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a b s t r a c t

We design heuristic algorithms to construct Hadamard matrices with two circulant cores.
This hard combinatorial problem can be formulated in terms of objective functions of
several binary variables, so that heuristic methodologies can be used. Our algorithms are
based on local and tabu search and they use information on the geometry of the objective
function landscapes. In addition, we use the supplementary difference sets formalism
to detect when solutions of a special structure exist. Using these algorithms we have
computed at least one Hadamard matrix with two circulant cores of the sixteen orders
56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116. In particular, the Hadamard
matrix with two circulant cores of order 116 is constructed here for the first time, indeed
it was accidentally reported as known in an earlier paper.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Hadamard matrices with two circulant cores can be defined in terms of the periodic autocorrelation function of the two
binary sequences that generate the two circulant cores. The periodic autocorrelation function of a sequence is a measure of
how much the given sequence differs from its translates.
Let ` be a positive integer and A be a (finite) sequence of ` real numbers {a0, a1, . . . , a`−1}. The periodic autocorrelation

function PA(s) is defined by

PA(s) =
`−1∑
i=0

aiai+s, s = 0, 1, . . . , `− 1 (1)

where i+ s is taken modulo `.
The following symmetry propertywill be helpful later on, in reducing the size of the objective functions involved. Suppose

that ` is odd. Then we have that

PA(s) = PA(`− s), s = 1, . . . ,
`− 1
2

. (2)

Two {−1,+1} sequences A and B both of length ` such that their corresponding PAF terms (except the first one) sum to
−2

PA(s)+ PB(s) = −2, s = 1, . . . , `− 1 (3)

can be used as the first rows of circulant matrices CA and CB respectively, so that the matrix

∗ Corresponding author. Tel.: +1 519 884 0710.
E-mail address: ikotsire@wlu.ca (I.S. Kotsireas).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.06.002

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:ikotsire@wlu.ca
http://dx.doi.org/10.1016/j.tcs.2008.06.002


M. Chiarandini et al. / Theoretical Computer Science 407 (2008) 274–277 275

H2`+2 =



− − + · · · + + · · · +

− + + · · · + − · · · −

+ +

...
... CA CB

+ +

+ −

...
... CTB −CTA

+ −


(4)

is a Hadamard matrix of order 2`+ 2 with two circulant cores. The superscript T denotes matrix transposition.
A Hadamard matrix of order n is an n× nmatrix H which has±1 elements such that HHT = HTH = nIn, where In is the

identity matrix of order n.
Hadamard matrices with two circulant cores (also called generalized Legendre pairs) have been studied in [3] using

discrete Fourier transform, decimation andpower spectral density techniques, in [7] using computational algebra techniques
and in [6] using simple genetic algorithm.
Sometimes it may happen that the two sequences A and B that have property (3) are equal. A sufficient condition for

when this can happen, can be expressed conveniently via supplementary difference sets. See [9] and [10] for the definition
and properties of supplementary difference sets.
The following theorem is taken from [2].

Theorem 1. (1) If P, Q are supplementary difference sets 2− {`; k1, k2; λ} and A, B are the corresponding (−1, 1) incidence
matrices, then

AAT + BBT = 4(k1 + k2 − λ)I` + 2(`− 2(k1 + k2 − λ))J`. (5)

(2) Given two ` × ` circulant matrices A, B satisfying (5), then the corresponding sets P, Q are supplementary difference sets
2− {`; k1, k2; λ}, where k1, k2 is the number of−1’s in each row of A, B respectively.

In [4] it is pointed out that a sufficient condition for the existence of two {−1,+1} sequences A and B that satisfy property
(3) is the existence of an SDS 2− {`; `+12 ,

`+1
2 ;

`+1
2 }.

If in addition we are looking for such sequences, with the additional constraint that A = B, then the sufficient condition
is the existence of an (`, `+12 ,

`+1
4 ) difference set. In particular, this implies that ` ≡ 3 (mod 4). See [1] for the definition

and properties of difference sets.
When ` ≡ 3 (mod 4) is a prime, then the quadratic residues form an (`, `+12 ,

`+1
4 ) difference set, so the condition is

necessary and sufficient.

2. Objective functions

The objective functions that we used in our algorithms are given by:

OF1 = |2+ PA(1)+ PB(1)| + · · · + |2+ PA(`− 1)+ PB(`− 1)|

and

OF2 = (2+ PA(1)+ PB(1))2 + · · · + (2+ PA(`− 1)+ PB(`− 1))2.

Note that OF1 and OF2 can be described succinctly in terms of the 1-norm and the 2-norm of the PAF vector v =
[PA(1), . . . , PA(`− 1)] as follows:

OF1 = ‖v‖1, OF2 = ‖v‖22.

We note that OF2 is a smooth and continuous function, but which attains larger values (has a bigger range) than OF1, in
general. We also occasionally supplemented OF1 and OF2 with linear equations of the form

a0 + · · · + a`−1 = 1, b0 + · · · + b`−1 = 1, (6)

without loss of generality, due to the Diophantine constraint

(a0 + · · · + a`−1)2 + (b0 + · · · + b`−1)2 = 2.

See [7], for instance, for a derivation of the Diophantine constraint above.



