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a b s t r a c t

The paper introduces a simple way to show that certain iterative, number theoretic
problems are undecidable. As applications, variants of the Collatz’s conjecture and the so-
called Collatz’s original problem are shown to be undecidable.
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1. Introduction

In 1930s a German mathematician, Lothar Collatz, posed his famous conjecture known as the 3n + 1 conjecture [2]. It
states that if the function

C(n) =
{
3n+ 1, if n is odd
n/2, if n is even

is iterated on any positive integer n, the iteration will lead at some point to 1. As of today, the Collatz conjecture remains
an open problem. Although there has been some progress [2], it seems that Paul Erdös was quite right when he stated that
‘‘Mathematics is not yet ready for such problems’’.
In this paper, the undecidablility of a variant of the Collatz conjecture is shown. More precisely, it will be shown that for

the function

f (n) =
{
3n+ t if n ∈ At , where t = −9,−8, . . . , 8, 9
n/2 if n is even,

where the sets At are recursive and form a partition of odd natural numbers, it is undecidable which iterations lead at some
point to 1. This will be shown by using a certain coding of a computation of a Turing machine. The coding itself is a versatile
tool and as another application, the undecidability of a variant of the so-called Collatz’s original problem is shown as well.
This problem is about finite cycles in a permutation of natural numbers.
The main purpose of this paper is to present a simple method for obtaining undecidability results for iterative number

theoretic problems. This paper might also motivate further study of undecidable variants of the Collatz’s problems.
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2. An undecidable variant of Collatz’s conjecture

In this section we introduce a coding of a computation of a Turing machine and with it show an undecidability result
related to Collatz’s conjecture. First, however, we define the conjecture and motivate our upcoming considerations.

Problem 1. Let f : N→ N and n ∈ N be given. Decide, whether for some k ∈ N f (k)(n) = 1, where

f (k)(n) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

(n).

If such a k exists, we say that it solves this problem.

Using the previous Problem, one may formulate the well-known conjecture by Lothar Collatz [2].

Conjecture 2 (Collatz). Let the function C : N→ N be defined as

C(n) =
{
3n+ 1 if n is odd,
n/2 if n is even.

For every n there is a k ∈ N which solves Problem 1.

As a weaker statement we give

Conjecture 3. Let C be defined as in Conjecture 2. Then there is an algorithm, which decides for every n, whether there exists a
k ∈ N that solves Problem 1. In other words, Problem 1 is decidable for the function C.

At present, Conjecture 2 remains unsolved [2] and up to our knowledge, so does Conjecture 3. A variant of Problem 1
involving so-called piecewise linear functions was proved undecidable by Conway [1].
For the undecidability result of this section, let us first define a codingC from the set of legal descriptions of computations

of Turing machines to the set of natural numbers written in ternary representation.
We assume familiarity with Turing Machines and their configurations and computations as in [3]. We will assume

that the input and tape alphabets coincide, hence Σ = Γ = {a1, a2, . . . ak}. We will be denoting the set of states by
Q = {q1, q2, . . . , qm} and assume that q1 and q2 are the initial and final state, correspondingly. We also define a list
∆ = [u1 ` v1, . . . , un ` vn] of the transition rules.
Now such a Turing machine can be given as a triplet

M = [[a1, . . . , ak], [q1, q2, . . . , qm], [u1 ` v1, . . . , un ` vn]]. (1)

Definition 4. Recall the presentation (1). First, define a coding C ′ to the binary alphabet as follows:

C ′(ai) = 205+i for i = 1, . . . , k and C ′(qi) = 205+k+i for i = 1, . . . ,m,

where the codewords are regarded as words in {0, 2}∗. We also need codings for the special letters:

C ′( [ ) = 20 C ′( ] ) = 200 C ′( , ) = 203

C ′( ` ) = 204 C ′( # ) = 205.

For wordsw = w1w2 · · ·wl whose length is greater than one, define

C ′(w) = C ′(w1)C
′(w2) · · ·C

′(wl).

