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a b s t r a c t

In this paper we explore various interconnections between rich words, Sturmian words,
and trapezoidal words. Rich words, first introduced by the second and third authors
together with J. Justin and S. Widmer, constitute a new class of finite and infinite words
characterized by having themaximal number of palindromic factors. Every finite Sturmian
word is rich, but not conversely. Trapezoidal words were first introduced by the first
author in studying the behavior of the subword complexity of finite Sturmian words.
Unfortunately this property does not characterize finite Sturmian words. In this note we
show that the only trapezoidal palindromes are Sturmian. More generally we show that
Sturmian palindromes can be characterized either in terms of their subword complexity
(the trapezoidal property) or in terms of their palindromic complexity. We also obtain a
similar characterization of rich palindromes in terms of a relation between palindromic
complexity and subword complexity.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In [10], X. Droubay, J. Justin, and G. Pirillo showed that a finite wordW of length |W | has at most |W | + 1 many distinct
palindromic factors, including the empty word. In [14], the second and third authors together with J. Justin and S. Widmer
initiated a unified study of both finite and infinite words characterized by this palindromic richness property. Accordingly
we say that a finite wordW is rich if and only if it has |W | + 1 distinct palindromic factors, and an infinite word is rich if
all of its factors are rich. Droubay, Justin and Pirillo showed that all episturmian words (in particular all Sturmian words)
are rich. Other examples of rich words are complementation symmetric sequences [14], symbolic codings of trajectories of
symmetric interval exchange transformations [12,13], and certain β-expansions where β is a simple Parry number [1].
Let u be a non-empty factor of a finite or infinite wordW . A factor ofW having exactly two occurrences of u, one as a

prefix and one as a suffix, is called a complete return to u inW . In [14], the following fact is established:

Proposition 1. A finite or infinite word W is rich if and only if for each non-empty palindromic factor u of W , every complete
return to u in W is a palindrome.

In short, W is rich if and only if all complete returns to palindromes are palindromes.1 Given a finite or infinite word
W , let CW (n) (respectively PW (n)) denote the subword complexity function (respectively the palindromic complexity function)

∗ Corresponding author at: Université de Lyon, Université Lyon 1, CNRS UMR 5208 Institut Camille Jordan, Bâtiment du Doyen Jean Braconnier, 43, blvd
du 11 novembre 1918, F-69622 Villeurbanne Cedex, France. Tel.: +1 940 565 2155; fax: +1 940 565 4805.
E-mail addresses: aldo.deluca@unina.it (A. de Luca), amy.glen@gmail.com (A. Glen), luca.zamboni@wanadoo.fr (L.Q. Zamboni).
1 In [2], the third author, V. Anne and I. Zorca proved that in an episturmian word, any complete return to a palindrome is itself a palindrome.
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which associates to each number n ≥ 0 the number of distinct factors (respectively palindromic factors) ofW of length n.
Infinite Sturmian words are characterized by both their subword complexity and palindromic complexity. An infinite word
W is Sturmian if and only if CW (n) = n + 1 for each n ≥ 0 (cf. [3]). In [11], X. Droubay and G. Pirillo showed that W is
Sturmian if and only if PW (n) = 1 whenever n is even, and PW (n) = 2 whenever n is odd. In [6], the first author studied
the complexity function of finite wordsW . He showed that ifW is a finite Sturmian word (meaning a factor of a Sturmian
word), then the graph of CW (n) as a function of n (for 0 ≤ n ≤ |W |) is that of a regular trapezoid: that is CW (n) increases by
1 with each n on some interval of length r, then CW (n) is constant on some interval of length s, and finally CW (n) decreases
by 1 with each n on an interval of the same size r. Such a word is said to be trapezoidal. Since CW (1) = 2, a trapezoidal
word is necessarily on a binary alphabet. For any word W let us denote by RW the smallest integer p such that W has no
right special factor of length p, and by KW the length of the shortest unrepeated suffix ofW . In Proposition 4.7 of [6], the
first author proves that W is trapezoidal if and only if |W | = RW + KW . However, in [6] it is shown that the property of
being trapezoidal does not characterize finite Sturmian words. For instance, the word aaabab is not Sturmian although it is
trapezoidal.2

The main results of this note are to give characterizations of both rich palindromes and Sturmian palindromes in terms
of the palindromic complexity functions. We also show that every trapezoidal word is rich, but not conversely. In the case
of rich palindromes we prove3:

Theorem 1. Let W be a finite word. Then the following two conditions are equivalent:

(A) W is a rich palindrome.
(B) PW (n)+ PW (n+ 1) = CW (n+ 1)− CW (n)+ 2 for each 0 ≤ n ≤ |W |.

