial guess for the loop closure algorithm when testing loop closure candidates, and
the optimization algorithm will converge faster since the initial map to be optimized
will be closer to the well optimized solution (which is a consistent map).

1.2 Background and Technical Challenges

This section reviews previously published algorithm for SLAM, scan matching,
with specific regard to relative advantages of the different approaches, as well as
the range of applicability with regards to autonomous platforms configurations. The
sensors used for SLAM in the current state-of-the-art are also reviewed. The review
will also outline the relatively little attention given to SLAM accuracy, an area that
is thoroughly discussed in this thesis.

As mentioned above, the motivation of this research was to perform targeted flight,
which requires accurate SLAM algorithms without relying on loop closure and map
optimization capability. This section will highlight the currently available algorithms,
their accuracy (reported or estimated by the author), which will support this research
motivation.

1.2.1 SLAM Techniques

The area of SLAM has received a tremendous amount of attention over the last
decade. The main reason was the desire to operate autonomous vehicles in a GPS-
denied environments, thus allowing for indoor, underground, and in some cases a
more robust autonomous vehicle operation (as GPS data may not be available at all
times). Generally, a SLAM algorithm provides the ability to estimate the vehicle’s
state vector given its previous state in conjunction with available measurements and
commands. This is combined with some model for the environmental observations
(sensory data). The result is both a map of the scenario (in some form), and a full
or partial vehicle state estimate.

There are several identifying properties that may be used to categorize SLAM
algorithms:

• Extended Kalman Filter (EKF) based

• Particle Filter (PF) based (sequential Monte-Carlo sampling)

• Dynamic model dependent

• Dynamic model independent

• Scan matching based

• Two dimensional

• Three dimensional

5

Extended Kalman Filter based SLAM

Extended Kalman filter SLAM algorithms are probabilistic based approaches, re-
lying on some form of Bayesian filters. The main idea behind this algorithm category
is obtaining an initial estimate (prior), which is based on a plant model for the plat-
form dynamics, and the given commands, which is used to calculate a refined estimate
(posterior) based on the new sensory input. Generally, the a probabilistic approach
builds a coupled Bayesian filter equation, for both the vehicle’s states and the map
observations [1] (such as map features location).

An EKF based SLAM algorithm is based on the formulation of a coupled esti-
mation problem for both the vehicle states, and a set of landmark locations in the
evolving map. The two sets of of estimated variables use the Kalman filter data fusion
approach to produce improved estimates based on incoming sensory data and models
for both the platform as well as the environmental sensors. This approach was quite
common in the early years of SLAM research due to its relatively simple formulation,
and some available simplified theoretical results, to which the algorithms’ results may
be compared. Several attempts at EKF SLAM are well documented in the review by
Durrant-Whyte and Bailey [1]).

The differences between the research efforts are typically subtle, and tend to focus
on methods for reducing computational complexity, and the use of different loop
closure strategies [1, 11, 12]. Although EKF algorithms were initially quite popular,
several deficiencies are associated with EKF SLAM:

i. Non-linearity of both the sensor model, the platform dynamic model, and other
platform sensors such as Inertial Measurement Unit (IMU). These are all lin-
earized in the EKF approach. Although optimal estimates are guaranteed when
using the Kalman filter on a linear system, there is no such guarantee when the
system and sensor are non-linear.

ii. The computational complexity of the algorithm increases rapidly as O(n2
P), with

nP being the total number of position estimates and observed landmarks. The
EKF is in fact estimating all the platforms positions in combination with all the
landmarks at each step. The need for a matrix inversion in the EKF algorithm
formulation is the source of the computation complexity. In most scenarios,
the number of pose estimates is quite large, and it is desired to have estimates
for as many vehicle states as possible. Additionally, the number of landmarks
typically increases with the traveled distance.

Many techniques have been developed to reduce the complexity, but typically
at the expense of increased estimation uncertainty [1]. Some techniques were
deemed inconsistent, as they achieved a theoretical covariances (a measure of
uncertainty) that were lower than the optimal solution’s covariance [1, 12].
One typical method for reducing the complexity was sub-mapping, where the
estimation was employed on subsets of poses and landmarks, such that the
computational workload was feasible. The sub-maps and position subsets were
later merged [1] to form a globally consistent map.

6

iii. The sensor model that is required for the formulation is typically quite complex.
In the case of a laser scanner, which is a very common SLAM sensor, modeling
the erroneous measurements that may be output from the laser scanner proved
to be quite challenging [2]. The probability density function (PDF) for each
laser beam is required to contain probabilities for zero-range measurements,
maximum range measurements, outlier measurements (see Sub-Section 2.3.1
for a detailed explanation), and typical laser noise. Only the laser noise is easy
to model (using a Gaussian PDF).

In fact, the main problem with PDF-based modeling is that outliers mainly
occur on surface discontinuities, and so they may not be modeled based on
probability [13]. They are rather an outcome of certain conditions in the envi-
ronment. Moreover, outliers may take on values only between the two ranges
of the surface discontinuity, and this may is typically not considered by the
probability distribution [2].

iv. Extracting a small number of key landmarks are essential for the formulation
of the estimation problem. An EKF based algorithm may not estimate an en-
tire occupancy grid map, made of a relatively high number of occupied cells.
Such a form of environmental map requires the extraction of a considerably
smaller number of features. This entails an additional feature extraction algo-
rithm, which typically outputs the larger, more dominant features in the map.
Therefore, scenarios that do not contain many large features may not be good
candidates for this approach.

Particle Filter based SLAM

Like EKF-based algorithms, particle filter SLAM algorithms are also based on
Bayesian filters, with a prior belief and a posterior refined estimate for both map
features and vehicle states. Solutions to the SLAM problem that use particle filters
are based on sequential Monte-Carlo sampling of multi-hypotheses for the map and
position estimates.

The advantage of particle filter based algorithms is that each estimate is a result of
a set of hypotheses (particles) [1, 8], evaluated using the available platform and sensor
mathematical models. These techniques may overcome some of the shortcomings of
EKF algorithms [14], and are often compared to EKF based algorithm mainly in
terms of robustness (since both are designed to be capable of estimating non-linear
problems).

The computational complexity of particle filters depends mainly on the number of
particles used (number of hypothesis attempted in a sequential Monte Carlo fashion).
Each particle represents a hypothesis for a map and a position estimate, which to-
gether with the mathematical models yields a probability estimate for it’s correctness
(generally a covariance value).

Typically, the number of particles used is adjusted to reflect the available computa-
tional resources. However, using too few particles may result in low-quality estimates.
This is manifested as an over-confident estimates (artificially low covariance values),

7

resulting in an inconsistent algorithm (as shown by Bailey, Nieto, and Nebot [14]
while analyzing the FastSLAM particle filter based algorithm [8]). Moreover, in some
cases, the number of particles is too small to allow sufficient successful loop closure
hypotheses [8].

For aerial platforms, since computational resources are further limited (due to lim-
ited payload capability), particle filter algorithms may not allow for real time SLAM
capability. For this reason, Achtelik et al. [15] and Bachrach et al. [6] demonstrated
real-time SLAM using a particle filter based algorithm, with the aid of additional off-
board computational capabilities. The relatively high number of particles that were
required to tackle the myriad of features in the attempted scenario was the main
reason for the on-board computational resources shortcoming.

Generally, particle filter based SLAM algorithms share the same drawbacks as
EKF-based algorithms mentioned above. These include implementation difficulties
on platforms with complex dynamic models, modeling complexity of sensors, and the
need for feature extraction (if a landmark based map is used).

Dynamic Model Dependency

SLAM methods that make use of the platform’s dynamic model require that the
platform be mathematically modeled in the form of:

ẋ = f(x, t) (1.1)

where x is the state vector and t is the time. The mathematical model is used to
obtain a prior estimate of the platform states based on the input commands.

x

y

V1

V2

l
x’

y’

ψ

∆x

∆y

∆ψ

Figure 1.2: Differential drive robot schematics.

Previous works with Bayesian filter have been demonstrated mainly on ground

8

vehicles with differential drive systems [1, 8, 11, 12, 14, 16], which appear simple to
model. The wheels provided odometry information, while other sensors (typically a
laser scanner) were used as the environmental sensor, for SLAM purposes.

Figure 1.2 presents a schematics of a differential drive ground robot. A differential
drive platform typically has two motor-driven wheels on the sides and a third wheel
for stability. Longitudinal motions are controlled by equal rotation of the wheels
(using equal RPM commands to both wheels, generating equal values V1 and V2 in
Figure 1.2), while changing azimuth is controlled by differentially rotating the two
motor-driven wheels (using different RPM commands to the two wheels, generating
different values for V1 and V2). The model equations for this differential drive system
may be written as follows:

ẋ = V sin(ψ) ; ẏ = V cos(ψ)

ψ̇ = (V2 − V1)
1
l

; V = 1
2
(V2 + V1)

(1.2)

where x and y are the global position coordinates, V1 and V2 are the translation veloc-
ities of the right and left driven wheels respectively, ψ is the azimuth angle, relative
to the inertial frame (zero azimuth is pointing “North”), and V is an average trans-
lational velocity. The rotated coordinate system is marked by (x′, y′) in Figure 1.2.
The length l is simply the wheelbase width.

Typically, odometry is obtained from such configurations by means of wheel en-
coders, combined with the measured wheel radius. Integrating the wheel encoder
data yields the platform traveled path. However, there are many error contributions
to this estimate, including the fact that the wheels are never perfectly round, slippage
that occurs on all platforms (to some degree), surface inclinations, and encoder mea-
surement errors. The goal with odometry is to get a prior estimate for (∆x,∆y,∆ψ),
which are the relative motion in x, y, and ψ respectively.

The success of Bayesian filter based systems increases with the accuracy of the
plant model. Therefore, systems that are simpler to model mathematically allow for
higher accuracy prior estimates, which in turn contribute greatly to the accuracy of
the posterior estimation. Differential drive robots provide the most basic form of
a ground platform. Therefore, these platforms became the most popular platform
of choice for SLAM experiments. A slightly more complex model may be that of a
four wheel platform, e.g., a car, featuring more wheels, as was used in the work by
Dissanayake et al. [11]. The accuracy of the prior motion estimates deteriorates as
modeling the additional wheels is likely to introduce additional errors. The accuracy
of the posterior estimates, generated by the probabilistic filter will be reduced as a
direct result of relatively less reliable plant model.

For the same reason, performing SLAM on platforms whose dynamic model is
complex may result in a relatively lower accuracy, and is normally not attempted.
Such platforms include a walking person, and rotary wing platform configurations.
When aerial vehicles are used, the configuration of choice is typically a quad-rotor,
which is modeled using four thrust values, controlled by four direct RPM commands.

9

The well defined rigid body dynamic equations complete the platform’s dynamic
model. However, modeling a single rotor helicopter, coax, tandem, ducted fan and
other configurations is considerably more complex, and typically requires highly non-
linear equations, in conjunction with a set of simplifying assumptions. Such models
are considered to be of lower fidelity [17].

Although these configurations have several operational advantages over quad-rotor
configurations (such as compactness, performance, etc.), SLAM has traditionally been
demonstrated on quad-rotor configurations (with the exception of the work by Thrun,
Diel, and Hähnel [18] with a single rotor helicopter, and the work by Steder et al. [19],
performed on a coaxial helicopter).

Moreover, regarding SLAM using a walking person platform, with the exception
of the works by Clemente et al. [20] and Saarinen et al. [21], the author found no
other work that demonstrate SLAM on a walking person (or a humanoid robot).
Modeling of a walking platform is considered to be much more complex as compared
to modeling wheeled ground vehicles.

Dynamic Model Independency

Several works have presented SLAM algorithms that do not require a dynamic
model for the platform carrying the sensors. These algorithms may therefore be
applied to essentially any platform with fewer limitations on the platform’s dynamics,
thereby also removing the dependency on modeling accuracy.

Such algorithms may still have the prior and posterior estimates structure, since
the simple differential relations between position, velocity, and acceleration may still
be used. Since these relations do not depend on the platform configuration, it is easy
to implement them in order to utilize IMU data, and provide improved initial guesses
to scan matching techniques [21, 22].

Saarinen et al. [21] presented such an algorithm that was based on scan matching
incoming laser scans against the evolving map. They presented results in a typical
corridor like environment, while the laser is carried by a walking person traversing
the corridors. The path was relatively straight, going to the end of the corridor and
coming back to the initial point. However accuracy was relatively poor, and manual
map correction had to be introduced.

Steder et al. [19], suggested a visual SLAM algorithm, based on camera imagery.
They presented results using a blimp, a helicopter, and a walking person. The walking
person platform was used to simulate a data acquisition from a free-flying platform
(as a precursor for the helicopter experiments). This practice was also used in this
work.

Scan Matching Based SLAM

Scan matching based SLAM has also received considerable interest in the lit-
erature. The main difference is usually replacing or complementing the odometry
obtained from the platform’s wheel encoders with some form of scan matching of

10

incoming sensory data. Scan matching methods range from laser scan matching [3]
to matching imagery features [23, 24].

When using laser scanners, there is the advantage of using scan matching as op-
posed to wheel encoders due to their relatively higher accuracy. Matching sequential
laser scans (also known as laser odometry) is typically more accurate than odometry
integrated from wheel encoders. When using vision sensors for scan matching, the
advantage stems from fusing them with IMU data, as in the work by Shen et al. [24].
SLAM using scan matching may be performed in both 2D [21, 25] and 3D [22] envi-
ronments.

Scan matching gives an estimate for the position from where the latest scan was
taken. Based on that position estimate, the latest scan information can be updated
into the map, and the process repeats with the next laser scan. This can be performed
using a newly acquired laser scan and a scan of the evolving map, made from an
approximate position (e.g. by means of ray casting), or simply between sequential
laser scans. Typically, the latter is likely to result in relatively larger accumulation
of errors as demonstrated by Bailey and Nebot [26].

Some previously published SLAM works rely only on scan matching techniques to
generate both map and position estimates [3, 4, 21, 27, 28]. SLAM algorithms based
on scan matching typically do not require a dynamic model for the platform’s motion,
and in principle may be applied to any platform regardless of its dynamic behavior.
The majority of the work in this area makes use of 2D laser scanners [4, 21, 27, 28].
However, some research efforts use 3D laser scan [18, 22], and some were also extended
for 6D SLAM (e.g. Nuchter et al. [22]).

Two-Dimensional SLAM

SLAM methods were initially demonstrated in two dimensions, where planar
translation and rotation were the states estimated by the SLAM algorithm [1, 8,
11, 12, 14, 16]. Apart from cameras, most sensors that are used for SLAM oper-
ate in two dimensions, providing a scan of the environment (e.g. sonar beam arrays
and laser scanners). Moreover, the computational complexity of SLAM algorithms
increases significantly with the number of degrees of freedom.

Three-dimensional SLAM doubles the estimated platform states, as it not only
requires estimating the third dimension (z), but also requires estimating pitch and
roll angles, which together form a six degree of freedom estimation problem. The
majority of the available SLAM research today is carried out in two dimensions, due
to the availability 2D laser scanners and the lower computational requirements.

A known problem with 2D SLAM is that of “floor scans”. These are instances
where the environmental sensor (typically a laser scanner), is perturbed from the
desired plane in the scenario, and the resulting scan for that instant contains objects
that do not exist in the desired plane, such as the floor or the ceiling. One may
consider a scenario where the floor is uneven, a wheeled robot trips over an object,
or an aerial robot pitches at a significant angle [29]. Any of these instances may
cause the two dimensionality assumption to become invalid, as the sensor will pick
up objects that do not lie in the plane of interest.

11

A very good example for floor scans is discussed in the work by Ho and New-
man [30], who present a typical corridor map which includes several such floor scans.
In the work by Ho and Newman, the laser scanner is located relatively close to the
ground. This is a contributing factor that may increase the occurrence of floor scans
(for both laser scanners and sonar beam sensors). The sensor may pick up reflections
from the floor before the beams have reached the farther object. This issue becomes
even more pronounced when the beams are directed at objects at relatively larger
distances.

Three-Dimensional SLAM

Application of SLAM in three dimensions may be achieved by both 2D and 3D
sensors. For example, some research efforts made use of 3D laser scans, that were
obtained by mounting a 2D scanner on a tiltable mount (as in the work of Nuchter
et al. [22]). The result of each scan is called a ”point cloud”, and is in fact a set of
range values, with each range having a bearing in both pitch, and yaw. Performing
scan matching with point cloud is naturally more complex as compared with the more
common 2D scan matching techniques [22], mainly because of the increased number of
data points. Point cloud data may also be obtained using structured light techniques
as in the work by Bachrach using the Microsoft Kinect c© sensor [31].

Another approach for 3D SLAM was that of Thrun et al. [18], who performed
3D surface modeling using a 2D laser scanner. However, in their approach, the 2D
laser scanner was fixed (rather than mounted on a tiltable surface), providing 2D
scans in approximately the same orientation. The scans were then aligned using a
probabilistic scan matching approach, which included the use of IMU data. The
objects in the scenario were presented using the aligned scans, and surfaces were
created using polygons created by sets of nearby points. These results were shown to
be useful in representing real scenarios, which could be easily interpreted by a human
operator.

Motivation for Proposed SLAM Algorithm

It is quite clear that for targeted flight mission we require a SLAM algorithm that
may not rely on loop closure. The algorithm developed in this work is based on scan
matching, independent of the platform’s dynamic model, and uses a laser scanner for
two-dimensional environments. As will be shown, the current algorithm achieves a
significantly lower drift as compared with previously published algorithms, without
the use of loop closure algorithms.

The algorithm’s independency on a dynamic model contributed greatly to the ease
of testing it on multiple platforms. Ground platforms were consistently used as a pre-
liminary step towards testing on the aerial platform. The algorithm development and
the experimental process benefitted greatly from reduced complexity, as many aspects
were captured and investigated in the ground platforms phase. Ground platforms are
considerably less complex as compared with aerial platforms, and therefore provided
an easier development process.

12

1.2.2 Environmental Sensors for SLAM

On board sensors are typically used to survey the traversed environment. These
sensors provide the algorithm with information about the nearby objects (depending
on the available field of view and the nature of the sensor). Several different sensors
may be used within SLAM algorithms, including sonar beam arrays, laser scanner, im-
age sensors (cameras), optic flow sensors, and structured light based sensors. Details
on each sensor are given below, followed by a comparison table of sensor properties
(presented in Table 1.2).

Sonar Beam Array

Sonar sensors operate based on time of flight of the sonar signal. These sensors
are capable of measuring distance typically with an accuracy of approximately 10%
of the measured distance. Sonar sensors were initially used on robots for surveying
the surrounding environment, in an attempt to learn the obstacles around the moving
robots. Elfes [32] was the first to apply sonar range data for learning occupancy grid
maps using a motorized ground robot. He used a circular array of sonar sensors to
provide several range measurements that cover a large field of view around the moving
platform.

The main disadvantage associated with sonar sensors is their relatively wide beam,
causing a difficulty in measuring sharp changes in the environment such as corners.
The wide beam essentially gives an average range measurement of all objects that are
included in its own field of view. Moreover, the response frequency of sonar beams is
slow as it relies on the speed of sound, as opposed to laser range scanners, which use
the same time-of-flight method, but are much faster since they depend on the speed
of light. For example, a 30 m range will take approximately 0.2 s to measure, while
at the same time? a laser scanner produces a complete scan of its entire field of view.

Laser Scanner

A laser scanner is a sensor that typically uses either time-of-flight or phase differ-
ence measurement of a laser beam to obtain a range measurement. In most sensors,
a laser beam is generated, and a rotating mirror at the top of the sensor turns the
beam in its plane of rotation, while the sensor records several range measurements
around the sensor’s field of view. The sensor output is a set of range measurements
at specified azimuth angles.

Laser scanners are by far the most popular choice for SLAM algorithms [3–6, 8, 9,
11, 15, 21, 27–29, 33–43]. The main reason is the relatively high accuracy of the range
measurements, typically estimated at 0.5%− 1% of the measured distance (for each
beam). As mentioned above, sensor accuracy contributes greatly to the overall SLAM
accuracy and thus laser scanners have become very popular for SLAM capable robots.
An additional reason is that laser scanners maintain their effectiveness in most cases,
regardless of lighting, smoke, and other degraded visual conditions.

The main disadvantages of using laser scanners is their high price and weight as
compared with vision sensors. Moreover, the laser scanner output data contains no

13

information other than the range measurement itself, and in some cases a measure
of surface reflectivity. Other sensors provide a richer output that may be used in a
myriad of ways to improve the resulting map usability (e.g. visual data, color, etc.).
Typically, a map created using images may provide a better understanding of the
scenario as compared with a map created from point measurements only. Moreover,
laser scanners do not operate as well in the presence of daylight. Generally, daytime
outdoor operations will result in a significantly reduced detectable range of the scanner
(a reduction of approximately 50%).

Structured Light

Structured light is a method that uses visual algorithms to analyze a light struc-
ture, projected on the surface of interest. A light source is used to project a certain
pattern onto the surrounding environment, while the refractions from nearby objects
are recorded by a camera. The different refractions contain information about the
different range to the surrounding obstacles and current algorithms are capable of
producing a depth map from the structured light analysis.

Such a a sensor package is the Kinect c© sensor by Microsoft. The light source is
infra red, and hence invisible to the human eye. Together with the camera, this sen-
sor package provides the both a picture and an associated depth map (also known as
“RGB-D” map). This sensor package (although quite heavy and bulky) was used by
Backrach et al. [31] to produce three dimensional environment maps and vehicle state
estimates, without GPS, using a quad-rotor platform. They demonstrated station-
keeping capabilities, as well as mapping a relatively small scenario. The visual maps
are useful as the images are fused into the map, providing a useful representation for
the traversed environment, that is easily interpreted by a human operator.

Vision Sensors

Vision sensors have the advantage of being passive, as they do not emit energy,
and thus may contribute to stealth operation. In addition, their power consumption
is considerably lower than that of laser scanners, and their weight is also significantly
lower (approximately two orders of magnitude lower in both cases). These features
make them attractive for autonomous operations using MAVs. Vision sensors provide
sequence of images (video signal), which are typically a two dimensional image of a
three dimensional environment (with a certain field of view).

The main disadvantage of vision sensors is the relatively larger computational re-
sources that are required for image processing, and the lower accuracy of the SLAM
estimates [44]. Image processing algorithm such as feature extraction, image match-
ing, and image pre-processing are typically pixel based operations, i.e., depend on
the sensor resolution. Typical vision sensors contain approximately one million pixels
(or more), which is three orders of magnitude more than the number of laser points
in a single laser scan.

in recent years, there has been a growing interest in vision based SLAM, partic-
ularly for aerial applications, due to the low-payload and power associated with the

14

vision sensors. Vision based SLAM was investigated by Steder et al. [19], presenting
an algorithm that may be suitable for both monocular and stereo vision systems.
Artieda et al. [44] discuss feature extraction and image matching of images acquired
from an MAV. They presented a comparison between the SLAM results and a GPS
true position data, Achieving an accuracy of approximately 10% of the traveled dis-
tance on a relatively small scenario. Weiss, Scaramuzza , and Siegwart [45] show how
monocular SLAM estimates (using a single camera) may be used for vehicle stabi-
lization and navigation in GPS-denied environments. Lastly, Shen et al. [24] present
an algorithm to fuse vision based information as well as IMU based information, on
a quad-rotor for performing SLAM outdoors.

Optic Flow Sensors

Optic flow is defined a measure of changes that occur in a visual image, caused
by the relative motion between the sensor and the scenario. Naturally, the closer
the objects in the image are to the sensor - the higher the optical flow will be, as
even small movements will create a large change in the viewed scene. This reveals
the dependency of optical flow values on the distance from the sensor to the objects
themselves, and the translational speed of the vehicle. Therefore, optic flow sensors
can only measure distance relative to the platforms speed.

Since SLAM typically requires range estimates to nearby objects, a velocity esti-
mate provided by an additional sensor is required (this estimate may be obtained from
an IMU, or from other sensors, as in the work by Kendoul, Fantoni, and Nonami [46]).
This allows the estimation of absolute distances.

Optic flow measurements may be extracted from vision sensors, by means of image
processing, in which case, the weight and power consumption are quite similar to
vision sensors. However the computational resources required for optic flow extraction
from images may be considerably lower as compared to image matching.

Generally, the accuracy of distance measurements from optic flow sensor is lower
as compared with a laser scanner measurement, particularly due to the dependency
on a scaling factor that depends on the platform speed. The estimated accuracy in the
work by Kendoul, Fantoni, and Nonami [46] is approximately 10%, which is similar
to the accuracy obtained by vision-based SLAM algorithms (see Sub-Section 1.2.2).

Sensor Comparison

Table 1.1 presents a comparative overview of the available environmental sensors
for SLAM, compared relatively to each other with respect to weight, range, power,
response time, computational resources required, and accuracy that may be achieved
for SLAM. One fundamental difference between the sensors is being active or passive,
i.e., does the sensor emits energy (active) or merely absorbs it (passive). The three
sensors that are active and emit energy are the sonar, laser scanner, and the structured
light, while the camera and optic flow sensor are passive. The sonar and laser sensors
provide a range measurement based on emitting energy and sensing the returned
energy. The structured light provides a range estimate based on an algorithm that

15

Table 1.1: SLAM Sensors comparison
Sensor Weight Range Power Response

Time
Comp.
Resources

SLAM
Accu-
racy

Price

Sonar Heavy Med Med Slow Low Med Low
Laser Heavy High Med Very fast Low Very

high
High

Camera Light Med Low Med Med Med Very
Low

Optic
Flow

Light Med Low High Med Low Low

Structured
Light

Heavy Med Med Med High High Low

analyzes the changes in a light pattern that is projected on the surroundings.
Energy emitting sensors are typically associated with a higher power required,

relatively to cameras and optic flow sensors, which are passive sensors (i.e. no energy
is emitted). However, the energy requirements are within the capabilities of current
MAVs (typically, a small scale laser scanner requires approximately 10 W). In terms
of weight, cameras and optic flow sensor are much lighter as compared to the other
sensors with typical weights of under 10 grams. Weights of laser scanner vary signifi-
cantly, based mainly on range capability. Those mounted on ground vehicles typically
weigh approximately 1 Kg, and those mounted on aerial platforms typically weigh
approximately 250 grams. Each sonar sensor weigh approximately a few grams, and
so a sonar sensor array used for SLAM would be in the same weight range of laser
scanners.

With respect to range, laser sensors typically have the highest range, which can
reach 80 m, while the other sensors typically offer usable information for a much
shorter range of approximately less than 10 m. Laser scanners also have the fastest
response time, as they rely on speed of light for measuring a single beam, and therefore
are limited by the mirror rotation speed. Laser scanner frequency is approximately
40 Hz and some algorithms are capable of processing the data at this rate as well [29].
On the other hand, while camera frame rate may be in the same range, typical vision
algorithms may not be able to analyze the data for each frame. Therefore, camera
sensors typically provide a somewhat lower response time [24]. The computational re-
sources associated with vision sensors are typically higher, mainly due to the increased
workload for analyzing vision images.

The accuracy achieved by vision sensors is relatively lower as all algorithms re-
quire extraction of features from the images in some form, while the laser scanners
provide much accurate range measurement that produce higher quality SLAM es-
timates. Sonar sensors are not as accurate as laser and structures light, and are
therefore associated with relatively less accurate SLAM performance. The impor-

16

tance of accuracy was the main driving factor in choosing the laser scanner as the
environmental sensor, since the laser scanner provides the best accuracy. However,
with respect to price, the laser scanner is by far the most expensive sensor (with a
price tag in the range of thousands of dollars), while the other sensors have a price
that is lower by at least an order of magnitude.

1.2.3 Platforms Used for SLAM

SLAM has been demonstrated on a myriad of platforms, from wheeled ground
robots [4, 5, 8, 9, 11, 27–29, 32–40, 43, 47–51], through a walking person (for personal
localization) [20, 21], to aerial vehicles such as helicopters [3, 6, 15, 19, 24, 42, 44, 45],
and the relatively slower moving blimp [19].

The ground platforms are by far the most popular as they provide considerably
higher payload (and subsequently more computational resources), and thus laser scan-
ners, which are the most accurate environmental sensor, may be easily incorporated.
In addition, the added difficulty and risk in aerial experiments also contribute to the
scarcity of aerial SLAM work. As mentioned above, ground vehicles are also easier
to model as a set of dynamic equations, and so dynamic model-dependent algorithms
may be easier to implement on ground robots. The availability of wheel odometry
which is considered to be the cheapest in terms of computational requirements, is
also a contributing factor to the popularity of ground vehicles.

Another advantage is the predominantly two-dimensional motion that wheeled
ground vehicles have (assuming a level environment). Most wheeled robots have
relatively small pitch and roll angles while traversing a typical office like environment.
Naturally, these vehicles may trip over objects such as wires on the ground, which
may interfere with the usefulness of the data set [29], but the effect will be local and
relatively small as compared with the entire traversed path.

A walking person may be used as the platform that carries the environmental
sensor, and the complete system may then be used for self localization of ground
forces [21]. As mentioned above, a walking person may be used as a pre-validation
platform for a free flying MAV, as was done in the work by Steder et al. [19].

A considerably smaller number of applications have used aerial platforms with
the majority of the work carried out using quad-rotor micro aerial vehicles [3, 6, 15,
24, 42, 45], which as discussed above, are relatively less complex to model. Research
using other configuration was found to be quite scarce. A single rotor configuration
was utilized by Thrun, Diel, and Hähnel [41] and Artieda et al. [44], and a coaxial
configuration was utilized by Steder et al. [19]. All the methods that were employed
on these platforms were independent of the platform’s dynamic model.

Using a single main rotor, tail rotor configuration is considered to be less expensive,
and may be more compact, for indoor operations in constrained environment. These
vehicles are readily available commercially, with a wide range of available payloads.
Since the algorithm proposed in this work is independent of the platform’s dynamic
model, a single rotor configuration was the platform of choice for this work.

17

1.2.4 Mapping Forms

There are several methods for storing environmental maps for SLAM algorithms.
The occupancy grid approach [32] is by far the most common way to represent an
environment. The environment is represented by a square grid, and each square
represents a piece of the environment. Cells receive a value above zero if the SLAM
algorithm determines them to be “occupied”. The cells with a value of zero are
considered as the “free space”, through which the robot can move (additional details
may be found in Section 2.1).

The other fairly common mapping form is a map based on landmarks’ location [1,
37], which is typically used in most EKF based SLAM algorithms. This map is
essentially a collection of major landmark locations in a global reference frame. This
approach keeps the number of tracked objects to a minimum as each landmark is
represented using a single location (which helps maintain a low number of estimated
states for the EKF formulation).

Nguyen, Harati, and Siegwart [4] used a different form of mapping, which works
on scenarios with primarily flat surfaces. Each surface that was extracted from sen-
sory inputs was recorded in the map as a planar surface with its own dimensions.
This mapping form naturally suits only for certain environments, where the above
assumption holds.

Motivation for Choosing Occupancy Grid

The current algorithm uses an occupancy grid for representing the estimated map.
Occupancy grid allows the bets representation for the environment as it does not
assume anything about the typical shapes of the objects in the scenario. It can
therefore be used in any scenario. The one parameter that controls the fidelity of the
environmental representation is the occupancy grid resolution. An occupancy grid
does not require a dedicated algorithm for feature extraction, which greatly simplifies
implementation and dependency on tunable parameters.

Moreover, the update stage of new information into the occupancy grid, as well
as other computational algorithms employed on the occupancy grid, all maintain a
constant computational complexity (unlike the feature based maps whose complexity
grows with the number of features in the scenario). The occupancy grid provides a
very clear map, as the results of this research will show, allowing for maintaing highly
accurate maps of the traversed scenarios. The occupancy grid is later used for the
path planning task with relative ease, as the free cells are used to calculate obstacle
free paths to the goal.

1.2.5 Loop Closure Algorithms

SLAM algorithms in general accumulate errors in both position and mapping
estimates during the estimation process. Therefore, a platform that returns to a
previously mapped area from a different direction may face map discontinuity issues.
Local maps created for the same area viewed from two different places may not align
seamlessly.

18

This, in fact, may be leveraged for reducing the accumulated error by establishing
a relation of translation and rotation between two observations of the same scene,
taken from different platform positions. The established relations allow for a map
optimization process that attempts to minimize the accumulated map error, using
the constraints between the pose pairs.

One common solution is to employ a loop closure algorithm that continuously
operates in the background of the SLAM process, and searches for opportunities to
match map frame pairs of the same scenario. The complete set of pair-wise relations
is then brought together as a pose-graph, with the inter-frame relations acting as con-
straints. The pose graph with the constraints may then be optimized using different
optimization techniques. A map correction process is then employed to repair and
piece together the misaligned local maps into one continuous global map.

Representative examples for loop closure detection and map optimization algo-
rithms are included in the works by Bosse et al. [52], Ho and Newman [30], Stachniss
et al. [9], Konolige [36], and Olson, Leonard, and Teller [53]. The above examples all
make use of Bayesian filter based SLAM methods, and the loop closure algorithm is
probability based as well, and requires relatively complex implementations in some
cases [52].

Loop closure algorithms may fail when repeated structures appear throughout the
mapped area, as those may produce false loop closure detections. It is important to
note that once the map has been corrected using a false loop closure - it cannot be
recovered. The now optimized pose estimates are used to re-align the input sensory
data, and the map is then updated with the assumption that the new optimized set
is now optimal.

Moreover, in mapping missions, a scenario may need to be traversed more than
once in order to guarantee a high probability loop closure candidate. Naturally, this
is not an optimal solution as resources may be limited (e.g. battery life, mission time,
operational stealth, etc.). An example for a scenario where a loop had to be traversed
twice in order to achieve a successful optimized map using a loop closure algorithm
(see the work of Stachniss et al. [9]).

1.2.6 Static and Dynamic Environments

A static environment is a fairly common assumption made in robotics. It greatly
simplifies the associated algorithms, since it is expected that subsequent environmen-
tal sensor readings of the same objects will generate similar results (excluding sensors’
noise). However in dynamic environments, parts of the scenario may change position
and orientation between subsequent environmental readings.

A dynamic environment requires additional pre-processing for the environmental
input data, in attempt to determine which parts of the data represent a static en-
vironment, and therefore may be updated into the evolving map, and which parts
represent moving objects and should therefor be excluded from the map update step.
Dynamic parts of the scenario should also be excluded from participating in any scan
matching step.

19

The algorithm for identifying moving objects from an environmental reading de-
pends on the nature of the environmental sensor, as well as on the expected moving
object, as those algorithms are tuned to identify objects of certain kind (e.g. people,
doors, outdoor vegetation, etc.).

For mapping missions, Walcott-Bryant et al. [51] have suggested that for mapping
an environment with moving objects, a multi-pass method may be used, such that
the environment is essentially mapped more that once, with the robot traversing a
similar path every time. Information about changes in the mapping of the same
scenario at each traversed path is stored and used to update the map further, while
tagging objects as “static” or “dynamic”.

However, the above solution may not be used for targeted flight missions, as the
scenario is only traversed once. In cases where multi-readings of the same scenario are
not available, objects in the map need to be deleted. Deletion may be based on the
number of environmental scans that have included these objects. This way, a dynamic
object may be present in several scans, but each time at a different place, while a static
object will maintain its position in all scans. The dynamic object will subsequently
be disregarded from the environmental scan, and be deleted from the evolving map.
Such an approach is implemented in the current work (Sub-Section 3.3.3).

1.2.7 Scan Matching Techniques

The process of scan-matching between two environment scans results in the ap-
propriate roto-translation values required to match one scan on top of the other.
Many types of scan matching algorithms exist [26, 33, 54–58]. However, since each
algorithm has strengths and weaknesses and this work relies solely on scan matching
for both position and map generation, the most promising was found to be the use
of brute force for minimizing the scan matching cost function.