276 M. Chiarandini et al. / Theoretical Computer Science 407 (2008) 274–277

Note that the symmetry property (2) of the PAF vector can be used to reduce the size of the objective functions OF1 and
OF2 by half, as we only need to consider its first `−12 elements. Specifically, setting m =

`−1
2 , we may define the objective

functions by:

OF1 =
m∑
i=1

|2+ PA(i)+ PB(i)| and OF2 =
m∑
i=1

(2+ PA(i)+ PB(i))2.

The heuristic algorithms described in this paper attempt to find values of the binary variables ai, bi that make the (non-
negative) objective functions OF1 and OF2 equal to zero, i.e. minimize them.
To illustrate the difficulty of minimizing these objective functions we mention that the size of the discrete search space

{−1,+1}2` (often called the boolean cube) is equal to 22`. A probabilistic analysis regarding the size of the subspace defined
by Eq. (6) is given in [6] where the following lemma is proved.

Lemma 1. The size of the subspace of the boolean cube {−1,+1}2` defined by the equations a0 + · · · + a`−1 = 1 and
b1 + · · · + b`−1 = 1 is approximately

[
π`
2

]
times smaller than the size of the entire boolean cube.

3. Heuristic approach

The heuristic algorithms developed for the minimization of the objective functions OF1 and OF2 are based on the tabu
search method, see [5], which has been shown to be very effective for similar hard problems with quadratic objective
functions, see for instance [8] for the Quadratic Assignment Problem. Tabu search is essentially a local search that selects
the best solution from a neighborhood opportunely restricted in order to avoid cycling.
In our implementation, we considered two different neighborhoods. The first (N1) consists of all feasible solutions that

are obtained from another feasible solution by exchanging the sign between ai (bi) and aj (bj) with ai 6= aj (bi 6= bj) and
0 ≤ i < j ≤ ` − 1. The second neighborhood (N2) explores the cases in which A may be equal to B, that is, when ` ≡ 3
(mod 4) and ` is a prime. For this neighborhood, a sign exchange between ai and aj implies a sign exchange between bi and bj.
Both neighborhoods are of size O(`2) and it takes O(`4) time to choose the best neighboring solution. However, a

faster computation of the objective function can be obtained by computing the contribution UA(s) to PA(s) of the terms
that changed. This value can be computed as follows.

UA(s) = −2 ·


ajaφ(j+s) + aφ(i−s)ai s = j− i
aiaφ(j+s) + aφ(i−s)aj s = `− j+ i
aiaφ(i+s) + aiaφ(i−s) + ajaφ(j+s) + ajaφ(j−s) otherwise

where φ(x) is defined as a modulus function φ(x) = x− `b x
`
c. The contribution of UB(s) to PB(s) is computed similarly with

the necessary changes. Hence, the best solution in the neighborhood can be found in O(`3) time.
Our tabu search chooses at each iteration the best non-tabu or tabu but aspired solution from the neighborhood,

improving over an initial feasible solution that is generated randomly. The tabu restriction works as follows: If a selected
neighbor is obtained by a sign exchange between ai (bi) and aj (bj), the same exchange is forbidden in A (B) for the next iter
iterations. For this reason, the indices i and j need to be maintained in an additional O(`2)-space data structure for each
sequence. The tabu status of a neighboring solution is overruled if it improves over the best solution found so far (known
as the aspiration criterion). If more than one neighboring solution yields the same value in the evaluation function, then
one of those neighbors is selected in lexicographic order. We restrict the neighborhood to the sequence A or B, changing
sequence at each iteration. Some preliminary experiments indicated that this tabu search may be less effective for larger `.
Therefore, if no improvement is obtained over the best solution found for a given number riter of iterations, the sequences
are reinitialized. The parameters iter and riter were set experimentally.
The largest objective function that we were able to solve in this paper is the one corresponding to ` = 57. This objective

function contains 114 binary variables, so the size of the entire search space is 2114. The solution was found within a set
of 60 runs per each different tabu length parameter from the set {0.5`, 1`, 5`, 10`, 15`, 20`}, each run having a different
random seed and consisting of 106 seconds with internal restart every 10000 non improving iterations. The solution was
found with a tabu length parameter equal to 0.5.

4. Results

The tabu search using neighborhoodN1 was run for ` = 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, for 10000 s. The parameter
iter was set equal to ` and riter equal to 10000 iterations. The tabu search using neighborhood N2 was run for ` = 31 and
43. The values for riter and iter were defined as above. Table 1 shows the number of unique solutions found by the tabu
search using neighborhoods N1 and N2. Recently, we also found solutions for ` = 47, 49, 51, 53, 55, 57. The solution for
` = 57 is given here for the first time. Indeed, it was accidentally reported as known in [3].
An implementation of the tabu search algorithm and the results we obtained are available on-line at theweb page http://

www.cargo.wlu.ca/2cc. These solutions have been used to construct Hadamard matrices with two circulant cores of the
sixteen orders 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116.
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Table 1
Number of solutions found by tabu search using neighborhoodsN1 andN2

` 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
N1 26525 8121 2061 372 190 46 20 1 2 1 1 1 1 1 1 1
N2 – – 1143 – – – – – 147 – – – – – – –
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