In the context of Sturmian palindromes we prove4:

Theorem 2. Let W be a word of length N. Then the following three conditions are equivalent:

(A’) W is a Sturmian palindrome.
(B’) PW (n)+ PW (N − n) = 2 for each 0 ≤ n ≤ N.
(C’) W is a trapezoidal palindrome.

2. Rich vs. trapezoidal words

In this section we show that all trapezoidal words are rich:

Proposition 2. Let W be a trapezoidal word. Then W is rich.

Proof. We proceed by induction on |W |. The result is clearly true if |W | ≤ 2. Suppose every trapezoidal word of length
less than N is rich, and suppose thatW is trapezoidal of length N. Let us suppose to the contrary thatW is not rich. Then,
by Proposition 1, in W there exists a complete return to some non-empty palindrome P which is not a palindrome. By
Proposition 8 of [5], any factor of a trapezoidal word is itself trapezoidal. Thus by the induction hypothesis, we deduce that
the prefix and suffix ofW of length N − 1 are each rich. It follows that P is both a prefix and a suffix ofW , and that these
are the only two occurrences of P inW . SoW itself is the complete return to P which is not a palindrome. This implies that
|W | ≥ 2|P| + 2.
It follows that KW = |P| + 1 since P occurs twice inW and if some longer suffix ofW occurred more than once inW ,

then P would occur at least three times in W . Since W is trapezoidal, we have RW + KW = |W |. Now the word W has a
period q = |W |− |P| = RW +KW − (KW −1) = RW +1. Let πW denote the minimal period ofW . Then πW ≤ RW +1. Since
for any wordW , πW ≥ RW + 1, it follows that πW = RW + 1. From Proposition 28 of [7] we deduce thatW is Sturmian,
and hence rich, a contradiction. �

Remark 1. We note that the converse is false; in fact aabbaa is rich but not trapezoidal.

3. Proof of Theorem 1

Proof. We first show that (B) implies (A). We assume W satisfies (B). Taking n = |W | and using PW (|W | + 1) =
CW (|W | + 1) = 0 and CW (|W |) = 1, we deduce that PW (|W |) = 1, and hence W is a palindrome. It remains to show

2 In [5], F. D’Alessandro classified all non-Sturmian trapezoidal words.
3 An infinite version of Theorem 1 was obtained by the second and third authors together with M. Bucci and A. De Luca in [4] using completely different

methods.
4 A different characterization of Sturmian palindromes was obtained by A. de Luca and A. De Luca in [7]. See also [8].
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thatW is rich. Let S denote the total number of distinct palindromic factors ofW .Wewill show that S = |W | + 1. SinceW
itself is a palindrome we have

S − 1 =
|W |−1∑
n=0

PW (n).

Similarly since the empty word is a palindrome we have

S − 1 =
|W |∑
n=1

PW (n).

Thus

2S − 2 =
|W |−1∑
n=0

PW (n)+
|W |∑
n=1

PW (n)

=

|W |−1∑
n=0

(PW (n)+ PW (n+ 1))

=

|W |−1∑
n=0

(CW (n+ 1)− CW (n)+ 2)

= CW (|W |)− CW (0)+ 2|W |
= 1− 1+ 2|W | = 2|W |.

Hence S = |W | + 1 as required.
Next we show that (A) implies (B). We proceed by induction on the length ofW . The result is easily verified in the case

|W | ≤ 2. Now suppose the result is true for all rich palindromes of length less than N and supposeW is a rich palindrome
of length N. Let V denote the palindrome of length N − 2 obtained by removing the first and last letter ofW . Since V is also
rich (see [14]), by the induction hypothesis we have PV (n)+ PV (n+ 1) = CV (n+ 1)− CV (n)+ 2 for each 0 ≤ n ≤ N − 2.
Let N0 denote the length of a shortest factor U of W which is not a factor of V . Then for 0 ≤ n < N0 − 1 we have

PW (n)+ PW (n+ 1) = CW (n+ 1)− CW (n)+ 2.
The word U is either a prefix or a suffix ofW .We claim that it is in fact both a prefix and a suffix ofW , in other words a

palindrome. Suppose to the contrary that U is not a palindrome. Without loss of generality wemay assume that U is a suffix
ofW . Let U ′ denote the longest palindromic suffix of U . Since |U ′| < N0,we have U ′ is also a factor of V . Hence there exists
a complete return Z of U ′ which is a proper suffix ofW . SinceW is rich, Z is a palindrome. Since we are assuming that U is
not a palindrome and that U ′ is the longest palindromic suffix of U, it follows that |Z | > |U|. SinceW is a palindrome, Z is
also a prefix ofW , and hence the proper suffix U of Z occurs in V , a contradiction. Thus U is a palindrome, and hence both
a prefix and a suffix ofW . Thus U is the only factor ofW of length N0 which is not a factor of V . Thus we have

PW (N0) = PV (N0)+ 1 and CW (N0) = CV (N0)+ 1.