This thesis limits the discussion to local scan matching which is performed between
two subsequent scans of the environment (unlike global scan matching which matches
between a laser scan and a complete map [59]). The scan of the environment may be
carried out using laser scanners, sonar range sensors, or cameras. In this work, we
focus on representing the environment using a 2D laser scan. The result of a single
scan is a set of range measurements given over a set of azimuthal angles in the scanner
plane. For this type of data, three categories of scan matching techniques exist:

1. Feature-to-Feature [55]: this technique extract features (such as lines, corners,
etc.) from both the current and the reference scans. The features are then
matched using some algorithm to get the translation and rotation between the
two scans. Correspondence between the features needs to be established cor-
rectly in order to assure accuracy, speed, and convergence. These techniques
are relatively fast as they reduce the amount of data from the number of lasers
points, to a much smaller number of extracted features.

2. Point-to-Feature [54, 58, 60]: in this technique, features are extracted only
from the reference scan, while the points from the current scan are associated
with those features to establish the correct solution. Here too, establishing the

20

right correspondence between points and features is key to the success of this
technique.

3. Point-to-Point [29, 55]: this technique is considered to be more robust as the
scanned environment does not have to be comprised of geometric features. The
technique makes use of the point sets themselves in the computation of the scan
matching solution. However, the number of points dominates the complexity of
the algorithm. The correspondence between the matched points can be based on
inter-point distance such as in the Iterative Closest Point (ICP) algorithm [61],
range from the origin as in Iterative Matching Range to Point (IMRP) [55], or
other variants.

Since these techniques have strengths and weaknesses - a number of works at-
tempted a synthesis of two techniques that would complement each other and yield
an overall better, more optimal solution. Examples include the Iterative Dual Corre-
spondence (IDC) algorithm which combines ICP and IMRP [55], and combining IDC
with a line-based algorithm [60] to form a hybrid algorithm that works well in either
a polygonal or non-polygonal environments [54]. These attempts also aim to take
advantage of the computational complexity advantages of each algorithm. There are
several common ingredients between these methods:

i. Start with an initial guess.

ii. Project the Current Scan onto the Reference Scan’s coordinate system.

iii. Eliminate points that are either measurement outliers or occluded.

iv. Define correspondence between the points or features in the two scans.

v. Calculate a cost function to evaluate the match.

vi. Employ a minimization algorithm to minimize the cost.

Motivation for Developing the Current Scan Matching Algorithm

The current scan matching algorithm is a Point-to-Point algorithm. The main
advantage of this approach, as mentioned above, is its robustness as it is not limited
to environments with certain features and assumptions. Moreover, there is no need for
a feature extraction algorithm. This approach has no assumptions about the shape
of objects in the environment.

Another relatively simple but important feature that was developed is a new
outlier filter, which excludes wrongful laser range measurements that occur when
the laser scans surfaces with large discontinuities (see Sub-Section 2.3.1 for more
information and schematics). A scan matching algorithm that uses these points may
yield poor solutions as these points do not represent real objects and thus should be
discarded [62]. Previous approaches for eliminating outliers use a simple thresholding
approach (also known as Median Filtering [13, 29]), which may fail in some cases as

21

the set threshold may not fit all possible cases. However, the new filter is based on a
more robust approach, which is guaranteed to eliminate all outliers in a laser scan.

The current approach outputs improved scan matching solution as compared to
previously published algorithm (see Chapter 5), and is a key for achieving highly
accurate SLAM estimates. Since the SLAM methodology in this work is primarily
based on the scan matching algorithm, it was important to develop a new and highly
accurate algorithm that was not previously available.

1.2.8 Path Planning

A path planning algorithm outputs a set of segments (or waypoints) that comprise
a path from a start position to a goal position. Path planning algorithm may have
the following properties:

i. Heuristic methods - based on some guiding function.

ii. Physical analogy based - uses a physical representation to generate a path.

Heuristic guided planners include graph search methods (e.g. Dijkstra’s Algo-
rithm, A*, D*, D*Lite, etc.), which are employed on a grid of nodes that span the
operational environment. Of these methods, the A* method has the advantage of
being fairly easy to code. However, it is considered to be slower as compared with
D*, and D*Lite [63]. The latter two algorithms have improved computational speed,
at the expense of a more complex programing effort of the search algorithm. The
path planners in these cases may not be decoupled from the localization, mapping
and other blocks of the mission planning algorithm. Note that the path planner, as
defined in this work, is also responsible for the obstacle avoidance task, and therefore
the generated path must not pass through any known obstacles.

Probability based search may be utilized by randomly sampling the environment
to get a searchable graph. Two popular examples for probabilistic based algorithms
include the Probabilistic Road Map (PRM) [64], and the Rapidly exploring Random
Tree (RRT) [65]. The PRM has the advantage of being suitable for large scenarios
with relatively lower computational resources. However, path solutions using PRM
may result in jagged edges, which require smoothing. In addition, graph nodes may
be found in close proximity to obstacles, which may reduce mission safety. The RRT
algorithm is built on clusters of search trees, which continue exploring the environment
through the tree branches, as long as an obstacle is not encountered. The main
disadvantage of this approach is the lack of a goal-directed search approach, which
may result in exploring unnecessary areas of the scenario.

Other methods mimic a physical system, for example the potential field approach.
In this approach, each detected obstacle receives a potential value, while the goal
receives a value with a negative sign. The potentials are used to derive a force field,
while the platform is considered as a particle with a certain virtual mass that moves
through the force field. The resultant virtual forces yield acceleration values, which
may be integrated to obtain the trajectory. While the potential field approach requires
relatively low computational resources, and paths may be generated fairly fast, the

22

problem of reaching a local potential minima is quite common. In such cases the
resultant force on the virtual particle becomes zero, and the particle therefore does
not move, although the goal has not been reached [66].

Another example is genetic algorithms, based on biology. These algorithm develop
a path based on evolution of an initial pool of guessed paths, which evolve through
generations of mutations [67]. These methods typically require more computational
resources and several initial guesses to begin the process. This might prohibit their
implementation on aerial platforms.

The path planning algorithm used in this work is a relatively simple A* algo-
rithm [68]. The algorithm is based on graph search theory, and is designed to find the
lowest cost path from an initial node in the graph to a final node. The algorithm is
guaranteed to find a path if one exists. For the implementation of the algorithm, the
occupancy grid is used, and a coarse version is created. Every occupied cell-center is
considered as a node in the graph with possible connections to nearby cells. The A*
algorithm operates at each step of the SLAM algorithm to find an obstacle free path
from the current location to the goal position.

The path planning algorithm is used in this work for demonstration purposes of
targeted flight capability on MAVs using the SLAM estimates. The A* algorithm may
be substituted with other algorithms as there is no tight coupling between the SLAM
algorithm and the planned path. The SLAM algorithm produces accurate estimates
regardless of the traversed path (unlike the work by Roy, Gordon, and Thrun [69],
where a controller was designed to plan a path that would support better SLAM
performance).

The A* algorithm is a global path planning algorithm, which plans a complete
path assuming the environment is known. In the current work, the algorithm is
invoked at each step, and uses the currently available map. The algorithm therefore
changes its planned path based on new information that is updated into the evolving
map at each step. This, in fact, introduce dynamic updates in the path planning
task, and local path segments are updated to assure an obstacle free path.

1.2.9 Accuracy Survey

In this section, previously published papers are arranged in a chronological list,
highlighting important research characteristics. The papers contain results for per-
forming SLAM on different platforms and algorithms. The main purpose of the list
presented in Table 1.2 is to highlight the scarcity of attention given to the resulting
accuracy of the estimated maps and platform states.

The previously published papers are reviewed with respect to reported accuracy,
loop closure algorithm usage, platforms used, and number of scenarios attempted.
Because accuracy was not quantified in many papers, the table lists estimates made
by the author, based on availability of data (not all papers provided sufficient data
for evaluation).

Some important highlights are brought below. It is important to note that this
survey only included reports of experimental map accuracy. Simulation results and

23

covariance estimates were not included as those were typically found to significantly
differ from actual accuracy measurements [10].

The definitions pertaining to symbols used in the Table 1.2 are as follows:

i. “Small Scale” – relates to mapping areas smaller than 10 m length of the largest
dimension, which typically allow the use of a motion capture system.

ii. Accuracy – measured by percentage of the traveled distance, and so it represents
the accumulated drift.

iii. “∼” – means the accuracy was not explicitly stated in the original work, but
instead was approximated by the current author using the published figures.

Table 1.2: Previous work reports on accuracy

Paper Title Year
Accuracy

L
o
op

C
lo

su
re Platform

S
ce

n
ar

io
s

S
m

al
l
S
ca

le

L
ar

ge
S
ca

le

W
h
ee

le
d

H
u
m

an

A
er

ia
l

Gutmann, J. S. and Konolige, K., “Incre-
mental Mapping of Large Cyclic Environ-
ments” [35]

1999 – – X X 4

Dissanayake, M. W. M. G., Newman, P.,
Clark, S., Durrant-Whyte, H., and Csorba,
M. “A Solution to the Simultaneous Local-
ization and Map Building (SLAM) Prob-
lem” [11]

2001 –

∼
0.

1%

X X 1

Thrun, S. “A Probabilistic Online Map-
ping Algorithm for Teams of Mobile
Robots” [47]

2001 – – X X 4

Hähnel, D. H., Burgard, W., Fox, D., and
Thrun, S., “An Efficient FastSLAM Al-
gorithm for Generating Maps of Large-
Scale Cyclic Environments from raw Laser
Range Measurements” [8]

2003 – – X X 2

Brenneke, C., and Wagner, B., “A Scan
Based Navigation System For Autonomous
Operation of Mobile Robots in Man-Made
Environments” [27]

2003 –

∼
1.

5%

X X 1

Konolige, K., “Large Scale Map Mak-
ing” [36]

2004 – – X X 1

24

Paper Title Year
Accuracy

L
o
op

C
lo

su
re Platform

S
ce

n
ar

io
s

S
m

al
l
S
ca

le

L
ar

ge
S
ca

le

W
h
ee

le
d

H
u
m

an

A
er

ia
l

Stachniss, C., Grisetti, G., Hähnel,
D., and Burgard, W., “Improved Rao-
Blackwellized mapping by adaptive sam-
pling and active loop-closure” [9]

2004 – – X X 2

Borges, G. A., and Aldon, M. J., “Line
Extraction in 2D Range Images for Mobile
Robotics” [34]

2004 – – X X 2

Saarinen, J., Mazl, R., Kulich, M.,
Suomela, J., Preucil, L., and Halme, A.,
“Methods for Personal Localisation and
Mapping” [21]

2004 – ∼
2% – X 2

Nieto, J., Bailey, T., and Nebot, E., “Scan-
SLAM: Combining EKF-SLAM and Scan
Correlation” [37]

2005 – – X X 1

Sim, R. and Roy, N., “Global A-Optimal
Robot Exploration in SLAM” [38]

2005 – – X X 0

Brunskill, E. and Roy, N., “SLAM us-
ing Incremental Probabilistic PCA and Di-
mensionality Reduction” [48]

2005 – – X X 1

Nieto, J., Bailey, T. and Nebot, E., “Re-
cursive scan-matching SLAM” [39]

2006 –

∼
1% X X 2

Olson, E., “Fast Iterative Alignment
of Pose Graph with Poor Initial Esti-
mates” [53]

2006 – – X X 1

Newman, P., Cole, D., and Ho, K., “Out-
door SLAM using Visual Appearance and
Laser Ranging” [40]

2006 – – X X 1

Thrun, S., Diel, M., and Hähnel, D., “Scan
Alignment and 3-D Surface Modeling with
a Helicopter Platform” [41]

2006 – – X X 3

Nguyen, V., Harati, A., and Siegwart,
R., “A Lightweight SLAM Algorithm us-
ing Orthogonal Planes for Indoor Mobile
Robotics” [4]

2007 –

∼
1.

5%

X 1

Diosi, A. and Kleeman, L., “Fast
Laser Scan Matching Using Polar Coordi-
nates” [29]

2007 – – X X 1

25

Paper Title Year
Accuracy

L
o
op

C
lo

su
re Platform

S
ce

n
ar

io
s

S
m

al
l
S
ca

le

L
ar

ge
S
ca

le

W
h
ee

le
d

H
u
m

an

A
er

ia
l

Clemente, L. A., Davison, A. J., Reid, I.
D., Neira, J., and Tardós, J. D., “Map-
ping Large Loops with a Single Hand-Held
Camera” [20]

2007 – – X X 2

He, R., Prentice, S., and Roy, N., “Plan-
ning in Information Space for a Quadro-
tor Helicopter in a GPS-Denied Environ-
ment” [42]

2008

∼
10

%

– X X 1

Kollar, T. and Roy, N., “Trajectory Opti-
mization using Reinforcement Learning for
Map Exploration” [70]

2008 –

∼
3.

5%

X X 1

Kollar, T. and Roy, N., “Efficient op-
timization of information-theoretic explo-
ration in SLAM” [43]

2008 – – X X 2

Steder, B., Grisetti, G., Stachniss, C., and
Burgard, W., “Visual SLAM for Flying Ve-
hicles” [19]

2008 – ≤
8% X X X 4

Nùñez, P., Vàzquez-Mart̀ın, R., Bandera,
A., and Sandoval, F., “Fast laser scan
matching approach based on adaptive cur-
vature estimation for mobile robots” [33]

2009 – ∼
1% X 2

Achtelik, M., Bachrach, A., He, R., Pren-
tice, S., and Roy, N., “Autonomous Nav-
igation and Exploration of a Quadro-
tor Helicopter in GPS-Denied Environ-
ments” [15]

2009 5% – X X 3

Olson, E., “Real Time Correlative Scan
Matching” [71]

2009 – – X X 1

Ji, X., Zhang, H., Hai, D., and Zheng, Z.,
“An Incremental SLAM Algorithm with
Inter-calibration between State Estimation
and Data Association” [49]

2009 – – ? X 1

Garcia-Favrot, O., Parent, M., “Laser
Scanner Based SLAM in Real Road and
Traffic Environment” [5]

2009 –

∼
0.

2%

? X 1

26

Paper Title Year
Accuracy

L
o
op

C
lo

su
re Platform

S
ce

n
ar

io
s

S
m

al
l
S
ca

le

L
ar

ge
S
ca

le

W
h
ee

le
d

H
u
m

an

A
er

ia
l

Artieda, J., Sebastian, J. M., Campoy, P.,
Correa, J. F., Mondragòn, I. F., Mart̀ınez,
C., and Olivares, M., “Visual 3-D SLAM
from UAVs” [44]

2009 –

∼
10

%

X X 1

Park, S. and Park, S., “Spectral Scan
Matching and Its Application to Global
Localization for Mobile Robots” [28]

2010 – ≤
5% X X 1

Bachrach, A., Prentice, S., He, R., and
Roy, N., “RANGE-Robust Autonomous
Navigation in GPS Denied Environ-
ments” [6]

2011 –

≤
1.

9%

X X 3

Shen, S., Michael, N., and Kumar, V.,
“Autonomous Multi-Floor Indoor Naviga-
tion with a Computationally Constrained
MAV” [3]

2011

∼
1.

5%

– X X 2

Weiss, S., Scaramuzza, D., and Sieg-
wart, R., “Monocular-SLAMBased Navi-
gation for Autonomous Micro Helicopters
in GPS-Denied Environments” [45]

2011 – – X X 1

Valencia, R., Vals Mirò, J., Dissanayake,
G., and Andrade-Cetto, J., “Active Pose
SLAM” [50]

2012 – – X X 1

Walcott-Bryant, A., Kaess, M., Johanns-
son, H., and Leonard, J., “Dynamic Pose
Graph SLAM: Long-term Mapping in Low
Dynamic Environments” [51]

2012

∼
0.

5%

– X X 2

Shen, S., Mulgaonkar, Y., Michael, N., and
Kumar, V., “Vision-Based State Estima-
tion for Autonomous Rotorcraft MAVs in
Complex Environments” [24]

2013

∼
10

%

– – X 1

The main conclusions that can be drawn from Table 1.2 are as follows:

1. The majority of the works have used wheeled (ground) platforms. The typical
ground robot is a differential drive system, which can be easily modeled using
the rotation of the two wheels, measured by wheel encoders. Research using
aerial platforms was only performed by a few research groups: MIT [6, 15, 42],
University of Freiburg [19], Universidad Politécnica de Madrid [44], University

27

of Pennsylvania [3, 24], and ETH Zurich [45] (out of 36 reviewed papers). The
main reason is the modeling complexity associated with an aerial platform (in
addition to the relative experimental difficulty with flying vehicles).

2. The majority of the works do not report quantitative accuracy, neither for a
small scale nor for a large scale scenario. In most of the cases, this author
had to estimate the accuracy based on available figures (accuracy estimates are
marked by ∼).

3. The majority of the researchers rely on a loop closure algorithm to perform
mapping missions. The loop closure algorithm helps optimize the resulting map
as explained in Sub-Section 1.2.5. The mapping tasks performed in these re-
searches, typically provide multiple opportunities to re-visit previously explored
areas (and thereby exploit a loop closure algorithm). These algorithms may fail
in targeted flight missions, with no or very few loop closure opportunities.

The above list and its conclusions clearly show the little attention given to ex-
perimental SLAM accuracy. It also reveals a dependence on loop closure algorithms
for obtaining consistent maps, and a general shortage of work on SLAM for aerial
platforms. The need for SLAM accuracy without relying on loop closure algorithms
is a requirement for targeted flight path planning.

1.3 Thesis Outline

Following this introduction chapter, the thesis continues with Chapter 2, which
describes several existing robotics tools that are later utilized to form the PB-PSM
algorithm, and the coupled SLAM-Path Planning algorithm for targeted flight. Addi-
tional algorithms that were used for benchmarking purposes are also presented. Chap-
ter 3 presents the new PB-PSM algorithm developed in this thesis, with emphasis on
the innovations and refinements that contribute to the accuracy. Sufficient details
for a complete reproduction of both the algorithm and the results, are also included.
Analysis of some of the limitations and assumption is described using analytical case
studies. A description of several new accuracy metrics used for benchmarking is also
included.

The experimental setup is then described in Chapter 4, including the laser sensor,
the platforms used, and an overview of all the scenarios that were attempted in
the experiments. Chapter 5 presents the results, starting with the accuracy of this
algorithm using the custom accuracy metrics, including a detailed evaluation of the
individual contribution of each algorithmic component to the overall accuracy. A
comparison against previously published algorithms is also presented. The limitations
of the algorithm are then discussed, with specific examples for possible failure modes,
results obtained using the various platforms, and scenarios (both indoor and outdoor),
also using previously published datasets, further validating the algorithm. Several
examples of the application of the SLAM algorithm for path planning and obstacle
avoidance are provided. Chapter 6 presents summary conclusions for the entire thesis,
and also outlines the future work.

28

1.4 Summary of Contributions

This work focused on developing and testing a refined SLAM algorithm. The main
contributions of thesis are listed below.

1.4.1 Major Contributions

1. Developed a novel scan matching algorithm, referred to as Perimeter Based
Polar Scan Matching (PB-PSM). Three key elements distinguish PB-PSM from
previously published scan matching algorithms:

• Use of exhaustive search (using adaptive search grids) to minimize the
scan matching cost function (significantly reduces the problem with local
minima).

• Use of a perimeter matching term that maximizes overlap between the two
matched scans.

• Employing relatively tight convergence criterions on both the azimuth and
planar cost minimization processes.

2. Coupled the PB-PSM scan matching algorithm, with virtual scans, and map
update algorithm, to form a refined SLAM algorithm. The algorithm was ex-
tensively tested on 5 indoor scenarios, 8 outdoor scenarios, 3 different platforms,
3 different laser scanners, and both in-house and previously published datasets.

The new algorithm is shown to produce highly accurate maps and position
estimates, and produces significantly lower drift as compared with previously
published algorithms, quantified at approximately 0.1% of the distance traveled.
This is the lowest SLAM-related drift reported, to the best knowledge of the
author.

3. Coupled a SLAM algorithm with an A* path planner to achieve a navigation
system in GPS denied, previously unexplored environments. This technique
was experimentally tested on multiple platforms, including a helicopter.

4. Identified the importance of SLAM accuracy without the aid of loop closure
algorithms (and subsequently without map optimization). This is important for
targeted flight and scenarios that may not contain loop closure opportunities. In
these cases, the success of the mission depends on the accuracy of the map and
position estimates (and associated low drift), provided by the SLAM algorithm.

5. Developed a novel metric for quantifying the accuracy of an occupancy grid
map that is the result of a SLAM algorithm. The discussion about accuracy
quantification is generally missing from most previous work on SLAM. The
new metric gives an average distance of a occupancy grid cell from a measured
true map. While other proposed metrics may only be employed on simulated
environments, or be affected by human intervention [72], the proposed metric

29

is fairly easy to calculate, is employed on true, measured maps, and involves no
human intervention.

1.4.2 Additional Contributions

1. Developing a new and intuitive mixed pixel filter. Mixed pixels are laser mea-
surements that form on the edge of surface discontinuities, where the range
reading receives an intermediate value between the two surfaces’ ranges. The
new filter avoids the typical thresholding approach which is not robust to all
mixed pixels. Instead, it uses a shallow angle definition which is guaranteed to
remove all mixed pixels, and the tunable parameter is a much more intuitive
value of a shallow angle.

2. The PB-PSM algorithm’s accuracy is benchmarked against previously published
algorithms using individual scenes, as well as series of scan matching operations.
The latter is considered to be more challenging since the scan matching error
is cumulative by nature. Therefore an accumulated error over a series of scan
matching operations is considered to be a significantly more challenging test.
PB-PSM is found to be significantly more accurate as compared to previously
published algorithms.

3. Quantifying the contribution of using virtual scans to SLAM accuracy, as com-
pared with laser odometry (sequential laser scan matching). The use of virtual
scans is shown to have a significant effect, which on average improves the map
quality by approximately 50%, using the newly developed metric.

4. The use of artificial obstacles for testing cluttered environment. Artificial ob-
stacles which are considered by the path planning are introduced, but do not
physically exist. Hence this technique allows for safer testing in highly cluttered
environments, as the probability for obstacle collision is minimized.

5. An analysis of the effect of laser scanner velocity and scan frequency on the
scan error. Analytical result developed for the error size as a function of the
affecting parameters.

30

Chapter 2

Existing Algorithms

This chapter describes the existing tools that were used in this work. The concept
of an occupancy grid is presented, followed by the virtual scan, which operates on the
occupancy grid map to provide a scan of the evolving map. The scan matching tool
is presented in general, followed by two previously published scan matching methods
which were used for benchmarking against the novel PB-PSM algorithm developed
later in this work. Lastly, the A* path planning algorithm implementation, that was
coupled with the SLAM algorithm is presented.

2.1 Occupancy Grid

An Occupancy Grid (OG) is a way of representing the surrounding environment
using a grid of cells: rectangles (typically squares) in two dimensions (pixels), and
prisms in three dimensions (voxels) [32, 73, 74]. Each cell stores information about
the possibility of that area in the map being occupied by a physical object. This data
comes from the laser scan data (or other environmental sensors). The OG is also the
virtual map that is built by the autonomous agent. It represents the environment
that was explored thus far. The OG evolves with every update of sensory information,
taken by the robotic platform.

At every step of the complete SLAM algorithm, after estimating the laser scan’s
position and orientation, the laser range measurements may be used to update their
associated cells occupancy, as shown in Figure 2.1. Each laser point that is recorded
in a particular cell increases the probability of the area represented by that cell being
occupied.

An example of an occupancy grid representation of a corner scenario is presented
in Figure 2.2. This occupancy grid was received after several successful steps of
mapping the featured corner. In this case, the resolution of the occupancy grid is
10 mm by 10 mm, and so each cell in the OG matrix represents an area of 1 cm2.

The occupancy grid may be used to derive a probability value for cell occupancy.
In the current work, this may be achieved by normalizing the occupancy grid by its
maximum occupancy. This would results in occupancy values between 0 and 1. These
values may be considered by position estimation algorithms in a number of ways:

31

x

y

Laser Estimated
Position

Figure 2.1: Occupancy grid schematics.

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600
1400

1500

1600

1700

1800

1900

2000

X mm

Y
 m

m

Figure 2.2: Example of an occupancy grid.

1. as weights for scan matching (attempting to better match cells with higher
occupancy).

32

2. as a measurement model for the virtual scan (see Section 2.2).

3. as range measurements probability in probabilistic based approaches (such as
the EKF and particle filters, mentioned above).

2.1.1 Occupancy Grid Map Update

Updating the OG map with the newly acquired laser scan data requires the current
position and azimuth estimates to be accurate. Therefore, it is performed only if the
scan matching process results in a well-minimized function, otherwise the current
laser scan is not inserted into the occupancy grid. In the rare case of scan matching
failure, one can either hold the platform’s position update, or establish an estimate
based on extrapolation using previous steps (although it would have to be marked
and treated as a “non-valid” position estimate). In such cases, the algorithm relies on
the success of the next scan matching process to correct the un-supported estimate.

The corresponding cell index for the kth updated laser point is found by:

ik = ⌊xk/d⌋+ 1 ; jk = ⌊yk/d⌋+ 1 (2.1)

where ik, jk are the indices of the cell to be updated, xk, yk are the cartesian coordi-
nates of the kth laser point, and d is the occupancy grid resolution (the cell’s edge
length, in mm). The definition of Eq. (2.1) refers to indices that start at 1.

Figure 2.3: Example of a map evolution for a vertical wall (no sensor model consid-
ered). The last figure (Step #40, on the right), shows the result after applying the
isolated point filter.

The evolution of the OG map for a representative obstacle is shown in Figure 2.3.
In this case, each occupied cell represents a laser point that was recorded in that
cell. Figure 2.3 shows how the object evolves over 40 steps, and also shows the result

33

after employing the isolated point filter, which removes several isolated points (see
Sub-Section 3.3.3 for a detailed explanation).

2.1.2 Occupancy Grid Scalability

An occupancy grid is a relatively demanding map form, in terms of required
memory. Other mapping form such as obstacle-based maps [1, 37] only keep position
information for the discovered objects. Their required memory only grows when
introducing newly discovered objects. However, the occupancy grid which represents
each small part of the environment with a cell in the memory, requires memory
allocation for each cell, whether occupied or free. This way, the entire operational
space is represented in the memory, regardless of the number of occupied cells.

An occupancy grid may be represented using a sparse matrix approach, which
only stores a list of the occupied cells and their cell coordinates. However, using this
approach, every query for cell occupancy requires a full search for that cell in the list.
In the case of a virtual scan, such cell queries appear for every cell crossed by every
beam, and so a typical single virtual ray requires a very high number of queries, on
the order of 1,000. Therefore this approach is not suitable for the algorithm proposed
in this work.

In this work, the largest area that was attempted was 60 m by 40 m. Using
an occupancy grid resolution of d = 10 mm, this area was represented by 24,000,000
cells. Although the stored numbers may be integers, even assuming a double precision
matrix, this array requires approximately 48 MB, which is well within currently
available on-board memory.

In terms of required memory, the occupancy grid matrix is by far the largest
variable in the program. It is approximately three orders of magnitude larger than
the next sized variable. Therefore, its size forms the upper bound on the maximum
area size possible. As of today, a typical on-board memory size may be considered
to be of the order of 1 GB. The number of cells that may stored is approximately
500,000,000. Since each cell represents an area of 1 cm2, the total number of cells may
represent up to 50,000 m2 (approximately 12 Acres). Therefore, the current approach
may be employed on the majority of indoor and outdoor scenarios, considering typical
MAV operational environments.

2.2 Virtual Scan

The Virtual Scan is a scan of the virtual world, achieved by performing a “simu-
lated laser scan” produced by a series of ray casting operations, searching for occupied
cells in the occupancy grid. The virtual scan is executed from the previous estimated
vehicle position and azimuth (or an estimated current position and azimuth), and
produces a set of range values to the nearest occupied cells. It is essentially a snap-
shot of the virtual environment, which serves as the reference scan from the map
that was built thus far. The virtual scan is later matched against a new laser scan

34

obtained from the current, true laser scanner position to get a corrected estimate of
the current position.

Figure 2.4: Virtual scan Illustration of a corner.

Figure 2.4 depicts an example of this process where on its left is an occupancy
grid representation of a corner (virtual map) with the virtual scan origin marked with
a red circle, and virtual rays are marked with red arrows. The occupancy grid is color
coded with the cells’ hit count values (higher values – warmer colors). On the right is
a close up view of the same corner presenting just a single virtual ray for clarity. In
the general case, the ray encounters a “thick” wall made of several clustered occupied
cells created from several previous scans. A ray-casting operation logs the start and
end of the cell cluster along the ray and then defines the wall location as weighted
average location using all the logged cells along that ray and their respectable weight.
These three markings are marked as “Obstacle Start”, “Obstacle End”, and “Virtual
Wall Position” in Figure 2.4. The virtual scan result is, in fact, an average of all the
previous laser readings taken up to that point in time. This means that when scan
matching is later carried out, the newly acquired laser scan is matched against an
average of all previous sensory data.

2.2.1 Obstacle Rendering Algorithm

Because of the laser sensor’s inherent noise, and the resolution of the OG, any
obstacle will eventually be represented by a collection of occupancy grid cells. Once
the ray casting operation registers the beginning of an obstacle (“obstacle start”), it
records all the cells’ values until it reached the end of the wall (“obstacle end”). The
cell that best represents the obstacle location can be found using Eq. (2.2):

I =

Ncells
∑

j=1

jWj

Ncells
∑

j=1

Wj

(2.2)

where I is the index of the final representative cell, Ncells is the number of occupied
cells found by the current ray, Wj is the occupancy of each cell. The result is the

35

index of the cell that best represents the obstacle encountered by the current ray. The
actual virtual radius is determined using the mid point between the entry and exit
points of the current casted ray to that representative cell. The values that Wj can
take depend on the way information is stored in the occupancy grid. If the occupancy
grid stores laser hits only, then Wj represents the number of laser points recorded in
that cell. If the occupancy grid is used for storing probabilities for cell occupancy [32],
then Wj may receive value between 0 and 1.

The process is controlled by two, user-input parameters - the maximum number of
captured occupied cells, and the definition for an “obstacle end”. The first limitation
is intended for scanning thick objects, where the ray will pick up numerous cells. The
result would be a virtual scan point that does not accurately represent the scanned
obstacle due to the occupancy grid’s resolution. Hence, the number of occupied
cells along a single ray, denoted as Nthickness is limited (in this work, a value of
Nthickness = 30 was used throughout).

The second parameter defines when an inspected occupied cell is considered to
be the end of an obstacle. Due to the sparse nature of the OG, picking up a non-
occupied cell, does not necessarily constitute that the obstacle has ended. Isolated
empty cells can form within a populated cell area, mainly due to laser noise, but
also due to occupancy grid resolution. Hence, the ray casting continues until at least
Nempty unoccupied cells are found (typically Nempty = 10).

The resolution of the occupancy grid may, of course, be adjusted. High resolution
allows representation of finer detail in the environment, and decreases the error in the
virtual scan since the representation of the environment is more accurate. However, it
comes at the expense of memory requirements, and more importantly - computational
requirements of the virtual scan. A single ray casting operation has complexity of
O(R/d) where R is the range of the casted ray, and d is the resolution of the OG,
defined as the cell’s edge length, in mm. So higher resolution involves a linear increase
in computational time (only for the virtual scan step).

The virtual scan described here is accelerated using a coarse occupancy grid which
contains exactly the same information as the fine occupancy grid, but with a coarser
resolution (typically with d = 1000 mm). The same ray casting operation is employed
on the coarse occupancy grid, until an occupied cell is found, at which point the search
process transitions to the fine occupancy grid for the remainder of the ray casting
operation. The coarse occupancy grid also undergoes the same updates as the fine
occupancy grid.

2.2.2 Spacial Accuracy

Since the occupancy grid has a finite resolution, objects may be misrepresented
when using finite resolution occupied cells. This problem may be more pronounced
as resolution is lowered. In the extreme case, an object’s true position can be close
to a cell boundary, and therefore, most of the cell area does not actually represent
that obstacle. As detailed above, the virtual scan will represent that cell using the
mid-point of the virtual ray’s entry and exit points to and from that cell, respectively.

Figure 2.5 shows two possible misrepresentations of an object as a result of the

36

X

X

X X

Virtual Rays

Physical Objects

X Entry/Exit point

Virtual Range

Figure 2.5: Misrepresentation of true objects when using an occupancy grid.

finite OG resolution. The scenario on the left causes a range error of approximately√
2

2
d, or half the diagonal length of a cell, while the scenario on the right results in a

smaller range error of approximately 0.5d. However, for an object that spans several
cells in length, the scenario on the left would misrepresent the range to the object
every other cell, while the range error in the scenario on the right would be the same
for all cells. The effect of OG resolution on the performance of the algorithm is
investigated, and presented in Sub-Section 5.3.4.

It is noteworthy that the method developed herein represents the occupied cells
in a better way, as compared with Bresenham’s algorithm [75], which has two main
deficiencies:

i. It does not start or end at the defined point coordinates, but rather the cell
center where those coordinates lie. As discussed above this may introduce a
significant shifting error.

ii. It only considers one crossed cell per column of the OG, and thus may occasion-
ally miss cells that are actually crossed by the beam (and may be occupied).

The second deficiency may be clearly seen when examining a schematic example
of Bresenham’s algorithm performance, presented later in Figure 2.14 (see Sub-
Section 2.6.4) . Both cell (2, 2), and (4, 3) are not checked by the algorithm. For
the virtual scan to be more accurate, if either of these cells is occupied - they should
be the beginning of the object representation (“obstacle start”).

However, Bresenham’s algorithm is faster than the proposed ray casting method
and so a certain speedup may be achieved at the expense of a slightly lower overall
accuracy. Bresenham’s algorithm is described in Algorithm 4, in Sub-Section 2.6.4
(used in the path planning block for way point definition).

37

2.3 Scan Matching

The process of scan-matching between two environment scans results in the appro-
priate roto-translation values (in this case - in two dimensions) required to match one
scan on top of the other. Many types of scan matching algorithms exist [26, 29, 33, 54–
58]. The differences between the algorithms typically lies in the data association
techniques (see Sub-Section 1.2.7), or in the cost minimization technique (i.e., using
a gradient based method, or a form of brute force search).

As described in Sub-Section 1.2.7, the scan matching process starts with an initial
guess, projects the Current scan onto the Reference scan coordinate system, eliminates
undesired points, performs data association between the two scans, and minimizes
a cost function that is built using the associated data. This section describes the
common point filters used in this work, and the data association method used in both
the previously published PSM, and the novel PB-PSM developed in this work.

2.3.1 Point Filtering

The acquired laser points are passed through a series of filters designed to leave
only valid laser points for the scan matching process. The filters are described below
in detail. Note: all of the filters’ parameters depends on the laser scanner capabilities
(range, angular resolution, accuracy, and sensitivity), and are updated based on the
employed laser sensor.

Minimum/Maximum Filter

If the scanner does not pick up any reading, it outputs either zero or it’s own
maximum detection range. Therefore, the minimum/maximum range filter was de-
signed to exclude validity of points with range values below a minimum threshold of
400 mm and above a maximum threshold of 29000mm (these values are attributed to
the UTM-30LX Hokuyo sensor [76]). In addition - those points are not considered in
subsequent filters. These points will not be updated into the map in the map update
stage (Sub-Section 2.1.1).

Occlusion Filter

After the laser scan is transformed (using Eq. (3.1) below), some scanned objects
may become occluded by others. Naturally, occluded points should be excluded from
the scan matching process as they cannot contribute to the matching process [29, 58,
62]. A simple example is a scan that’s performed right when the laser has passed
around a corner, as in Figure 2.6, where the blue circles are the originally acquired
laser points (FOV marked in dashed black lines). The points that are picked up by
the laser after passing the corner cannot be viewed when the scan is transformed to
the new origin (marked as ’x’).

Transforming the scan to a any point that’s located before the corner would result
in an occluded wall, since the same wall could not have been observed from that point.

38

−2000 −1000 0 1000 2000 3000 4000
−3000

−2000

−1000

0

1000

2000

3000

X mm

Y
 m

m

Original
Transformed

Figure 2.6: Example scan matching with occluded points.

The geometric result of this transformation is a change in the order of the laser scan
angles, as depicted in Figure 2.7.

x

y

270˚

Transformation:

[∆x,0,0]

x

y

Figure 2.7: Schematics of occlusion detection by angle order switching.

The filter is therefore built to identify such switch backs in the previously ordered
laser points’ angles, and remove only the ones that are occluded. Note that in some
cases due to the inherent laser sensor noise, some points are wrongfully filtered out.

