
Theoretical Computer Science 407 (2008) 587–590

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Note

Pattern matching with pair correlation distanceI

Benny Porat, Ely Porat ∗, Asaf Zur
Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel

a r t i c l e i n f o

Article history:
Received 18 February 2008
Received in revised form 30 May 2008
Accepted 8 August 2008
Communicated by M. Crochemore

a b s t r a c t

In pattern matching with the pair correlation distance problem, the goal is to find all
occurrences of a pattern P of lengthm, in a text T of length n, where the distance between
them is less than a threshold k. For each text location i, the distance is defined as the
number of different kinds of mismatched pairs (α, β), between P and T [i . . . i + m].
We present an algorithm with running time of O

(
min{|ΣP |2 n logm, n (m logm)

2
3 }

)
for

this problem. Another interesting problem is the one-side pair correlation distance where
it is desired to find all occurrences of P where the number of mismatched characters
in P is less than k. For this problem, we present an algorithm with running time of
O
(
min{|ΣP | n logm, n

√
m logm}

)
.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Approximate pattern matching requires finding all occurrences of a pattern P in a text T where a match is defined by a
distancemetric and a threshold. The simplest distancemetric is theHamming distance, where the distance in location i is the
number of mismatches between the pattern and the sub-string T [i . . . i+m]. Landau and Vishkin [10] used suffix trees and
LCA queries to solve this problem inO(nk). Amir et al. [4] used the Landau and Vishkinmethod and combined it with filtering
and verification to get an algorithm that runs inO

(
n
√
k log k

)
and solves theHamming distance problem. Amore generalized

problem is the edit distance problem, which also captures insertion and deletion. It was presented by Levenshtein [9] and a
dynamic programming algorithm was presented by Lowrance and Wagner [11,15]. Other distance metrics were defined in
parameterized matching [5–7,2,8], function matching [1], and swap matching [3].
In this paper we present a new metric, called pair correlation distance, which counts the number of different kinds of

mismatched pairs. A mismatched pair (α, β), α ∈ ΣP , β ∈ ΣT , increases the distance only once, regardless of the number
of times it occurs. The need for such a metric arises in computational biology. For example, if substance A is required for
some reaction but it is missing, it will be replaced by some other substance B. This can be addressed by pair correlation. Such
a case may occur in protein chain synthesis, when some amino-acid is replaced by another one due to a shortage or some
malfunction (radiation that deteriorates the protein structure). The reason for the first substitute may cause other similar
substitutes, hence it is very important to detect such connection between mismatches. Sometimes finding a connection
between repeating mismatches can yield better explanations for experiments than the traditional edit distance.
We also define another problem called one-side pair correlation where mismatches are counted by pattern characters

only. This metric is used when we want to know that substance A is missing, but we are not interested in which substance
replaces it.
Pair correlation is well motivated by music retrieval [14], stock market analysis [12] and copy detection [13], where

mismatches influence each other.

I Research supported in part by the Israel Science Foundation (ISF) and by the Binational Science Foundation (BSF).
∗ Corresponding address: Department of Computer Science, Bar-Ilan University, office: room 305, 52900 Ramat-Gan, Israel. Tel.: +972 3 531 8866; fax:
+972 3 736 0498.
E-mail addresses: bennyporat@gmail.com (B. Porat), porately@cs.biu.ac.il (E. Porat), zurasa@cs.biu.ac.il (A. Zur).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.023

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:bennyporat@gmail.com
mailto:porately@cs.biu.ac.il
mailto:zurasa@cs.biu.ac.il
http://dx.doi.org/10.1016/j.tcs.2008.08.023

588 B. Porat et al. / Theoretical Computer Science 407 (2008) 587–590

2. Problem definition

Following are some useful definitions that we use throughout this document.

Notation 1. Let S1 and S2 be two equal length strings of size `, over alphabets Σ1 and Σ2, respectively. The function Occ(a, b)
denotes the number of times the symbol a ∈ Σ1 is aligned with the symbol b ∈ Σ2. Formally, Occ(a, b) = |{1 ≤ i ≤ ` : S1[i] =
a ∧ S2[i] = b}|.

Definition 1. Let S1 and S2 be two equal length strings, over alphabets Σ1 and Σ2, respectively. Pair Correlation Distance
is PC(S1, S2) = |{(a, b) : Occ(a, b) ≥ 1, a ∈ Σ1, b ∈ Σ2}|. In other words, PC(S1, S2) counts the number of pairs (a, b), a ∈
Σ1, b ∈ Σ2 that are mismatched.

