
Theoretical Computer Science 407 (2008) 342–348

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Parallel time and space upper-bounds for the subset-sum problem
C.A.A. Sanches a,∗, N.Y. Soma a, H.H. Yanasse b
a ITA, Brazil
b INPE, Brazil

a r t i c l e i n f o

Article history:
Received 11 October 2007
Received in revised form 17 June 2008
Accepted 27 June 2008
Communicated by J. Diaz

Keywords:
Subset-sum problem
Knapsack problem
Parallel algorithms
Dynamic programming
Upper-bound complexity

a b s t r a c t

Three new parallel scalable algorithms for solving the Subset-Sum Problem in O(np (c −
wmin)) time and O(n + c) space in the PRAM model are presented, where n is the
number of objects, c is the capacity, wmin is the smallest weight and p is the number
of processors. These time and space bounds are better than the direct parallelization of
Bellman’s algorithm, which was the most efficient known result.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of n objects A = {a0, a1, . . . , an−1}, each one with a weight wi ∈ Z+ and profit pi ∈ Z+, 0 ≤ i < n,
the 0–1 Knapsack Problem, named KP01(A, c) or just KP01, is to find the most profitable subset amongst objects from A
without exceeding the knapsack capacity of c ∈ Z+. Alternatively, determine a binary n-tuple X = (x0, x1, . . . , xn−1)which
maximizes

∑n−1
i=0 pixi, subject to

∑n−1
i=0 wixi ≤ c . Also, without loss of generality, admit that

∑n−1
i=0 wi > c > wmax > wmin >

0, wherewmax andwmin are, respectively, the largest and the smallest weight.
The algorithms for exactly solving KP01 can be classified into two paradigms: the force brute and the dynamic

programming. The first one appears with Horowitz and Sahni [9], that uses two lists of partial solutions in a time and
space bounded by O(2n/2). Notice that this algorithm is a variation of the immediate brute force approach of O(2n), with an
improvement of a square-root factor. This result still is the sequential time upper-bound if in the complexity analysis just the
quantity of objects is considered. Within that quantity constraint – just n is to be considered – Sanches et al. [16] improved
recently the parallel time upper-bound to a variant of the KP01, the well-known Subset-Sum Problem (SSP), defined when
the profits are equal to the weights of the objects, that is, pi = wi, 0 ≤ i < n. The model used is a CREW PRAM (Concurrent
Read/Exclusive Write)with p processors, where 1 ≤ p ≤ 2n/2/n2, and the result obtained was that it is possible to solve the
SSP in a time O(2n/2/p) and space O(2n/2).
To the other approach, since the fifties of the last century, KP01 is sequentially solved in time and space bounded by

O(nc) by the well-known Bellman’s dynamic programming paradigm [3]. Based on it, many parallel algorithms for the KP01
appeared in the literature [8,11–14,18,7]. Kindervater and Lenstra [11] and, latter on, Lin and Storer [13] suggested a direct
parallelization for the Bellman’s approach. To a EREWPRAM (Exclusive Read/ExclusiveWrite)with pprocessors, this algorithm
demands time O(nc/p) and space O(nc). To the best of our knowledge, this is the best current parallel time and space upper-
bounds for the KP01.

∗ Corresponding address: Instituto Tecnológico de Aeronáutica (ITA) - Praça Mal. Eduardo Gomes, 50 - 12228-900 - São José dos Campos - São Paulo,
Brazil. Tel.: +55 12 3947 5899.
E-mail address: alonso@ita.br (C.A.A. Sanches).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.06.051

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:alonso@ita.br
http://dx.doi.org/10.1016/j.tcs.2008.06.051

C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348 343

This algorithm can be simulated by a hypercube with p processors in time O(ncp log p) and space O(nc) [13]. Recently,
Goldman and Trystram [7] introduced an algorithm also for the hypercube to the Unbounded Knapsack Problem, that is,
when the variables are non-negative integers instead of 0 or 1, which is bounded in time by O(ncp +

c
wmin

) to a hypercube
with p < c

logwmin
processors. Although these algorithms can be efficiently implemented, they do not improve the time and

space upper-bounds for the KP01.
For the SSP, there are specific algorithms also based on dynamic programming, but different from Bellman’s approach.