Note, that this applies to the elements of the list ∆. In the same way we now know how to encode the description (1) of a
Turing machine.
Finally, for any wordw whose encoding has been defined, let

C(w) = 1C ′(w). (2)

Notice, that C(w) is always an odd natural number when understood as written in ternary representation. Indeed,

C(w) = 1 · 3l(C(w))−1 + s,

where l(C(w)) is the length of the ternary representation of C(w) and s is an even number.
In addition to the coding C, we need also the following technical lemma. For it, consider ternary representations of odd

natural numbers of the form

n = C(M#w0#w1# · · ·#wl#α), (3)

whereM is a Turing machine given in the form (1),w0 is a legal initial ID ofM,w0 ` w1 ` · · · ` wl, α does not contain the
special letter #, and n (as a word) is a prefix of C(M#w0#w1# · · ·#wl#wl+1#), wherewl ` wl+1. Here we allow α to be the
empty word.
Thus in (3), the number n is an (incomplete) encoding of a computation of a Turing machineM.
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Lemma 5. Let m be a natural number. Then for some t ∈ {−9,−8, . . . , 8, 9}, 3m+ t is

(1) of the form 4+ 8r, i.e., divisible by four but not by eight, and
(2) (3m+ t)/4 is not of the form (3).

Proof. It is clear, that for any m, there are at least two numbers t1, t2 ∈ {−9,−8, . . . , 8, 9} such that 3m + ti fulfills the
requirement 1. Let t1 and t2 be the smallest such numbers, hence t2 = t1+ 8. Now, if (3m+ t1)/4 is not of the form (3), also
the requirement 2 is fulfilled.
Let us then assume that (3m+ t1)/4 actually is of the form (3). Now

(3m+ t2)/4 = (3m+ t1 + 8)/4 = (3m+ t1)/4+ 2.

If the ternary representation of (3m+ t1)/4 endswith digit 0, we deduce that the ternary representation of (3m+ t2)/4 ends
with digit 2. The ternary representations of (3m+ t1)/4 and (3m+ t2)/4 agree in all the other digits. Since the computation
of a Turing machine is deterministic, this implies that (3m + t2)/4 is not of the form (3). If, on the other hand, the ternary
representation of (3m+ t1)/4 ends with digit 2 it follows that the ternary representation of (3m+ t2)/4 ends with digit 1.
Now by the definition of the coding C it is clear that (3m+ t2)/4 cannot be of the form (3). �

Now we are ready to state the main result of this section. In the following, by a recursive set we mean a set A ⊂ N for
which it is effectively decidable whether n ∈ A for any natural number n. Notice, that the recursive sets At given in the proof
of the following Theorem form a partition of the set of odd natural numbers.

Theorem 6. There exists a choice of recursive sets At such that the Problem 1 is undecidable for the function f defined as

f (n) =
{
3n+ t if n ∈ At , where t = −9,−8 . . . , 8, 9,
n/2 if n is even.

(4)

Proof. Let first n ∈ N be an odd number whose ternary representation is of the form (3),

n = C(M#w0#w1# · · ·#wl#α).

In particular there exists a computation stepwl ` wl+1 and thusw0 `∗ wl is not a halting computation ofM.
Define now f (n) to be the unique number whose length in ternary representation is one digit longer than that of the

number n and for which

f (n) is a prefix of C(M#w0#w1# · · ·#wl#wl+1#).

Thus f (n) continues the encoding of the computation by one digit. Due to the encoding, f (n) = 3n+ 0 or f (n) = 3n+ 2.
Consider nowany other oddnumber n > 9, forwhich f (n) is yet not defined and let f (n) = 3n+t , where t ∈ {−9, . . . , 9},

be the smallest number such that

(1) f (n) is divisible by four but not by eight, and
(2) f (n)/4 is not of the form (3).

The fact that this can be done was proved in Lemma 5. The reason behind this definition is that after the Turing machine’s
computation halts, we want to descend down to 1 in our iteration. This descending should be controlled in such a way that
the iteration does not collide with any other Turing machine’s computation.
Finally for even n we define f (n) = n/2 and for odd n ≤ 9 we define f (n) = 3n+ t , t ∈ {−9, . . . , 9} to be the smallest

possible power of 2, i.e. f (9) = 32, f (7) = 16, f (5) = 8 and f (3) = f (1) = 1.
Now consider n of the form

n = C(M#w0#), (5)

wherew0 is an initial ID of the Turing machineM. IfM does not halt on its input, clearly

lim
k→∞

f (k)(n) = ∞.

Assume then, that the computation halts at some point. Now for some h ∈ N,

f (h)(n) = C(M#w0#w1# · · ·#wl−1#wl#),

wherew0 `∗ wl is a halting computation ofM. By the definition of the function f we know that f (h+1)(n) is divisible by four
but not by eight. Moreover,

f (h+2)(n) = f (h+1)(n)/2 and

f (h+3)(n) = f (h+2)(n)/2 = f (h+1)(n)/4.

Notice that (3n+ t)/4 < n for every t = −9,−8, . . . , 8, 9 whenever n > 9. This yields the inequality

f (h+3)(n) = f (h+1)(n)/4 < f (h)(n).
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By the same reasoning we have f (h+6)(n) < f (h+3)(n) and more generally,

f (h+3(i+1))(n) < f (h+3i)(n), if f (h+3i)(n) > 9.