39

However, the number of wrongfully eliminated points is minuscule (on the order of 10
points), and so it does not degrade the overall performance in any way. The Occlusion
filter is employed only on points that are still “active”, and as such, it must follow
the min/max filter immediately so it would not be affected by the operation of other
filters.

Scenario (a) Scenario (b)

i-1

i

jj-1

θ

r
x
x
x
x x x

i-1

i

jj-1

k

θ

r

j-2

x x x x
x
x
x

Figure 2.8: The two possible occlusion scenarios.

The filter is in the form of a simple sweep algorithm, starting from the smallest
angle (from left to right). Figure 2.8, shows two scenarios of a series of laser measure-
ments (circles, connected by a line for clarity), with their respective angles θ on the
’x’ axis, and range on the ’y’ axis (after a roto-translation). Each new laser measure-
ment is tested for an angle switch back event, and when a switchback is discovered
the algorithm acts according to one of the scenarios depicted in Figure 2.8, eliminat-
ing only the points that are in fact occluded (marked with an ’x’). The complete
algorithm for the occlusion filter is described in Algorithm 1.

The filter was designed to have O(nC) complexity, with nC being the number of
points in the laser scan. Since the laser measurements are supplied from the scanner
sorted by their respective angle - there’s no need to employ a sorting algorithm (which
avoids a complexity of O(nClog(nC))). Every point is examined for angle switchback,
and at most examined again for being part of an occluded range. Therefore, the
complexity is bounded by O(2nC) which represents a linear complexity of O(nC).

An example of the elimination process is given in Figure 2.9, where the radii values
are plotted against their respective angle, after transformation. The laser points that
cannot be observed are marked with an ’x’.

Outlier Filter

A rather common and inherent laser scan error occurs when the scenario contains
surface discontinuities. This is quite typical in any environment that contains edges.

40

Algorithm 1 Occlusion Filter algorithm

i← 1 ⊲ Primary index
θcurr ← θ1 ⊲ Initialization with first point’s angle
while i < nC do

if θi+1 < θcurr then
if rLi+1

> rLi
then ⊲ Scenario (a) - increasing range values, subsequent

points are occluded
while θi+1 < θcurr & i < nC do

Eliminate occluded point i+ 1
i← i+ 1

end while
else ⊲ Scenario (b) - decreasing range values, previous points are occluded,

up to the next switching point’s angle
while θi+1 < θcurr & i < nC do ⊲ Scan forward until the difference in

angles becomes positive again
Eliminate occluded point i
i← i+ 1

end while
θcurr ← θi ⊲ Record the angle of the first point that becomes visible
j ← i− 1
while θj > θcurr & j > 1 do ⊲ Scan Backwards and eliminate all points

with angles greater than that of the first visible point
Eliminate occluded point j
j ← j − 1

end while
end if

end if
end while

Wherever a range discontinuity occurs, the laser beam may capture two surfaces with
a depth difference, producing an outlier measurement [13, 29, 54, 58] that can take
on any range value between the two different surfaces’ ranges. An example of a laser
scan that produced several outliers is presented in Figure 2.10(a). Outlier points are
also known as mixed pixels [29, 58].

Mixed pixels typically lie in the free space, and thus do not represent any real
object. Since the nature of outliers changes from one scan to another (as they are
considered to be an anomaly of the laser scanner), one may not use the outliers points
when performing scan matching, as those would undoubtedly introduce errors into
the process. Therefore, outlier points should be ignored altogether.

Conventional approaches to eliminating such mixed pixels include Median Fil-
ters [13, 29], and RANSAC-based methods [15, 34, 62]. Median Filters involve eval-
uating the distance between the mixed pixel and the preceding point. The suspected
mixed pixels would be accepted if the range is smaller than a set threshold, typically
set after some experiments with the laser scanner. An improvement for the above

41

−150 −100 −50 0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

8000

θ
L
°

r
m

m

Figure 2.9: Example of a case that introduces object occlusion.

−500 0 500 1000 1500 2000 2500
−1000

−500

0

500

1000

1500

2000

X mm

Y
 m

m

Mixed Pixels

−500 0 500 1000 1500 2000 2500
−1000

−500

0

500

1000

1500

2000

X mm

Y
 m

m

Mixed Pixels

(a) Before outlier filter (b) After outlier filter

Figure 2.10: A laser scan (circles) before and after applying the outlier filter. All the
points that may be mixed pixels are eliminated (crossed out). The two lines show the
field of view boundaries (scanning counter clockwise).

approach could be to consider the range from the mixed pixel to both the preceding
point and to the succeeding point. However, for any set threshold, some mixed pixels
may avoid being tagged as such.

The RANSAC-based approaches attempt to fit a a straight line to the nearby
area of the investigated point. If a line cannot be fitted to the investigated point
along with its nearby neighbors - the point is tagged as an outlier. This method

42

Figure 2.11: Example of identifying an outlier(mixed pixel) laser measurement.

typically has two parameters: the definition of a neighboring area (how many points
to consider on both sides of the investigated point), and a threshold for a good line
fit. Observing Figure 2.10, it can easily be claimed that using both methods, every
set threshold will only eliminate some of the mixed pixels, but not all of them.

This work proposes a new concept for the identification of outlier points. The
proposed outlier filter relies on examining the angle between successive points. As
mixed pixels lie on range discontinuities, the angle between a mixed pixel and it’s
preceding point would typically be relatively shallow. Thus, outlier candidates may
be identified using the relative angle between the beam and the line connecting the
candidate point to the preceding point.

Figure 2.11 presents a schematic description of how outlier points are generated.
Laser measurements are marked as red stars, laser scanner rays are marked as red
lines, and the laser origin is marked as a red circle. The filter checks for the angle
between a line connecting every two neighboring laser points and a line perpendicular
to the laser beam angle, denoted as α in Figure 2.11. If α is close to 90◦ – the
point is discarded. In some cases, points can be wrongfully eliminated (due to laser
noise creating the same conditions between two neighboring laser points). However,
the vast amount of laser points in each scan provides sufficient information for the
algorithm to perform well. A value of 85◦ is used throughout this work. The complete
algorithm for the outlier filter is described in Algorithm 2.

Figure 2.10(b) presents the result after applying the outlier filter described above.
The eliminated points are crossed out with a blue ’x’ mark. As discussed, an adverse
effect of using this filter is that several points may be wrongfully considered as outliers,
mainly due to sparse laser noise. Some examples may be seen on the right side of the

43

Algorithm 2 Outlier Filter Algorithm

i← 1 ⊲ Primary index
θcurr ← θ1 ⊲ Initialization with first point’s angle
for i = 1→ nL − 1 do ⊲ Inspecting all the laser scan points

r1 ← ri
r2 ← ri+1

h← r1sin(∆θ)
e = |r1cos(∆θ)− r2|
α← atan(e/h)
if α > αS then discard both ith and i+ 1th points
end if

end for

upper wall in Figure 2.10(b).
A positive byproduct of using the angle-based outlier filter is that it also eliminates

laser points where the angle of the beam with the measured surface is relatively
shallow. Measuring walls at a shallow angle is likely to produce larger errors [77] and
thus such points are less desired when performing scan matching.

Field Of View Filter

The virtual scan does not necessarily cover 360◦. Hence, in cases where the FOV
of the laser sensor differs from that of the virtual scan, with the addition of rotation
and translation, it is necessary to identify the right overlap between the two scans
so that the scan matching process will only be carried out on potential matching
points. The FOV filter is designed to exclude points that lie outside the overlapping
area, on both sides of both scans. However, note that Current scan points that are
eliminated by this filter are still being updated into the OG (Sub-Section 2.1.1), after
the scan matching process is completed. Discard any points in both the Current and
the Reference scans which fulfills one of the conditions given in Eq. (2.3):

θR > θCmax
; θR < θCmin

; θC > θRmax
; θC < θRmin

(2.3)

These points become outside the overlapped field of view after roto-translation. This
practice is similar to the one used in other works [78]. Note that while θRmin

and
θRmax

are constant, θCmin
and θCmax

change for every different rotation value.

2.3.2 Linear Complexity Data Association

The data association between the Reference and the Current scans is the process of
determining which point in the Current scan corresponds to which point (or points) in
the Reference scan (or vice versa). The two sets of range measurements are considered
abstract, as they only give range and bearing, without any additional information
about which object is actually described by the scan points.

44

The formulation of the cost function is comprised of contributions made by cor-
responding points from both scans. Ideally, if correspondence was known, the cost
function would accurately described the quality of the matching between the two
scans, and every scan matching operation could have been solved in as little as a
single iteration [78]. However, since the correspondence between the two point sets
is generally unknown, it must be established by correlating properties between the
points in both sets. If the corresponding is not accurate, the cost function may not
be well-minimized, which would result in additional iterations.

As reviewed in Sub-Section 1.2.7, correspondence may be determined using clos-
est point (as in ICP), using the “matching range” rule (the point is associated to the
point with the most similar range), “matching bearing” rule (as in PSM), or based
on point to feature distance (if features were extracted from one of the scans, see
Sub-Section 1.2.7). In this work, the data correspondence described by Diosi and
Kleeman [29] was utilized, with some minor refinements. Finding point correspon-
dence between the two scans is described as pseudo-code in Algorithm 3:

Algorithm 3 Point correspondence search

k ← b ⊲ b: first Current Scan point within the FOV of the Reference Scan
for i = a→ nR − 1 do ⊲ a: first Reference Scan point within the FOV of the
Current Scan

if Reference Scan point i is active then
while k < nC do ⊲ k: running index on the Current Scan

if (k) and (k+1) are both valid laser points then
if θCk

≥ θRi
≥ θCk−1

then
Establish correspondence between point i in the Reference Scan

and points [k − 1,k], in the Current Scan
else

k ← k + 1
end if

else
k ← k + 1

end if
end while

end if
end for

The correspondence search is claimed to have a linear complexity of O(nR) (as-
suming nR ≥ nC), as each point in the Reference Scan is matched only once to a
single pair of points from the Current scan, and the k-index does not consider any
point in the Current Scan more than once.

The linear complexity of the point correspondence is a key feature that allows the
use of an adaptive direct search for the function minimization. (which is a form of
exhaustive search). The number of cost function evaluations required by adaptive
direct search is significantly larger than the one required by gradient search methods.
Therefore, using adaptive direct search with a higher complexity cost function may be

45

quite challenging. A representative comparison of the required computational time for
the same case, using this cost function and the ICP cost function with a complexity of
O(n2), revealed a significant advantage, in favor of the linear correspondence search
approach.

Range Interpolation

The cost contribution for each valid point in the reference scan is calculated using
the range difference between the reference scan point’s range, and a linearly interpo-
lated range value for the two neighboring points in the currant scan, found using the
algorithm in Sub-Section 2.3.2. The interpolated range value is given by:

r′′C = r′Cleft
+

r′Cright
− r′Cleft

θ′Cright
− θ′Cright

(

θR − θCleft

)

(2.4)

where the ()′ system represents the current scan after roto-translation, r′Cright
, and

r′Cleft
are the ranges to the neighboring points on the right and left, respectively, and

θCright
and θCleft

are the beam angles for the neighboring points on the right and left,
respectively.

2.4 PSM Scan Matching Algorithm

In Polar Scan Matching (PSM), developed by Diosi [78], the translation is esti-
mated using linear regression theory, while the rotation is estimated using exhaustive
search (although with a different cost function, as compared with PB-PSM). Estimat-
ing rotation is performed assuming the pose is known, while estimating translation
is carried out assuming the orientation is known. Since neither is generally true, the
complete algorithm is carried out in an iterative fashion.

2.4.1 Translation Estimation

Estimating the translation between two scans in PSM is carried out while assum-
ing no rotation difference exists between the two scans. Therefore, it is also assumed
that the data association between the two scans is correct (this assumption is in-
herently wrong when the rotation has not been estimated correctly, as is the case
of intermediate iterations, before convergence has been achieved). The error to be
minimized is defined based on the squared difference between the ranges of the Ref-
erence scan and interpolated ranges in the Current scan, obtained in a similar way
as in PB-PSM, using Eq. (2.4). The goal in translation estimation is to find a pair
of (xc, yc) that would minimize the weighted least square error between the Current
and the Reference scans, given by Eq. (2.5):

εLS =
∑

wi(rRi
− r′′Ci

)2 (2.5)

46

where rRi
is the ith range from the Reference scan, r′′Ci

is the interpolated range from
the associated points in the Current scan, and wi is a weight assigned to each matched
pair, used to reduce the effect of bad matches. Minimizing the weighted sum may
be achieved by exploiting linear regression. The range differences may be modeled as
follows:

(r′′C − rR) = H

[

∆xc
∆yc

]

+ v (2.6)

where ∆xc and ∆yc are the translation values in the x and y directions, respectively,
v is a random noise vector, and the Jacobian matrix H is given by Eq. (2.7):

H =

∂r′′
C1

∂xc

∂r′′
C1

∂yc

∂r′′
C2

∂xc

∂r′′
C2

∂yc

...
...

(2.7)

The position change vector [∆xc∆yc]
T may then be found using Eq. (2.8):

[

∆xc
∆yc

]

=
(

HTWH
)−1

HTW (rR − r′′C) (2.8)

where W is a diagonal matrix that contains the weights of each matched pair or
ranges. The above described algorithm results in a linear complexity of O(n), similar
to the complexity of the PB-PSM algorithm (see Sub-Section 3.3.4). This is mainly
due to the linear complexity of the data association search in polar coordinates (see
Sub-Section 2.3.2).

PSM Weight Determination

The weights are distributed according to the Eq. (2.9), following Diosi [78]

wi = 1− ∆rmi
∆rmi + cm

(2.9)

where ∆r is the range difference between the matched range pair, and c is a constant.
Eq. (2.9) will have a weight of 1 for a zero range difference (perfect match), and the
weight will be reduced as the difference grows. The parameter c determines where the
function changes from 0 to 1, and m determines how quickly that change happens.

In the PSM algorithm, a large range difference above a set threshold is not con-
sidered, and is therefore given a weight of zero. This is identical to the TE threshold
employed in PB-PSM (see Sub-Section 3.1.1). In fact, the same threshold value of
TE = 1000 mm was used in this work as well as in the work by Diosi [78].

47

2.4.2 Rotation Estimation

Assuming the pose is known, a change in rotation performed in polar coordinates
is represented by a shift of the range values to the left or right. Therefore, if the
Current and Reference scans contain information from the same objects, the correct
orientation may be found by rotating the Current scan until the range values agree
with those of the Reference scan. In PSM, an exhaustive search with a window of
±20◦, with incremental steps of 1◦ was implemented. For each rotation candidate,
the average absolute range residual is calculated as follows:

nC
∑

i=1

|r′′Ci
− rRj

|

j = i+ ∆ψ
∆θ

(2.10)

Note that Diosi and Kleeman picked the search window size and incremental steps
∆θ such that ∆ψ

∆θ
inherently yields an integer. However, in the general case, the index

j may be defined as follows:

j = i+

⌊

∆ψ

∆θ

⌋

(2.11)

Interpolation may also be employed to increase the accuracy of rRj
, between two

neighboring values. However, the added computational time may not be desirable.
Additionally, the three points with the lowest residuals are fitted with a parabola

for a further refinement of the solution. The parabola’s minimum point is used as the
refined rotation solution. Using the 1◦ search resolution, the three points with the
lowest values may be given by (0, e0), (−1, e−1), and (1, e+1). Let the minimum error
point be (m, em), so that the error-parabola may be described by Eq. (2.12):

e = at2 + bt+ c (2.12)

Finding a, b, and c may be done by using the three known points on the parabola.
The abscissa of the minimum error in the parabola is defined by Eq. (2.13):

−b
2a

=
e+1 − e−1

2(2e0 − e−1 − e+1)
(2.13)

This step allow for a somewhat improved accuracy of the rotation estimation, for a
given search window and resolution. The search grid in this method may be either
fixed or refined every iteration.

2.5 Scan Matching Using ICP

The ICP implementation presented here was used by Diosi [78] for performance
benchmarking against his PSM method. The description follows that given in the
work by Diosi [78]. It begins with a median filter, applied to the range readings
of both the Reference and Current scan. In each iteration, the projection of the

48

Current scan is performed in a similar manner to PB-PSM, followed by the checking
for occluded points. This is followed by checking if two neighboring (in a bearing
sense) Reference or Current scan points occlude the Current scan point being checked.
Occluded current scan points are then removed, if they are at least one meter further
back than their interpolated reference counterparts (similar to the elimination filter
in PB-PSM). Current scan points not in the field of view of the Reference scan are
also removed.

After scan projection, the implementation of the closest point association rule
follows. For each remaining Current scan point the closest reference scan point is
sought in a±20◦ window. No interpolation between neighboring Reference scan points
is implemented, which increases speed, but reduces accuracy. Associated points with
larger than a set threshold distance are ignored (similar to the thresholds used for
both PSM and PB-PSM). Then the worst 20% percent of associations are found and
excluded. From the remaining associated point pairs, pose corrections are calculated
using equations from the work by Lu and Millios [55] and the current pose is updated.
Note that the removal of 20% of the worst contribution requires sorting and therefore
this method has some additional complexity, not found in either PSM or PB-PSM.

2.6 Navigation Algorithm

In this section, the algorithm responsible for planning the platform’s path is de-
scribed. This algorithm uses the position and map estimates that are the result of
the SLAM algorithm. Additionally, the same two reference frames, the global and
the body frame, are used both in the Path Planing module, and the SLAM module.

Note that in this work, we refer to “path planning” as a task of computing a path
in the form of a sequence of vehicle’s poses in a global frame. Therefore, in addition
to the essential features that were mentioned in Sub-Section 1.2.8, a path planner
should satisfy the following requirement as well:

• Feasibility: a path planner should produce a plan that arrives at a “goal state”
(or close enough to it) while keeping a safe distance from obstacles and remain-
ing within the limitations of the helicopter configuration (geometry, turn radius,
continuity of velocities and accelerations, etc.).

• Re-planning: in the case of an a priory unknown map, a planner should be
capable of recalculating an already planned path according to the newly ob-
tained information about the environment. Obviously, to follow a path that
was planned according to partially known information about the surrounding,
without re-planning capabilities during the execution, is problematic because
of the possibility of collision with obstacles. Moreover, this is true even for a
known map, when the path can be computed before the execution starts, since
during the flight, the vehicle may discover that what was considered as “known
map” is inaccurate, or does not include all of the terrain features. In addition,
execution errors and external disturbances may cause a drift of the vehicle lo-

49

cation compared with the planned path. Therefore, a re-planning capability is
absolutely essential.

• Optimality: a path planner should find an optimal path with respect to some
specified criteria. Common criteria are path length and clearance (i.e., the
minimal distance from the obstacles). Practically, global optimal solution is
not achievable since the exact and complete information about the entire sur-
rounding is not always available. Moreover, local optimal solution (between two
steps) is not always important as well, since its influence is minor. Therefore,
in most of the actual tasks, it is sufficient to find only a feasible path.

2.6.1 Definition of the Path Planning Problem

The definition of the Path Planning problem can be expressed in the following
form: let the vehicle move in the environment represented in the memory by an
occupancy grid (OG), and pt is a pose of the vehicle at time t. As mentioned,
the vehicle pose p is a combination of the vehicle location vector x

¯
and the vehicle

orientation ψ. In a 2D case, the pose is a three dimensional vector: p = (x, y, ψ),
which consists of the vehicle coordinates x and y and the azimuth angle ψ in the
global coordinate system.

The set of obstacles is denoted asO and includes all occupied cells of the occupancy
grid. Thus, the free space of the environment is the set Wfree = OG \ O. Suppose
pstart is the vehicle start pose, pgoal is the goal position, then the solution of the path
planning problem is a sequence of poses P = {p1, . . . ,pT} such that:

1. this path is free of collision with the obstacles: P̄ ∩ O = ∅, where P̄ is the set
of cells in the OG that contains the elements of P

2. the edges that connect any two subsequent points of the path do not collide
with obstacles: let l be the line that connects pt−1 and pt and let L be the set
of cells of the OG that l goes through. Then, L ⊆ Wfree. This should hold for
any t = {2, . . . , T}

3. it makes the vehicle move from the start location to the target: p1 = pstart,pT =
ptarget.

2.6.2 Path Planning over a Graph

Many graph-search methods assume that the environment is represented as a 2D
occupancy grid with a uniform resolution, in which cells are associated with a traversal
cost. In most cases, the traversal costs reflect the physical difficulty of the vehicle
to navigate through corresponding sub-areas in the environment. By approximating
this grid with a graph, in which nodes indicate the center of each grid cell and edges
connect nodes within adjacent grid cells, the path planning problem can be considered
as a search problem within a graph from a start node to a target node.

50

The A* algorithm is a common method for searching a path on a graph. It starts
at the root (the start node) and expands the neighboring cells of the current node
(“children”) with respect to a chosen function f(n), where n is a node, and so on
until finding the target node. The function f(n) represents the estimated cost of
the shortest path that traverses from the start node to the goal node through that
particular node n. This cost function consists of two parts: a function g(n), that is
the total length of the path traversed so far from the start up to the current node
n, and a heuristic function h(n). The heuristic hypothesizes an expected “cost to
travel” through the path from the current node to the goal node within the graph.
It is known that if the heuristic is admissible, i.e,. it never overestimates the actual
cost of the traverse to the target, the A* algorithm is optimal and always returns the
shortest solution [79].

The Euclidian distance
(

√

∆x2 + ∆y2
)

and Manhattan distance (|∆x|+ |∆y|),
where ∆x = x(n2)− x(n1), ∆y = y(n2)− y(n1), are the most widely used admissible
heuristic functions for path planning tasks. The traversal cost g typically represents
the actual distance through the graph where diagonal distances are scored propor-
tionally: if c > 0 is a cost of traversing a cell in the horizontal or vertical direction,
then the cost of traversing the cell diagonally is equal to c

√
2. Obstacles can be

also incorporated in this scheme by introducing the infinite traversal cost c→∞ for
occupied cells.

The formal description of the A* algorithm within the current algorithm is given
in Sub-Section 2.6.4. It is a simple algorithm, and when using a proper and efficient
heuristic, it is guaranteed that an optimal solution will be returned. These advantages
make the A* algorithm widely used in path planning tasks for different types of
autonomous vehicles.

Example for A* Search Evolution

Figure 2.12 (a-g) presents an example of the A* process evolution on a simple
two-route pose-graph, from Start to Goal. The start and goal are marked by full
circles (red and blue, respectively, with the general direction of motion from left to
right). The search-graph is made of 5 nodes, marked by letters from ’a’ to ’e’, and
a set of arrows signifying possible paths, connecting the nodes, where each path is
associated with a cost to traverse it (in purple text).

The algorithm’s input is shown in Figure 2.12 (a), presenting the search graph
with the costs associated with traversing each segment. The algorithm then begins
by calculating the cost associated with reaching directly to the goal from each node
(Figure 2.12 (b)). The search begins with calculating the associated cost with the
first two options: f(a) and f(d), shown in Figure 2.12 (c). Since f(a) < f(d), the
algorithm continues to calculate f(b) (shown in Figure 2.12 (d)). At this point, the
bottom branch still has the lower cost, and so the algorithm continues to calculate f(c)
(Figure 2.12 (e)). Since f(c) > f(d), the top branch now becomes the active branch,
and f(e) is calculated (Figure 2.12 (f)). At this point, the lower branch is eliminated
due to its higher cost, and the final path solution is highlighted in Figure 2.12 (g).

51

Start 2
3

2

4

3

2

1.5

Goal
a

b

c

e
d

4.5

4

2

4

2

2
3

2

4

3

2

1.5

Start

Goal

4.5

4

2

4

2

2
3

2

4

3

2

1.5

f(a)=1.5+4

f(d)=2+4.5
Start

Goal

4.5

4

2

4

2

2
3

2

4

3

2

1.5

f(a)=1.5+4

f(d)=2+4.5
Start

Goal

4.5

4

2

4

2

2
3

2

4

3

2

1.5

f(a)=1.5+4

f(b)=1.5+2+2=5.5

f(d)=2+4.5

f(c)=6.5+4

=10.5

Start

Goal

4.5

4

2

4

2

2
3

2

4

3

2

1.5

f(a)=1.5+4

f(b)=1.5+2+2=5.5

f(d)=2+4.5

f(e)=2+3+2=5

f(c)=6.5+4

=10.5

Start

Goal

4.5

4

2

4

2

2
3

2

4

3

2

1.5

f(a)=1.5+4

f(b)=1.5+2+2=5.5

f(d)=2+4.5

f(e)=2+3+2=5

f(c)=6.5+4

=10.5

Start

Goal

(a)

(b)

(c)

(d)

(e)

(f)

(g)

f(b)=1.5+2+2=5.5

Figure 2.12: An example of the A* process development.

2.6.3 Goal Definition

The goal in this work is defined as a distance to be traveled relative to the initial
position. The absence of a priori known map prohibits any other goal definition.
Moreover, it is assumed that the platform has no artificial intelligence for higher level
motion commands. Therefore, motions defined by relative distance may be used for
the goal definition, This definition may later be changed based on the incrementally
built map coupled with a decision making algorithm (i.e. dynamic goal definition).

52

2.6.4 A* Formulation Using an Occupancy Grid

The Path Planner module receives information about the obstacles stored in the
OG, the current vehicle position and goal location. Due to the relatively high reso-
lution of the occupancy grid used in this work, the global planner, proposed in this
work, makes use of an additional OG with a lower resolution, reducing thereby the
workspace and computational costs.

The A* algorithm is applied based on its spacial OG, namely OG∗, whose cells
are associated with a value between 0 and 1. This cell value represents the occupancy
state of the correspondent area in the environment (where 0 would be free and any
value above zero means “occupied”). Although the occupancy is stored in the cells,
only binary information is used by the algorithm, because the A* algorithm in this
work is only aware of the free workspace Wfree and the obstacle space O. The hit
values, stored in the cells of the OG, are not being used for the global path planner
in this work.

The resolution of OG∗ is selected based on computation resources available, as
well as practical reasons such as vehicle proximity. Generally, if a relatively fine
resolution is chosen to obtain smoother paths, a safety radius may be implemented
around the edges of all obstacles, to secure the platform from collision. The platform
is considered as a point by the A* algorithms.

Search Grid Generation

The generation of the A* occupancy grid is identical to the generation of the fine
resolution SLAM occupancy grid, described in Section 2.1. The update stage that
occurs after a successful scan matching is performed on both the SLAM and the A*
occupancy grids. Moreover, when cells are cleared using the isolated point filter, for
example (see Sub-Section 3.3.3), the corresponding cells are also cleared in the A*
occupancy grid as well.

Distance Cost Calculation

As mentioned above, each cell center in the A* occupancy grid is considered to be
a node in the search graph. In this work, we consider eight directions of movement,
including moving along cell diagonals, as presented in Figure 2.13. The traversal cost
in any of the horizontal or vertical directions is Dstraight = dA∗ and the traversal cost
along the diagonal is Ddiag =

√
2dA∗, where dA∗ is the resolution of the A* occupancy

grid. The diagonal heuristic function is calculated as follows [80, 81]:

h (n) = Ddiaghdiag +Dstraight (hstraight − 2hdiag)

hdiag = min (∆i,∆j) ; hstraight = |∆i+ ∆j|

∆i = |icurr − itarget| ; ∆j = |jcurr − jtarget|

(2.14)

53

a

aa

a

a

1.4a

1.4a1.4a

1.4a

a

Figure 2.13: A* search grid directions.

where icurr, jcurr are the current cell indices, itarget, jtarget are the target cell’s indices,
hdiag is the number of diagonal segments, hstraight is the number of horizontal or
vertical segments (i.e. the Manhattan distance). Hence, two heuristics hdiag and
hstraight are combined, considering the cost of both diagonal steps Ddiag, and straight
steps Dstraight. In order to maintain the admissibility of the combined heuristics, the
diagonal cost should be less than the cost of two straight steps: Ddiag ≤ 2Dstraight.
Such combined heuristics chooses the distance based on whichever of these two (the
diagonal or the straight heuristic) gives a lower value.

Waypoint Search

Once the global path is found, a waypoint position in terms of the OG can be
calculated. We consider the waypoint as a farthest visible cell of the OG in line of
sight along the path computed by the A* algorithm. In order to draw an imaginary
line from one cell to another, the Bresenham line algorithm [75] is used. Initially
it was developed for drawing lines on a computer screen or by plotters on paper.
Because the computer screens have the matrix structure which is very similar to a
grid structure (cells may be considered the same as pixels), so this algorithm can be
implemented for finding waypoints straightforward. The idea of this method lies in
the rasterization of a continuous line with respect to the grid resolution and looks
as follows. Let i0, j0 be the indexes of the start cell, and if , jf be the indexes of the
final cell, and we need to find through which cells the line between the start and final
cells will be drawn. If only the first octant of the grid is considered, namely when
δi = if − i0 ≥ 0 and δj = jf − j0 ≥ 0, and only increment along the i-axis is allowed,

54

there are only two possibilities:

• the line may be plotted through cell (i+ 1, j),

• the line may be plotted through cell (i+ 1, j + 1).

One of these possibilities is chosen based on the differences between the midpoint
(i+ 1, j + 0.5) and the line from the start to the final cell Figure 2.14. The line
equation in this case can be written as

f (i, j) = 0 = δji− δij + δij0. (2.15)

It should be noted that this equation involves only integer values of i and j.
Thus, considering the start cell, if the value of the midpoint of the next cell

f (i0 + 1, j0 + 0.5) is positive then the midpoint lies below the line, and the cell
(i0 + 1, j0) should be chosen. This is equivalent to the difference f (i0 + 1, j0 + 0.5)−
f (i0, j0). For the first choice, the difference should be greater than zero, otherwise
the cell (i0 + 1, j0 + 1) will be chosen.

Figure 2.14: Bresenham’s algorithm for drawing a line.

The described routine can be easily extended for another octants by changing the
increment of the i-direction from +1 to −1, swapping the directions and so on. The
main advantage of this method is its speed because it uses integers only.

Bresenham’s algorithm outputs the sequence of the cells through which the line of
sight from the current cell to another cell of interest traverses. Thus, by checking the
traversed cells’ occupancy, one may conclude whether that particular cell of interest
is seen from the current position. Starting from the goal cell, the farthest visible cell
can be found out. The algorithm for waypoint recognition in terms of grid cell is
described in Algorithm 4.

55

Algorithm 4 An algorithm for Waypoint Recognition.

Input: cell sequence PA∗ = {(i0, j0) , ... (igoal, jgoal)} representing the path obtained
by A* algorithm

checking each cell starting from the goal:
for (icurr, jcurr) = (igoal, jgoal) : (i0, j0) do

Invoke Bresenham’s algorithm: S ← BresenhamAlgorithm ((i0, j0) , (icurr, jcurr))
⊲ get cells along line of sight from (i0, j0) to (icurr, jcurr)

if S ∈ Wfree then ⊲ all cells S are free
(iw, jw)← (icurr, jcurr) ⊲ current cell is the waypoint cell
return

end if
end forOutput: the waypoint cell indexes (iw, jw)

2.6.5 A* Algorithmic Pseudo-Code

The A* algorithm is described in Algorithm 5. The algorithm takes the following
as input:

1. The A* occupancy grid OG∗

2. Current vehicle pose pt

3. Goal position xtarget.

And outputs a set of segments that connect the nodes that are traveled through, to-
wards the final goal. Note that the A* algorithm transforms the grid representation to
the graph representation; the grid’s cell centers become the graph nodes. Throughout
the algorithm description, nodes and cells are used interchangeably.

In order to operate on an evolving map, the A* algorithm finds the shortest path
from the current vehicle position (not from the start position), to the goal. Each time
the path has to be recalculated the new graph structure is created and passed to the
algorithm, with the current vehicle position representing the start node for the new
graph. Thus, such configuration of the A* algorithm fulfills the re-planning feature
mentioned above, and incrementally speeds up while the vehicle is approaching to the
goal (as the computed path becomes shorter).

2.7 Summary - Existing Algorithms

The algorithms presented in this chapter presented the basic concepts and algo-
rithms that are used in this work for the developed PB-PSM algorithm, as well as
for benchmarking purposes. These included the occupancy grid, virtual scan, scan
matching (including all point filters, data association, and cost contribution), the A*
path planning algorithm, and previously published scan matching algorithms. These
algorithms are used in Chapter 3 as part of the PB-PSM scan matching algorithm,
the developed SLAM, and its coupling with the A* path planning algorithm.

56

Algorithm 5 A*-based search algorithm applied for global path planning.

Input: create the A* occupancy grid OG∗
Input: calculate start node n0 (using current vehicle position, and Eq. (2.1))
Input: calculate goal node ngoal

Create O = open and C = closed lists.
Initialize O with the start node n0 as a root of a graph.
while O is not empty do

Find (ncurr ∈ O|f (ncurrent) ≤ f (n)) , ∀n ∈ O ⊲ find lowest cost path.
O = O \ ncurr ⊲ Remove ncurr from the open list O.
if ncurr /∈ C then

if ncurr = ngoal then
Extract the solution PA∗ and return it

end if
C = C ∪ ncurr ⊲ Add ncurr to the closed list C
for each neighbor nneig of the node ncurr in OG∗ that is not in the closed

list nneig /∈ C do
Calculate g′ = g (ncurr) +D (ncurr, nneig) ⊲ neighbor’s tentative g-score,

where D(n1, n2) is the distance between nodes n1 and n2

if nneig /∈ O or g′ ≤ g (nneig) then
Add the successor node to the open list
Calculate the g-score: g (nneig)← g′

Calculate the f -score: f (nneig)← g (nneig) + h (nneig)
Update the back-pointer to the parent ncurr in order to further extract

the solution
end if

end for
end if

end while
return unsolvable Output: the A* path PA∗

57

Chapter 3

Novel Algorithms

This chapter presents the novel algorithms developed within this work. The chap-
ter begins with presenting the PB-PSM scan matching algorithm in great detail, using
all point filters that were introduced in Chapter 2. The cost function construction is
described, including cost rewarding options, and minimization process. The multiple
minima problem is then presented and analytically analyzed, showing a validation of
the adaptive direct search solution method. The extraction of statistical properties
from the scan matching solution are then presented, and their possible applications
are discussed.

The SLAM algorithm developed in this work follows, with a full description of
the coupled SLAM and path planning algorithm for targeted flight operation. The
chapter concludes with the associated assumptions and limitations, complemented
by analytical analyses, and several novel accuracy metrics are introduced, which are
used later for measuring the accuracy of the SLAM map and position output.

3.1 Scan Matching Using PB-PSM

This section describes the construction of the PB-PSM scan matching algorithm.
Like the PSM algorithm, PB-PSM uses the polar coordinate nature of the range
scans. It shares the same data association method as PSM [29], using the “matching
bearing” rule, as well as the derivation of the cost function contribution of each
associated point pair to the total cost function. However, the cost construction is
complemented with a rewarding term which encourages matches with greater overlap
between them. Additional rewarding terms are discussed.

The cost minimization process is then described. Since this work relies primarily
on scan matching for both position and map generation, the most promising cost
minimization method was found to be the use of some measure of brute force in
minimizing the cost function, in order to overcome the common multiple local minima
problem. An adaptive direct search method is described, and its ability to accurately
find the global minima is shown and analyzed analytically. This section makes use of
the

58

3.1.1 Cost Function Construction

For any given triplet of ∆x,∆y,∆ψ, the cost function to be minimized comprises of
the absolute differences in radii between the Reference Scan and the roto-translated
Current Scan (interpolated values, see details below). Note that only valid points
are considered for contributions to the cost. The cost is then rewarded based on
the amount of perimeter overlap achieved between the two scans for the attempted
triplet. The cost function calculation for any given pair of scans, is constructed by
the following steps (after employing the Minimum/maximum range filter, and the
Outlier filter at the beginning):

i. Acquire the current laser scan.

ii. Outlier filter: discard laser points on along edges of surface discontinuities (see
Sub-Section 2.3.1 for more details).

iii. Calculate P0 - the length of the perimeter created by all valid Reference scan
points, using Algorithm 7.

iv. Acquire a virtual scan of the environment (by ray casting over the occupancy
grid), from the previous position estimate, or any improved estimate for the
current position (see Section 2.2).

v. Minimum/maximum range filter: discard points where rC < Rmin or rC > Rmax

(Sub-Section 2.3.1).

vi. Roto-translate the laser scan with proposed motion. The roto-translation equa-
tions are given in Eq. (3.1):

x′ = r · cos(θC + ∆ψ) + ∆x

y′ = r · sin(θC + ∆ψ) + ∆y

r′ =
√

x′2 + y′2

θ′ = tan−1(y′, x′)

(3.1)

The results x′ and y′ are the laser point’s roto-translated cartesian coordinates,
while r′ and θ′, are the roto-translated laser points in polar coordinates (range
and bearing, respectively).

vii. Field of view filter (Sub-Section 2.3.1).

viii. Occlusion filter: discard laser points that become occluded by other surfaces
after the roto-translation. This is found by searching for angle reversal in the
roto-translated laser points (Sub-Section 2.3.1).