Definition 2. Let T = t1 . . . tn be a text, and P = p1 . . . pm be a pattern over alphabetsΣT andΣP , respectively, and let k ∈ N.
The Pair Correlation Distance problem of P and T with threshold k, is that of finding all locations i = 1, . . . , n, where the Pair
Correlation Distance of P and a prefix of ti . . . tn is less than k, i.e. all locations where PC(P, ti . . . ti+m) ≤ k.

Definition 3. Let S1 and S2 be two equal length strings, over alphabets Σ1 and Σ2, respectively. Denote Occ(a, b) as in
Definition 1. One Side Pair Correlation Distance is PC1(S1, S2) = |{a : ∃b ∈ Σ2Occ(a, b) ≥ 1}|. In other words, this metric
counts the number of pattern symbols that caused at least one mismatch.

Definition 4. Let T = t1 . . . tn be a text, and P = p1 . . . pm be a pattern over alphabetsΣT andΣP , respectively, and let k ∈ N.
The One-Side Pair Correlation Distance problem of P and T with threshold k, is that of finding all locations i = 1, . . . , n, where
the One-Side Pair Correlation Distance of P and a prefix of ti . . . tn is less than k, i.e. all locations where PC1(P, ti . . . ti+m) ≤ k.

For example, consider the following two (equal length) strings:
abcaabbcd
fbeffbbee
Using the traditional Hamming distance, the number of mismatches is 6. Applying the two-side pair correlation distance,

the number of mismatches is only 3 because there are only three pairs that are mismatched (f , a), (e, c), (e, d). The one-side
pair correlation distance gives only 2 mismatches because there are only two symbols that are mismatched: f and e. This
example shows that the pair correlation distancemetric succeeds in detecting the similarity between the two strings while
under the traditional Hamming metric they do not resemble each other. The result of this comparison helps a researcher to
find out the real reason for the difference between those strings.

Remark Algorithms that solve traditional pattern matching problems, usually find all text locations that match the
pattern. The algorithms presented in this paper, report the number of mismatches in each text location as well as the
matches.

2.1. Naive algorithms

The naive algorithm runs over all text locations and compares each of them with the whole pattern. Hence its running
time is O(nm).

2.2. Convolutions

In some cases we can improve the naive algorithm by using convolutions. The naive algorithm finds for each symbol in
the pattern howmany times it appears against each symbol in the text for each text location. For each symbol a ∈ ΣP in the
pattern wemake a convolution with every symbol b ∈ ΣT in the text (except the symbol a itself, since it is not a mismatch).
These convolutions give all errors caused by each pattern symbol. Knowing howmany mismatches each symbol causes it is
possible to calculate the Pair Correlation Distance for each location. Basically, this algorithm does what the naive algorithm
does, but by using convolutions it achieves better running time than the naive algorithm when the alphabets are small.
The number of convolutions made is O (|ΣT | |ΣP |), which gives a total running time of O (|ΣT | |ΣP | n logm).
For one-side pair correlation it is required to count how many errors each pattern symbol causes, regardless of the text

symbols it is aligned with. Hence for each pattern symbol we make only one convolution to check how many errors it
contributes. Therefore, the number of convolutionsmade is onlyO (|ΣP |), which results in a running time ofO (|ΣP | n logm).

2.3. Filtering and verification

In some cases it is possible to utilize some properties of the pattern and to divide the algorithm into two stages:

1. Filtering — In this stage a quick scan of the text is made in order to eliminate a considerable number of text locations.
2. Verification — In this stage each text location that passed the filtering stage is checked to see whether it is a match or
not. Due to the filtering the number of locations to be verified is much lower than the total number of text locations.

In [4] this method is used widely. However in our case, some changes are required, as described in the next section.

B. Porat et al. / Theoretical Computer Science 407 (2008) 587–590 589

3. Algorithm for one-side

In this section we deal with one-side pair correlation. This is a simpler problem than two-side pair correlation since we
are interested only in pattern symbols. For each pattern symbol we want to know whether it causes at least one mismatch
or doesn’t cause any. This can be achieved by using one convolution for each symbol, resulting in |ΣP | convolutions and
a running time of O (|ΣP | n logm), as described in Section 2.2. This algorithm has reasonable running time when |ΣP | is
smaller thanm. However, when |ΣP | = O(m) the running time becomes O(nm logm)which is worse than that of the naive
algorithm.
To improve this we define x to be a threshold such that if |ΣP | < xwemake |ΣP | convolutions to solve the problem. The

exact value of xwill be determined later. From now on, we deal only with the case where |ΣP | ≥ x.

Definition 5. A pattern symbol is called frequent if it appears more than m
x+1 times in the pattern. Otherwise it is called rare.