Yanasse and Soma (cf. [10], pp. 90–91) introduced an algorithm to sequentially solve the problem in O(n(c − 2wmin) + c)
time and space O(n+ c); Soma and Toth [17] gave a sequential algorithm which combines dynamic programming and the
two-list enumeration to obtain a time complexity of O((n− log c2)(c− 2wmin)+ c+ n) and space O(n+ c). Both algorithms
configure an improvement in terms of computational resources related to Bellman’s approach, and, to the present, no study
was carried out on their parallelizations.
Based on those two latter works, we introduce three new algorithms for solving the SSP in the PRAMmodel – Algorithm

1, Algorithm 2a and Algorithm 3 –, which improve the parallel time and space upper-bounds. They are the only ones known
in the literature to be bounded by O(np (c −wmin)) in time and O(n+ c) in space: the first two are derived from Yanasse and
Soma algorithm, and the third corresponds to Soma and Toth algorithm.
A PRAM is usually considered just a theoretical model due to infeasibility of efficient and practical implementations.

However, the results obtained in thismodel do fully express the relations that can be processed simultaneously and therefore
they have a wide and longstanding impact. A series of recent new algorithms [15,19,4,6] do confirm the interest in finding
new time or space upper-bounds for many a great variety of problems to this model.

2. Algorithm 1: For p ≤ wmin processors

The Yanasse and Soma algorithm (cf. [10], pp. 90–91) for the SSP is based on a variation of Bellman’s paradigm. It uses a
single vector g with c+ 1 positions, that is filled in such a way that, if there is a feasible filling of the knapsack with capacity
k such that an itemwi has the largest index present in that solution, then g[k] = i, where 0 ≤ k ≤ c ,wi ∈ Z+ and 0 ≤ i < n.
Recall that wmin = min{w0, . . . , wn−1}. If a capacity k admits multiple solutions, then just the smallest index among those
solutions is stored in g . Moreover, g[k] = n indicates that there is no knapsack filling with capacity k.
The Yanasse and Soma algorithm has basically four phases:
(I) Initialization of g: all c + 1 positions are set to n, this indicates that there is no feasible allocation for these knapsack
capacities.

(II) Insertion of the initial solutions in g: they correspond to the allocation of a single weightwi, 0 ≤ i < n.
(III) Evaluation of the remaining g values: the indices between wmin and c − wmin are evaluated in crescent order for the

remaining knapsack filling.
(IV) Recovering of the optimal solution X: from g , the weights in an optimal solution filling are obtained.

This algorithm, that fills the vector g and finds the optimal solution s, is:
// Phase (I): initialization of vector g
for i← 0 to c do
g[i] ← n

// Phase (II): initial solutions with a single weightwj
for i← n− 1 downto 0 do
g[wi] ← i

// Phase (III): evaluation of vector g
s← wmax
for i← wmin to c − wmin do

for j← g[i] + 1 to n− 1 do
w′ ← i+ wj
if w′ ≤ c then

g[w′] ← min{g[w′], j}
s← max{s, w′}

In sequence, it is given a way to recover the binary vector X in time O(n):
// Phase (IV): recovering the optimal solution in vector X
for i← 0 to n− 1 do
xi ← 0

i← s
while i 6= 0 do
xg[i] ← 1
i← i− wg[i]