59

ix. Data association: For each valid virtual scan angle, find r′Cright
, r′Cleft

, which

are the corresponding laser points on the right and left respectively (Sub-
Section 2.3.2).

x. Calculate the interpolated range r′′C (Sub-Section 2.3.2).

xi. Calculate the current point’s contribution to the cost function using Eq. (3.2):

Fi = |r′′Ci
− rRi

| (3.2)

xii. Discard contributions where Fi > TE, where TE is the elimination threshold
(see details below).

xiii. Calculated P - the length of the perimeter created by all the Reference scan
points for which Fi < TM , where TM is a threshold for successfully matched
points (see Sub-Section 3.1.2).

xiv. Calculate the final cost function value given by Eq. (3.3):

f =

(

1

nc

nc
∑

i=1

Fi

)

(

1− P

P0

)

(3.3)

The cost f is normalized by nc – the number of points that contribute to the total
cost. This normalizes the total cost values between different matching attempts. The

cost is rewarded using the term
(

1− P
P0

)

. This reduces the cost for matching attempts

with larger matched perimeters. It essentially results in favoring roto-translation
matches with a higher overlap between the two scans. When this term is not used,
small surfaces may sometimes be inadvertently discarded in favor of matching the
larger object in a scene (as will be shown later). Other rewarding function may be
used, however the linear rewarding function used here was found to be adequate.

Unlike the PSM algorithm, PB-PSM does not make use of least squares for the
translation solution. In fact, a valid point only contributes the absolute distance
between itself and its matched counterpart. This has a relative advantage as some
wrongful matches, which may be the result of errors in one of the scans, will not
contribute the square of their respective distance from their matched counterpart.
Thus, the effect of a singular contribution is less likely to significantly sway the
solution.

Eliminating Matching Anomalies

After the matching loop is performed, some contributions of matching anomalies
are eliminated (matching anomalies are points with matched distance over three or-
ders of magnitude larger than the typical occupancy grid cell size). This is based on
the possibility of wrong pairings of points from different surfaces. Due to the occu-
pancy grid’s sparse nature, in some cases, a virtual ray can “see” through walls (go

60

1.3 1.35 1.4 1.45 1.5 1.55 1.6

x 10
4

1000

1500

2000

2500

3000

3500

4000

X mm

Y
 m

m

Figure 3.1: Example of a sparse occupancy grid where a virtual beams can penetrate
obstacles.

through the actual location of the obstacle as it is not completely mapped yet). An
example is given in Figure 3.1.

Threshold Settings

1. The minimal radius was set on Rmin = 400 mm considering the platform size.

2. The maximal radius was set on Rmax = 29000 mm to avoid readings at the very
end of the laser sensor’s maximum range of 30 meters.

3. The “matching anomaly” threshold TE, is a user defined threshold, and is typ-
ically set to be two orders of magnitude larger than the typical cell size. This
additional point filtering is designed to eliminate the possibility of wrong pair-
ings of points from different surfaces, that may occur due to the occupancy grid
being sparse in some cases, and therefore some virtual rays “see” through walls.
In this work, this number is set to TE = 1000 mm.

4. Typically, the “matched point” threshold TM is set to be a number of the same
order of magnitude of the occupancy grid, and with a certain respect to the

61

laser range accuracy. In the current work, a value of TM = 50 mm was used, as
the grid cell size was 10 mm, and the laser had an accuracy of approximately
0.5% (for ranges over 1 m), i.e, for a typical corridor length of 10 m, the laser
accuracy would still be able to provide a good match, under the above set
threshold.

3.1.2 Cost Function Rewarding

This work introduces a new and innovative way to overcome a common problem
in scan matching. Many scenarios contain objects with significant differences in size.
The representation of these objects in a laser scan depends strongly on the proximity
of the laser scanner; The closer the laser scanner is - the more laser points will
represent the object. Specifically, in office-like scenarios, surrounding room walls
and corridors constitute the majority of the laser scan, while smaller objects such as
door posts, trashcans, pillars, etc., are typically represented by a significantly smaller
number of laser measurements. This section discusses several optional methods for
rewarding the cost function, which is important in order to guide the scan matching
process convergence towards the correct scan matching solution.

(a) Large Object (b) Small Object (c) Small Object
No right angle corners

Figure 3.2: Possible scenarios with objects of different scale.

Three scenario examples are given in Figure 3.2, scenario (a) presents a wall with
a fairly large extruded box-like object, scenario (b) presents a wall with a relatively

62

small-sized object, and scenario (c) presents the same as scenario (b), but the object
has not sharp corners. These three representative scenarios are used hereafter to
describe the challenges involved with scan matching in environments that contain
objects of different scales.

Several attempts were made in the literature [78] as well as in this work to find a
suitable bias for the cost function, in order to improve it’s performance in scenes that
contain objects of different size and shape. A discussion of several possible solution
is brought herein.

Cost Rewarding Based on Number of Points

One simple approach is rewarding the cost function based on how many points
contributed. Ideally, even the few number of points that represent the outstanding
objects will have an effect, and the solution convergence process will be drawn toward
matching those objects as well. The rewarding term in this case is given by Eq. (3.4):

k = 1− ncon
nR

(3.4)

where k is the cost rewarding coefficient (0 ≤ k ≤ 1), ncon is the number of points
that had contributions to the cost function value, and nR is the total number of points
in the reference scan. Points that may not contribute to the final cost function value
include occluded points, outliers, and points whose contribution was eliminated by
the elimination threshold (TE , see Sub-Section 3.1.1).

However, it was found that reducing the final cost based on the number of matched
points did not always work in favor of finding the globally optimal scan matching
solution. Often walls that are relatively close to the origin are represented by many
points, and therefore receive a significantly higher “weight”, as compared to walls
that lie further away, although in practice those are equally as important.

Moreover, the farther points are typically associated with a higher laser noise
magnitude, as the laser noise is a percentage of the measured range. Therefore, an
apparent better match of closer objects may cloud the importance and contribution of
farther points. This phenomenon was commonly observed in typical office scenarios,
where the door posts which are of the order of 10 cm were in many cases “ignored”
by the scan matching minimization process, which yielded a sub-optimal solution.

Cost Rewarding Based on Range Histograms

Cost rewarding was also attempted based on histogram matching, where after the
roto-translation (Eq. (3.1)), the range values in both scans would be sorted into a
histogram with Nb bins. The bin values from both scans form two vectors h1 and h2,
which may be used as follows:

k = 1− h1 · h2

max (h2
1, h

2
2)

(3.5)

63

where k is the cost rewarding coefficient (0 ≤ k ≤ 1). This method proved to be
efficient only in a limited number of scenarios, while often leading to wrong solutions
in others. An additional attempt was made in Cartesian coordinates, where two
histograms were generated, for both the x and the y dimensions. This approach was
found to be more useful for planar translation estimation, but failed to produce good
results on many different scenarios which included a significant rotational component.

Cost Rewarding Based on Line Matching

Another method to give considerations to smaller objects is segmenting the scan
into lines. Both scans may be fitted with a set of lines, which may then be used
for carrying out a fast line matching operation. The solution from the line matching
operation may be used to give an improved initial guess for the scan matching process,
or as a rewarding term for the final scan matching cost function. Fitting straight lines
to a set of points may be done using least squares or end-point fitting. The latter
method was selected as the computational cost is significantly reduced, with similar
results. A pseudo code for line extraction based on end-fitting is given in Algorithm 6.

Algorithm 6 Line extraction using end-point fitting

flag ← true
while flag = true and nLi <= nLimax

do ⊲ while the algorithm is not finished
and the max number of lines is not reached

flag ← false ⊲ assuming this is last iteration
for i = 1→ nLi do ⊲ checking all the lines created thus far

dmax ← max(d) ⊲ registering largest distance between the points and the
current line

if dmax > ǫL then
Split current line, make farthest point a new node-point.
flag ← true ⊲ one more iteration required

end if
end for

end while

The method requires the definition of nLimax
, the maximum number of lines that

can be output from the algorithm, as well as ǫL, the threshold for the fitting of a
point to its representative line. These parameters are user controlled, and should be
set based on some experience with several scenarios. Typically, in this work, values
of nLimax

= 50, and ǫL = 5 cm were used, which guaranteed capturing all the lines
with significant resolution, in most of the indoor scenarios attempted.

The output lines may be used for fast scan matching in a number of different
ways. The methods and associated advantages and disadvantages are brought herein:

1. using the line angles to estimate the rotation between the two scans. This
may be done by generating histograms of the line angles in both scans, and
searching for the rotation angle of the Current scan that will generate the best

64

match with the histogram of the Reference scan. However, discrepancies in line
lengths, errors from the line extraction process, and a relatively low number
of lines are not desired, as the histograms that are based on them are quite
inaccurate.

2. using the line lengths in a similar manner to the process described for the angles.
This approach has the same pitfalls as the previous one described for the line
angle histogram.

3. re-distributing np points along each line, and performing a point-based scan
matching. This method makes sure that each line receives the same represen-
tation in terms of number of points. Therefore, it is expected that this method
will overcome the common pitfall of rewarding based on number of points (ob-
ject size discrepancy discussed above). However, after several attempts, it was
found that the issues of line extraction mentioned above, also affected the out-
come in this method, and often this method had a negative influence on the
solution and its convergence.

The above three options were briefly attempted as part of this work. Although
some of these methods proved to be useful on some occasions, there have been many
scenes where the number of lines was minimal (mainly long corridors), or where the
thresholds set for the line extraction algorithm yielded undesired results (such as not
representing door posts, while including their length into nearby walls). Based on the
lessons learned from these experiences, these methods were not used in the results
presented in this work.

Cost Rewarding Based on Corner Matching

Complementing the line extraction method, features can also be extracted from
a scan in the form of corners [78]. The parameters associated with corner extraction
are similar to those of line extraction. In fact, corner extraction may be a by-product
of the line extraction algorithm described above, where every line end-point may be
considered as a corner. Another approach is to examine straight line fitting through
sequential points, and when large change in the line orientation occurs - the last point
added tot eh inspected set is defined as a new corner and inserted into the corner list.

The corner points may be used as the basis for performing a point-based scan
matching. The main advantage is that the number of corners is expected to be
significantly lower than the total number of points in the scan. Note that the threshold
for defining a corner may not allow some blunt (obtuse) angles. The reason is that
because of typical laser noise, many points may falsely qualify as corners, and thus
this approach may fail.

The main disadvantage of using this approach may be in scenarios that do not
contain many corners (e.g. long corridors with not too many features), such as the
scenario presented in Figure 3.2 (c). In such scenarios, the usage of this approach
may result in a relatively low number of corners, and in some cases no corners at all.
Moreover, some scenarios may only contain round objects, which may fall outside of

65

the corner threshold. An example includes the forest environment used in this work
(see Sub-Section 4.3.5) which contains only round tree-trunks. The success of any
feature extraction approach depends on how accurate do the features represent the
environment. Therefore if features like lines and corners are used in an environment
without straights objects and corners, the accuracy is expected to be lower. This
approach was not attempted in this work.

Cost Rewarding Based on Perimeter Matching

In order to provide a suitable bias in the cost minimization process, the final cost
is reduced based on the ratio of matched perimeter to total perimeter captured by
the laser scanner. The cost after applying the reduction term is given by:

f = f

(

1− P

P0

)

(3.6)

where P0 is the total perimeter of the reference scan, and P is the perimeter of the
portion of the reference scan that was successfully matched to points in the current
scan. Since both perimeter values are calculated based on the reference scan, there
is no possibility for P > P0, and the overall perimeter matching rewarding term in
Eq. (3.6) is at the very least semi positive definite.

Moreover, the perimeter matching term may not be identically zero since it re-
quires that every single point in the Reference scan has two valid associated points
in the Current scan. This situation cannot exist, even in the case of an ideal and
identical scan of the same scenario. Since the number of points in both scans is
equal (nR = nL), one of the outermost points in the Reference scan won’t have two
neighbors, even when scanning identical scenarios, with no shift between the scans.

In most scenarios, not all points are matched and therefore the term typically
yields a positive number smaller than one. Moreover, line segments that pass through
an empty space in the scan should not be included. This can be examined using the
scan resolution and range: if the distance between two connected points is larger
than Rmax∆θ, then the contribution to the perimeter is discarded, where, ∆θ is the
resolution of the reference scan. Every point in the Reference scan that is matched
may only be considered once, with its associated segment length to its succeeding
point. The calculation of P0 is given in Algorithm 7, below.

Note that in case that the reference scan is a virtual scan, checking for a valid
point may also be done using the occupancy of the representative cell for that virtual
ray, not just using the range value itself.

For a point to be considered as “matched” the contributed cost was required to be
of the same order of the grid resolution. This is another measure designed to eliminate
matching anomalies from interfering with finding the accurate scan matching solution.
The result is that the longer the perimeter created by the matched points is – the
lower the total cost becomes. This modification was found to be directly responsible
to improving scan matching solutions, and in some cases even correct past mapping
mistakes, that were wrongfully updated into the occupancy grid.

66

Algorithm 7 Calculating P0

P0 ← 0 ⊲ Initializing perimeter value
i← 1 ⊲ Initializing point index
while i ≤ nR − 1 do

if ri < Rmax then ⊲ If current point is valid
j ← i+ 1
flag ← FALSE
while flag = FALSE do ⊲ searching for the next valid point

if rj ≤ Rmax then
j ← j + 1

else
flag ← true

end if
if j > nR then break
end if ⊲ in case the last point was reached

end while
if j > nR then break
end if ⊲ exiting the outer loop as well
∆x ← rVi

cos(θi)− rVj
cos(θj)

∆y ← rVi
sin(θi)− rVj

sin(θj)
∆P0 =

√

∆2
x + ∆2

y

if ∆P0 < Rmax∆θ then ⊲ Empty space segments check
P0 ← P0 + ∆P0

end if
i← j − 1

end if
i← i+ 1

end while

67

The algorithm for calculating the matched perimeter is identical to the one de-
scribed above for calculating P0, except that each point validity is also measured by
that point’s contribution to the final cost function, with the added condition being
Fj ≤ TM . Typically, for a grid resolution of 10 mm, a value of TM = 50 mm was
used, and therefore a point is considered to be matched if its matching contribution
is smaller than 50 mm.

−300 −200 −100 0 100 200 300
0

10

20

30

40

50

60

70

r mm

C
os

t

−300 −200 −100 0 100 200 300
0

5

10

15

20

25

30

35

40

r mm

C
os

t

(a) Without perimeter matching term (b) With perimeter matching term

Figure 3.3: Effect of perimeter matching term on the cost function shape.

The effect of the perimeter matching term is also visualized in Figure 3.3, where
the cost function for a a representative scenario and iteration is shown with and
without the use of the perimeter matching term. The use of the perimeter matching
term cause a dip in the cost function shape which contributes for a more robust
minimization.

3.1.3 Cost Function Minimization

To find the best scan matching solution, an adaptive direct search method was
constructed, where the best rotation angle between the scans was found first, followed
by the best pure translation. This process is repeated in an iterative manner while
continuously reducing the range of the search grid in a geometric rate after each
iteration (thus refining the search grid, in both the plane and azimuth, while the
number of grid points is kept constant). It was found that estimating rotation before
translation is typically beneficial for convergence, as rotation has a more pronounced
effect on the cost function. In the plane, the search grid shape is in the form of a
circle, and the points are evenly distributed along the radial direction and about the
azimuthal direction. Additional search grid shapes were attempted (ring-section and
square shaped); however, the circular grids were found to be the most robust.

Using the algorithm described above, the best possible scan matching is, in most
cases, guaranteed as long as the search range is large enough, and the search grid
is fine enough to adequately cover the solution area. In the majority of the results
presented, 50 points were used for the azimuthal grid, and the planar grid size was 7
by 7, so each iteration required 100 function evaluations. It was found that for most

68

cases, the above search grid resolution appears sufficient. A mesh refinement scheme
may be employed for cases where the resulting cost function is too high. However,
this was not required in the current work.

Convergence is defined based on the change between two subsequent iterations as
in Eq. (3.7):

[∆xn,∆yn,∆ψn] =
[

xn − xn−1, yn − yn−1, ψn − ψn−1
]

(3.7)

where n is the iteration number. Convergence is achieved when the above values are
less than εt = 1 mm for translation (both x and y), and εψ = 0.01◦ in azimuth. On
average, it was found that a total of approximately 8 iterations were required for each
scan matching process. Cases of scan matching failure are identified by f > TF where
f is the final cost, and TF is an elimination threshold, which is typically set to 10.

−1000 0 1000 2000 3000

−1500

−1000

−500

0

500

1000

1500

2000

X (mm)

Y
 (

m
m

)

Figure 3.4: Scan matching example on a simple corner-like geometry.

An example of a typical scan matching result is given in Figure 3.4, where circles
represent the Current Scan’s laser readings taken from the origin at [0, 0] (all points are
shown in order to accurately represent the geometry captured by the laser scanner),
while the laser FOV is marked with dashed lines. The Reference Scan is represented
by dots, and the matched roto-translated Current Scan points are represented by
squares (here, not all points are shown, for clarity). Points that were eliminated
by the various filters described above are crossed with ’x’ (some points are outside
the field of view, some are possible outliers, and some are occluded as the laser

69

picked up points from around the corner while the Reference Scan was taken from
the previous location). The current algorithm is implemented in two dimensions and
assumes that both planar and rotational platform motions are slow compared to laser
scanner speed. The algorithm also assumes a relatively small laser sensor pitch and
roll attitudes (ensuring a 2D environment).

Notes About Cost Function Minimization

• Finite Resolution search grid: it is important to note that at every iteration,
and particularly in the last iteration, the minimum cost is always found on
one of the search grid nodes. Since the search grid has a finite resolution, the
minimum point may not be the true minimum point. However, since in this
work, the typical employed convergence requirements are relatively tight, the
difference between the found and the actual minimum points may not be larger
than the convergence requirement.

• The search process used here separates the rotation variable ψ from the two
translation variables x and y. This separation was utilized to reduce the com-
putational cost of the minimization by reducing the total number of cost func-
tion calls. A three dimensional exhaustive search grid was not attempted as
it was found to be computationally infeasible (similar search grids would have
resulted in 5000 function calls for each iteration). This separation concept was
also utilized by Diosi and Kleeman [29]. The minimization process separates
the rotation variable ψ from the translation variables x and y, since they create
fundamentally different errors in the cost function.

3.1.4 Multiple Minima

The minimization approach used in PB-PSM is a form of an exhaustive search.
Although it is a more computational demanding as compared with gradient search
methods, the main reason for choosing this method is the existence of multiple local
minima for the cost function. While gradient search based methods are susceptible
to local minima, and may therefore converge to the wrong solution, an exhaustive
search method is more immune to this problem, provided that the search grid is fine
enough.

Two examples showing the existence of multiple local minima are presented in Fig-
ure 3.5. Figure 3.5 (a) shows the phenomenon for the azimuthal search phase, where
several local minima are clearly visible, with significant differences in the azimuthal
angles. It is important to note that capturing the azimuthal rotation accurately is an
important key in achieving overall accuracy. It will be shown later that differences
greater than 0.01◦ were found to be significant for achieving overall accuracy (see the
results chapter, Sub-Section 5.2.1).

Figure 3.5 (b) presents the second example, taken from a planar search for the
translation solution. The search grid shape is circular, and so a cross section is
drawn with the x axis showing radial values (positive to one direction for the cross

70

5.5 6 6.5 7 7.5
7

8

9

10

11

ψ°

C
os

t

(a) Azimuthal search multiple local minima (asterisk marks global minima).

−30 −20 −10 0 10 20 30
1.8

2

2.2

2.4

2.6

2.8

3

3.2

r mm

C
os

t

(b) Translation search, cross section of the cost function planar surface.

Figure 3.5: Multiple local minima. Top: varying ∆ψ only, showing multiple local
minima, with a significant angle difference. Bottom: showing a similar phenomenon
for the planar translation search, varying ∆x and ∆y, with ∆ψ constant (negative
values correspond to the opposite side of the search grid).

section and negative in the other direction), and the y axis showing the values of cost
function, achieved while ∆ψ is kept constant. The existence of many local minima
is clearly seen in this Figure 3.5 (b), with significant differences of up to 20 mm in
their location.

These patterns were observed in nearly every scan matching scene that was at-
tempted. They are especially pronounced when the minimization process has com-
pleted several iterations. The sometimes small differences between the global minima
location and a given local minima location may accumulate over the distance trav-

71

eled by the platform and form a distorted map. Therefore, the conclusion was to use
adaptive direct search throughout the minimization process, in order to maintain the
higher accuracy solution output.

Minimization Process Analytical Validation

In order to test the minimization procedure performance, an analytical function
is utilized, which has the same general characteristics as exhibited by the PB-PSM
cost function. As seen in Figure 3.5, for a given x and y values, the shape of the cost
as a function of ψ is approximately a parabola, and for a given ψ value, the shape of
the cost plane formed by varying x and y, resembles a paraboloid. For this reason,
the function given in Eq. (3.8), which features both above mentioned properties, has
been selected for the suggested evaluation:

C =
(

a1ψ
2 + b1ψ + c1

) (

a2x
2 + b2y

2 + c2
)

(3.8)

where a1, b1, c1, a2, b2, c2 are constant coefficients, and C is the resulting cost. To
conform with the behavior exhibited by the scan matching cost function, C must
remain positive. For convenience purposes, c2 is assumed positive, which then requires
the quadratic function in ψ to be positive for all ψ, which means it must have a
negative determinant. These conditions satisfy a positive cost for all x, y, and ψ.

Under the above assumptions, this function has a single unique global minima,
which occurs when both the quadratic function in ψ and the second term achieve
their minimum value. The analytical solution for the global minima of the first term

is given by − b2
1

4a1
+ c1, where ψ = − b1

2a1
. For the second term, the minimum is simply

achieved when both x and y are zero, and it equals c2. The cost global minimum
point is therefore given by:

Cmin = c2

(

− b21
4a1

+ c1

)

(3.9)

For this evaluation, all constant coefficients were set to: a1 = 1, b1 = 2, c1 = 3,
a2 = 4, b2 = 5, c2 = 6, and therefore the solution for this function’s global minima is
given by [x, y, ψ] = [0, 0,−1], wit the minimum point having a value of C = 12. The
initial guess for this case was set as [x0, y0, ψ0] = [−0.5, 0.5, 0], the search grid in ψ had
50 points, and the translation search grid was a 10 by 10 grid (as in the experimental
cases). It was found that the solution accuracy increases with the tightening of the
convergence requirements, and for a uniform convergence requirement of ε = 0.001
for all variables, the result from the adaptive direct search algorithm was [x, y, ψ] =
[−0.00167,−0.000254,−0.99922], with the minimum point achieved at C = 12.00009.
Therefore it is concluded that for this representative function, the adaptive direct
search achieves the correct minimum point.

An additional function was attempted, which is more challenging as it introduces
multiple minima. The translation term remained unchanged, while the rotation term

72

−2 −1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

ψ

ψ
 te

rm
 v

al
ue

Figure 3.6: Multiple local minima analytical test function.

was changed to a mix of trigonometric and polynomial function.

C = (a1ψsin(ψ) + b1)
(

a2x
2 + b2y

2 + c2
)

(3.10)

where a1, b1, a2, b2, c2 are constant coefficients, and C is the resulting cost. The
azimuthal term is plotted in Figure 3.6, with values of a1 = 1, and b1 = 5 (which
is used to maintain a positive function value, as is required from the cost function),
and one may see the two minima points in the range plotted. The same range was
used for the minimization process using the adaptive direct search. In this example,
a2 = b2 = c2 = 1, for simplicity.

As in the previous example, the analytical solution for the cost minimum requires
both term to achieve their respective independent minimum values. The translation
term minimum point remains unchanged. The rotational term minimum point may
not be found analytically since it requires the solution for the zero derivative of the
form:

f ′(ψ) = sin(ψ) + xcos(ψ) (3.11)

Newton’s method was therefore employed to found the zero derivative point as follows:

xn+1 = xn −
f ′(xn)

f ′′(xn)
(3.12)

where f ′(xn) is the derivative of the azimuthal term, and f ′′(xn) is the second deriva-
tive, both evaluated at the point x = xn. Here, n is the iteration number of Newton’s
method. The solution for the zero derivative was found at ψ = 4.9318 (using an

73

initial guess of x0 = 5.5), which gives an azimuthal function value of C = 0.1855301.
The initial guess was [x0, y0, ψ0] = [−0.5, 0.5, 0], which placed the azimuth search

right at the local minimum at ψ = 0. However, the adaptive direct search success-
fully found the global minimum point value of C = 0.185532, located at [x, y, ψ] =
[−0.00088,−0.000511, 4.9122]. Therefore it is concluded that the adaptive direct
search method that was developed in this work is capable of handling multiple local
minima, when attempting to find the global minima point.

−2 −1 0 1 2 3 4
0

5

10

15

20

25

30

35

40

ψ

C
os

t F
un

ct
io

n
va

lu
e

Figure 3.7: Multiple local minima, with contradicting requirements.

An additional test was carried out where the chosen cost function was of the
following form:

C = |a1ψsin(ψ)|(a2x
2 + c2) + (−ψe−ψ + 0.5)(b2y

2 + c2) (3.13)

where the absolute value on the first term, and the constant 0.5 in the second term
are required to maintain a positive cost value for all ψ values. In this case, the two
terms in ψ have a different minima points, and therefore the global minima would be
a compromise between the minimization of both terms. The coefficient a1 was set to
a1 = 10 (in order to get a minimum point within a reasonable range of values), while
all the other coefficients were set to a2 = b2 = c2 = 1.

The variation of the cost with ψ for Eq. (3.13), with x = 0, and y = 0, is shown
in Figure 3.7. Although the minimum point remains at [x, y] = [0, 0], an analytical
solution for ψ may not be found for this cost function, due to its highly non-linear
nature. The global minimum point was therefore found using an exhaustive search
in ψ, with a relatively high search grid resolution. The exhaustive search based
solution was found to be ψ = 0.04562, with C = 0.47721905. The adaptive direct

74

search in this case produced a minimum point of C = 0.47721917 at [x, y, ψ] =
[−0.00046,−0.000459, 0.04557]. This means that the adaptive direct search was able
to minimize this function as well with good accuracy.

3.2 Statistical Properties Extraction

Statistical properties may be extracted from the PB-PSM algorithm output. These
include the mean, standard deviation, and covariance of the final scan matching solu-
tion. These quantities may give a measure for the scan matching quality for a given
scan matching scene. Moreover, these quantities may be used for data fusion with
other algorithmic outputs or sensors that may be available on board the platform,
such as GPS signals (when available), IMU data, compass heading measurements,
and supplementary dead reckoning algorithms.

Having another measure for the quality of a given scan matching result is also
important as a supplementary information for the final cost function value, which
is used in this work to determine a successful scan matching result. Moreover, the
calculation of this measure is not too computationally demanding, as will be shown
below.

3.2.1 Calculation of Mean and Covariance

For a given scan matching scene, the calculation of the mean and covariance makes
use of the individual contributions to the cost function, made by every point in the
Reference scan. A single point-pair contribution is given by F s

i (the ’s’ stands for
“signed”), shown in Eq. (3.14). This form is similar to Eq. (3.2), except here, the
absolute value is removed, in order to be able to use the sign difference between the
different contributions:

F s
i = r′′Ci

− rRi
(3.14)

where rRi
is the range of the ith Reference scan point, and rCi

is the interpolated range
value from the two neighboring points in the Current scan. The signed contributions
may then be used for calculating the mean, covariance, and standard deviation of the
scan matching solution following Eq. (3.15):

S0 = nc ; S1 =
nc
∑

i=1

F s
i ; S2 =

nc
∑

i=1

(F s
i)

2

µ = S1

S0
; σ =

√

S0S2−S2
1

S0(S0−1)

(3.15)

and the covariance is simply σ2.

Usage as Added Criterion

After an extended investigation, it was found that in borderline cases of scan
matching, where the final cost f was found to be greater than the final cost acceptance

75

threshold TF , using the mean as a secondary acceptance test was found to produce
favorable results (i.e., accepting good matches that were otherwise rejected). Manual
examination of those borderline cases showed that their match was, in fact, fairly
accurate, except for a low number of points, which caused the final cost to break the
threshold by a small margin. In these cases, the secondary test is checking for µ < d,
where d is the occupancy grid resolution, which was chosen as a threshold for this
test. Therefore, if the average of all contributions is lower than a single cell size - the
scan matching is declared successful, even if the final cost f may be slightly higher
than it’s set threshold TF .

Another method to make use of the statistical properties of the matched scans is
by separating the results in the x and the y direction, and comparing the properties.
Ideally, successful scan matched scenes should have approximately the same mean in
both directions. The mean properties can be extracted using Eq. (3.16):

S1x
=

nc
∑

i=1

F s
i cos(θRi

) ; S1y
=

nc
∑

i=1

F s
i sin(θRi

)

µx = S1x

S0
; µy =

S1y

S0

(3.16)

This additional statistical information may then be utilized to draw additional con-
clusions about the quality and the confidence level of the examined scan matching
solution. This was not attempted in the current work.

−100 0 100 200 300 400
−50

0

50

100

150

200

x mm

y
m

m

Figure 3.8: Mapping cost contributions around the origin.

An example for the above analysis is shown in Figure 3.8, for a successful scan
matching scene. Figure 3.8 shows the contributions to the cost function, transformed

76

to the origin using their corresponding angles (θR, the reference scan angles). It can be
seen that most contributions are clustered around the origin, with only a few outliers
having a large cost contribution. Figure 3.8 contains approximately 1000 points. The
statistical properties for this case were calculated as: µ = 3.41, µx = 2.54, µy = −0.24,
σ = 30.84, σx = 27.9, σy = 13.32.

−1000 −500 0 500 1000
−100

0

100

200

300

400

x mm

y
m

m

Figure 3.9: Mapping cost contributions around the origin for added ∆y.

A complementary example for the same scene, but with the analysis performed
using a distorted solution is given in Figure 3.9. The correct scan matching solution in
this case was changed by ∆y = 100 mm. The changes in the distributions of the cost
contributions is quite visible, and the statistical properties calculated for this case are
as follows: µ = −14.6, µx = −12, µy = 87.8, σ = 164.57, σx = 131.37, σy = 46.67.
Those properties are, as expected, significantly larger than the ones obtained with
the right scan matching solution.

Figure 3.10 presents the effect of an error in the azimuth on the statistical prop-
erties and the cost contributions distribution for that case. In this example, the right
scan matching solution was used with an added ∆ψ = 2◦. It is quite evident in
Figure 3.10 that the added rotation creates significant distortion to the distribution
of the cost contributions.

The statistical properties for this case were: µ = 10.67, µx = −1.28, µy = 13.61,
σ = 133.67, σx = 120.64, σy = 56.94. As expected, the effect of the rotational error
on both µx and µy is quite minor. However it is manifested in a strong way in the
overall standard deviation σ (as well as in the standard deviation in both direction).
As before, it is quite clear that these properties are significantly larger and may be
used for additional screening of scan matching solutions.

77

−1000 −500 0 500 1000
−200

−100

0

100

200

300

400

x mm

y
m

m

Figure 3.10: Mapping cost contributions around the origin for added ∆ψ.

Additional Usage of Statistical Properties

The statistical properties described above may also be used as a measure of con-
fidence for the scan matching process. In a similar manner to sensors, where mea-
surement noise and error are characterized by statistical properties such as mean and
covariance. These properties are used by Kalman Filter and Particle Filter algorithms
to fuse information from different sources. The same statistical information, extracted
from the scan matching operation may be used in such probabilistic frameworks, to
fuse scan matching output with other sensory inputs, as well as with a vehicle model
prior estimates.

3.3 SLAM Algorithm

Operation of a vehicle in a GPS-Denied environment, with no a priori known map
requires that the vehicle would have the capability of estimating it’s position and
orientation within a self-built map. As mentioned above, this capability is widely
known as Simultaneous Localization And Mapping (SLAM). This section discusses
a refined algorithm for performing SLAM in two dimensions. The SLAM algorithm
receives only laser scans as sensory input, and outputs position estimates and a map
in the form of an occupancy grid [32, 73]. The method employed is based on scan
matching incoming laser scans against the map.

The SLAM method presented here is completely decoupled from the platform’s
dynamic model and thus it does not require any dynamic modeling for the platform

78

carrying the sensor. it relies solely on a laser scanner and a scan matching algorithm
to obtain both map, position, and azimuth information. Decoupling the SLAM algo-
rithm from the dynamic model allows its implementation on a myriad of both ground
and aerial platforms including some configurations that are considered to be challeng-
ing to model (e.g. conventional main-rotor tail-rotor platforms, coaxial helicopters,
and human-like platforms).

3.3.1 General Description

Occupancy Grid

Scan
MatchingVirtual Scan

Laser Scan

True Position

Estimated

Position

∆x

∆y

∆ψ

Previous Position

Updated

Map

Figure 3.11: Block diagram for the SLAM process.

The SLAM block diagram is presented in Figure 3.11. The algorithm is initially
given both [x, y] coordinates and azimuth in the virtual map (could be arbitrary if
global localization is not required). The platform then moves and generates both
position information, and an occupancy grid representation of the environment in-
crementally. In each step, a laser scan is performed from the laser’s true position,
followed by a virtual scan of the occupancy grid from an estimated position. The
PB-PSM scan matching algorithm is then employed on the two scans, to obtain the
estimate for the current platform position and orientation. The laser measurements
are then updated into the OG based on the new position estimate, and the process
repeats.

Note the absence of both path planning, and decision making block as they are
not considered to be part of the SLAM process by itself. In the case of targeted
flight, the global path planner receives the current position at each step, plans an
obstacle free path to the goal, and also check if the goal is reached (examined using
a proximity threshold). The SLAM algorithm execution is terminated once the goal
is reached. A detailed presentation of the coupled SLAM-Path Planning algorithm
implementation is brought in Sub-Section 3.4.

The SLAM algorithm is comprised of the following steps:

i. Perform one laser scan.

79

ii. Perform a virtual scan from an estimated position.

iii. Carry out Scan matching between the laser scan and the virtual scan. The scan
matching solution is in the form [∆x,∆y,∆ψ], which are in the virtual scan’s
reference frame.

iv. Using the virtual scan’s azimuth, convert the scan matching solution into the
global reference frame using the following relation:

∆xg = ∆xcos(ψ)−∆ysin(ψ)

∆yg = ∆xsin(ψ) + ∆ycos(ψ)
(3.17)

This is the new position estimate in the global map (note that ∆ψg = ∆ψ).

v. Using the new position estimate, update the latest laser scan into the occupancy
grid (see Sub-Section 2.1.1, Eq. (2.1)).

3.3.2 Initial Guess for the Virtual Scan

As mentioned above, the virtual scan may be taken from either the previous
estimate for the position and azimuth, or from an initial guess for the current position
and azimuth. The main advantage in having a good initial guess for the current
platform position is providing an initial guess from where to take the virtual scan from.
Ideally, one may consider taking the virtual scan from the correct current position
which should result in a successful scan matching, with minimal computational effort,
and maximal perimeter overlap between the two scans. However, any initial guess
that is more accurate that simply using the previous pose estimate may reduce the
required size of the adaptive direct search grid, which would, in turn, reduce the
overall SLAM computational requirements. This section discusses the advantages
and disadvantages of several options for the initial guess.