The number of frequent symbols is no more than x, hence making a convolution for each frequent symbol results in
running time of O(nx logm).
For rare symbols we use the filtering and verificationmethod. In the filtering stage we look at the first occurrence of each

of the pattern symbols. Following is the filtering algorithm:

1. Let Offset be an array of all offsets of the first occurrence in the pattern of each symbol inΣP .
2. Let Score be an array of length |T |, initialized to 0.
3. For i = 1 to |T |
(a) Score[i-Offset[T[i]]++

The filtering stage actually counts how many first occurrences of pattern symbols are aligned with each text location.
Each text location that got less than |ΣP | − k scores is discarded, since there are more than k mismatches. The number of
locations that passed the filtering stage is at most O

(
n

|ΣP |−k

)
. For each text location that passed the filtering stage we have

to check only rare symbols, since the frequent symbols were counted by convolutions. Each rare symbol appears no more
than m

x+1 times and there are no more than |ΣP | rare symbols, so for each text location we have to check at most O
(
m|ΣP |
x+1

)
locations in the pattern. We assume that k ≤ |ΣP |2 . Since there are no more than O

(
n

|ΣP |−k

)
text locations to check, the total

time for rare symbols is O
(nm
x

)
. The total time for all symbols, rare and frequent, is O

(
xn logm+ nm

x

)
. Optimizing over x

values we find that the minimum is when x =
√

m
logm , yielding a running time of O

(
n
√
m logm

)
.

Conclusion: Total running time for one-side pair correlation is O
(
min

{
|ΣP | n logm, n

√
m logm

})
.

In the above analysis we assumed that k ≤ |ΣP |2 . This assumption was made to bound the number of text locations that

may pass the filtering stage. However, bounding k by
√
m

2
√
logm , gives the same running time, because the filtering stage is

done only when |ΣP | ≥
√

m
logm , which bounds the number of text locations that passed the filtering by O

(
n
|ΣP |

)
. Hence, the

constraint on k is that it should be less than O
(
max

{
|ΣP |
2 ,

√
m
logm

})
.

4. Algorithm for two-side

The algorithm shown above, for one-side pair correlation distance, can be extended to solve the problem of two-side pair
correlation distance. We use a common technique in pattern matching, and divide the text into nm overlapping segments of
size 2m. In each segment there is a sub-segment where its alphabet is bounded byO (|ΣP | + k), otherwise there is nomatch.
The reason for this is that each text location that has more than |ΣP | + k different symbols is a mismatch. Hence, if a

match exists there is a segment of size m with alphabet of size |ΣP | + k. Because each segment is of size 2m there are no
more than O (|ΣP | + k) different text symbols in each text segment. We assume that k ≤

|ΣP |
2 . Using this assumption, the

number of convolutions made is no more than O
(
|ΣP |

2).
As in one-side pair correlationwe set a parameter x such that if |ΣP | < xwe make O

(
|ΣP |

2) convolutions, otherwise we
do the following.
We define a frequent symbol as in Definition 5, namely, a symbol that appears more than m

x+1 times. In contrast to the
one-side pair correlationwhere we have to deal with pattern symbols only, here we have to handle also text symbols. There
are four groups of symbols we have to check:

1. Frequent pattern symbols with frequent text symbols
2. Frequent pattern symbols with rare text symbols
3. Rare pattern symbols with frequent text symbols
4. Rare pattern symbols with rare text symbols.

590 B. Porat et al. / Theoretical Computer Science 407 (2008) 587–590

For the first groupwe use convolutions. There are nomore than x frequent pattern symbols, and nomore than 2x frequent
text symbols, hence the total number of convolutions is O(x2). To check all other groups we use the filtering and verification
method. We apply algorithm I to eliminate text locations that got fewer than |ΣP | − k scores. After the filtering stage there
are nomore thanO

(
n

|ΣP |−k

)
locations to check. In the verification stagewe check each rare pattern symbol naively. There are

nomore than |ΣP | rare symbols, and each one of them has nomore than x occurrences, hence the running time for each text
location to count rare pattern symbols is O

(
|ΣP |m
x+1

)
. The number of locations we have to check is no more than O

(
n

|ΣP |−k

)
(due to the filtering stage), hence the total running time for rare pattern symbols is O

(nm
x

)
. So far we have checked frequent

pattern symbols with frequent text symbols, and rare pattern symbols with frequent and rare text symbols. All we have to
check now is frequent pattern symbols with rare text symbols. This is done exactly as we checked the rare pattern symbols
—we check naively each text symbol. However, nowwe handle rare pattern symbols and don’t care to avoid counting them
twice. The running time for frequent pattern symbols with rare text symbols is also O

(nm
x

)
.

The total time for all symbols, rare and frequent is O
(
x2n logm+ nm

x

)
. Optimizing over x values we find the minimum is

where x = 3
√

m
logm , yielding a running time of O

(
n (m logm)

2
3

)
.