Since PV (N0 − 1) + PV (N0) = CV (N0) − CV (N0 − 1) + 2, PV (N0 − 1) = PW (N0 − 1), and CV (N0 − 1) = CW (N0 − 1), we
deduce that

PW (N0 − 1)+ (PW (N0)− 1) = (CW (N0)− 1)− CW (N0 − 1)+ 2

and hence

PW (N0 − 1)+ PW (N0) = CW (N0)− CW (N0 − 1)+ 2

in other words equality in (B) also holds for n = N0 − 1.
We now claim that the only palindromic suffix ofW of length greater than N0 isW itself. In fact, ifW admitted a proper

palindromic suffix of length greater than N0, then U would be a factor of V , a contradiction. Thus we have

PW (n) = PV (n) for all N0 < n < N. (3.1)

Also, for each N0 < n < N, let UX (respectively X̄U) denote the prefix (respectively suffix) ofW of length n, where X̄
denotes the reversal of X . Since UX is not a palindrome it follows that UX 6= X̄U . Thus

CW (n) = CV (n)+ 2 for all N0 < n < N. (3.2)

We now verify (B) for n = N0. Starting with PV (N0)+ PV (N0 + 1) = CV (N0 + 1)− CV (N0)+ 2 and using (3.1) and (3.2)
we have

(PW (N0)− 1)+ PW (N0 + 1) = (CW (N0 + 1)− 2)− (CW (N0)− 1)+ 2
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and hence

PW (N0)+ PW (N0 + 1) = CW (N0 + 1)− CW (N0)+ 2.

We next verify (B) for N0 < n ≤ N − 2. Starting with PV (n)+ PV (n+ 1) = CV (n+ 1)− CV (n)+ 2 and using (3.1) and
(3.2) we have

PW (n)+ PW (n+ 1) = (CW (n+ 1)− 2)− (CW (n)− 2)+ 2

and hence

PW (n)+ PW (n+ 1) = CW (n+ 1)− CW (n)+ 2.

It remains to verify (B) for n = N − 1 and n = N. If W is the constant word, then PW (N − 1) = 1, PW (N) = 1,
PW (N+1) = 0, CW (N−1) = 1, CW (N) = 1, and CW (N+1) = 0. Otherwise, PW (N−1) = 0, PW (N) = 1, PW (N+1) = 0,
CW (N − 1) = 2, CW (N) = 1, and CW (N + 1) = 0. In either case one readily verifies (B) for n = N − 1 and n = N. This
completes the proof of Theorem 1. �

4. Proof of Theorem 2

We begin with the following lemma:

Lemma 1. Let W be a word of length N satisfying any condition of Theorem 2. Then W is a rich palindrome. Hence by Theorem 1
we have PW (n)+ PW (n+ 1) = CW (n+ 1)− CW (n)+ 2 for 0 ≤ n ≤ N.

Proof. Since any Sturmian word is trapezoidal, by Proposition 2 one has that ifW satisfies either condition (A’) or (C’), then
it is rich. Let us suppose thatW satisfies condition (B’). Since PW (N) = PW (0) = 1,we have thatW is a palindrome. To see
thatW is rich, let S = PW (0)+ PW (1)+ PW (2)+· · ·+ PW (N) denote the number of distinct palindromic factors ofW . Then

2S = PW (0)+ PW (N)+ PW (1)+ PW (N − 1)+ · · · + PW (N)+ PW (0)
= 2(N + 1).

Whence S = N + 1 = |W | + 1. �

We note that condition (B’) is equivalent to saying that the word PW (0)PW (1)PW (2)...PW (N) is a θ-palindrome on the
alphabet {0, 1, 2}with respect to the involutory antimorphim θ defined by θ(0) = 2, θ(2) = 0 and θ(1) = 1.
Assume first that W satisfies (A’), i.e., W is a Sturmian palindrome. For all n with 0 ≤ n ≤ N − 1, set DW (n) =

CW (n+1)−CW (n). In [6], the first author showed that the word: DW (0)DW (1)DW (2)....DW (N−1) is of the form 1r0s(−1)r .
In other words, W is a trapezoidal word: CW (n) increases by 1 with each n on an interval of length r, then stabilizes, and
eventually decreases by 1 with each n on an interval of the same size r. The trapezoidal property of W together with the
preceding lemma imply that theword PW (0)PW (1)PW (2)...PW (N) beginswith a block of the form121212 . . . (corresponding
to the interval of length r on which CW (n + 1) − CW (n) = 1), and terminates with a block of the form . . . 010101
(corresponding to the interval on which CW (n + 1) − CW (n) = −1), and moreover by the trapezoidal property, these
two blocks are of the same length. Between these two blocks is either a block of the form 11 . . . 11 or of the form 202 . . . 020
corresponding to the interval on which CW (n+ 1)− CW (n) = 0. HenceW satisfies condition (B’).
Suppose now thatW satisfies (B’). First observe that for each nwe have PW (n) ∈ {0, 1, 2}, and PW (1) 6= 0. If PW (1) = 1,