No Initialization

The most basic option is to take the virtual scan from the previous pose estimate.
This option works quite well, and was used in many of the results presented in this
work. Specifically, it works well with platforms that have a very unpredicted motion
pattern (e.g., aerial platforms, such as the single rotor helicopter, used in this work).
Although this approach requires absolutely no computational resources, this approach
has several deficiencies:

1. The search grid for the function minimization using adaptive direct search is
required to be larger than the largest step magnitude that the platform may ex-
perience in a single time step. This is done in order to guarantee that the right
pose solution is within the search grid. It is important to note that this restric-
tion is true for both the planar translation search grid, and for the azimuthal
rotation search grid.

80

2. Given the search grid size limitation, since the grid typically covers a relatively
large search area, the number of grid points (search grid resolution) that is
required to provide good coverage, and capture the cost function behavior in
a good way is increased. If the search grid size is increased without increasing
its resolution, there may be a possibility of converging the grid towards a local
minima, since the global minima area would be missed by most search grid
points.

Extrapolation From Previous Motion

One way to obtain an initial guess is to extrapolate the current position from the
previous motion of the vehicle. This extrapolation may be done using two (or more)
of the previous pose estimates. The extrapolated current position estimate is given
by Eq. (3.18):

∆xg = xg|(s−1) − xg|(s−2) ; ∆yg = yg|(s−1) − yg|(s−2)

∆ψ = ψ|(s−1) − ψ|(s−2)

xg = xg|(s−1) + ∆xg ; yg = yg|(s−1) + ∆yg

ψg = ψg|(s−1) + ∆ψg

(3.18)

where s is the current step number. This extrapolation may also be performed using
more than the two previous steps, however, if the SLAM estimation frequency is
relatively low (approximately 2 Hz in this work), the estimation may not benefit
from considering more steps. The computational resources for this approach are
very minimal. However, although this approach was found to be very helpful in
straight motion through corridors, it was considerably less effective in relatively fast
maneuvering around corners, and in fact caused some failures in some cases.

Using Additional Sensors

Although the work presented here made use of a single sensor (laser scanner), if
additional sensor are available on board the platform, they may be used for providing
the algorithm with an estimated current pose. The requirement for additional sensors
adds some complexity to the platform, and certainly has an effect on the cost. The
computational resources associated with using the measurements of all sensors is not
considered to be significant, although it is not negligible. Added sensors also require
additional communication capabilities (channels, frequencies, antennae, etc.).

Wheel Encoders: wheel encoders are quite a common sensor to place on a
wheeled ground platform. The encoder counts the number of rotations of the wheel to
which it is attached. Typically, wheeled ground vehicles are relatively easy to model,
as shown in Sub-Section 1.2.1, for a differential drive robot. The platform model,

81

along with the wheel encoder measurements may be used to produce an initial guess
for the platform’s position and azimuth. This process is known as “Dead Reckoning”.

Inertial Measurement Unit: if an Inertial Measurement Units (IMU) is avail-
able, the measurements may be integrated over time, for each step. The IMU-based
dead-reckoning is known to drift over time. However, in this case, it is proposed to
integrate over very short time periods, from the end of the previous step (when the
position is updated) to the beginning of the current step (when the current laser scan
is taken), which is typically of the order of a single second.

Global Positioning System: in the case of outdoor operations, GPS signal may
not be available at all times. Moreover, the GPS signal rate is typically available on
the order of 0.5 Hz, while higher-rate vehicle pose estimates may be required from
the SLAM algorithm. Moreover, the GPS measurement, although external to the
vehicle in a global frame, is not perfectly accurate, and typically has an error of the
order of O(1 m).

The available GPS signals may be very useful for providing initial estimates for
the SLAM algorithm, in the form of vehicle pose estimates for the current step. This
may also be achieved using intermittent GPS measurements that may be available
based on reception in the outdoors.

Compass a compass may provide an estimate for the vehicle’s azimuth, in a global
reference frame. These measurements may easily be converted to the platform’s ref-
erence frame, using the initial position, in relation to the first compass measurement.
Although a compass does not provide any information about the vehicle pose, it may
significantly reduce computational complexity by providing a good initial guess for the
azimuthal direction. If a compass sensor is available, the adaptive direct search may
be adjusted, with significantly less resources required for the a azimuth estimation
(since the search window size will be reduced).

Using a Vehicle Model

A model for the platform’s dynamics is considered to be a set of mathematical
equations, which enables the prediction of some or all of the platform’s states, as a
function of the inputs and additional parameters. The equations are typically given
in the form of a time derivative of a set of platform states, as in Eq. (1.1), where the
right hand side may be either linear or non-linear.

Various levels of modeling may be used with different set of simplifying assump-
tions. For example, modeling a wheeled platform typically assumes no slippage be-
tween the wheels and the ground, while modeling quad-rotors typically assume that
the thrust of each rotor is controlled by direct RPM inputs (ignoring inflow effects,
climb and descent velocities, edgewise velocities, and inter-rotor effects).

Typically, the commands input to the vehicle are also known (although there is
always some added input noise). Using the vehicle model and the known commands,
a prior belief for the vehicle states may be derived. An example is given here for a

82

general dynamic model. The model is given by Eq. (3.19):

ẋ
¯

= A(t)x
¯

+B(t)u
¯

y
¯

= C(t)x
¯

+D(t)u
¯

(3.19)

where x
¯

is the state vector, u
¯

is the input command vector, and A(t), B(t), C(t), and
D(t) are the dynamic model linearized matrices. Now, even without any measurement
y
¯
, time integration may be used to calculate the current state vector x

¯
using the

known inputs u
¯
. This way, an initial guess for the SLAM algorithm may be found

even without any additional on-board sensors. This pose estimate is also known as a
“prior”, as it does not reply on any measurement update.

If the system is given in discrete time form as in Eq. (3.20):

x
¯k+1 = Fkx

¯k
+Gku

¯k

y
¯k

= Hkx
¯k

(3.20)

where k is the time step number, Fk is the discrete time state transition matrix at
time k, Gk is the input matrix at time k, and Hk is the measurement matrix at time
k. Hence given these matrices, the vehicle pose and azimuth at any time k may be
calculated. The solution for xk is given by Eq. (3.21):

xk = Φ(k, 0)x0 +
k−1
∑

j=0

Φ(k, j + 1)Gju
¯j

Φ(k, j) =

Fk−1Fk−2 . . . Fj k ≥ j − 1

I k = j

0 k < j

(3.21)

where Φ(k, j), is the discrete time state transition matrix from time j to time k, and
I is the identity matrix. Note that k may represent a smaller time step as compared
to the SLAM time step. This would be desired in order to receive a higher accuracy
initial guess.

The advantage in using a platform model for the above purpose is, once again,
providing an initial guess for the platform current position, from where the virtual
scan is taken. This may reduce the required size of the adaptive direct search grid,
which would, in turn, reduce the overall SLAM computational requirements. The
computational cost of calculating an initial guess using the above described approach
is considered to be relatively low. However, not all platforms may be easily modeled,
and the commands given to the platform may not always be known (e.g., a walking
person platform or a single rotor helicopter).

83

Using a Vehicle and a Sensor Model

Assuming both a vehicle model and some sensor model are known, the information
that be obtained may be fused together using a Kalman filter algorithm which may
produce an improved estimated state vector of the platform, as compared with the
above two examples of a sensor measurement alone or a vehicle model-based prior
estimate alone.

Quite a common example may be the case where an IMU measurement is available
(a very common sensor on aerial platforms). The Kalman filter may then fuse the
IMU measurements with the vehicle model using the measurement equation parts of
Eq. (3.19), and Eq. (3.20). The fused information may yield a significantly improved
initial guess as compared with the previous two options (depending on the modeling
quality, and the associated sensor accuracy).

Using a Kalman Filter requires a mathematical model for the sensor behavior
as well. For IMU’s, compasses, wheel encoders, and GPS systems, the noise that
is associated with the measurements may typically be described as Gaussian noise,
which is typically easy to represent in the sensor’s probability density function.

The main advantage in combining a platform model with sensor models is the
significant improvement of the vehicle state prediction, that is associated with a
bayesian filtering approach. As in the previous approaches, this may significantly
reduce the computational resources for the SLAM algorithm by reducing the required
size of the adaptive direct search grid.

3.3.3 Isolated Point Filter

In order to handle relatively small scan matching solutions, and possible spurious
errors, the map is scanned every few steps for isolated occupied cells. Assuming several
map updates were made, these occupied cells, being isolated from their immediate
occupied surroundings, may be treated as an error in the map, and removed (i.e.
occupancy value is reset to zero). The map sweep examines each occupied cell for the
following condition:

i+ns
∑

i−ns

j+ns
∑

j−ns

Ck,l < TO (3.22)

where i and j are the indices of the examined occupied cell, k and l are running
indices that scan the immediate surrounding cells, ns is a parameter for the size
of the inspected area, Ck,l is the current occupancy of the [k, l] cell, and TO is the
occupancy threshold.

Typically, the value used was ns = 1, which means only neighboring cells were
summed. The occupancy threshold parameter was set for TO = 1, which implies
that is all the cells’ occupancy together reaches more than a unit value - the cell’s
occupancy is not reset, and it is kept in the map. The two set values is intended to
minimize the examined surroundings. An example of an occupancy grid map after
the isolated point filter is applied is shown in Figure 2.3. The isolated point filter is
employed every nIPF = 40 steps, or in cases of scan matching failure.

84

3.3.4 Computational Complexity

Unlike several other methods, where the complexity grows with the number of
observed obstacles [1, 8], in the current approach, the complexity is kept constant
throughout the mission. The complexity in the proposed algorithm is comprised of
the number of ray casting operations, and the number of cost function evaluations
required to perform a successful scan matching step. Both are not independent of
the number of obstacles observed thus far. Therefore, the proposed algorithm is not
limited by the scenario size, or the number of obstacles. It is capable of mapping
highly clustered as well as sparse environments of various sizes. The only limitations
come from the size of the available memory, and the computational resources which
determine the frequency of the state estimates.

3.4 Coupled Path Planning-SLAM Algorithm

The combined algorithm which includes the SLAM and the A* path planner is
described using a flowchart, presented in Figure 3.12. The Start and Goal are the main
user-defined inputs (besides the algorithm’s parameters, described in this chapter).
Initialization includes memory allocation, arrays initialization, turning on the laser
scanner, graphics settings, etc.

The algorithm then begins by taking the first laser scan. Since there is no in-
formation yet in the map, no virtual scan is carried out, and the first laser scan is
updated into the map using the user-defined start position. Since the goal has not
been reached at the first step, the “Goal Reached?” condition returns “no”, and the
A* algorithm plans a path to the goal, considering the information that is currently
available in the occupancy grid map. This is followed by some platform motion to a
new position. The motion may be user-controlled, or autonomously executed by the
vehicle.

After the first step, all the subsequent steps start with a laser scan, and since the
occupancy grid now contains information, a virtual scan may be taken (from either
the previous position or an initial rough estimate of the current position). The two
scans serve as the input to the PB-PSM scan matching algorithm. A successful scan
matching is identified by a final cost that is lower than the set threshold. If the scan
matching was indeed successful, the new laser scan is updated into the map using
the current position estimate from the scan matching. However, if the scan matching
failed, the laser scan is not updated into the map, as the estimated current position
is inaccurate. Instead, the algorithm invokes the isolated point filter to try and clean
the map from erroneous features (floor scans, previous wrong matches, etc.).

The isolated point filter is employed on the occupancy grid every nIPF steps, by
simply checking the current step number (denoted by s) for being an integer multiple
of nIPF . The algorithm then checks if the new position is within the proximity
threshold to the goal position. If the goal has been reached, the algorithm terminates
successfully, and if the goal has not been reached, a new path is generated by the A*
planner, and the platform continues to move.

85

Initialize

Goal Reached?

y n

Laser scan
Apply Point Filters

Virtual scan
apply point filters

Scan Matching

Map Update Isolated Point Filter

End

y

n
1st step

y

n

A*
new path calculation

y

n

Start & Goal
definition

f < TF

mod(s, nIPF) = 0

Motion

Figure 3.12: The complete algorithm, coupling the SLAM and path planning algo-
rithms.

General Comments

1. Scan matching success may also be defined based on statistics, as described in
Section 3.2. If this option is used, it follows the check for f < TF .

86

2. The isolated point filter is typically invoked every few dozens of steps. In this
work, a value of nIPF = 40 was used throughout.

3. Although the isolated point filter is invoked in case of a failed scan matching
operation, this does not apply in the first few steps, since the map contains very
little information. Therefore, many points may be considered as isolated, and
be wrongfully removed. In the current work , the isolated point filter is only
employed after at least 5 steps have been carried out.

4. Checking wether the goal has been reached is done using a threshold of 0.5 m.

3.5 Assumptions and Limitations

Several assumptions are considered by the proposed algorithm. The description
and importance of the various assumptions is brought below. Some of the assumptions
are more critical than others, and therefore details about how each assumption may be
violated are also discussed. Examples for failure modes are given in Sub-Section 5.3.5.

3.5.1 General Assumptions

Two Dimensional Motion

The algorithm proposed in this work assumes a two dimensional planar motion,
where the platform may move in two directions in the plane, or rotate in the azimuthal
direction. The resulting estimates are of the both the [x, y] motion, as well as the
azimuthal angle ψ. Moreover, the sensor used in this work is a two dimensional
laser range scanner which physically scans the environment using a planar sheet of
laser beams. Therefore, a three dimensional motion will not be captured accurately.
Nevertheless, as with most experimental platforms, the motion is rarely purely two
dimensional, and in particular, a flying helicopter is not likely to remain level at all
times. A discussion about this assumption and the associated limitations is provided
below.

Small Pitch And Roll Angles

During the experiments, pitch and/or roll motions may change the measured ob-
jects from the surroundings. For a 10 m range, a pitch angle of 10◦ would change the
measurement by approximately 15 cm. Changes of this magnitude are still compara-
ble with the laser noise itself, and thus do not pose a significant difficulty. However,
when the pitch and/or roll angles are large enough to cause the laser to scan the
floor, the shape of the laser scan changes significantly and no longer represents the
mapped environment. A scan that contains part of the floor is very likely to produce
a failed scan matching results. As such, the scan will not be updated into the map,
and the assumption in this case is that the next scan will be a valid one, so the
SLAM process may be continued. If the scan matching process is successful, and the

87

scan data is inserted into the map, the cost-contribution elimination threshold (see
Sub-Section 3.1.1) may help remove the wrongly inserted data.

Elevation Changes

Another possible violation of the two dimensionality assumption is a change of
altitude. Typically, an environment may contain obstacle of various heights, and
so the laser would produce different scans of the environment, based on its current
altitude. The assumption is that the relative portion of the scan that is affected by
an altitude change is small. An example may be a trashcan in a hallway, where the
relative portion of the trashcan as compared with the hallway walls is small. Scans
that include the trashcan and scans that are conducted above it may still have enough
feature overlap in them, to allow a successful scan matching result. It is assumed that
such objects will either be cleared of the map by the isolated point filter (see Sub-
Section 2.1.1), or in the case that they are scanned more than once - they remain in
the map, but do not pose a difficulty for the follow-on scan matching processes (due
to their relative small size.

Information Rich Laser Scans

Generally, the laser scans need to contain enough information to allow successful
scan matching. This definition translates into having at least one major obstacle
in the scan, for each of the two dimensions. Typically, corners which comprise of
obstacles in two opposing directions fulfill this requirement (not necessarily right
angle corners). A typical scan matching failure mode may appear when either scan
does not possess this feature. A typical example may be a scan of a long corridor,
that contains only two parallel walls, with no feature to help match the longitudinal
direction.

3.5.2 Platform Speed Limitations Analysis

During all the experiments, the laser sensor collected data while the platform is
in motion. Since the set of range measurements is collected in a sequential fashion, it
is likely that scanning while the platform is in motion will differ from a purely static
scan. If the laser’s scan speed is significantly faster compared to the platform’s turn
rate – the scan measurements are less affected by the platform’s motion, and thus the
laser signature of the environment is closer to static scan conditions. For the results
presented in this thesis, the platform’s highest rotational velocity was 20 deg/sec,
while the laser rotates at 14400 deg/sec. Therefore, the assumption is that laser
scans need no correction for platform motion. This assumption is largely used by the
robotics community. The current algorithm assumes that both planar and rotational
platform motions are slow compared to laser scan speed. This section presents a
detailed analysis of the limitation as a results from the laser scanner frequency.

Generally, a scan of an object would naturally result in a different set of range
values if the laser is static or moving at a certain velocity. Moreover, the distortion

88

depends on the following parameters:

1. Laser scanner velocity

2. Laser scanner frequency (scans per second)

3. Laser scanner motion direction in the plane

4. Laser scanner motion direction in the azimuth

The above may be modeled under several assumptions, to achieve some bounds
for the highest platform velocity that may be used in a certain environment, using a
given laser scanner. The assumptions include:

1. Excluding laser noise.

2. A single laser measurement is carried out instantly.

3. Smooth platform motion at a constant velocity.

An equation for a set of range measurements of a straight wall is analytically developed
below, including the effects of platform velocity, and motion direction.

Model Problem

The scenario considered is described in Figure 3.13. A laser scanner is moving
towards a vertical wall at a velocity V , and direction α. For simplicity, the following
assumptions are made:

1. The laser azimuth is fixed, and it is constantly pointed “up” (North), while
moving towards the wall.

2. The laser’s field of view begins with a horizontal beam pointed to the right
(East), represented by θL = 0◦.

3. The laser has a 360◦ field of view, and the measurements are equally distributed
around it.

4. The laser introduces no noise into the range measurement, and so any measure-
ment returns the true range to the wall from the current laser’s position.

The above assumptions allow the analysis to focus on the error as a result from the
platform’s motion only.

The laser scanner location is given by Eq. (3.23) as:

x1(t) = V cos(α)t ; y1(t) = V sin(α)t (3.23)

where t is the time, and x1 and y1 are the laser scanner coordinates in the x and y
directions, respectively. Every ith laser measurement has a range rLi

and a bearing θLi
.

We assume that every laser measurement is taken instantly, and therefore this analysis

89

x

y

α

x=A

θL

(x1, y1)

−→

V
(xL, yL)

Figure 3.13: Laser scanner moving towards a wall.

only considers the time it takes the laser’s mirror to rotate between measurements,
which is given by Eq. (3.24):

∆t =
1

f
(

FOV
∆θ

) (3.24)

where f is the laser’s scan frequency, FOV is the laser’s field of view, ∆θ is the laser
scanner’s angular resolution. Therefore

(

FOV
∆θ

+ 1
)

is the number of laser points in a
complete scan. The bearing θL changes with time as the scan progresses according
to Eq. (3.25):

θL(t) = ∆θ
t

∆t
(3.25)

Since the wall in this example is vertical, the true wall’s x-coordinate is always
x = A (see Figure 3.13). The laser measurement y coordinate may be found by
Eq. (3.26):

yL = y1 + tan(θL(t))(A− x1) (3.26)

90

The range measurement to the ith point may be found using Eq. (3.27)

r|θ=θL
=
√

(∆x)2 + (∆y)2

∆x = xL − x1 = A− x1

∆y = yL − y1 = y(x=A) − y1 = tan(θL)∆x

r|θ=θL
=
√

tan2(θL)(A− x1)2 + (A− x1)2

r|θ=θL
= (A− x1)

√

tan2(θL) + 1

(3.27)

The time varying range measurement for a given θL is therefore a function of
V cos(α), the component of the velocity in the direction normal to the wall, and of f ,
the laser scanner frequency. Therefore, r(t) may be written as follows:

r(t) = (A− V cos(α))
√

tan2(θL) + 1 (3.28)

Note that all the range measurements are treated as if they were all taken from
the position at t = 0 (i.e., all ranges are assumed to be take instantaneously). The
coordinates of all laser measurement, as a function of time may then be found using
Eq. (3.29):

xLi
(t) = x1|t=0 + r(t)cos(θL(t))

yLi
(t) = y1|t=0 + r(t)sin(θL(t))

(3.29)

One way to defined the error between the true wall and the scan result may be as
follows:

εL =
rtrue − rL
rtrue

(3.30)

this error definition requires some reference, as it grows with the progression of the
scan (i.e., ranges that are measured later in the scan will have a large error, simply
because the laser moved a greater distance). We therefore define an error for the
above model problem based on the error for the range measured at θL = 45◦. For
that particular laser angle, the error becomes:

εL45◦
= A

√
2−(A−V cos(α)t45)

√
2

A
√

2
= V cos(α)t45

A
(3.31)

where t45 is the time it takes the laser to take the measurement at θL = 45◦ (assuming
the first measurement was at t0 = 0). Hence, there is a dependency on the scan
frequency since t45 decreases with increasing scan frequency according to:

t45 =
1

f

45◦

360◦
=

1

8f
(3.32)

91

Now the error εL45◦
may be expressed as a function of the velocity component

normal to the wall and the laser scan frequency as follows:

εL45◦
= V⊥

8fA
= V⊥

f
C45

V⊥ = V cos(α)

C45 = 1
8A

(3.33)

where V⊥ is the velocity component normal to the wall (which causes the distortion),
and C45 is a constant that is directly associated with the examined laser point at
θL = 45◦. It can be seen that the error relative to the measured length increases
linearly with the velocity component normal to the wall, and is inversely dependent
on the laser scan frequency. As expected, a faster scanning laser range finder is highly
desired in high speed SLAM applications.

Wall Representation

4950 5000 5050
0

1000

2000

3000

4000

5000

V=0 m/s
V=1 m/s
V=4 m/s
V=10 m/s

Vcos(α) increasing

Figure 3.14: Distorted wall as a function of platform speed.

Since all laser measurements are considered as if they were all taken from the same
position (given by (x1|t=0, y1|t=0), the actual shape of the registered wall is distorted.
An example is given in Figure 3.14, based on the schematics presented in Figure 3.13.
The true vertical wall is the result of a completely static case (black line with points
V = 0 m/s), and it is compared with three platform velocities of 1 m/s, 4 m/s, and

92

10 m/s. The motion direction was kept constant at α = 45◦. In this example, only
the first 45◦ of the scan is shown, for clarity. As the velocity is increased, the wall
appears to be more bent towards the laser origin of motion. This results is expected
since the range values decrease as the laser approaches the wall.

Effects of Platform Speed and Scanning Frequency

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Vcos(α) m/s

ε L
45

° %

f=10 Hz
f=20 Hz
f=40 Hz

f increasing

Figure 3.15: Relative scan error as a function of platform speed.

Figure 3.15 presents the relative scan error εL45◦
in percents, as a function of V⊥,

the velocity component perpendicular to the wall. The highest velocity in this case
was again V = 10 m/s, with a constant motion azimuth of α = 45◦. As it was
shown above, the error increases linearly with V⊥, while higher frequencies result in
a significantly reduced relative error.

It is important to note that a laser scanner’s error in measuring range is typically
of the order of 0.5% of the measured distance. Therefore at a scan rate of f = 40 Hz,
the error that is introduced due to platform motion is smaller than the inherent
measurement error for almost the entire velocity range. Moreover, SLAM capable
platforms, in particular aerial platforms, typically move at relatively slow velocities
of less than 1 m/s. Therefore a scanner with a scan rate of f = 40 Hz may be
considered to be quite accurate for this range of velocities.

To conclude, error as a result from platform motion is important, and the represen-
tation of the measured objects in the occupancy grid forms the total error (excluding
laser noise, as mentioned above). Reducing the final representation error of objects

93

which are scanned while the platform is in motion is important for the final map ac-
curacy. To the best knowledge of the author, there is no correction for the suggested
error due to platform motion in the available literature.

3.5.3 Dynamic Environments

The algorithm is primarily intended for a static (motionless) environment. This
means that all the objects in the field of view of the laser are all assumed static, and
may all be used to form the map, since they are not expected to move. Although
some scenarios included some moving objects (e.g. walking people caught by the
laser scanner), the inclusion of those objects in the map may prohibit a successful
scan matching solution.

Dynamic Environment Description

Figure 3.16: Example of moving objects caught by the laser scanner, and added
into the map, leaving a trail of occupied cells. Traveled path is marked with circles,
heading is marked with an arrow. A person was walking on the left hand side, and a
car was driving in front of the laser.

An example for a dynamic environment, and it’s representation in the occupancy
grid map, is presented in Figure 3.16, where both a moving car and a walking person
were captured during an experiment. At each step, the laser scans were recorded
into the OG map, leaving a trail of occupied cells along the entire car and person’s
trajectories.

94

A possible solution to this problem may be the inclusion of an algorithm that
identifies the portions of the laser scan that contain moving objects, and excludes
them from both the scan matching process and the map update step. This may also
be achieved with additional sensors such as a camera (at the expense of additional
computational resources). An analysis of the effects that moving objects may have
on the scan matching process is presented below.

Effects on Scan Matching

x

y

v
A

B

l

∆θO

θr

θj

Figure 3.17: Schematics of moving object effect analysis.

A schematics for the analysis of moving objects on the final cost function is pre-
sented in Figure 3.17. The analysis considers a single object of size l, moving hori-
zontally from right to left, at a velocity V , and a vertical distance B from the laser
scanner’s origin. A horizontal static wall serves as the background, at a distance A
from the laser scanner’s origin. The analysis assumes an infinitely fast laser scanner
frequency (i.e., the laser scans instantaneously), and a continuously successful scan
matching, when excluding the moving object. The values of A and B are kept fairly
close (200 mm difference), so that the added contributions will not be filtered out by
the threshold TE (see Sub-Section 3.1.1).

The analysis examines how many laser beams hit the object, and the added con-
tribution of each beam to the cost is calculated. Since the beams hit the object and
not the background wall - the contribution of those beams is, in fact, an undesired
side effect of the object occluding the static background wall.

For simplicity, the analysis starts when the moving object is located at x|(t=0) =
B, and therefore the ray from the laser’s origin to the object’s right-most point is

95

θO = 45◦. The angle formed between the two lines from the laser’s origin to both
object’s end points is given in Eq. (3.34):

∆θO = tan−1
(

B
x(t)−l

)

− tan−1
(

B
x(t)

)

x(t) = x|t=0 − V t
(3.34)

where x(t) is the ’x’-location of the object’s right-most point. This angle defines the
number of laser beams that hit the object, based on the scanner’s angular resolution
∆θ. The cost contribution for the jth beam that hits the object is therefore given by
Eq. (3.35):

Fj = A−B
sin(θj)

θj = θr − (j − 1)∆θ

(3.35)

where θj is the angle of the current beam, θr is the angle of the right-most beam that
hits the moving object, and ∆θ is the laser scanner’s angular resolution. The sum-
mation of these contributions, normalized by the total number of cost-contributing
points from the Reference scan nc, yields the total undesired contribution of the mov-
ing object to the cost function. A value of nc = 1080 was used in this analysis, to
reflect the scanner that was used in this work. The total contribution ∆f is expressed
in Eq. (3.36):

∆f =
1

nc

nO
∑

j=1

Fj (3.36)

where nO is the number of beams that hit the moving object.
As the object moves to the left, the number of laser beams that hit the object

changes, as well as their respectable contributions. The total undesired contribution
∆f is plotted in Figure 3.18, as a function of the object’s position. The figure shows
the effect of the object’s distance from the scanner’s origin with the static wall located
200 mm above the object horizontal trajectory. The velocity in this case is V =
500 mm/s, with an object size of l = 1000 mm. The jagged edges are due to the
sudden changes in the number of laser beams that hits the object. The values of A
and B are between 5000 mm and 10000 mm, and as expected, the closer the objects
is to the scanner - the bigger the undesired contribution becomes. In fact, with the
current laser parameters, when the object is at a distance of approximately 5 m, the
undesired contribution may be large enough to cause the scan matching to fail (with
a threshold of TF = 10).

For comparison, the red lines represent the cost contribution magnitude of the
laser scanner’s noise in measuring similar distances with the same number of points,
assuming maximum laser noise (each red line style corresponds to the equivalent in
black). As evident, the moving object typically has a considerably larger effect on
the final cost, as compared with the laser scanner measurement noise.

The above procedure was repeated for a wall distance of A=10000 mm, but with

96

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

Object’s x position mm

U
nd

es
ire

d
co

st
 c

on
tr

ib
ut

io
n

m
m

Object Distance

Figure 3.18: Effect of moving object distance from laser scanner’s origin.

varying object size, Figure 3.19. As expected larger objects cause a higher undesired
contribution to the cost, with an object size of l = 2000 mm having a relatively large
undesired contribution, that may fail the scan matching, as discussed above.

This analysis shows that in some cases, given an object that is captured by a
relatively low number of laser beams, where each beam’s contribution to the final
cost is also relatively small, the scan matching process may succeed, although the
environment is not entirely static. Furthermore, if a successful scan matching occurs,
and the moving object is updated into the map, it may be removed later by the
isolated point filter, as it’s appearance may very well be represented by a group of
isolated pixels in the occupancy grid. The complete algorithm presented in this thesis,
may therefore be capable of coping with mildly dynamic environments.

The red line in Figure 3.19 is presented for comparison, and shows the maximum
increase in the final cost due to the laser scanner’s noise, with the same number
of points, at the same distance of 10000 mm (identical to the dot-dash red line in
Figure 3.18). It shows that a moving object size contribution typically has a stronger
contribution to the final cost. As mentioned above, the algorithm may be able to
handle some smaller moving objects, which don’t cover a lot of the laser scanner’s
field of view.

97

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

Object’s x position mm

U
nd

es
ire

d
co

st
 c

on
tr

ib
ut

io
n

m
m

Object Size

Figure 3.19: Effect of moving object size.

3.5.4 Object Detection Limitations

Several lower-bounds on detectable obstacle sizes are presented in Figure 3.20,
using the properties of the Hokuyo UTM30LX laser scanner. The vertical axis shows
obstacle size while the horizontal axis shows the range to the obstacle. The two
green vertical lines represent the minimum and the maximum range of measurements
that the scan matching algorithm considers. The maximum range is governed by the
laser scanner used, while the minimum range is decided based on the platform size
(400 mm is approximately half the size of the aerial platform).

The resolution of the occupancy grid sets another lower bound, since no object
that is smaller than that resolution can be adequately represented, and thus would
not be represented in any virtual scan as well. The orange line shows this lower
bound, which naturally does not change with the range to the obstacle.

The black line represents the laser’s beam width at various ranges or Rdθ. This
was estimated experimentally by measuring obstacles, and estimating the beam width
using the detectable area of a clear obstacle edge. It was found that for the UTM30LX,
the beam width is approximately half of the angular resolution or 0.1◦. Since the beam
has a certain width - obstacles with features smaller than the beam width times the
range would not be accurately scanned.

The purple line represents the laser scanners angular resolution, which for the
UTM30LX is ∆θ = 0.25◦. Any object smaller than R∆θ (R is the range to object)
may not be picked up by the laser and thus may not be adequately represented in

98

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

400

450

500

O
bs

ta
cl

e
S

iz
e

m
m

Range mm

Pole@10m

Pole@25m

TrashCan@10m

Door Post@3m

OG Resolution
Laser Beam Width
Laser Angular Resolution
Laser Accuracy

Figure 3.20: Detectable obstacle size bounds.

the occupancy grid. A typical example may be a wire or a slender pole that may not
be captured by the scanner at a distance due to the low angular resolution.

The last bound is set by the laser scanner’s accuracy. The laser noise may cause
a misrepresentation of a relatively small obstacle with a size that is smaller than the
intensity of the noise. As the laser noise increases with the measured range - this
phenomena is more pronounced at large ranges. The noise model that was used for
the UTM30LX employs a constant noise level of 15 mm up to 3 m, and a 0.5% noise
level for R > 3 m. This was derived from the laser scanners accuracy experiments (see
Sub-Section 4.1.2). For the UTM30LX, this lower bound appears to be the largest
one.

Figure 3.20 shows several red dots that represent typical size objects such as a
trash can, pole, and a door post. All are objects that exist in the typical office like en-
vironment. Any obstacle that is placed above the blue line (lower bound), and within
the min/max range of the laser scanner (two vertical green lines) would be picked up
and properly represented by the SLAM algorithm. The relatively large trash can is
positioned well above the lower bounds and so it is likely to be accurately represented
(and therefore used) by the SLAM algorithm. However, the relatively small pole
may not be accurately picked up from a long range due to laser noise, but would be
accurately mapped when the laser scanner is close to it. A door post is considered
to be a finer detail object, and therefore would require the laser to be even closer
in order to be accurately represented. It was found that with a resolution of 1 cm2

99

per occupancy grid cell, even the smaller door post features, approximately 1.5 cm
in size, were picked up by the laser from close range, and had some representation in
the resulting map.

3.6 Proposed Accuracy Metrics

The discussion presented in Section 1.1.1 suggests that targeted flight requires
precise SLAM capability. The proposed algorithm is intended to be used for targeted
flight operations, and as such is claimed to provide highly accurate maps and position
estimates. Quantifying the accuracy obtained by the algorithm is therefore of great
importance.

Comparing scan matching algorithms based on individual scenes, (such as that
presented in Section 5.1) can provide useful information. However, a given algorithm’s
overall performance may vary substantially between different scan scenes, different
test scenarios, and different laser sensors (varying number of points, laser sensor noise,
etc.). For this reason, quantitative as well as qualitative comparison of maps created
by laser odometry are presented, using several algorithms, employed on different
datasets.

The maps are comprised of multiple laser scans, and therefore represent a more
challenging objective for performance evaluation, as compared to individual scene
matching. The overall error over a complete traveled path is cumulative. Therefore,
evaluating an algorithm over a series of interdependent scan matching scenes is con-
sidered to be far more challenging and rigorous, than evaluations based on a small
set of isolated scenes. A large set of scenes contains a far greater variety of different
shaped objects, scanned from multiple different viewing angles and ranges. The ac-
cumulated drift over a large set of scans is typically larger than the error in a single
scan matching operation. Therefore, the proposed algorithm evaluation is based on
errors accumulated over a certain traveled distance.

Below is the description of the metrics used for the evaluation. The first met-
ric is simply based on measured lengths from the scenario, and the second metric
was developed as part of this thesis and compares a SLAM map (in the form of an
occupancy grid), with a true hand measured map.

3.6.1 Measured Lengths Comparison

A simple way to compare a map with the true environment is to compare mea-
sured lengths. To be effective, this practice needs to be employed on more than one
dimension, to avoid possible biased spurious results (as was done by Nguyen et al. [4],
where only a single measurement was used for the evaluation).

For these metrics, several distance measurements between selected points, were
used to evaluate map accuracy in a benchmark scenario (Martin Hall, at the Univer-
sity of Maryland, see Sub-Section 4.3.1, specifically Figure 4.7, where these points are
marked with capital letters). Segment lengths in the occupancy were subsequently
extracted from the resulting maps.

100

Note that the occupancy grid has a finite resolution, stemming from its inherent
cell resolution as well as the number of occupied cells that were captured in the area
of the chosen point. The manual extraction involved minimal human judgement, as
the surrounding area around each point typically contained sufficient information to
infer the location of the evaluated point.

3.6.2 Average Cell Distance

Figure 3.21: Schematics of the proposed map metric. Occupied cells are color coded
by occupancy level (red-high, blue-low), and the two purple lines represent two seg-
ments of the hand measured true map. Representative cell centers are shown as white
points p1 and p2, with their respective metric distance contributions d1 and d2, shown
in purple arrows.

An additional metric is proposed in this thesis. For the calculation of the pro-
posed metric, each occupied cell is matched with a segment from a hand measured
map, by calculating the distance from its center to the matched wall (see point p1 in
Figure 3.21). The coordinates of the intersection point between the perpendicular line
and the segment itself, must fall between the matched segment’s end point coordinates
both in the ‘x’ and the ‘y’ axes. For occupied cells that fall outside the boundaries
of all segments, the distance to the nearest corner is calculated (for example p2 in
Figure 3.21). The distance is weighted by the cell occupancy level (normalized to
unity), and all contributions are then added to a total cost, given by Eq. (3.37):

CW =

(

1

no

no
∑

i=1

DiWi

)

(3.37)

where CW is the weighted cost, no is the total number of occupied cells, Di and Wi

are the distance and occupancy weight of the ith cell, respectively. Note that the
final presented value is without the cell’s occupancy weight, which in fact represents

101

the average distance of all occupied cells from their respective associated walls (in
mm). The minimizing process is done via exhaustive search in x, y, and ψ, to assure
a global minimum is achieved.