Finally, by the definition of f we find a natural number k, for which

f (k)(n) = 1.

Thus we have proved, that for any natural number n of the form (5),

there exists a kwhich solves the Problem 1 ⇐⇒M halts
on its initial IDw0.

Since f can be written in the form (4) and the Halting problem is undecidable for Turing machines, the claim follows. �

3. On a bijection N → N

Conjecture 2 was not the first iterative problem studied by Lothar Collatz. One of these problems that he investigated in
1932 [2] was about the permutation N→ N defined as

f (3n) = 2n, f (3n− 1) = 4n− 1, f (3n− 2) = 4n− 3. (6)

Collatz was interested about its cycle structure and asked in particular, whether or not the cycle containing n = 8was finite.
Thus it is justifiable to call this permutation problem the original Collatz’s problem.
Next we will show that the technique introduced in the previous section gives an undecidability result concerning a

generalization of the original Collatz’s problem.

Problem 7. Let f : N→ N be a recursive bijection and n ∈ N. Decide, whether there exists a k ∈ N, k > 1 such that

f (k)(n) = n.

Theorem 8. There exists a recursive bijection f for which Problem 7 is undecidable.

Proof. Let n ∈ N be an odd number of the form (3),

n = C(M#w0#w1# · · ·#wl#α).

Define f (n) now exactly as in the previous section, i.e., f (n) continues the encoding of the computation by one ternary digit.
Otherwise, if

n = C(M#w0#w1# · · ·#wl#),

wherew0 `∗ wl is a halting computation ofM, define

f (n) = C(M#w0#) 1 1 . . . 1

to be the natural number for which l(f (n)) = l(n), where l(w) is the length ofw. Here n and f (n) are treated as words over
the ternary alphabet.
Let now n be any number of the form

n = C(M#w0#) 1 . . . 1 (7)

for which there is no halting computationw0 ` w1 `∗ wl ofM such that

l(C(M#w0#w1# · · ·#wl#)) < l(n).

Then define f (n) to be the largest proper prefix of n (when n is seen as a word over {0, 1, 2}∗). Finally for those n ∈ N, for
which f (n) has not been yet defined, set f (n) = n.
It is easy, although a bit tedious, to show that the hereby defined f is surjective. Consider for example the case where

m ∈ N is of the form (3) and l > 0 or α is not the empty word. Now if n is the largest proper prefix ofm, f (n) = m. If, on the
other hand,

m = C(M#w0#),

wherew0 is a legal initial ID ofM then f (m1) = m. The remaining cases can be dealt with in similar fashion.
Let us show that the function f is injective as well. For this, assume that for some natural numbers n1 and n2, n1 < n2,

we have f (n1) = f (n2). Now if l(f (n1)) > l(n1), n1 must be of the form (3). Thus n2 cannot be of the same form, since the
computation of a Turing machine is deterministic. Now, either f (n2) = n2 or the ternary representation of f (n2) contains at
least two times the digit 1. Clearly both cases are impossible by the definition of the function f and the coding C.
Consider next the case l(f (n1)) < l(n1). Now n1 must be of the form (7). Moreover, n2 cannot be of the form (3) and since

we assumed that n2 > n1, this case is also impossible.
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Finally consider the case l(f (n1)) = l(n1). This is possible if either f (n1) = n1 or n1 is a coding of a halting computation
of a Turing machine. If f (n1) = n1 we know by definition of the function f that n2 = n1, a contradiction. The same holds for
the second case.
Hence, f is a recursive bijection. Consider now a natural number n of the form

n = C(M#w0#),

wherew0 is an initial ID of the Turing machineM. If the computation of the machineM does not halt on the initial ID, it is
clear that

lim
k→∞

f (k)(n) = ∞

and moreover, there cannot exist any natural number k > 0 for which f (k)(n) = n. If, on the other hand, the computation
halts we know that there exists a h ∈ N for which

f (h)(n) = C(M#w0#) 1 1 . . . 1.

Now, due to the definition of f , f (h+1)(n) is the largest non-trivial prefix of f (h)(n). Also f (h+2)(n) is the largest non-trivial
prefix of f (h+1)(n) and hence, by iterating f we come to a natural number k > 0 for which f (k)(n) = n. Thus we have proved
that for such a n,

There exists a k > 1 which solves the Problem 7 ⇐⇒M halts
on its initial IDw0.

Again, since the Halting problem for Turing machines is undecidable, the claim follows. �
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