344 C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348

Besides its simplicity, this algorithm is more efficient than Bellman’s approach, since it solves the SSP in an overall time
bounded by O(n(c − 2wmin)+ c) and only O(n+ c) in space.
In Algorithm 1, which can be executed by a CREW PRAM, the c− 2wmin positions of vector g are grouped in blocks of size

p. At each step, a processor evaluates a single position in the current block and it tests sequentially all of the nweights, but it
also considers just the g values already computed, i.e., those values with smaller indices. To do this in parallel, it is necessary
to allow simultaneous accesses to vector g , and also that p ≤ wmin.
The algorithm is presented next. Vector g will need d = wmax −wmin − 1 extra positions in its initialization, all of them

with indices smaller than 0: this is necessary to allow the accesses executed while processing the first block. Notice that
variable ti examines all the positions of a block of g associated with processor Pi.
Algorithm 1 (for p ≤ wmin)
d← wmax − wmin − 1
// Phase (I): initialization of vector g
for k← 0 to d(c + d)/pe − 1 do
// k-th block of vector g with size p

for i← 0 to p− 1 do in parallel
if kp+ i− d ≤ c then

g[kp+ i− d] ← n
for i← 0 to p− 1 do in parallel
si ← 0

// Phase (II): initial solutions with a single weightwj
for k← 0 to d(c − wmin)/pe − 1 do

for i← 0 to p− 1 do in parallel
// ti: next position in the k-th block of g
ti ← kp+ i+ wmin
if ti ≤ c then

for j← n− 1 downto 0 do
if wj = ti then

g[ti] ← j
si ← max{si, ti}

// Phase (III): transversing and determining vector g, block to block
for k← 0 to d(c − 2wmin)/pe − 1 do

for i← 0 to p− 1 do in parallel
// ti: next position in the k-th block of g
ti ← kp+ i+ wmin + 1
if ti ≤ c then

for j← n− 1 downto 0 do
// The weight indices are transversed in decreasing order

if (g[ti] > j) and (g[ti − wj] < j) then
g[ti] ← j
si ← max{si, ti}

Phase (I) is bounded in time by O(c+wmax−wmin
p), while Phases (II) and (III) by O(np (c−wmin)). Each processor Pi, 0 ≤ i < p,

will have its partial solution si, that will be the better among those it found. In final, the optimal solution of SSP will be
s = max{si}, 0 ≤ i < p, that can be found in parallel for the p processors in time O(log p).
In Phase (II), initially vector g has as values g[i] = n, 0 ≤ i ≤ c. For i < wmin, it is clear that g[i] = n, since the eventual

solutions that correspond to the knapsack filling with a single item can only occur at positionswmin ≤ i ≤ c.
The major obstacle to determine the algorithm parallelization is given in Phase (III), since there can exist simultaneous

reading and writing. In this phase, vector g is determined obeying an increasing order of indices. It is clear that wmin is the
first feasible solution, since g[i] = n for i < wmin. During the evaluation of g[i], wj is added to i, 0 ≤ j ≤ n. Therefore, if
i > c − wmin, it is not possible to change the values stored into g[i], and this implies that the range interval of g to this
specific phase has size c − 2wmin.
Notice that, in Phase (IV) the determination of vector X is inherently sequential, since xi+1 needs to be found before than

xi, 0 ≤ i < n− 1. Moreover, it takes O(n) in time, and this implies that there is no change in the overall time bound.
Therefore, the total time is O(np (c − wmin) +

c+wmax−wmin
p + n + log p) = O(np (c − wmin)), while the space is limited to

O(n+ c).

3. Algorithm 2: For p ≤ n processors

In this second algorithm, the parallelization of Phase (III) is carried out in a different way. For the sake of comprehension,
it is described first the case p = n processors; after this the result is then generalized.

C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348 345

For p = n, in Phase (III)’s loop, at a single position of vector g , each processor Pi, 0 ≤ i < n, is in charge of testing weight
wi with the value of that position. This generates the problem of simultaneous writing attempts in g , which will occur if
two distinct weights wi’s possess the same value. This potential conflict can be overcome by a previous sorting of weights
and with a subsequent filling of an auxiliary vector enabled of dimension n: its i-th position will indicate whether or not
the existence of another weight – with smaller index – with the same value wi, 0 ≤ i < n. With this information, every
processor will have condition of deciding whether it is its turn to write in g or not, thus avoiding a conflict.
The algorithm is given next. In the call of function ParallelSort,W is passed by reference, i.e., it returns its weights sorted

in non-decreasing order.