3.6.3 Loop Closure Seamlessness

This metric is more qualitative by nature and relies on manual inspection of the
loop closure area. In scenarios where the traveled path returns to the start position
area, one may examine the alignment of the walls from the beginning and end of
the traveled path. A good alignment suggests a low drift, while large gaps between
similar walls may even be used to estimate the drift quantitatively, by measuring the
distance between the two map walls.

3.7 Summary - Novel Algorithms

The novel algorithms presented in this chapter make use of some of the the basic
robotics tools presented in Chapter 2. The PB-PSM algorithm was described in
great detail, including several methods for cost rewarding that were evaluated prior to
choosing the perimeter matching term, which is based on maximizing overlap between
the two scans. The combined SLAM algorithm was described in detail, including it’s
coupling to the A* path planning algorithm. Various assumptions and limitations
were presented, discussed, and analyzed using representative model problems, with
emphasis on the effect of scan frequency on the measured objects, and the effect of a
partially dynamic environment on the final cost. The accuracy metrics used later in
this thesis were also presented.

102

Chapter 4

Experimental Setup

4.1 Laser Range Scanners

This section describes the sensors used in this research including calibration and
individual sensor tests. This research makes use of two, 2D laser range scanners
made by Hokuyo [82]. The scanners operate on the principle of measuring the phase
difference of the light reflected from the target object. These scanners are relatively
lightweight, and thus are suitable for robotic MAV research. This section depicts
the details about the sensors, characterization testing, and experimental data that is
required by the algorithm for sensor modeling.

4.1.1 Hokuyo URG 04LX-UG01

Figure 4.1: Hokuyo laser range scanner: URG 04LX-UG01.

The URG-04LX-UG01 (Figure 4.1) is a relatively short range laser scanner. Ta-
ble 4.1 shows the sensor’s specification as provided by the manufacturer [83].

103

Table 4.1: Hokuyo URG-04LX-UG01 manufacturer specification.

Range 5 m
Field Of View 240◦

Spacial Resolution 1 mm
Angular resolution 0.35◦

Number of points 683
Accuracy < 3% (above 1 m)
Scan Frequency 10 Hz
Required Power 2.5 W
Weight 160 grams

Figure 4.2: A single distance measurement statistical distribution.

The laser sensor measurements all exhibited a Gaussian distribution. An example
is presented in Figure 4.2, showing a histogram of 1000 laser measurements of a 5 m
range. The manual measurement error is of the order of 10 mm (mainly due to
human optical measurements error, possible slight curvature of the measured object,
and small angle misalignments).

104

Figure 4.3: Hokuyo laser range scanner: UTM-30LX.

4.1.2 Hokuyo UTM-30LX

The UTM-30LX is also a laser scanner produced by Hokuyo (Figure 4.3) with a
higher range of 30 m. Table 4.2 shows the manufacturer’s specifications [76] (exper-
imentally verified). The UTM-30LX also exhibited a Gaussian distribution, similar
to the one shown in Figure 4.2.

Table 4.2: Hokuyo UTM-30LX manufacturer specification.

Range 30 m
Field Of View 270◦

Spacial Resolution 1 mm
Angular resolution 0.25◦

Number of points 1081
Accuracy < 1% (above 1 m)
Scan Frequency 40 Hz
Required Power 7− 8 W
Weight 220 grams

The laser scanner accuracy (noise) characteristics were verified experimentally. A
single object was measured at 20 distances up to the laser’s maximum range. For
each distance, the laser recorded 1000 range measurements, and the mean and total
error band were extracted. Figure 4.4 shows the experimental error results in percent
of the manually measured distance.

Figure 4.4 shows that the mean error is close to zero across most of the measured
distance range. The laser noise was therefore modeled as Gaussian with zero mean.
The standard deviation can be extracted from the error band since for a Gaussian

105

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Laser distance [m]

A
ve

ra
ge

 E
rr

or
 %

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Laser distance [m]

E
rr

or
 B

an
d

+
 −

%

(a) (b)

Figure 4.4: UTM-30LX noise characteristics (Experimental). (a) Mean error in per-
cents vs. measured distance. (b) Total error band, in percents vs. the measured
distance.

distribution, the error band represents ±3σ. And so the standard deviation can
approximated as:

σ =
0.005Ri

3
(4.1)

where Ri is the ith laser range measurement.

4.2 Platforms

Several platforms were used in this research, to show the robustness of the al-
gorithm and the independence of the results’ quality and accuracy of the platform
used to mobilize the laser scanner. The research was initiated with a simple wheeled
platform, investigating various aspects of the algorithm’s performance, followed by a
more involved ground platform – a walking person, and finally an aerial platform, in
the form of a single rotor helicopter.

4.2.1 Wheeled Platform

The ground platform is a simple wooden cart, on which the laser was mounted.
The wheeled cart is approximately 50 cm by 40 cm in length and width, and 55 cm
in height. It was manually driven through the corridors while the laser records mea-
surements at given time intervals (scan rate). Note that the laser in this case was
kept in motion while taking the scans, so the presented algorithm is examined for
application on a moving platform. The cart and laser are shown in Figure 4.5

106

Figure 4.5: Cart and laser sensor.

4.2.2 Human Platform

Experiments were also carried out with the laser scanner being hand-held by a
person, walking at various speeds. This introduces some pitch and roll motions to
the laser sensor, and the general motion is naturally less stable, as compared with
the wheeled cart. These experiments were used to better simulate the conditions that
will be experienced by the laser on board the helicopter MAV.

4.2.3 Aerial Platform

Figure 4.6: Blade 450 helicopter. Laser scanner mounted at the front.

Finally, for the aerial platform, an off-the-shelf single rotor remote controlled
helicopter, Blade 450 (Blade Helicopters) was used (Figure 4.6). It features a main
rotor diameter of 720 mm, weighing 760 grams. The 2D laser scanner UTM-30LX,
was mounted at the front of the helicopter, and a tethered cable supplied power to

107

the laser as well as downloaded information from the laser to an off-board laptop,
carrying out the SLAM algorithm.

4.3 Scenarios

4.3.1 Martin Hall, UMD

Figure 4.7: Martin Hall environment layout. Pictures’ points of view are marked with
their respective letters (lower case, in brackets). Selected points are marked with dots
and respective capital letters, to be used later for measurements.

A primary indoor scenario in this work was the 3rd floor in Martin Hall, at the
University of Maryland. It was selected because of its availability during night time
and weekends. This scenario was the focus of several experiments, including metric
map benchmarking. For this reason, it was also hand measured in detail, with high
accuracy (any feature larger than 1 cm was mapped). This environment was also

108

utilized for initial tests on the aerial platform. However, the limited open space
prevented more advanced tests, and so other environments were utilized as well.

The environment is presented in a sequence of pictures presented in Figure 4.7,
along with its 2D layout (the hand measured map), also showing the locations from
which the pictures were taken (marked by lower case letters). The drawing also
includes five representative points (marked by dots and capital letters) that will later
be used for comparing selected measurements. The scenario includes corridors of
different width, with several doorsteps, rectangular trash cans, two thin poles, and
several access doors; some were kept closed (Figure 4.7(e)), and some were kept
wide open at some angle to the surrounding walls (Figure 4.7(f)). The overall hand
measured map accuracy is estimated to be approximately 2 cm, represented by over
350 straight segments.

4.3.2 Kim Engineering Building, UMD

The Kim Engineering building is located at the University of Maryland. The
building was used for several tests, and details about the scenarios involved are given
below.

Indoors, Ground Floor

Figure 4.8: Kim Engineering Building, ground floor rotunda.

The ground floor rotunda, inside the Kim Engineering Building, is shown in Fig-
ure 4.8. The scenario features multiple glass walls (which are not captured well by
laser scanners), a large staircase in the middle of the hall, and several non-fixed and

109

non-2D obstacles (chairs, tables, etc.). This scenario was chosen due to its readily
available size, allowing for controlled helicopter flights.

Outdoors, Front of Building

Figure 4.9: Kim Engineering Building, outdoors, front view.

The Kim building was also utilized as an outdoor scenario. The Front of the
building is shown in Figure 4.9. It is characterized by some repeating column structure
on the left side, several trees, and the front entrance to the building which features
glass doors.

Outdoors, Back of Building

Another scenario that featured the Kim building is shown in Figure 4.10. This
scenario mainly features a large round gas tank, several large trash cans and air
conditioning units, and several poles, which are only captured by the laser scanner,
when in close proximity due to its angular resolution).

4.3.3 Physics Building, UMD

The second floor at the Physics Building at the University of Maryland was also
utilized, as it provides several options for closed loop trajectories. The floor plan is
presented in Figure 4.11. The scenario is a typical office like environment, featuring
longer corridors, as compared to the Martin Hall scenario. The main reason for
choosing this scenario is to allow a closed loop course to be carried out with the aerial

110

Figure 4.10: Kim Engineering Building, back view.

111

Figure 4.11: Floor plan of the Physics Building, second floor, UMD.

platform, since the Martin Hall scenario did not provide sufficient clearance for the
Blade 450 helicopter (Sub-Section 4.2.3).

4.3.4 Northwestern Highschool, Maryland

Another outdoor scenario is part of NorthWestern High School, in Hyattsville,
Maryland. The layout of the scenario is presented in Figure 4.12, and four represen-
tative pictures are shown in Figure 4.13. The area features several structures, outer

112

District of Columbia (DC GIS), U.S. Geological Survey, Map data ©2012

10m

Figure 4.12: Northwestern High School scenario, Hyattsville, Maryland. Top view.

walls, and trees. The structures do have some non-2D features, such as staircases and
air conditioning units, attached at various heights.

4.3.5 Greenbelt Park, Maryland

Testing was also conducted in a non-urban type environment, by collecting laser
data in the forest of Greenbelt Park, located in Greenbelt, Maryland, shown in Fig-
ure 4.14. This forest environment significantly differs from the urban type environ-
ments, as the only features are tree trunks with relatively similar diameters. This
environment is relatively sparse in features, and more susceptible to false matches as
the structure of the obstacles is almost identical.

113

Figure 4.13: Representative pictures from Northwestern High School, outdoors sce-
nario.

114

Figure 4.14: Greenbelt Park. Outdoors scenario featuring a cluttered environment
with indistinguishable features.

115

Chapter 5

Experimental Results

This chapter first presents validation of the algorithm capabilities on all three
platforms. The accuracy achieved by the platforms is compared, and evaluated. A
detailed quantitative analysis of the algorithm’s performance is presented, including
comparison to previously published algorithms. The SLAM algorithm is later coupled
to an A* path planning algorithm for the purpose of targeted flight experiments.

5.1 Single Scene Matching

This section presents baseline results for Perimeter Based Polar Scan Matching
(PB-PSM) performance, when employed on individual scenarios. The results focus on
accuracy and comparison to previously published algorithms, employed on the same
scene datasets. The numerical convergence pattern is also presented and discussed.
Comparison between the performance of the PB-PSM algorithm, and that of sev-
eral other algorithms, including Polar Scan Matching (PSM), Polar Scan Matching-
Cartesian (PSM-C), as well as a several different versions of Iterative Closest Point
(ICP) implementations is presented. The comparison against the various ICP real-
izations is important as ICP is currently the most common scan matching algorithm
that is being used by several groups [3, 10, 58, 71]. Comparison based on overall map
accuracy is presented later in Section 5.2.

Diosi and Kleeman [29] performed several experiments where they scanned differ-
ent scenarios from various known, preset points of view and laser positions. Using
those scans they created a useful bench mark dataset for different algorithms, with
which they compared PSM, PSM-C and a classic implementation of the ICP algo-
rithm [54].

Of the 10 scenes presented by Diosi and Kleeman, some were stated by them to
be of higher quality. Two representative scenes were chosen (scenes 2 and 7), for
which all the algorithms that are compared were able to show satisfactory solutions.
The most challenging match is reported by Diosi and Kleeman as match number 3,
with the largest total translation distance of 717 mm, and the largest rotation of 27◦.
The ground truth translation and rotation between the two scans for match number
3 is given by the following triplet: [∆x,∆y,∆ψ] = [219.4 mm, 683.3 mm,−27◦].

116

Therefore, match number 3 was also selected as the benchmark for the PB-PSM
algorithm.

−2000 −1000 0 1000 2000 3000 4000 5000
−4000

−3000

−2000

−1000

0

1000

2000

3000

X mm

Y
 m

m

−4000 −2000 0 2000 4000 6000 8000
−8000

−6000

−4000

−2000

0

2000

4000

6000

X mm

Y
 m

m
Scene 2 Scene 7

Figure 5.1: Two representative scan matching scenes. Green squares-Current
Scan points (after roto-translation), black dots-Reference Scan, ’x’ marks-eliminated
points. The field of view considered was 180◦, with a range of 10 m (marked with a
blue line, where visible).

Both scenes after being scan-matched are presented in Figure 5.1. Note that all
points are presented, and points that are eliminated by one of the point filters are
simply crossed out. The scenes contain out-of-range points, occluded points, mixed
pixels, and several points that fall outside of the field of view after the roto-translation.
As a result, all the filters discussed above had a contribution to a successful scan
matching solution.

It is quite evident that the scan matching algorithm relies mostly on well defined
features such as walls, corners, and objects of significant size (i.e. represented by more
than one or two laser point). The relatively shapeless areas with clusters of points, are
most likely highly cluttered areas, as also stated by Diosi and Kleeman [29]. These
two scenes represent quite challenging cases, since the relatively large translation
and rotation leaves few common features in both scenes. Nevertheless the matching
appears successful (see accuracy estimates below).

5.1.1 Convergence Pattern

The convergence criterion that was set for the PB-PSM scan matching algorithm
requires the following between two subsequent iterations: |xn − xn−1| < 1 mm,
|yn − yn−1| < 1 mm, and |ψn − ψn−1| < 0.01◦, where n here represents the iter-
ation’s number. The convergence requirement on ψ is considered to be extremely
strict, as azimuth estimation is significantly more important than the estimation of

117

0 2 4 6 8 10 12
0

500

1000

A
bs

ol
ut

e
E

rr
or

 m
m

Iterations

0 2 4 6 8 10 12
0

10

20

30

A
bs

ol
ut

e
E

rr
or

 d
eg

Iterations

1 2 3 4 5 6 7 8 9
0

500

1000

A
bs

ol
ut

e
E

rr
or

 m
m

Iterations

1 2 3 4 5 6 7 8 9
0

10

20

30

A
bs

ol
ut

e
E

rr
or

 d
eg

Iterations

Scene 2 Scene 7

Figure 5.2: Convergence plots for both scenes. Upper figures: Translation error (in
mm, solid lines - ’x’ error, dashed lines - ’y’ error). Lower figures - Rotation error (in
degrees). Convergence criterion: 1 mm for translation (for each direction separately),
and 0.01◦ for rotation.

plane translation. An error in rotation causes an immediate inconsistency in the re-
sulting map, while a translation error only gradually degrades the map. Justification
for the relatively tight convergence criterion is shown below. Figure 5.2 presents con-
vergence plots for both scenes using the above mentioned convergence criteria. Both
scenes converged after approximately 9 to 12 iterations. The number of iterations
is significantly reduced when less challenging scenes are scan matched, and typically
the algorithm converges within 5 to 10 iterations.

The convergence pattern for the rotation appears quite rapid and monotonous.
The convergence for the translation appears to be quite rapid as well, with approxi-
mately 90% of the desired results already achieved after only 4 iterations. The planar
convergence process may, in some cases, show a slight overshoot, which is immediately
corrected in the following iteration. In all cases, the algorithm recovers from any in-
crease in the error does within a single iteration, which is an important characteristic
of the algorithm’s convergence, and shows it’s robustness.

5.1.2 Estimation Error

The comparison between the total translation and rotation error obtained using
the PB-PSM algorithm, and several other algorithms is shown in Figure 5.3, for the
two representative scenes. The algorithms compared, and the source of the presented
data are listed below:

1. PSM [29].

2. PSM-C [29].

3. PB-PSM (current study).

118

4. PB-PSM without the Perimeter Matching term (current study). Since the PM
term is excluded, this essentially represents PSM with exhaustive search for
minimizing the cost function.

5. ICP [29].

6. ICP (current study, implementation by Bergstrom [84]), with 10% of the points
allowed as outliers). This was done in order to compare another implementation
against that used by Diosi and Kleeman [29], shown above.

7. ICP with exhaustive search, rather than least squares, which allows the use
of the perimeter matching term. The cost function minimization process is
identical to that of PB-PSM, but the data association follows the closest point
metric, rather than the matching bearing metric.

8. ICP with exhaustive search, but without employing the perimeter matching
term.

The comparison reveals two interesting topics. First, it shows the effectiveness of
the perimeter matching term, especially in predicting rotation, when applied to both
the PB-PSM and the ICP (using exhaustive search). Second, the PB-PSM algorithm
is shown to be comparable to both PSM and PSM-C, while at the same time, it shows
improvement when compared to both ICP implementations, particularly with regard
to estimating rotation. Note that although the translation estimation for scene 7
appears quite similar between all 8 algorithms, there are significant differences in the
rotation estimation error.

5.2 Mapping Accuracy

This section presents the evidence for the claimed accuracy, including metric eval-
uations and comparison to previously published algorithms.

5.2.1 Ground Platform Evaluation

The evaluation of the SLAM algorithm was extensively performed using the ground
platform. The benchmark scenario was chosen to be the 3rd floor in Martin Hall, at
the University of Maryland. The environment is presented in a sequence of pictures
presented in Figure 4.7, along with its 2D layout (the hand measured map). More
details are described in Sub-Section 4.3.1.

A total of 12 similar experiments were conducted, all featuring a closed loop
course, that starts at approximately at viewpoint (a) in Figure 4.7, facing left, and
moving clockwise, until the traveled path has formed a closed loop. The metrics were
employed on all 12 experiments, and thus the final values presented in this section
are in fact a Root Mean Square (RMS) value of all 12 experiments. This prevents
the possibility of drawing false conclusions based on a single experiment’s success or
failure.

119

0

10

20

30

40

50
Translation Error mm

PSM PSM-C PBPSM PBPSM No PM

ICP (D&K) ICP (Current) ICP Exhaustive ICP Exhaustive No PM

0

2

4

6

8
Rotation Error ˚

Scene 2 Scene 7

Scene 2 Scene 7

Figure 5.3: Comparison between PB-PSM, PSM, PSM-C, and several realizations
of ICP. Legend shows the compared algorithm from left to right. Top figure: total
translation error (i.e.

√

ε2
x + ε2

y). Bottom figure: rotation error (εψ converted to
degrees).

In each of the above mentioned experiments, a total of 100 laser scans were col-
lected over approximately 50 m of traveled path. The scan frequency was 2 Hz (i.e.,
2 scans recorded per second), which implies average velocity of 1 m/s. An additional
6 experiments were conducted under the same conditions, except the door leading
back to the start area was closed, and so the traveled path did not form a closed
loop. This was done to avoid possible scan matching failures in areas with overlap
between the start and the end of the course. This way, the final few scans do not
contain any information from the start position area, which shows additional support
for accuracy claims.

Baseline Evaluation

An initial evaluation of the Martin Hall scenario (see Sub-Section 4.3.1) was per-
formed by employing the proposed SLAM algorithm on a dataset of 200 laser scans,
also collected at a rate of 2 scans per second, over the same course described above

120

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000

8000

10000

12000

X mm

Y
 m

m

Figure 5.4: Closed loop hallway – complete map using 200 scans at 2 scans per second.

(but at a velocity of approximately 0.5 m/s, rather than 1m/s). The resulting map
is presented in Figure 5.4, showing a very crisp map. The closed loop course appears
to be smooth with no occurrences of double walls or discontinuities. It is important
to stress than this result is obtained using only the scan matching algorithm, in con-
junction with the virtual scans. No loop-closure algorithm is required to achieve this
level of accuracy.

A close-up of all four corners of the mapped area is presented in Figure 5.5, along
with the true measured map presented on top of the virtual map using dashed purple
lines. The close-ups show how accurate the mapping is, both when the platform
experiences high turn rates (passing around corners), as well as when it travels in
a straight motion down a long hallway. The challenge in accurately mapping the
corners stems from the laser sensor yaw rate while performing sharp turns around
corners. If the laser’s scan speed is significantly faster compared to the platform’s
turn rate – the scan measurements are less affected by the platform’s motion, and
thus the laser signature of the environment is closer to static scan conditions (when
the laser scanner does not move at all and the environment is completely static).
For the results presented in this work, the platform’s highest rotational velocity was
20 deg/sec, while the laser rotates at 14400 deg/sec (see Sub-Section 5.3.3).

A detailed examination of the loop closure area is presented in Figure 5.6. The
start of the loop closure area is considered to be when the virtual scan first picks
up points from previously mapped occupancy grid areas. In the presented scenario
the loop closure area includes approximately the last 20 steps of the traveled course.
Figure 5.6 shows the loop closure area exhibiting an absolutely seamless loop closure
with the occupancy grid resolution of 10 mm by 10 mm. The previously mapped area
is seamlessly merged along all the walls and doors that were picked up by the laser
when the platform returns towards the start position. This highly accurate result is
based on the success of the proposed SLAM algorithm to produce negligible errors in
both position and map throughout the entire 45 m course. As mentioned above, no
loop closure algorithm was required to correct the map in any way.

121

2000 3000 4000 5000
6500

7000

7500

8000

8500

9000

9500

10000

X [mm]

Y
 [m

m
]

1.8 1.9 2 2.1 2.2

x 10
4

6500

7000

7500

8000

8500

9000

9500

10000

X [mm]

Y
 [m

m
] pole

open door

(a) Upper left (b) Upper right

2000 3000 4000 5000
1000

1500

2000

2500

3000

3500

4000

X [mm]

Y
 [m

m
]

1.8 1.9 2 2.1 2.2

x 10
4

1000

1500

2000

2500

3000

3500

4000

X [mm]

Y
 [m

m
] open door

pole

(c) Lower left (d) Lower right

Figure 5.5: Closed loop hallway close-up on all four corners, using 200 scans at 2
scans per second. True map in dashed line overlaid on top of the occupancy grid
map.

The algorithm was then employed on another experiment in the same Martin Hall
scenario, but using 100 laser scans, leading to a velocity of approximately 1 m/s. The
resulting occupancy grid map is presented in Figure 5.7, along with the true hand
measured map overlaid on top (solid grey lines, for clarity), and a total of 9 closeups
showing the occupancy grid and the true map at various sections of the traveled
course. The closeup insets are listed by the corridor number (with the lower corridor
as #1, and counting clockwise, following Figure 4.7), and an accompanying letter for
reference. The insets are a direct zoom-in crops of the same map.

Figure 5.7 shows that all the features appear to be accurately mapped with de-
viations that do not exceed 3 cm. The close-ups reveal how accurate the mapping
is, even when the velocity is doubled, as compared with the previous case. A close
examination of Figure 5.7 reveals that most walls have a thickness of no more than
3-4 occupancy grid cells (3−4 cm using the chosen occupancy grid resolution), which
results in a relatively crisp map.

Note that in Figure 5.7, inset 4a shows a typical example of what happens when the
mapped scenario contains objects that do not reflect the laser beams with sufficient

122

1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

x 10
4

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

X [mm]

Y
 [m

m
]

pole

open door

start

finish

Figure 5.6: Closed loop hallway – close-up on loop closure area for the case of 200
scans, 2 scans per second (average velocity of 50 cm/sec). True map in dashed line
overlaid on top of the occupancy grid map.

intensity, such as windows, and metallic surfaces. The mapped object in this case
is a metallic fire extinguisher positioned behind a glass window (seen at the end of
the 3rd corridor in Figure 4.7(d)). The laser is designed to pick up surfaces that
reflect its energy back in a way that allows for a good distance measurement. Thus,
surfaces such as mirrors, windows, etc. yield inaccurate measurements, and may
not be accurately mapped. This may sometimes result in a misrepresentation or a
relatively small shift in their position in the map. However, the proposed algorithm
is shown to be robust enough to handle a typical office environment, that may very
well contain such objects.

Additional experiments were carried out using combinations of 1 and 2 scans per
second and 100 to 300 total number of scans, all using the same scenario shown above.
The traveled distances in all experiments was approximately 45 m, which results in
a platform speed between 15 cm/sec and 90 cm/sec, while yaw rates were as high as
40 deg/sec. All experiments provided the same result, with the exception of two cases
that contained a few scan matching failures (cost functions that were too high above
a set threshold). The total number of failures was below 5% of the total number of
laser scans. Note that despite a few scan matching failures, the resulting map was
quite accurate and rich with information to produce successful loop closure.

Following the above results, the total drift of the position estimates may be eval-
uated, based on the close up shown. Figure 5.7, and Figure 5.6 show that the largest
distance between the true walls, and the occupancy grid walls was estimated to be less
than 4 cm. This means that the total drift may be approximated as 0.1% of the trav-
eled 45 m. This shows a considerable improvement to the capabilities of previously
published algorithms (reported or analyzed), as shown in Sub-Section 1.2.9. The
accuracy obtained by the proposed algorithm appears to be an order of magnitude

123

Figure 5.7: Ground platform results with insets showing 9 crops of the occupancy
grid, with the true map overlaid in grey line (to distinguish from the occupancy grid
colors).

better than the one obtained by the preciously published algorithms. This suggest
that the PB-PSM algorithm may perform better when targeted motion missions are
involved.

Using Previously Mapped Areas

An additional experiment was carried out to examine how the algorithm performs
when the platform has completed mapping of the scenario, but continues to move
through the already mapped area. For this experiment, the platform collected 300
laser scans at a rate of 2 scans per second (traveling at a speed of approximately
50 cm/sec), while completing approximately 1.5 laps around the closed loop course.
The resulting map is presented in Figure 5.8 with the true map in dashed lines,
overlaid on top of the occupancy grid. As in the previous cases, one can see that the
mapping is quite accurate, excluding two doorsteps along the top wall. Those two
doorsteps were misaligned at first (due to bad scan matching, which was eliminated
by the cost function threshold), but the algorithm was capable of recovering from this
error, and complete the closed loop course.

124

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000

8000

10000

12000

X mm

Y
 m

m

Figure 5.8: Closed loop hallway – complete map with 1.5 laps, using 300 scans at 2
scans per second, true map in dashed line on top of the occupancy grid map.

30 60 90 120 150 180 210 240 270 300
0

2

4

6

8

10

12

Step #

M
in

 V
al

ue

Cost
Acceptable Threshold

Figure 5.9: Cost function over 300 steps for the case of 1.5 laps, at a scan rate of 2
scans per second.

125

As the scan matching cost function provides some (although not accurate) measure
of the quality of the scan matching algorithm, it can be used to study how loop closure
affects estimated results, i.e., study the algorithm’s performance after returning to a
previously mapped area. The scan matching cost values for this case are presented
in Figure 5.9 for all 299 scan matching operations performed (as the first scan is
registered directly into the occupancy grid). Note that each sudden increase in the
cost typically reflects the discovery of a newly observed obstacle. After such discovery,
the added scan data gradually reduces the cost as more observations are added to the
occupancy grid and thus improves it’s accuracy.

The first lap was completed after 213 scans have been taken (its cost is flagged in
Figure 5.9). Cost values just before this point were relatively high as that area is char-
acterized by a large transparent box, which has different reflectivity characteristics
when scanned from different angles (note the square object located at [25000, 8000] in
Figure 5.8, which is visible in Figure 4.7(d)). However, it is evident from Figure 5.9
that the cost does not increase monotonically along the traveled course, i.e. estima-
tion errors are bounded. After the loop has been closed, it returns back to the same
level that was obtained when the map was created at the start of the first lap.

Effect of Using Virtual Scans

0

12.5

25.0

37.5

50.0

With VS No VS

With PM No PM

Figure 5.10: Effect of using virtual scans and perimeter matching.

The use of virtual scans is intended to improve the estimation accuracy. The
virtual scan represents all the information collected thus far in previous laser scan

126

(stored in the occupancy grid). Therefore it is expected to yield better estimates as
compared with using merely the previous laser scan. Figure 5.10 presents the map
quality using the proposed metric, over the above mentioned 12 experiments (RMS
value), evaluated with and without using the virtual scans. The figure shows a clear
advantage for using virtual scans, as the map cost is reduced by approximately 19%
and 16%, for the two cases, respectively.

Effect of Using Perimeter Matching Term

The use of the perimeter matching term is expected to increase the accuracy, as
the overlap between the scans will be maximized. Figure 5.10 (already presented
above) presents results for the 12 similar experiments, and shows the advantage of
using the perimeter matching term both when using virtual scans and when doing
laser odometry (i.e., not using virtual scans, but rather scan matching subsequent
laser scans). The map cost is reduced by approximately 17% in both cases.

When using both the perimeter matching term and virtual scans, the overall map
cost is improved by approximately 32%, which is a very significant, considering the
total number of 12 experiments involved in this result.

0

25

50

75

100

|BC| |AD| |BE| |DE| |CD|

m
m

With PM Without PM

Figure 5.11: Root mean square of the error for several segment lengths in 12 iden-
tical experiments, comparing true measured lengths with lengths that are manually
extracted from the occupancy grids.

In order to further present the effectiveness of the perimeter matching term,
the following segment lengths: |BC|, |AD|, |AE|, |BE|, |DE|, and |CD| (see Fig-
ure 4.7), were manually extracted from the hand measured map and compared against

127

the equivalent measurements taken from the resulting occupancy grids (see Sub-
Section 3.6.1). Figure 5.11 presents the root mean square value of the error value
in all 12 experiments, for each length, comparing the results with and without the
perimeter matching term. Using of the perimeter matching term clearly shows a sig-
nificant advantage for all the measured distance, except for the |AD| segment, where
only a minor advantage is shown. While most segments represent long traveled dis-
tances, the |AD| segment is a measurement of a relatively short corridor length, and
thus it seems to be less affected by the use of the perimeter matching term. In this
case, virtual scans were not used, in order to prevent scan matching failure at the
loop closure area (which would prevent some of the data from being inserted into the
occupancy grid).

Effect of Convergence Criterion

0

50

100

150

200

0.01/1 0.025/2.5 0.05/5 0.1/10 0.2/20 0.5/50

M
a
p
 C
o
s
t
m
m

Convergence Criterion Rotation˚/Translation mm

Figure 5.12: Effect of convergence criterions on the final map cost. The rotation con-
vergence criterion is presented in degrees (on the left), while translation convergence
criterion is presented in millimeters.

The effect of the convergence criterion was examined by employing the map metric
described above on a set of maps created with varying convergence requirements
(laser odometry only). Figure 5.12 shows the resulting map cost with the translation
convergence criterion varied from 1 mm to 50 mm, and the rotation convergence
varied from 0.01◦ to 0.5◦. In this case, the experiment used here contained 200 laser
scans along the trajectory. The map cost, which represents the average distance of
all occupied cells from their associated walls grows significantly, as the convergence
criterion is loosened. This shows the importance of using relatively tight convergence
requirements. The criterions are both gradually increased, as a tight requirement for
only one criterion may compensate for a relatively loose criterion of the other.

128

Non Closed Loop Experiments

0

12.5

25.0

37.5

50.0

|BC| |AD| |AE| |BE| |DE| |CD|

Full No PM

Figure 5.13: Root mean square of the error for several segment lengths in 6 identical
experiments, with closed doors (no closed loop course), comparing true measured
lengths with lengths that are manually extracted from the occupancy grids.

The comparison of measured lengths was also carried out for the 6 experiments
that were conducted with the doors closed, which prevented the existence of a closed
loop course. Figure 5.13 presents the effect of using the perimeter matching term in
this case. As in the previous closed loop course example, the use of the perimeter
matching term appears to significantly benefit the accuracy of the measured lengths.
The exception in this case is for the length |AE|, however, the difference in that
case is merely 6 mm, which is relatively small, and even below the occupancy grid
resolution.

Benchmarking Against Other Algorithms

The use of this metric also allows us to quantitatively compare the performance
of the PBPSM with that of other algorithms, employed on identical complete laser
datasets. Since some algorithms and their derivatives considerably failed when at-
tempting the experiments with only 100 scans, an experiment that could be success-
fully completed with laser odometry by all the algorithms was chosen. The experiment
chosen had 200 scans along the same traveled path. As the scan frequency was main-
tained on 2 Hz, this experiment was therefore performed at 0.5 m/s, which is half
the speed of the previously presented 12 experiments. The higher number of scans
(and respectively slower velocity) results in higher similarities between the subsequent
scans.

129

PB-PSM: 46 PB-PSM, no PM: 51

2000

4000

6000

8000

10000

12000

2000

4000

6000

8000

10000

12000

ICP Exhaustive Search: 134 ICP Exhaustive Search, no PM: 215

ICP Same Point Filters: 162 ICP, 90% Matched Points: 166

Figure 5.14: Benchmark scenario, algorithm comparison. The respective map score
is calculated by the proposed map metric.

Figure 5.14 presents six maps, employing different algorithms on this dataset.
All the maps were evaluated using the proposed map metric, and the final value is
given below each map. The PBPSM value is shown with and without the use of the
perimeter matching term to be 46 and 51, respectively, showing again the advantage
of using it to reward the cost function.

The cost function detailed above, was also built using the “closest point” rule for
data association (rather than PB-PSM’s “matching bearing”), making it a derivative
of the classic ICP algorithm. This allowed for using the perimeter matching term,
while using the same algorithm for the function minimization by adaptive direct
search. The resulting maps with and without employing the perimeter matching term
are presented in Figure 5.14, and the associated map score of 134 and 215 show the
advantage of using the rewarding term in this case as well. Note that since the “closest
point” data association rule has a higher complexity than O(n), the realization in this
case is considerably slower than PB-PSM, and does not allow real time capability.

A comparison is also made against the classic implementation of the ICP algo-
rithm, where the solution is obtained using least squares. Two options were tested,
the first was using the same point filters as those used by PB-PSM, and the second

130

was that the ICP will consider only the best 90% of the matched points for the least
squares solution. The second option allows the ICP algorithm to eliminate outliers
based on their matching contribution. The resulting maps, presented in Figure 5.14,
yielded a map score of 162 when using the same filters as in PB-PSM, and 166 when
using 90% of the best matched points.

Figure 5.14 also allows a basic qualitative assessment of the resulting maps, show-
ing that the map created by PB-PSM appears to be the best result. Moreover, the
use of the perimeter matching cost regarding term in either of the two data associa-
tion rules, is shown to significantly benefit the map quality. Lastly, the two results
using both ICP algorithm variants result in a relatively poor map, as compared to
PB-PSM.

This comparison shows the advantages of the PB-PSM algorithm over other scan
matching methods, in both a qualitative and a quantitative way. The main feature
of the PB-PSM algorithm, namely, the perimeter matching term, is shown again to
be effective in achieving a better overall result. Another key features in PB-PSM is
the cost minimization using adaptive direct search, which is shown to be important.
However, a cost function with a higher computational complexity than O(n) may
prohibit this approach due to the relatively high number of function evaluations
involved.

Figure 5.15: Benchmark scenario. Using exhaustive search, and perimeter matching
term, but with the closest point rule for data association (as in ICP).

The ICP data association, along with the exhaustive cost minimization, the perime-
ter matching term, and the use of virtual scans were combined and tested on the same
benchmark scenario dataset. The mapping result is presented in Figure 5.15, where
the map appears identical to the accurate map obtained by the full PB-PSM algo-
rithm. The map score in this case was 28, showing remarkable similarity to the score
of 26 achieved by the PB-PSM algorithm. This result further proves that the accu-
racy achieved by the PB-PSM algorithm does not depend on the data association
technique, but rather stems from the innovative features in the algorithm, identified
and analyzed above.

131

Qualitative Map Comparison Using Existing Datasets

An additional qualitative comparison using laser odometry is presented using Diosi
and Kleeman’s [29] results for mapping the first room from their dataset. Diosi and
Kleeman present the results of aligning the collected scans using only their PSM
algorithm for laser odometry (i.e. not using their EKF-based SLAM algorithm).
They report the results using raw odometry, PSM, PSM-C, and their own relization of
ICP. Their results are shown in Figure 5.16(a). They conclude that all scan matching
techniques were outperformed by simply using the odometry for aligning sequential
scans.