Conclusion: The total running time for the pair correlation distance is O
(
min

{
|ΣP |

2 n logm, n (m logm)
2
3

})
.

As in one-side pair correlation we assumed that k ≤ |ΣP |
2 . Here, in two-side pair correlation there are two reasons for

this assumption: to bound the number of different text symbols in each text segment when using convolutions (in the case
|ΣP | ≤ 3

√
m
logm), and to bound the number of text locations that may pass the filtering stage (otherwise).

Bounding k by
3√m

2 3
√
logm
, gives the same running time. In the case |ΣP | ≤ 3

√
m
logm , the number of different text symbols is

no more than O
(
|ΣP | +

3√m
2 3
√
logm

)
, hence the number of convolutions made is bounded by O

((
m
logm

) 2
3
)
. In the other case,

when |ΣP | > 3
√

m
logm , the number of text locations that pass the filtering is bounded by O

(
n
|ΣP |

)
resulting in a running time

of no more than O
(
n (m logm)

2
3

)
. Hence, the constraint on k is that it should be less than O

(
max

{
|ΣP |
2 ,

3
√

m
logm

})
.

5. Summary

In this paper we presented and defined the problems of one-side pair correlation and two-side pair correlation. For one-
side pair correlationwe presented an algorithm that runs in O

(
min

{
|ΣP | n logm, n

√
m logm

})
, for any k that is bounded by

O
(
max

{
|ΣP |
2 ,

√
m
logm

})
. This algorithm was extended to solve the problem of two-side pair correlationwith a running time

of O
(
min

{
|ΣP |

2 n logm, n (m logm)
2
3

})
, for any k that is bounded by O

(
max

{
|ΣP |
2 ,

3
√

m
logm

})
.

References

[1] A. Amir, Y. Aumann, R. Cole, M. Lewenstein, E. Porat, Function matching: Algorithms, applications, and a lower bound, in: Proc. of the International
Colloquium on Automata, Languages and Programming, ICALP, 2003, pp. 929–942.

[2] A. Amir, M. Farach, S. Muthukrishnan, Alphabet dependence in parameterized matching, Inform. Process. Lett. 49 (1994) 111–115.
[3] A. Amir, G.M. Landau, M. Lewenstein, N. Lewenstein, Efficient special cases of pattern matching with swaps, Inform. Process. Lett. 68 (3) (1998)
125–132.

[4] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with k mismatches, in: Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,
SODA, 2000, pp. 794–803.

[5] B.S. Baker, A theory of parameterized pattern matching: Algorithms and applications, in: Proc. 25th Annual ACM Symposium on the Theory of
Computation, 1993, pp. 71–80.

[6] B.S. Baker, Parameterized pattern matching: Algorithms and applications, J. Comput. System Sci. 52 (1) (1996) 28–42.
[7] B.S. Baker, Parameterized duplication in strings: Algorithms and an application to software maintenance, SIAM J. Comput. 26 (5) (1997) 1343–1362.
[8] C. Hazay, M. Lewenstein, D. Sokol, Approximate parameterizedmatching, in: Proc. of the 12th Annual European Symposium on Algorithms, ESA, 2004,
pp. 414–425.

[9] V.I. Levenstein, Binary codes capable of correcting, deletions, insertions and reversals, Soviet Phys. Dokl. 10 (1966) 707–710.
[10] G.M. Landau, U. Vishkin, Introducing efficient parallelism into approximate string matching, in: Proc. 18th ACM Symposium on Theory of Computing,

1986, pp. 220–230.
[11] R. Lowrance, R.A. Wagner, An extension of the string-to-string correction problem, J. ACM 22 (2) (1975) 177–183.
[12] G.V. Nosovskij, Mathematical analysis of stock market movement, in: 3rd International Conference on Cyberworlds, CW, 2004, pp. 320–321.
[13] S. Schleimer, D.S. Wilkerson, A.A. Winnowing, Local algorithms for document fingerprinting, in: Proceedings of the International Conference on

Management of Data, SIGMOD, 2003, pp. 76–85.
[14] I. Shmulevich, O. Yli-Harja, E. Coyle, D. Povel, K. Lemstrom, Perceptual issues in music pattern recognition — Complexity of rhythm and key finding,

in: Proc. of AISB Symposium on Musical Creativity, 1999, pp. 64–69.
[15] R.A.Wagner, On the complexity of the extended string-to-string correction problem, in: Proc. of the 7th ACM Symposium on the Theory of Computing,

STOC, 1975, pp. 218–223.

	Pattern matching with pair correlation distance
	Introduction
	Problem definition
	Naive algorithms
	Convolutions
	Filtering and verification

	Algorithm for one-side
	Algorithm for two-side
	Summary
	References