then W is equal to the constant word, and hence a Sturmian palindrome. Next suppose PW (1) = 2. In this case W is a
binary palindromic word, say on the alphabet {a, b}. To show that W is Sturmian, it suffices to show that W is balanced,
i.e., given any two factors u and v of W of the same length, we have ||u|a − |v|a| ≤ 1, where |u|a denotes the number of
occurrences of the letter a in u. Suppose to the contrary that W is not balanced. Then, it is well known (see for instance
Proposition 2.1.3 in [3]) that there exists a palindrome U such that both aUa and bUb are factors of W . Thus W contains
two distinct palindromes of the same length, which implies that |U| is odd. For otherwise, if |U| were even, then taking
k = 2−1|U| + 1, we have PW (2k) = 2, and hence by (B’), PW (N − 2k) = 0. As we saw earlier, the largest suffixes of the
word PW (0)PW (1) . . . PW (N) containing zeros are of the form 0101 . . . 01 or 202 . . . 020101 . . . 01. In both cases we have
that PW (N − 2k) 6= 0, a contradiction. Since W is a palindrome and contains both aUa and bUb, the palindrome U must
have at least two complete returns inW , one beginning in Ua,which we denote by X, and one beginning in Ub,which we
denote by Y . SinceW is rich we have both X and Y are palindromes with X 6= Y .
If both |X | and |Y | are greater than |U| + 1, then both |X | and |Y | must be even. In fact, suppose to the contrary that

|X | were odd. Then |X | ≥ |U| + 2. But thenW would contain three palindromes of length |U| + 2, namely aUa, bUb, and
the central palindromic factor of length |U| + 2 of X which is necessarily distinct from both aUa and bUb since X cannot
contain an occurrence of U other than as a prefix and as a suffix. The same argument shows that |Y |must be even. Without
loss of generality we can assume |X | ≤ |Y |. Then, as X and the median palindrome of Y of length |X | are distinct, it follows
thatW contains two distinct palindromes of even length |X |. Thus, PW (|X |) = 2, and hence PW (N − |X |) = 0, and hence
PW (N) = 0, a contradiction.
Thus it remains to consider the case in which either |X | or |Y | is equal to |U| + 1. Without loss of generality suppose

|X | = |U| + 1. This means that X = Ua = aU and hence U is the constant word U = a|U|. In this case |Y | ≥ |U| + 2 and by
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the previous argument must be even. But then X and the central palindrome of Y of length |X | are two distinct palindromic
factors ofW of even length, a contradiction. Thus we have shown that conditions (A’) and (B’) are equivalent.
Nowwe show that (A’) is equivalent to (C’). The first author showed in [6] that every finite Sturmian word is trapezoidal.

Thus (A’) implies (C’). To see that (C’) implies (A’), we proceed by induction on |W |. The result is clearly true if |W | ≤ 2.
Next suppose the result is true for |W | < N and let W be a trapezoidal palindrome of length N. Since a trapezoidal
word is necessarily on a two-letter alphabet, say {a, b}, we can write, without loss of generality, W = aVa. Then V is
a trapezoidal palindrome, since factors of trapezoidal words are trapezoidal (see [5]). By the induction hypothesis, V is a
Sturmian palindrome. IfW is not Sturmian, then there exists a palindrome U such that aUa and bUb are factors ofW . Since
V is Sturmian, we have that aUa is both a prefix and suffix ofW , and bUb is a factor of V . Since in V , all complete returns toU
are palindromes, between an occurrence of bUb in V and the suffix aU of V there must be an occurrence of bUa. Since V is a
palindromewe have aUb is also a factor of V .Hence each of aUa, bUb, aUb, and bUa is a factor ofW . This implies that both aU
and bU are right special factors ofW , a contradiction since the trapezoidal property implies that for any 0 ≤ n ≤ |W |, there
exists atmost one right special factor ofW of length n. ThusW must be Sturmian. This concludes our proof of Theorem2. �

Remark: De Luca [9] suggested the following alternate simple proof that (C’) implies (A’): Let W be a trapezoidal
palindrome. Without loss of generality we can assume that |W | ≥ 2, for otherwise the result is clear. Let U denote the
longest proper palindromic suffix ofW . SinceW is a palindrome, U is the longest border ofW , whence |W | = πW + |U|.
By Proposition 2,W is rich, hence U is the longest repeated suffix ofW . Thus KW = |U| + 1. SinceW is trapezoidal we have
that πW = |W | − |U| = RW + KW − |U| = RW + 1. By Proposition 28 of [7] we deduce thatW is Sturmian.
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