However, when aligning the scans using results from PB-PSM, the map, shown
in Figure 5.16(b), appears better than that obtained by odometry only. Some of the
walls appear to be more crisp, which implies a more accurate match as several scans
overlap on each other without causing a spread of the laser points. This demonstrates
the higher-accuracy that can be achieved using PB-PSM as compared with the other
three methods presented by Diosi and Kleeman, or raw wheel odometry alone.

5.2.2 Human Platform Evaluation

The algorithm was also tested on a human platform, where the laser was hand-
carried through the environment by a human operator. Needless to say, the motion
of a human is less structured than that of a ground platform, as some roll and pitch
angles are naturally introduced, which in turn violate the two dimensionality assump-
tion. This poses an additional difficulty for a scan matching algorithm.

Figure 5.17 presents results for mapping corridor number one (seen in Figure 4.7)
with a human operator. In this case, the laser was moved through the corridor three
times. Figure 5.17 shows the map that is constructed using the PB-PSM algorithm,
both without and with using virtual scans (top and bottom figures, respectively). An
apparent result is the importance of using virtual scans for the SLAM process, at it
is quite clear that the map obtained with laser odometry contains significant drift,
while the map obtained when using the virtual scans appears accurate.

Moreover, the mapping of the corridor across all the passes made, when using the
virtual scans, appear to be drift-free and creates a single coherent map. Comparison
to the true, hand measured map revealed the same maximum drift of 0.1% of the
traveled distance (approximately 47 m in this experiment), similar to the case of
the ground platform (see Sub-Section 5.2.1). The human operator experiments were
considered as a proof of concept for aerial platform experiments.

Closed Loop, Physics Building

Generally, all the scenarios attempted in this thesis, were initially explored with
a walking person, preceding equivalent experiments with the aerial platform. The
Physic Building scenario Sub-Section 4.3.3 was therefore initially attempted with a
walking person (the aerial platform experiment is presented next). The resulting map
for a closed loop course is presented in Figure 5.18, where one may see a seamless loop

132

1.5 2 2.5 3

x 10
4

2000

4000

6000

8000

10000

12000

14000

16000

X mm

Y
 m

m

Figure 5.16: Diosi and Keelam’s dataset, first mapped room. Comparing results for
sequential laser-to-laser scan matching. Top left: Odometry only, Top right: PSM,
Bottom left: PSM-C, Bottom right: ICP (Results by Diosi and Kleeman). Bottom:
PB-PSM. Start point is marked by a large asterisk and a red circle, end point is
marked by a smaller blue point, with an arrow pointing towards the final azimuth.

133

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

X mm

Y
 m

m

(a) PB-PSM algorithm only (scan-to-scan matching)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

X mm

Y
 m

m

(b) PB-PSM with the SLAM algorithm

Figure 5.17: Results using a walking person. Red point on the right marks the starting
point. Three passes are made through the corridor.

134

0 0.5 1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

x 10
4

X mm

Y
 m

m

Figure 5.18: Physics Building, closed loop course with a human platform.

closure, after the person traveled approximately 70 m. This experiment shows that
the algorithm’s capabilities and cumulative accuracy were achieved with the walking
platform as well, in a different scenario than Martin Hall.

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

Figure 5.19: Physics Building, challenging motion pattern with a human platform,
for a total traveled distance of over 110 m.

135

An additional experiment in the same environment was conducted to further show
the algorithm’s robustness. In this experiment, the traveled path was a slalom walking
pattern, causing a cumulative traveled distance of over 110 m. The resulting map
is presented in Figure 5.19, and appears to be quite accurate. The walking pattern
posed a great challenge to the SLAM algorithm, changing its heading significantly
between steps, and throughout the course in general.

Figure 5.20: Physics Building, challenging motion pattern with a human platform,
close up.

However, there are some occurrences of double-walls, since at this distance, the
algorithm accumulates more drift. The loop closure area is shown in more detail in
Figure 5.20. One may see the small gap that was formed due to the accumulated drift.
Nevertheless, the gap is smaller than 10 cm, and as such is still considered relatively
small, and as shown above, it is still approximately 0.1% of the total traveled distance
(see Sub-Section 5.2.1).

The reader is referred to additional experiments with a human platform, conducted
in outdoor scenarios, as a pre-validation for the aerial platform, in Section 5.5. More-
over, some outdoor scenarios further tested the capability of a seamless loop closure.

5.2.3 Aerial Platform Evaluation

The next step was to test the algorithm performance using an aerial platform.
The aerial platform of choice is presented in Sub-Section 4.2.3.

Flight Down a Corridor

The Martin Hall scenario was first attempted with the aerial platform. Several
flights were made in the upper corridor (see Figure 4.7), mainly due to its larger
width, which allowed safe flight of the helicopter. Single pass as well as multiple
passes through the corridor were attempted, to explore different traveled distances.

136

0 0.5 1 1.5 2 2.5

x 10
4

0

2000

4000

6000

8000

10000

12000

X mm

Y
 m

m

Figure 5.21: Corridor mapping – resulting map using 50 scans at 2 scans per second,
pixels represent occupied grid cells, while points represent position estimates.

The map result of a single pass through the corridor is shown in Figure 5.21.
The total flight distance was 17 m, and the helicopter was flown at an altitude of
approximately 0.5 m. The occupancy grid is presented along with the MAVs positions
estimates, represented by black dots. The starting point is marked using a red circle,
while the purple arrow shows the azimuth at the last position estimate. The map
appears to be crisp, and sharp, similar to previous results obtained using both the
ground and the human platforms.

In order to further show the accuracy obtained by the algorithm with the helicopter
platform, the Martin Hall scenario was attempted with the helicopter moving to the
end of the hall and back towards its starting position. When the helicopter is flown
backwards, the new scans are matched against virtual scans that contain all the
information acquired thus far in the occupancy grid. Thus the scan matching quality
is very robust as most of the laser scan can be matched versus an already existing
map. The resulting map is presented in Figure 5.22, with the true map overlaid on
top of the occupancy grid, marked using yellow dashed lines. The figure also includes
4 closeup insets for detailed comparison to the hand measured true map.

In some cases, the helicoptered underwent relatively high roll angles, and thus
the laser scanner picked up readings from the floor. Generally, these scans cannot
be matched against data from the occupancy grid, and thus are discarded from the
scan matching process using one of the above described point filers. Nevertheless, the
algorithm was robust enough to have an accurate enough match, associated with an
acceptable cost value (see Sub-Section 3.5.1). In extreme cases, a floor scan may lead
to a scan matching failure, as described in Sub-Section 5.3.5.

Since the height of the helicopter is not constant, the laser scanner can pick up
obstacles of different depth, that are located in different heights. If the overall scan
still contains enough information to preform successful scan matching - the algorithm
would incorporate the entire scan into the map, which would result in both depths of

137

Figure 5.22: Corridor mapping – MAV was flown to the end of the hall and back -
comparison between the map generated by the algorithm and the true hand measured
map.

the obstacle being mapped. An example can be seen in Figure 5.22, at approximately
(x, y) = (10000, 5000), where the boxes next to the wall are mapped with two different
depth. This can serve as an additional proof of the algorithm robustness.

The comparison between the generated map and the hand-measured true map,
for the case of mapping the corridor back and forth, is also presented in Figure 5.22,
where the dashed yellow line represents the true map. The overall match between
the occupancy grid and the true map appears to be very good. An even closer look
at four locations is given by four close-up insets. The close-ups show several fine
details that are also accurately mapped by the algorithm. Note that every pixel in
this figure represents a square of area 1 cm2. These close-ups reveal an accuracy
of approximately 2 − 3 cm. Hence, out of approximately 34 meters traveled by the
helicopter, the accuracy appears to be within less than 0.1% of the traveled distance.
This level of accuracy is identical to the accuracy obtained using a ground platform,
shown in Sub-Section 5.2.1.

In order to further test the mapping capability of the algorithm in the same
corridor environment, the helicopter was flown through the hallway for a total of 8
passes. As evident in Figure 5.23, the algorithm proposed herein does not exhibit any
significant drift, despite not using a map smoothing algorithm. These results stem
from the integration of the evolving map in the scan matching process. The total
length of the traveled path was approximately 100 m. Note that the only limiting
factor was battery endurance, allowing less than 10 minute flights per charge.

138

0 0.5 1 1.5 2

x 10
4

0

2000

4000

6000

8000

10000

X mm

Figure 5.23: Corridor mapping – MAV was flown for a total of 8 passes through the
corridor.

0 5000 10000
0

5000

10000

15000

X mm
0 5000 10000

0

5000

10000

15000

X mm
0 5000 10000

0

5000

10000

15000

X mm

(a) 19 meters traveled (b) 23 meters traveled (c) 32 meters traveled

Figure 5.24: Three different runs of the same room exploration scenario.

139

Another mapping scenario using the proposed algorithm is presented in Fig-
ure 5.24. In this case, the helicopter is flown three times in completely random
patterns, with increasing flight course length, while the surroundings are mapped.
This scenario pictures can be seen in pictures (d − f), in Figure 4.7, which show
the right hand side of the floor-plan schematics (except all doors were closed for this
scenario). The helicopter path in this example is marked with a solid purple line,
initial position is marked with a large red point, and the final position is marked by
a smaller blue point with an arrow pointing toward the final helicopter azimuth.

As in the previous scenarios, the map appears to be crisp and sharp, despite
several objects that violate the 2D assumption, such as the staircase, or the box
display (as shown in Figure 4.7 (d)). The item in the center of the room at (x, y) =
(16000, 4000) is the wheeled hardware cart used for the off board laptop. The pilot
stands at approximately (x, y) = (15500, 2500), and the author is located at (x, y) =
(16500, 2500) (recording laser data). The two people were standing still throughout
the experiment, so as to maintain an approximately static environment. All three
flights yielded identical maps within the above stated accuracy.

Flight in a Closed-Loop Course

1 1.5 2 2.5 3 3.5 4

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

Figure 5.25: Mapping results on closed loop course. Helicopter path is marked with
a purple solid line. Total course length is approximately 60 m.

In order to further test the accuracy of the algorithm, the helicopter was flown

140

through a closed loop course, located in the Physics Building, at the University of
Maryland (scenario shown in Sub-Section 4.3.3). As in the case of the wheeled cart,
the advantage of a closed loop course is that a seamless overlap between the start
and finish areas implies a relatively low accumulated drift. This, in turn, allows for
a successful scan matching between the latest laser scan from the end of the flight,
and the virtual scan that includes parts from the previously mapped area, when the
flight course started. Figure 5.25 shows the resulting map of the attempted closed
loop course. The resulting map appears to be crisp, as the previous maps were,
and the area where the loop is closed appears to be seamless. The course length is
approximately 60 m, which is relatively long. This result is a strong testament as to
the robustness and the accuracy of the proposed algorithm, on the most challenging
platform of all three.

5.3 Algorithm Limitations

There is a large variety of scenario types where SLAM is required to work. How-
ever, in some cases, the algorithm may fail due to various reasons. Therefore, it is
beneficial to have certain guidelines for predicting the algorithm’s success.

5.3.1 Effect of Laser Measurement Noise

The effect of the laser measurement noise was examined by adding noise to an
existing dataset. The noise characteristics is a random Gaussian noise:

∆r ∼ N(0, σ2) (5.1)

where ∆r is the range noise that is added to the baseline range measurement for
each beam at every laser scan (in mm). The noise for each laser beam is indepen-
dent. These characteristics are identical to that of the laser’s baseline noise (see
Sub-Section 4.1.2), where σ, the standard deviation, can be extracted using the noise
intensity (seeEq. (4.1)). The noise intensity (in %) was increased until the algorithm
completely failed without being able to recover (in some cases, the scan matching
algorithm may fail in some scenes but may be able to recover in later scenes so the
SLAM process can continue). This examination was performed on a dataset collected
by the single rotor helicopter aerial platform, mapping a single corridor (one sweep),
in Martin Hall at the University of Maryland.

The results are presented in Figure 5.26, for the baseline laser noise and four ad-
ditional simulated levels of noise. The threshold for the cost function that determines
scan matching failure is set to 10 (marked by a dashed red line). The baseline laser
noise case does show a single case of scan matching failure (at step number 25) but
the algorithm was able to recover and the following scenes were scan matched with
a sufficiently low cost. However, increasing the laser noise results in an increase in
the final cost function values for all scenes, as expected, and the number of elimi-
nated scenes increases as well. Finally, for the case of 3% noise intensity (brown line)

141

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

M
in

 C
os

t V
al

ue

Baseline
+1%
+2%
+2.5%
+3%

Figure 5.26: Effect of laser noise on cost. Showing the final cost value for case of
an aerial platform flying down a corridor. The case was run with the baseline laser
noise, and four values of added noise.

the algorithm exhibits a failure at step 31 from which is was unable to recover (as
indicated by cost value rising outside the figure scope).

To show the effect of noise on the occupancy grid map quality, four close-ups on
a part of the mapped corridor are shown in Figure 5.27 (note: the same colorbar is
used in all four figures, where the warmest color represents an occupancy of 10). The
increase in laser noise continuously deteriorates the sharpness of the map, as walls
appear more spread out, and less crisp. The wall thickness increases from 5 to 6
cells, to over 10 cells, which appear blurry. For high levels of noise - the virtual scan
algorithm would have a difficulty to find well defined objects due to the increased wall
thickness. Moreover, the location of the vertical wall changes as the noise is increased
(note that the scale is different on the last figure as the wall “moves” to the right).

5.3.2 Effect of Virtual Scan Resolution

The number of virtual points used, denoted by nV , does not necessarily has to
equal the number of laser points. On the contrary - using more virtual points may
help represent the environment better in the virtual scan, as it may capture more

142

1800 1900 2000 2100 2200 2300
4700

4750

4800

4850

4900

4950

5000

5050

5100

5150

5200

X mm

Y
 m

m

1800 1900 2000 2100 2200 2300
4700

4750

4800

4850

4900

4950

5000

5050

5100

5150

5200

X mm

Y
 m

m

(a) Baseline (b) Baseline +1%

1800 1900 2000 2100 2200 2300
4700

4750

4800

4850

4900

4950

5000

5050

5100

5150

5200

X mm

Y
 m

m

1900 2000 2100 2200 2300 2400
4700

4750

4800

4850

4900

4950

5000

5050

5100

5150

5200

X mm

Y
 m

m

(c) Baseline +2% (d) Baseline +3%

Figure 5.27: Effect of noise on map quality. A single feature from a corridor map.
Map resolution is 1 cm2. (a) Baseline laser data (noise level of approximately 1%).
(b) Noise level increased by 1%. (c) Noise level increased by 2%. (d) Noise level
increased by 3%.

features, including relatively small features that may be missed due to low virtual
scan resolution. The cost function searches for laser point matches for each virtual
point, and so there is no restriction on the number of virtual points that are used.
However, one must keep in mind the cost function complexity is linear with nV , and
so more virtual points would result in higher computational requirements.

The effect of the virtual scan angular resolution, which for a fixed field of view
is controlled by nV , can be shown by decreasing number of virtual rays (keeping all
else constant) until the algorithm fails without recovery. For this purpose, a case of
an aerial platform performing two sweeps up and down a corridor was utilized (100

143

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Step #

M
in

 V
al

ue

n

V
=1081

n
V
=700

n
V
=450

Figure 5.28: Effect of virtual scan resolution - plotting the final cost for the case of
an aerial platform while reducing the number of virtual rays nV until the algorithm
completely fails without recovery.

144

scenes in total). The final cost results for three values of decreasing nV are shown in
Figure 5.28. The highest value is the same as the number of laser rays - 1081, and
except for scan 24, all the scenes result in a cost that is lower than the set threshold
of 10. Decreasing the nV result in an increases in the cost across all scenes.

For nV = 700, the relative behavior of the cost (the shape of the graph) remains
identical, as the laser scenes are identical, and the virtual scenes maintain some simi-
larity. However, the cost is higher as the resolution used to represent the virtual map
is lower and thus the fidelity of object representation deteriorates, and so the possible
scan matching accuracy is reduced. In this case, it was found that nV = 450 caused
an unrecoverable error in the scan matching algorithm at step 89. Moreover, the
shape of the graph appears to be different in several steps, resulting from significant
differences in the way the virtual map is captured by the virtual scan.

Ideally more virtual points are desired. However, in some applications, when the
environment is characterized by low clutter, a relatively low number of virtual rays
may be used successfully.

5.3.3 Effect of Laser Scanner Parameters

The algorithm’s sensitivity to the laser scanner’s specifications was examined by
employing the algorithm on two laser scanners (Sub-Section 4.1), denoted as “higher
end” and “lower end”, while also isolating the characteristics that has the most impact
on the results.

The range of the URG-04LX is quite low, and thus experiments in typical office
like environments are challenging due to sparse amount of features that are within the
laser’s range. Hence, in the experiments conducted using the lower end laser scanner
three boxes were placed along one wall in the area that was sparse in features.

A map for a single corridor is presented in Figure 5.29, using both laser scanners.
Note that although it cannot be seen - the maps are in fact a collection of pixels
which represent the occupied cells in the occupancy grid, color-coded with the relative
occupancy. In this figure, each pixel represents a square with an area of 10 mm2. The
scenario is a hallway in the 3rd floor of Martin Hall at the University of Maryland,
approximately 15 m in length. It is composed of walls, doors, door-posts, cabinets
and several trash cans. Note: the number of virtual rays NV was unchanged in all
cases.

It is quite clear that the map produced by the algorithm using the lower end
sensor appears bent, and compared to the map produced using the higher end sensor
it has thicker walls. One can also note some inaccuracies in the intersection of several
door post features. Moreover, the distances between some of the doors appear to be
different in both maps.

When comparing to the hand measured map, the map results using the higher
end laser was found to be accurate to within 2 cm, which is considered a high quality
map. In order to perform a fair comparison between the sensors, and isolate the cause
for the bent corridor result, the higher end scanner was artificially limited to reflect
the properties of the lower end scanner where possible. The dataset that is used is
the same one that created Figure 5.29 (b).

145

(a)

(b)

Figure 5.29: Single corridor map. Typical office-like environment, mapped with two
sensors: (a) Lower end URG-04LX-UG01 (b) Higher end UTM-30LX.

Table 5.1: Hokuyo UTM-30LX manufacturer specification.

Scanner URG04LX-UG01 UTM30LX Modified UTM30LX
FOV 240◦ 270◦ 240◦

Number of points 683 1081 960
Accuracy < 3% < 1% < 3%
Range 5 m 30 m 5 m
Scan Frequency 10 Hz 40 Hz 40 Hz

146

Table 5.1 shows a comparison between the two baseline sensors and the artificially
limited UTM30LX scanner. The FOV was reduced to 240◦, the range was decreased
to 5 m, laser measurement noise was added to reflect the lower quality laser’s 3% noise
level. The number of points changes only due to the reduction in FOV, and thus the
azimuthal resolution cannot be precisely matched with the lower end laser’s. The
data were collected with the laser scanner’s rotating at 40Hz (which is not a user-
controlled property), and therefore this is the main difference between the sensors.

Figure 5.30: Single corridor map - using the simulated modified UTM30LX scanner.

The map results for the artificially limited sensor is presented in Figure 5.30.
The walls appear thicker, as a result of the increased sensor noise (same as in Fig-
ure 5.29(a)); however, the overall quality of the map appears to be quite good, and
resembles closely the map of Figure 5.29 (b). It can therefore be determined that the
key difference between the two sensors (other than the range), that controls mapping
quality is the Scan Frequency (the rotational velocity of the laser’s internal mirror).

The physical reasoning for this result is quite simple. Since the platform moves
while the laser is scanning the environment, the faster the laser mirror spins - the less
effect the motion has on the scan result. A faster moving platform would results in a
distorted scan of the surroundings and thus scan matching several distorted scans may
result in a distorted and bent map. The effect is similar to the well known “Doppler
Effect”. An infinitely high scan frequency would results in a scan that is similar to
that obtained when the laser is static. However, as the ratio between the platform’s
velocity and the laser scan frequency increases, the scan fidelity with respect to the
surroundings deteriorates.

5.3.4 Effect of Occupancy Grid Resolution

The resolution of the occupancy grid determines the memory requirements of the
algorithm. Compared to the memory space required to store the occupancy grid, the
memory required to run the SLAM algorithm itself is negligible as it is O(n), where
n = max(nV , nL). The memory requirement of the occupancy grid depends on the
size of the mapped scenario. Most scenarios in this research were of the order of 30 m
by 15 m. Therefore, the memory space required to hold an occupancy grid with a
10 mm by 10 mm is of the order of 5Mb, which is well within the capabilities of
modern digital memory capacity.

Since the occupancy grid holds a single number per cell (a float), the memory space
required to hold the occupancy grid data is Agrid/Acell, which for typical cases in this

147

research is O(106) or approximately O(1MB). This complexity may be considered as
a disadvantage as compared to feature based maps, which only store the locations of
detected features, and thus have considerably lower space requirements. It is therefore
desired to examine the algorithm’s performance with lower resolutions so as to allow
operation in larger areas, and lower memory requirement in general.

4 8 12 16 20 24 28 32
0

2

4

6

8

10

12

14

16

18

20

F
in

al
 C

os
t V

al
ue

1 cm2

4 cm2

25 cm2

100 cm2

Figure 5.31: Effect of occupancy grid resolution on the final cost.

Figure 5.31 presents the final cost over 32 scenes that form a single corridor
(dataset obtained using a ground platform). The algorithm was tested on four occu-
pancy grid resolution values of 1 cm2, 4 cm2, 25 cm2, and 100 cm2, while all other
parameters were kept constant (including the perimeter matching acceptance thresh-
old). As expected, the final cost values increase with the reduction in OG resolution.
The difference between 1 cm2, 4 cm2, and 25 cm2 appears to be quite small, and
considering the threshold for final cost acceptance - all three OG resolution values
result in acceptable cost values.

However, the final cost values using an OG resolution of 100 cm2 appears to be
significantly higher than the rest. This is the results of an internal parameter in
the algorithm where for relatively short ranges - the acceptance of a match into the
perimeter matching term is performed based on a prescribed value rather than the
laser noise model. In the above presented experiments, the threshold was set at 50.
Thus, the relatively poor resolution of 100 cm2 caused a large amount of points to

148

be excluded from the perimeter matching term, thus increasing the final cost value
significantly.

The resulting maps using the different OG resolution values are presented in Fig-
ure 5.32, along with close-ups on the lower-left corner of the mapped corridor in Fig-
ure 5.33. All the maps appear to feature straight walls, however, when using coarse
resolutions, several fine details can no longer be adequately represented (especially the
door post details). When examining the close-ups, one may notice that the position
of both the vertical and horizontal walls remain unchanged at 1850, and 1630 (within
the capabilities of the different resolutions). These results are impressive as the res-
olution was decreased by two orders of magnitude from 1 cm2 to 100 cm2 (and as a
result so did the error in object representation). It serves to show that the algorithm
is more robust to OG resolution that it is to laser sensor noise, where wall positions
tend to change significantly with increasing laser noise (see Sub-Section 5.3.1).

5.3.5 Failure Modes

Several algorithmic failure modes were detected during the course of this work.
These are described and explained below. Additionally, suggestions for mitigating
these failure modes are proposed and discussed. These failure modes are not part of
the algorithm limitations described in Sub-Section 3.5.4.

Repetitive Structure

Some scenarios may include repetitive structure that may result in the cost func-
tion having multiple minima. An example of such a scenario is given in Figure 5.34.
Since the box-like structure is repeated, in cases where the search grid for cost min-
imization is large enough to cover the repeated structure, more than one minimum
point may be found. This may lead to a possible failure when the wrong match may
have a slightly lower cost, and thus will be mistaken for the right solution. A possible
method to mitigate this failure mode may be to have a better initial guess based on
additional platform sensors. This may allow the reduction of the search grid size and
thereby reduce the chances of multiple possible matches with the repeated structure.

Insufficient Features

Insufficient features in a scan may result in a failure of the scan matching process.
The first example involves a scan of two long corridors, shown in Figure 5.35. The
scan has two main parallel features along one dimension. These features may be used
for position estimation using scan matching along that dimension. However, the scan
has almost no features in a direction that is different than that of the two main walls.
This may lead to a failure to find a unique scan matching solution, as the two main
features may be aligned in multiple location along their principal direction.

The second example involves relatively fast platform motion, where two subse-
quent laser scans are taken while the platform has traveled a relatively large distance,
resulting in little overlap between the scans. Such a case may occur when turning

149

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2000

4000

X mm

Y
 m

m

(a) 1 cm2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2000

4000

X mm

Y
 m

m

(b) 4 cm2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2000

4000

X mm

Y
 m

m

(c) 25 cm2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

2000

4000

X mm

Y
 m

m

(d) 100 cm2

Figure 5.32: A part of a ground platform experiment, showing a single corridor, run
with increasing occupancy grid resolution.

150

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600
1400

1500

1600

1700

1800

1900

2000

X mm

Y
 m

m

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600
1400

1500

1600

1700

1800

1900

2000

X mm

Y
 m

m

(a) 1 cm2 (b) 4 cm2

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600
1400

1500

1600

1700

1800

1900

2000

X mm

Y
 m

m

1700 1800 1900 2000 2100 2200 2300 2400 2500 2600
1400

1500

1600

1700

1800

1900

2000

X mm

Y
 m

m

(c) 25 cm2 (d) 100 cm2

Figure 5.33: A part of a ground platform experiment, showing closeups on a single
corridor map, run with increasing occupancy grid resolution.

151

5000 10000

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

4

X mm

Y
 m

m

Figure 5.34: Example of a repetitive structure.

! "!!! #!!!! #"!!!

!$!!!

!

$!!!

%&''

(
&'
'

Figure 5.35: Failure mode for a scan with only two long corridors. The scan has
features along one dimension, but almost no features along the other dimension,
making it less likely to have a unique scan matching solution.

152

Figure 5.36: Moving too fast, causing a reduction in usable scan overlap, which may
eventually lead to a scan matching failure.

around corners, as shown in Figure 5.36. The new laser scan, taken after the corner
has been passed, contains a lot of new information that is not yet contained in the
map. Thus the virtual scan and the new laser scan have little overlap, causing a
failure in the scan matching process.

In the third example, a scan scenario would contain very few well defined features.
Figure 5.37, presents an example of such a scenario, where a laser scan contains a
single well defined wall on one side, but a completely unstructured scan of a large
outdoor bush on the other side. Every scan of the bush would appear different, as
the bush has no well defined structure to it, and thus different clusters of points
will be shown in each scan. Subsequently, scan matching would not produce usable
solutions. Unfortunately, an environment with not enough well defined features in it
would eventually cause the algorithm to fail.

Significantly Non-2D Scenes

The algorithm is based on a 2D laser scanner, and as such it primarily assumed
a 2D environment. Nevertheless, the algorithm can process scenarios with some non-
2D obstacles, to a certain extent, as shown and discussed in the examples above.
However, a scenario which is comprised mostly out of non-2D objects may cause a

153

Figure 5.37: A partially featureless laser scan. There is only a single wall (right hand
side of the scan), while the rest is a scan of a large bush.

failure of the algorithm. Examples include scenarios with sloped surfaces (as each
scan may capture a different level), certain vegetation (as in Figure 5.37), multiple
objects of different heights, etc.

High Pitch/Roll Angles

During the experiments, a possible 2D assumption violation was caused by the
pitch and/or roll motions of the platform. These motions change the measured ob-
jects, as the laser may pick up different objects from different levels of the environ-
ment.

The algorithm has two features that try to overcome such violations. The first is
the occupancy grid resolution itself: a typical laser beam with r = 5000 mm, allows
pitch/roll angles of up to 3◦, before it’s measurement is registered to a different cell.
However, even if some pitch/roll angles are larger than 3◦, the measurements is still
registered to nearby cells. Hence large pitch and roll angles would not necessarily
cause a failure of the algorithm. It was found that for the above presented scenarios,
angles of up to 10◦ could be sustained in some cases (as long as the pitch/roll angle
do not significantly change the scanned environment’s shape).

The second feature is the elimination of contributions for which Fi > TE , where

154

TE is the elimination threshold explained above. In some cases different obstacles
may be scanned, as explained above. In such a case, the scan matching algorithm
attempts to match two different scans that have too little overlap of identical features.
In most cases, eliminating some of the points that represent two different obstacles
(e.g., boxes, pillars, etc.), can help reduce the cost function to an acceptable value.
The threshold set was TE = 1000 mm, which represents a typical range difference in
most real life scenarios.

5.4 Results Using Existing Datasets

5.4.1 Comparison With Existing Full Scale Datasets

The algorithm was also successfully tested on two previously published full scale
datasets. Both laser scan datasets were collected using a wheeled ground platform
(whether autonomous or driven by a human operator), in a typical office-like envi-
ronment over a relatively long traveled distance.

As detailed below, the two datasets made use of significantly different laser scan-
ners, varying both Field Of View (FOV), range, accuracy, and the number of laser
points per scan. The first dataset was collected by Diosi and Kleeman [29] using a 2D
laser range scanner producing 361 points with a FOV of 180◦ (and thus an angular
resolution of 0.5◦), recording data at 30 Hz. The second dataset was collected by
Andrew Howard [85], with a laser scanner producing 180 points, with a FOV of 180◦

(and therefore, an angular resolution of 1◦).
It is important to note that other than laser sensor parameters, none of the algo-

rithm parameters stated above were altered, in order to use these previously published
dataset. This is with the exception of increasing the final accepted cost value from
TF = 10 to TF = 15, to allow for some anomalies caused by moving objects in both
scenarios.

Monash University Database

The first dataset was collected by Diosi and Kleeman [29] to test the performance
of their scan matching algorithm within their own EKF-based SLAM algorithm. Their
results are presented in Figure 5.38 (a). The experiment was conducted in an office
like environment, using a ground platform and a 2D laser range scanner producing
361 points with a FOV of 180◦, recording data at 30 Hz.

This dataset is described by Diosi and Kleeman as less than ideal, as the laser
sensor picked up more than 10 people walking in its FOV, and several doors were
opened and closed during the traversal of the environment. Moreover, according to
them, the use of a loop closure algorithm is challenging by the relatively large amount
of repetitive structures (the office cubicles in both the first and second rooms), as the
algorithm may produce false positive loop closure events.

Nevertheless, the current algorithm was employed on the same dataset, and pro-
duced highly accurate mapping results as seen in Figure 5.38. The map appears to
be crisp with a significantly less occurrences of “double walls”, as compared with

155

(a) Results by Diosi and Kleeman, using EKF-SLAM, PSM, and loop closure algo-
rithm (grid lines spacing is 10 m, dimensions on the left axis in cm).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

(b) Results using PB-PSM scan matching only (units in mm). Start and end points
are marked by a blue square and dot, respectively. Final heading arrow shown in
black. Traveled path is drawn as a purple line.

Figure 5.38: Scenario exploration by Diosi and Kleeman, using their Monash Univer-
sity’s dataset [29].

156

the results of Diosi and Kleeman. It is noteworthy that PB-PSM has no issues with
repetitive structures such as the cubicles that populate the 1st room. Issues such as
the dynamic environment were easily solved by increasing the set threshold for the
overall successful scan-matching to a value of TF = 15. The robotic platform is said
to trip twice over a 1.5 cm cable protector on the floor, which also contributed to the
low quality of the laser scan dataset.

However, the algorithm failed without recovery when the 3rd room was reached.
The laser scans in that room became quite sparse with very few points that can be
successfully utilized for scan matching. The results by Diosi and Kleeman also show
very poor mapping quality in the 3rd room, with almost no usable mapped features.

University of Southern California Database

The second dataset was generated by Andrew Howard, and was obtained through
the online Radish repository [85]. The experiment was conducted using four au-
tonomous robots individually exploring a closed area (with some human supervision).
Several moving objects (people and/or robots) were captured in the dataset, thus ren-
dering it quite challenging to obtain good results. A more detailed description of the
experiment and the algorithms used to obtain the results can be found in the work
by Howard et al. [86]. In this dataset, a laser sensor with 180 points was utilized,
with a FOV of 180◦.

The map obtained by Andrew Howard is presented in Figure 5.39 (a), along with
the map generated by the present PB-PSM algorithm in Figure 5.39 (b), using the
dataset from robot #2. The mapping results appear to be in excellent agreement.
Note that in this case the amount of points in each scan is significantly smaller,
especially when it’s compared with the in-house results with the Hokuyo UTM-30LX,
which boasts 1081 points per scan.

5.5 Outdoor Experiments

The algorithm was tested on several outdoor scenarios. Outdoor scenarios signif-
icantly differ from indoor office type environments. These scenarios typically contain
more non-2D objects. Moreover, the laser sensor range is more limited in outdoor
environments, as the reflected laser energy is diminished by the outdoor lighting.
Several experiments had to be conducted at night, to overcome the limited range
problem, and capture enough obstacles. This section describes the results obtained
in several outdoors scenarios. The scenarios themselves are described in Section 4.3.
Data from all the outdoor scenarios was collected using the human platform (walking
person).

5.5.1 Kim Engineering, UMD: Front area

The algorithm was employed on the front area of the Kim Building at the Uni-
versity of Maryland, described and shown in Sub-Section 4.3.2. The resulting map is

157

(a) Results by Andrew Howard et al. Occupancy grid color coded with grayscale
for occupancy values between 0 and 1 (image copied from the online Radish dataset
repository [85].

(b) Results using present PB-PSM scan matching only. Start point is marked by a
large blue square, end point is marked by a blue dot, with the final heading arrow
in black. The traversed path is drawn as a purple line.

Figure 5.39: Scenario exploration. Andrew Howard’s database [85].

158

0 2 4

x 10
4

0

1

2

3

4

5

6
x 10

4

X mm

Y
 m

m

Figure 5.40: Kim Engineering Building, front area map.

159

presented in Figure 5.40, where the start position is marked with a blue square with a
red ’x’ mark inside of it, and the final position is marked by a blue dot, with the final
azimuth shown by the black arrow. The traveled path is shown using a purple line,
connecting all the position estimates. The total traveled distance was approximately
100 m.

The algorithm was successful in mapping this scenario, despite the many chal-
lenges, including the glass walls and the repetitive features along the left wall. The
mapping results even show that the algorithm captured the relatively thin trees lo-
cated in the area (which show up as clusters of points).

5.5.2 Kim Engineering, UMD: Back area

The algorithm was successfully employed on the back area of the Kim Building at
the University of Maryland, described and shown in Sub-Section 4.3.2. The mapped
area is presented in Figure 5.41 (same markings as above for the start/end positions,
final azimuth and traveled path). The total traveled distance was approximately
70 m.

As seen in Figure 5.41, the mapped area appears crisp, and show many of the
features that can be see in the pictures. These include the small yellow poles around
the large gas tank. The experiment was stopped when facing two parallel walls, that
were longer than the laser’s range, as it prohibited a unique scan matching solution
(see the failure mode described in Sub-Section 5.3.5).

5.5.3 Greenbelt Park, MD

The scenario of Greenbelt Park is considered to be a highly cluttered, and challeng-
ing environment, mainly because of the multiple objects (tree trunks and branches),
and the lack of large coherent structures (such as walls). Moreover, all the trees
have the same round shape, with very small diameter differences (which may pose a
significant difficulty for appearance based loop closure algorithms).

The resulting map is presented in Figure 5.42, where several trees may be seen as
clusters of occupied cells. Some some trees show their round shape, others were only
partially captured, and therefore show only a small part of their frontal area. The
traveled path in this case was created as part of an obstacle avoidance experiment
(hence the slalom shape).

5.5.4 Northwestern High School, MD

The Northwestern High school scenario was chosen because it provides an oppor-
tunity to inspect a closed loop course, traveled between several structures (same as
the case of the Martin Hall scenario Sub-Section 4.3.1). Pictures of the scenario may
be seen in Sub-Section 4.3.4. In addition to the structures, several trees and bushes
were also captured by the laser scanner during the experiments of this dataset.

The resulting map of the Northwestern High scenario, obtained by a closed loop
course is presented in Figure 5.43. The start and end positions nearly overlap each

160

0 2 4 6

x 10
4

1

2

3

4

5

6

7

8
x 10

4

X mm

Y
 m

m

Figure 5.41: Kim Engineering Building, map of the back area.

161

0 0.5 1 1.5 2 2.5

x 10
4

0

0.5

1

1.5

2

2.5
x 10

4

X mm

Y
 m

m

Figure 5.42: Greenbelt Park - forest environment.

162

Figure 5.43: Map of Northwestern High School, closed loop course using a human
platform

163

other, and the traveled path is shown as a purple line (clockwise traveled direction).
All the walls appear to be crisp and well defined, and obstacles in the overlap area
between the beginning and the ending of the course overlap seamlessly. No apparent
drift is seen in the map.

Varying Speed

This scenario was attempted several times using, collecting data at different veloc-
ities. Figure 5.44 presents four different mapping results, with the platform traveling
at increasing velocities. As evident in the figure, all the resulting maps appear similar.
The maximum speed is 100 cm/s, which is similar to the maximum speed attempted
in the Martin Hall scenario. At this speed, the laser still rotates fast enough so the
limitation on the platform velocity is not yet met (i.e. the laser scan remains a good
approximation for a static scan of the environment. See Sub-Section 5.3.3 for more
details).

Path Independency

The last experiment with a human platform was conducted to show the inde-
pendence of the results of the traveled path. In some cases, SLAM algorithms were
coupled with the path planner to maximize the mapping output quality. However, in
scan matching based algorithms, such as the one proposed in this thesis, there is no
need for such a coupling.

Figure 5.45 presents two map results of the Northwestern High School scenario, ob-
tained using fundamentally different traveled paths. The first path may be described
as a very “Structured” traveled pattern, while the other path may be described as
“Unstructured”, showing erratic motion patterns which also contain two complete
360◦ spins. Despite the significant difference between the two paths, the maps ap-
pear very similar, and the “Unstructured” path still maintained a seamless overlap
between the start and the end of mapped area.

5.6 Path Planning and Obstacle Avoidance

The path planning experiments present one application of the proposed SLAM
algorithm in a targeted flight mission. This application also requires the SLAM
algorithm to perform in real time, providing both map and position estimates for use
by the path planner. The results presented in this section are in the form of evolving
maps and traveled paths, but include the planned path as well. The algorithm works
sequentially, a laser scan, followed by a virtual scan, scan matching, map update and
path re-planning. No delay is introduced to maintain a constant SLAM estimation
rate. The average time per a complete step was approximately 1 second. The primary
focus is on targeted flight, and successfully navigating an MAV to a pre-defined goal
position. The resolution of the OG was set as 10 mm×10 mm. The map that is used
by the A* algorithm is merely a coarse version of the fine occupancy grid, generated
by the SLAM algorithm. The A* OG resolution was set as 1000 mm× 1000 mm.

164

∼ 50 cm/s ∼ 60 cm/s

∼ 66 cm/s ∼ 100 cm/s

Figure 5.44: Mapping insensitivity to motion velocity. Showing the mapping results
of several experiments, conducted in the same Northwestern High scenario, at various
speeds. All the results show similar maps.

165

“Structured” motion “Unstructured” motion

Figure 5.45: Mapping insensitivity to traveled path. Showing similar map obtained
with “structured” motion, and a very “unstructured” motion.

166

5.6.1 Targeted Flight - Outdoors

District of Columbia (DC GIS), U.S. Geological Survey, Map data ©2012

x

!

10m

Goal

Start

Figure 5.46: Start and goal position in the Northwestern High School scenario.

The first targeted flight experiment was performed outdoors, at Northwestern
High School, in Hyattsville, Maryland. The layout of the scenario is presented in
Figure 5.46, and four representative pictures are shown in Figure 4.13. The area
chosen features several structures, outer walls, and trees. It allowed for easy flight of
the helicopter, as all passages were wide enough (unlike the Marin Hall scenario).

The pilot was not given any information as for the goal location or the scenario
layout neither prior, nor during the experiment. Once airborne, the pilot was only
shown the helicopter’s heading arrow on a screen, which he had to maintain pointing
“North” (up), in order to follow the desired heading direction. The pilot was asked
to continuously correct the helicopter’s heading accordingly, as best he can, while
also moving the helicopter in that direction. The final approach towards the goal was
achieved by reducing the size of the arrow to reflect the actual distance from the goal.
The experiment was completed when the helicopter’s position was within 50 cm of
the desired goal position.

The algorithm itself is also only given the initial and goal position, in it’s own
coordinates. As the helicopter moves, the SLAM algorithm generates the map and
position estimates, while the A* is invoked to recalculate the optimal path every three
steps, or if the path becomes obstructed (which is checked every step). The heading
information presented to the pilot is updated based on the most current information
at each step.

Figure 5.47 presents several snapshots of the fine occupancy grid, and the A*
occupancy grid, showing the evolution of these maps at key points along the flight

167

trajectory. The initial and final positions are marked by a blue ‘�’ and a red ‘x’
respectively, the helicopter’s flight path is shown in black with dots showing position
estimates along the flight path, while the A* path is seen as a series of straight, purple
lines. The fine occupancy grid, is presented by simply drawing each occupied cell,
(occupancy level color coding not clearly seen due to resolution). The A* path is seen
updated as the map evolves, and the helicopter is flown towards the goal.

The final frame of Figure 5.47 is enlarged, and presented again in Figure 5.48. It
shows the helicopter reaching the goal, and the resulting final map that was generated.
The experiment was successfully repeated several times, in the same environment but
with different goal positions, under the same conditions discussed above. The pilot
reported adequate workload involved in both flying the helicopter and correcting its
heading based on the instructions from the algorithm.

5.6.2 Path Planning With Artificial Obstacle Avoidance

The second targeted flight experiment was performed indoors, in the Kim Build-
ing, at the University of Maryland. A representative picture of the scenario is shown
in Figure 4.8. The scenario provided sufficient open space to fly the helicopter, and
features multiple objects such as chairs, tables, and a large set of spiral stairs (all area
challenging non-2D objects). In addition, the area is surrounded by glass windows,
which pose additional difficulty to map with a laser scanner (due to poor reflectivity
of the lasers energy).

As in the outdoors experiment, the pilot was not given any information as for
the goal location, and is only provided with a heading arrow. The objective in this
scenario was to eliminate the pilot’s judgment with respect to the path planning
(as well as local obstacle avoidance), by adding objects into the A* occupancy grid.
The artificial objects are represented by artificially occupied cells. These artificial
obstacles are not visible to the pilot at any point prior or during the experiment.
Naturally, the SLAM algorithm only considers the real obstacles, which are scanned
by the laser.

The use of artificial obstacles allows us to decouple the pilot’s judgement from the
obstacle avoidance. Since the pilot does not see the obstacles in any way - we can
conclude that he flies the helicopter based only on the instructions from the algorithm.
The goal position in this scenario is placed 15 m meters ahead of the initial position.
However, due to the presence of the artificial obstacles, the navigation task is quite
involved, mainly due to the proximity of the obstacles to each other.

In the present scenario, the algorithm itself is given the initial and goal positions,
and several cells in the coarse A* occupancy grid are artificially occupied to repre-
sent the artificial obstacles, considered by the A* path planner. Figure 5.49 present
several snapshots of the fine occupancy grid, and the A* occupancy grid, showing
the evolution of these two occupancy grid maps at key points along the flight trajec-
tory (identical information and symbols as in Figure 5.47). The artificial obstacles
are presented by drawing the artificially occupied A* cell in red. As in the outdoor
scenario, the A* path is seen updated as the map evolves, and the helicopter is flown
towards the goal.

168

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

Start Start of 1st turn End of 1st turn

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

Start of 2nd turn End of 2nd turn Arriving to goal

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

Start Start of 1st turn End of 1st turn

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

Start of 2nd turn End of 2nd turn Arriving to goal

Figure 5.47: Outdoor experiment, evolution of the occupancy grid and the A* occu-
pancy grid, with the helicopter planned and executed path. Top and bottom 6 figures
show the fine and coarse occupancy grid evolution, respectively. Helicopter and A*
path are shown as black and purple lines, respectively.

169

1 2 3

x 10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

X mm

Y
 m

m

Figure 5.48: Outdoor experiment, final step - arrival to goal.

Figure 5.50 presents three insets of the final occupancy grid map, focusing at the
three artificial obstacles. The insets all show the path of the helicopter, avoiding all
three artificial obstacles. Note that in this case, the helicopter’s size was intentionally
not considered, thus allowing close proximity to the artificial obstacles, in order to
test the limits of the algorithm. Generally, a minimum safe distance is maintained,
based on the MAV size (by employing close proximity rules in the A* algorithm).

170

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

Start 1st Frame 1st Obstacle

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

2nd Obstacle 3rd Obstacle Goal

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

Start 1st Frame 1st Obstacle

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

1 1.5 2 2.5 3

x 10
4

0.5

1

1.5

2

2.5

3
x 10

4

X mm

Y
 m

m

2nd Obstacle 3rd Obstacle Goal

Figure 5.49: Indoor experiment, evolution of the occupancy grid and the A* occu-
pancy grid, with the helicopter planned and executed path. Top and bottom 6 figures
show the fine and coarse occupancy grid evolution, respectively. Helicopter and A*
path are shown as black and purple lines, respectively. Artificial obstacles are shown
as red squares.

171

Figure 5.50: Zoom in for the final map and flight path, showing the helicopter’s
accurate position estimates, avoiding the artificial obstacles (without consideration
for the helicopter’s size).

172

Chapter 6

Conclusion

6.1 Summary

SLAM Algorithm

This thesis presented a refined SLAM algorithm, based on a scan matching ap-
proach. The algorithm is independent of the platform’s dynamic model, and is de-
signed to work in primarily two dimensional environments.

The SLAM algorithm was tested on 9 environments, both indoor and outdoor.
Three different platforms were used, wheeled ground platform, a walking person,
and an aerial platform. Successful results were achieved on all three platforms. Re-
peatability and robustness were shown using a set of 12 repeatable experiments on
a benchmark scenario. The algorithm was also successfully tested using previously
published datasets, which were collected using different laser scanners.

Scan Matching Algorithm

A refined scan matching algorithm, Perimeter Based Polar Scan Matching (PB-
PSM), was presented, developed for scan matching 2D laser scans. The scan matching
algorithm exploits the polar coordinate representation of a set of laser range mea-
surement, as they are output from a 2D laser range scanner. PB-PSM differs from
previously published algorithms in three main aspects: using adaptive direct search
for the cost minimization process, introduction of a perimeter matching term in the
scan matching cost function (maximizing overlap between the matched scans), and
employing relatively tight convergence requirements.

The algorithm is shown to have superior performance as compared with previ-
ously published algorithms, with relatively high accuracy. The algorithm was tested
using various laser sensors, and several different environments, both indoor and out-
door. PB-PSM was proven to be very useful for both laser odometry and SLAM
applications.

173

Accuracy

A literature review of previously published work about SLAM algorithm revealed a
large gap in the discussion about accuracy, as well as a lack of tools that enable quan-
titative comparison between SLAM algorithms. The importance of accuracy achieved
by SLAM algorithms was therefore thoroughly discussed in this thesis, and uniquely
quantified in large scale scenarios. Several metrics were used for accuracy quantifica-
tion, in a benchmark scenario, including comparison of several measured distances,
and a metric for matching a complete occupancy grid. The newly formulated metric
provides an average occupied cell distance from the true map.

Typically, SLAM results would be compared to an overhead layout of the scenario
by means of the naked eye, in a qualitative manner. Moreover, the overhead layout
used for comparison in most cases is not the measured true map, but rather an
approximate map (blueprints, satellite images, pictures, or GPS data which contains
considerable error in some cases). Quantitative estimates of accumulated drift were
rarely provided, and only when using simulation environments or small scale scenarios,
where a motion capture system could be set up. Moreover robustness was not shown,
as most research works focus on very few scenarios (typically one), and repeatability
is often ignored.

The current algorithm’s performance was analyzed in great detail, showing its
robustness and repeatability over 12 repeated experiments in a benchmark office-
like scenario. The contribution of the various algorithmic elements was assessed
using a newly developed metric, which allows quantitative comparison of SLAM-
generated maps to a true map of the experimental scenario. For this reason, the
RMS of the accuracy metrics employed on all 12 experiments was used as a baseline
for comparison.

The proposed algorithm was favorably benchmarked against previously published
Iterative Closest Point (ICP) scan matching algorithms, showing a significant accu-
racy advantage. It was shown that the algorithm’s innovations are in fact key to the
final map accuracy (independent of the data association technique). Additional qual-
itative evaluation are presented using visual examinations, as was done in previous
published research.

Targeted Flight

The SLAM algorithm was then coupled to an A* path planner, and experimental
validation for the entire navigation system was presented, using pilot in the loop
experiments. The pilot was capable of successfully navigating between obstacles,
following heading information only, towards a pre-defined goal position. To eliminate
the pilot’s judgement from the obstacle avoidance task, invisible obstacles that the
pilot cannot see were introduced. These artificial obstacles were considered only
by the path planning algorithm. The algorithm successfully instructed the pilot to
navigate the helicopter safely to the goal, while avoiding all obstacles.

174

6.2 Conclusions

6.2.1 Major Conclusions

i. General conclusions

(a) It was shown in this thesis that some operational scenarios may not provide
any opportunity for revisiting previously explored areas. Therefore, in
those scenarios, successful operation hinges upon the SLAM algorithm’s
accuracy. Algorithms that depend on loop closure opportunities may not
be utilized. Specifically, the importance of SLAM accuracy for targeted
flight missions was presented and discussed.

(b) The proposed SLAM algorithm may be used for successful targeted flight
missions, where the goal is defined relative to the initial position. Using the
structure of the proposed SLAM algorithm, the path planner is completely
decoupled from the SLAM algorithm, making it easy to use with many
different path planners (Section 5.6).

(c) The drift obtained by the suggested SLAM algorithm was quantified at
approximately 0.1% of the traveled distance length (Sub-Section 5.2.1).
This is a considerably lower drift as compared with previously published
algorithms.

(d) The proposed SLAM algorithm may be employed on various platforms
including both ground (wheeled and walking) and aerial. The accuracy
achieved with all platforms was shown to be fairly comparable.

(e) Using the newly developed metric, presented in this thesis, accuracy of
SLAM algorithms may be quantitatively compared, when employed on
the same benchmark scenario. The metric particularly fits occupancy grid
based maps, which are currently the most common form of maps. This
metric may also be used for quantitatively evaluating loop closure algo-
rithms, by employing the metric on the optimized maps. Quantitative
accuracy estimates may greatly complement the qualitative comparison
that is typically presented in the literature.

(f) Single sensor SLAM was demonstrated throughout this thesis, when using
the proposed algorithm. Although an Inertial Measurement Unit (IMU)
may significantly reduce the computational requirements, it is not an es-
sential sensor, and SLAM results with a laser scanner as the sole sensor
have been demonstrated to be highly accurate. The IMU data can be used
to provide a good initial guess for the scan matching, reducing the number
of iteration required for convergence.

ii. Adaptive direct search

(a) For scan matching algorithms, the use of adaptive direct search has been
shown to be superior in terms of overall scan matching accuracy. Adaptive

175

direct search had a very significant impact on achieving the most accu-
rate solution for scan matching, with improved robustness to the common
phenomenon of local minima. Gradient search based methods for mini-
mizing the scan matching cost function may not be a good candidate for
achieving the best global minima (Figure 5.14). It was also shown that the
adaptive direct search is, in fact, responsible for the achieved accuracy, re-
gardless of the method of data association between the two matched scans
(Figure 5.15).

(b) Using adaptive direct search, the tight convergence criterion requirements
of 0.01◦ for rotation and 1 mm for translation, were shown to have a strong
effect on the overall performance (Figure 5.12).

(c) The adaptive direct search requires considerably more cost function eval-
uations, and therefore a cost function with a complexity of O(n) (where
n is the number of points in the reference scan), is required. The po-
lar scan matching approach allows for such a cost function, while other
scan matching algorithms have a cost function with a higher complexity of
O(kn) or O(n2) (in this case k is the size of a search window used in the
cost function).

iii. The perimeter matching term was shown to be a key in improving the robust-
ness of the scan matching algorithm. It contributed greatly to overall accu-
racy since small objects that were not over-shadowed by large objects. The
maximum overlap between the matched scans was driving to matching process
(Figures 5.10-5.11, and Figure 5.13).

iv. Using virtual scans rather than the more common laser odometry was shown to
have a significant positive effect on overall SLAM accuracy (Figures 5.10 and
5.17).

v. When attempting to match single laser scenes, it was shown that PB-PSM
outperforms several previously published scan matching methods, especially
with respect to rotation estimation (Figure 5.3).

vi. For laser odometry on complete datasets, accuracy achieved by PB-PSM was
proven to be superior as compared with the PSM, PSM-C, and ICP algorithms
employed on complete datasets (Figure 5.16).

6.2.2 Additional Conclusions

i. The convergence of PB-PSM was shown to be quite fast, as most scenarios con-
verged within approximately 10 iterations (Figure 5.2). This may be improved
with the introduction of a better initial guess.

ii. It was shown that accuracy can be improved when using datasets with more
scans at a higher rate, as this reduces the error introduced into the laser scan by
platform’s motion (Figure 5.4). The accuracy using such datasets was shown to

176

be very high, with the true map of the scenario overlapping the generated map
with no more than 3−4 cm of error, for a 50 m traveled path (Figures 5.5-5.7).

iii. Use of previously mapped areas was demonstrated to be beneficial for map
accuracy. When returning to an area that was already mapped, the algorithm
was able to use the existing map to correct itself, and lower the cost function
(Figures 5.8-5.9, and Figure 5.24).

iv. The proposed SLAM algorithm may be employed over long traveled distances,
with very minimal error, while maintaining the relatively small drift (Fig-
ures 5.18-5.20). The relatively high accuracy may be used to provide better
initial guesse for loop closure algorithms for further map optimizations.

v. The proposed algorithm limitations stem mainly from the capabilities of the
laser scanner (range, frequency, noise, spatial, and angular resolution, see Fig-
ures 3.20-5.26, and Figures 5.29-5.30), the occupancy grid resolution (Fig-
ures 5.31-5.33), and the virtual scan resolution (Figure 5.28).

vi. The failure modes of the algorithm include repetitive structure, where the scan
matching solution may be ambiguous (Figure 5.34), dynamic environments that
introduce objects that may not be used for accurate mapping (Figure 3.16), ar-
eas with insufficient features for scan matching (Figures 5.35-5.37), areas that
feature many non-2D objects (Figure 5.37), as well as high pitch and roll situ-
ations where the scanned objects may contain parts of the floor or ceiling.

vii. Mapping a closed loop course without the aid of a loop closure algorithm was
shown using a wheeled ground platform (throughout Sub-Section 5.2.1), a walk-
ing person (Figure 5.18), and a helicopter platform (Figure 5.25). All results
presented a very accurate and seamless loop closure area.

viii. The proposed SLAM algorithm was extensively tested on multiple datasets, in-
cluding previously published datasets by other authors, using significantly dif-
ferent laser scanners, showing improved performance Figure 5.38 or comparable
performance (Figure 5.39).

ix. Extensive testing was performed in multiple outdoor scenarios, featuring both
typical urban buildings, as well as forest environments, both considered to be
highly unstructured, and feature many non-2D objects (Section 5.5).

x. Mapping results were shown to be independent of the platform’s speed, within
the limitations presented in Sub-Section 5.3.5 (shown in Sub-Section 5.2.1, as
well as in Figure 5.44). Moreover, the path traveled by the platform does not
affect the mapping result (Figure 5.45).

6.3 Future Work

The following is a list of possible future work areas:

177

• To be fully autonomous, the MAV is also required to calculate the control
commands that will lead to following the desired trajectory, taking into account
its maneuverability limitations. For this task, a command calculation block
needs to complement the algorithms presented in this work.

• The scan matching method can become considerably faster if a good initial guess
can be provided. This will allow the function minimization to be performed on
search grids that are smaller than the typical platform step size. This will, in
turn, reduce the number of iterations and subsequently cost function calls. A
good initial guess may be achieved with an accelerometer/gyro data integration,
that will give an initial pose estimated.

• The limitation on pitch/roll angles may be addressed with the introduction of
gyro data. The pitch/roll angle can be measured by the gyro, and combined
with height measurements, which may be achieved using several downward-
deflected beams from the laser scanner, one maybe able to figure out if the
laser scan contains floor scans and should be excluded from the scan matching
process. This practice has been used in the work by Shen et al. [3].

• The current algorithm was developed in 2D. However, the concepts presented
here may easily be applied in 3D, when a point cloud is the incoming dataset.
The adaptive direct search grid may be constructed in 3D, and the perimeter
matching terms will turn into an “area” matching term, as it will now consider
a matched area as the basis for cost rewarding.

178

Bibliography

[1] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localisation and mapping
(slam): Part I the essential algorithms. IEEE Robotics and Automation Maga-
zine, 13(2):99–110, 2006.

[2] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. 1. The MIT Press,
2005.

[3] S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor indoor navigation
with a computationally constrained mav. pages 20–25, 2011. IEEE International
Conference on Robotics and Automation (ICRA), 9-13 May.

[4] V. Nguyen, A. Harati, and R. Siegwart. A lightweight slam algorithm using or-
thogonal planes for indoor mobile robotics. 2007. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2007, 29 October - 2 November,
San Diego, California, USA.

[5] O Garcia-Favrot and M Parent. Laser scanner based slam in real road and traffic
environment. 2009. In IEEE International Conference Robotics and Automation
(ICRA09). Workshop on Safe navigation in open and dynamic environments
Application to autonomous vehicles.

[6] A Bachrach, S Prentice, R He, and N Roy. RANGE–Robust autonomous navi-
gation in GPS?denied environments. Journal of Field Robotics, 28(5):644–666,
2011.

[7] Giorgio Grisetti, Gian Diego Tipaldi, Cyrill Stachniss, Wolfram Burgard, and
Daniele Nardi. Fast and accurate SLAM with Rao–Blackwellized particle filters.
Robotics and Autonomous Systems, 55(1):30–38, 2007.

[8] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient fastslam algorithm
for generating maps of large-scale cyclic environments from raw laser range mea-
surements. 2003. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 27-31 October, Las Vegas, NV, USA.

[9] Cyrill Stachniss, Giorgio Grisetti, Dirk Hähnel, and Wolfram Burgard. Improved
rao-blackwellized mapping by adaptive sampling and active loop-closure. 2004.
In Proc. of the Workshop on Self-Organization of AdaptiVE behavior (SOAVE).

179

[10] A. Segal, D. Hähnel, and S. Thrun. Generalized-icp. volume 25, 2009. Proc. of
Robotics: Science and Systems (RSS).

[11] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localization and map building (slam)
problem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

[12] Tim Bailey, Juan Nieto, Jose Guivant, Michael Stevens, and Eduardo Nebot.
Consistency of the ekf-slam algorithm. pages 3562–3568, 2006. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems.

[13] Ye Cang and Borenstein Johann. A novel filter for terrain mapping with laser
rangefinders. IEEE Transactions on Robotics, 20(5):913–921, 2004.

[14] T. Bailey, J. Nieto, and E. Nebot. Consistency of the fastslam algorithm. pages
424–427, 2006. IEEE International Conference on Intelligent Robotics and Au-
tomation.

[15] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy. Autonomous naviga-
tion and exploration of a quadrotor helicopter in gps-denied indoor environments.
2009. In IARC First Symposium on Indoor Flight Issues.

[16] K. Lee, S. Wijesoma, and J. Guzmán. A constrained slam approach to robust and
accurate localisation of autonomous ground vehicles. Robotics and Autonomous
Systems, 55(7):527–540, 2007.

[17] Wayne Johnson. Helicopter Theory. Courier Dover Publications, 2012.

[18] S Thrun, M Diel, and D Hähnel. Scan alignment and 3-D surface modeling with
a helicopter platform. The 4th International Conference on Field and Service
Robots, 2003.

[19] B Steder, G Grisetti, C Stachniss, and W Robotics IEEE Transactions on Bur-
gard. Visual SLAM for Flying Vehicles. Robotics, IEEE Transactions on, 24(5),
2008.

[20] LA Clemente, AJ Davison, I Reid, J Neira, and JD Tardós. Mapping large loops
with a single hand-held camera. Robotics: Science and Systems, 2007.

[21] Jari Saarinen, Roman Mazl, Miroslav Kulich, Jussi Suomela, Libor Preucil,
and Aarne Halme. Methods for personal localisation and mapping. 2004. 5th

IFAC/EURON Symposium on Intelligent Autonomous Vehicles Instituto Supe-
rior Tcnico, July 5-7, Lisboa, Portugal.

[22] A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun. 6d slam
with an application in autonomous mine mapping. Robotics and Automation,
2:1998–2003, 2004.

180

[23] Lionel Heng, Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc
Pollefeys. Autonomous obstacle avoidance and maneuvering on a vision-guided
MAV using on-board processing. pages 2472–2477, 2011. IEEE International
Conference on Robotics and Automation (ICRA).

[24] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-
Based State Estimation for Autonomous Rotorcraft MAVs in Complex Environ-
ments. In IEEE International Conference on Robotics and Automation (ICRA).,
2013.

[25] Chen Friedman, Inderjit Chopra, Svetlana Potyagaylo, Omri Rand, and Yaron
Kanza. Towards model-free slam using a single laser range scanner for helicopter
mav. 2011. AIAA Guidance Navigation and Controls Conference, Portland,
Oregon, August 8-11.

[26] T. Bailey and E. Nebot. Localisation in large-scale environments. Robotics and
Autonomous Systems, 37:261–281, 2001.

[27] C. Brenneke and B. Wagner. A scan based navigation system for autonomous
operation of mobile robots in man-made environments. 2003. International
Conference of systems engineering (ICSE), Coventry, Great Britain, September.

[28] Soonyong Park and Sung-Kee Park. Spectral scan matching and its application
to global localization for mobile robots. 2010. IEEE International Conference
on Robotics and Automation Anchorage Convention District May 3-8, 2010,
Anchorage, Alaska, USA.

[29] Albert Diosi and Lindsay Kleeman. Fast laser scan matching using polar coor-
dinates. Int J Robot Res, 26(10):1125–1153, 2007.

[30] Kin Leong Ho and Paul Newman. Detecting loop closure with scene sequences.
International Journal of Computer Vision, 74(3):261–286, 2007.

[31] A. Bachrach, A. S. Huang, P. Henry D. Maturana, M. Krainin, D. Fox, and
N. Roy. Visual navigation for micro air vehicles. (workshop manuscript), 2011.

[32] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, 22(6):46–57, 1989.

[33] P. Nunez, R. Vazquez-Martin, A. Bandera, and F. Sandoval. Fast laser scan
matching approach based on adaptive curvature estimation for mobile robots.
Robotica, 27:469–479, 2009.

[34] G.A. Borges and M.J. Aldon. Line extraction in 2d range images for mobile
robotics. Journal of Intelligent and Robotic Systems, 40(3):267–297, 2004.

[35] J. S. Gutmann and K. Konolige. Incremental mapping of large cyclic environ-
ments. 1999. IEEE International Symposium on Computational Intelligence in
Robotics and Automation 1999 CIRA ’99 Proceedings 1999.

181

[36] Kurt Konolige. Large-scale map-making. 2004. Proceedings Of The National
Conference On Artificial Intelligence.

[37] J Nieto, T Bailey, and E Nebot. Scan-SLAM: Combining EKF-SLAM and scan
correlation. In Field and Service Robotics (FSR), 2005. 167–178.

[38] R Sim and N Roy. Global a-optimal robot exploration in slam. IEEE Interna-
tional Conference on Robotics and Automation, 1:661, 2005.

[39] J Nieto, T Bailey, and E Nebot. Recursive scan-matching SLAM. Robotics and
Autonomous Systems, 55(1):39–49, 2007.

[40] P Newman, D Cole, and K Ho. Outdoor SLAM using visual appearance and
laser ranging. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEE International Conference on, pages 1180–1187, 2006.

[41] Sebastian Thrun, Mark Diel, and Dirk Hähnel. Scan alignment and 3-d surface
modeling with a helicopter platform. In Field and Service Robotics, pages 287–
297. Springer, 2006.

[42] Ruijie He, S Prentice, and N Roy. Planning in information space for a quadrotor
helicopter in a GPS-denied environment. In IEEE International Conference on
Robotics and Automation (ICRA)., 2008.

[43] T Kollar and N Roy. Efficient optimization of information-theoretic exploration
in SLAM. AAAI, pages 1369–1375, 2008.

[44] Jorge Artieda, José M Sebastian, Pascual Campoy, Juan F Correa, Iván F Mon-
dragón, Carol Mart́ınez, and Miguel Olivares. Visual 3-D SLAM from UAVs.
Journal of Intelligent and Robotic Systems, 55(4-5):299–321, 2009.

[45] Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Monocular-SLAM-
based navigation for autonomous micro helicopters in GPS-denied environments.
Journal of Field Robotics, 28(6):854–874, 2011.

[46] F Kendoul, I Fantoni, and K Nonami. Optic flow-based vision system for au-
tonomous 3D localization and control of small aerial vehicles. Robotics and Au-
tonomous Systems, 57(6-7):591–602, 2009.

[47] S Thrun. A probabilistic on-line mapping algorithm for teams of mobile robots.
The International Journal of Robotics Research, 20(5):335–363, 2001.

[48] E Brunskill and N Roy. Slam using incremental probabilistic pca and dimen-
sionality reduction. IEEE International Conference on Robotics and Automation,
1:342, 2005.

[49] X Ji, H Zhang, D Hai, and Z Zheng. An Incremental SLAM Algorithm with
Inter-calibration between State Estimation and Data. RoboCup 2008: Robot
Soccer World Cup XII, 2009.

182

[50] R Valencia, J Valls Miró, and G Dissanayake. Active pose SLAM. Robots and
Systems, 2012.

[51] A Walcott-Bryant, M Kaess, H Johannsson, and Leonard J. Dynamic pose graph
SLAM: Long-term mapping in low dynamic environments. In Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference on, 2012.

[52] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An atlas
framework for scalable mapping. Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, 2:1899–1906, 2003.

[53] E Olson, J Leonard, and S Teller. Fast iterative alignment of pose graphs with
poor initial estimates. 2006. International Conference on Robotics and Automa-
tion.

[54] J.S. Gutmann and C. Schlegel. Amos: Comparison of scan matching approaches
for self-localization in indoor environments. pages 61–67, 1996. Proceedings of
the 1st Euromicro Workshop on Advanced Mobile Robots.

[55] F. Lu and E. Milios. Robot pose estimation in unknown environments by match-
ing 2d range scans. Journal of Intelligent and Robotic Systems, 18(3):249–275,
1997.

[56] T. Röfer. Using histogram correlation to create consistent laser scan maps. pages
625–630, 2002. Proceedings of the IEEE International Conference on Robotics
Systems (IROS-2002). EPFL, Luasanne, Switzerland.

[57] X Yuan, CX Zhao, and ZM Tang. Lidar scan-matching for mobile robot local-
ization. Information Technology Journal, 9(1):27–33, 2010.

[58] A. Censi. An ICP variant using a point-to-line metric. pages 19–25, 2008. IEEE
International Conference on Robotics and Automation (ICRA), 2008.

[59] M. Tomono. A scan matching method using euclidean invariant signature for
global localization and map building. volume 1, pages 886–871, 2004. ICRA
2004, Piscataway, NJ.

[60] I. J. Cox. Blanche-an experiment in guidance and navigation of an autonomous
robot vehicle. IEEE Transactions on Robotics and Automation, 7(2):193–204,
1991.

[61] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[62] Banerji Debajyoti, Ray Ranjit, Basu Jhankar, and Basak Indrajit. Autonomous
Navigation by Robust Scan Matching Technique. INTERNATIONAL JOUR-
NAL OF INNOVATIVE TECHNOLOGY AND CREATIVE ENGINEERING,
2(10), 2012.

183

[63] Koenig Sven and Maxim Likhachev. D* lite. pages 476–483, 2002. AAAI/IAAI.

[64] L. Kavraki, P. Svestka, J. Latombe, , and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions
on Robotics and Automation, 12(4):566–580, 1996.

[65] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998. Technical Report 98-11Computer Science Dept., Iowa
State University.

[66] Svetlana Potyagaylo and Omri Rand. Planning and operational algorithms for
autonomous helicopter. 2009. American Helicopter Society 65th Annual Forum,
Grapevine, Texas, May 27-29.

[67] M. Mitchell. An Introduction to Genetic Algorithms. Cambridge, MA: MIT,
1996.

[68] Hart Peter E., Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. pages 100–107, 1968. IEEE
Transactions on Systems Science and Cybernetics.

[69] N Roy, G Gordon, and S Thrun. Finding approximate POMDP solutions through
belief compression. Journal of Artificial Intelligence Research, 23(1):1–40, 2005.

[70] T Kollar and N Roy. Trajectory optimization using reinforcement learning for
map exploration. The International Journal of Robotics Research, 27(2):175,
2008.

[71] E. B. Olson. Real-time correlative scan matching. In Robotics and Automation,
2009. ICRA ’09. IEEE International Conference on, 2009.

[72] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio
Grisetti, Cyrill Stachniss, and Alexander Kleiner. On measuring the accuracy of
SLAM algorithms. Autonomous Robots, 27(4):387–407, 2009.

[73] Bernt Schiele and James L. Crowley. A comparison of position estimation tech-
niques using occupancy grids. Robotics and autonomous systems, 12(3-4):163–
161, 1994.

[74] Sebastian Thrun. Learning occupancy grid maps with forward sensor models.
Autonomous robots, 15(2):111–127, 2003.

[75] Jack E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems journal, 4(1):25–30, 1965.

[76] Hokuyo Automatic Co. LTD. Hokuyo UTM-30LX laser range finder, 2005.
http://www.hokuyo-aut.jp/02sensor/07scanner/download/index.html.

184

http://www.hokuyo-aut.jp/02sensor/07scanner/download/index.html

[77] Y Okubo, C Ye, and J Borenstein. Characterization of the hokuyo URG-04LX
laser rangefinder for mobile robot obstacle negotiation. 2010. SPIE Defense,
Security + Sensing, Unmanned Systems Technology XI.

[78] A. Diosi. Laser Range Finder and Advanced Sonar Based Simultaneous Localiza-
tion and Mapping for Mobile Robots. PhD thesis, Monash University, Australia,
2005.

[79] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach.
2010. Pearson Education, 3rd.

[80] Amit Patel. Amit?s thoughts on path-finding and A-star. http://theory.

stanford.edu/amitp/GameProgramming/, 2003.

[81] Daniel Rolf Wichmann. Automated Route Finding on Digital Terrains. Tech-
nical Report COMPSCI 780 Project Report, Graphics Group, Department of
Computer Science, University of Auckland, New Zealand, February 2004.

[82] Hokuyo Automatic Co. LTD. Hokuyo laser range finder, 2005. http://www.

hokuyo-aut.jp/02sensor/.

[83] Hokuyo Automatic Co. LTD. Hokuyo URG-04LX-UG01 laser range finder,
2005. http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/

URG-04LX_UG01_spec.pdf.

[84] P. Bergstrm. ICP implementation for Matlab. 2007. http://www.mathworks.

com/matlabcentral/fileexchange/loadFile.do?objectId=12627&

objectType=FILE.

[85] A. Howard. Laser scans dataset collected at fort ap hill, as part of the darpa/ipto
sdr project. Technical report, 2004. http://cres.usc.edu/radishrepository/
view-one.php?name=ap_hill_07b.

[86] A. Howard, L.E. Parker, and G.S. Sukhatme. Experiments with a Large Hetero-
geneous Mobile Robot Team: Exploration, Mapping, Deployment and Detection.
International Journal of Robotics Research, 25(5-6):431–447, 2006.

185

http://theory.stanford.edu/amitp/GameProgramming/
http://theory.stanford.edu/amitp/GameProgramming/
http://www.hokuyo-aut.jp/02sensor/
http://www.hokuyo-aut.jp/02sensor/
http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG-04LX_UG01_spec.pdf
http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG-04LX_UG01_spec.pdf
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12627&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12627&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12627&objectType=FILE
http://cres.usc.edu/radishrepository/view-one.php?name=ap_hill_07b
http://cres.usc.edu/radishrepository/view-one.php?name=ap_hill_07b