Algorithm 2 (for p = n)
// Phase (I): initialization of vector g
for k← 0 to dc/pe − 1 do

for i← 0 to p− 1 do in parallel
if kp+ i ≤ c then

g[kp+ i] ← n
ParallelSort(W)
// In vector enabled, its first position is true
enabled[i] ← true, (i = 0)
// The remaining positions values depend on the following test
if wi = wi−1, (i > 0)

then enabled[i] ← false
else enabled[i] ← true

si ← 0
// Phase (II): initial solutions have a single weightwi
for i← 0 to p− 1 do in parallel

if enabled[i] then
g[wi] ← i
si ← max{si, wi}

// Phase (III): transversing and determining g
for j← wmin to c − wmin do

for i← 0 to p− 1 do in parallel
// Test to avoid eventual writing conflicts in g
if (i = g[j] + 1) or (i > g[j] and enabled[i]) then

w′ ← j+ wi
if w′ ≤ c then

g[w′] ← min{g[w′], i}
si ← max{si, w′}

In this algorithm, there is no reading conflicts in vector W , since in the generation of vector enabled each processor
consults different weights. Therefore, it can be executed by an EREW PRAM.
Phases (I), (II) and (III) spent time O(c/n), O(1) and O(c − 2wmin), respectively. The time to sort in parallel n weights by

using n processors is bounded byO(log2 n) [2] (could beO(log n) [5], although therewill be no impact in the final complexity
determination), the identification of the optimal solution demands time O(log p) = O(log n), and the Phase (IV) is bounded
byO(n) via the same algorithm. Therefore, the overall time for this algorithm isO((c−2wmin)+ cn+n). The space requirement
continues to be O(n+ c).
This algorithm is clearly scalable provided that p ≤ n. To achieve this, it is necessary that every processor Pi, 0 ≤ i < p,

performs the tests of q = dn/pe weights when constructing g , more specifically, for weights wj where iq ≤ j <
min{(i + 1)q, n}. Vector enabled will have dimension p and its i-th position, 0 ≤ i < p, will be false whenever the first
weight of Pi equals to the last weight of Pi−1, i.e.,wiq = wiq−1, and true otherwise.
The parallel scalable algorithm is presented next:

Algorithm 2 (for p ≤ n)
// Phase (I): initialization of vector g
for k← 0 to dc/pe − 1 do

for i← 0 to p− 1 do in parallel
if kp+ i ≤ c then

g[kp+ i] ← n
ParallelSort(W)
// q: size of each block of vector W
q← dn/pe
// In vector enabled, its first position is true

346 C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348

enabled[i] ← true, (i = 0)
// The remaining positions values depend on the next test
if wiq = wiq−1, (i > 0)

then enabled[i] ← false
else enabled[i] ← true

si ← 0
// Phase (II): initial solutions consider a single weightwiq+k
for i← 0 to p− 1 do in parallel
// Every processor have q weights of W
for k← q− 1 downto 0 do

if iq+ k < n then
// Tests to avoid writing conflicts in g
if (wiq+k > wiq) or (wiq+k = wiq and enabled[i]) then

g[wiq+k] ← iq+ k
si ← max{si, wiq+k}

// Phase (III): transversing and determining g
for j← wmin to c − wmin do

for i← 0 to p− 1 do in parallel
for k← 0 to q− 1 do

if iq+ k < n then
// Tests to avoid writing conflicts in g
if (iq+ k = g[j] + 1) or ((iq+ k > g[j])
and ((wiq+k > wiq) or (wiq+k = wiq and enabled[i]))) then

w′ ← j+ wiq+k
if w′ ≤ c then

g[w′] ← min{g[w′], iq+ k}
si ← max{si, w′}

In a similar manner as in the previous algorithm, there is no reading conflicts inW : while determining vector enabled,
every processor uses different weights, and, to determine vector g , each one reads a single data block.
Phases (I), (II) and (III) demand, respectively, time O(c/p), O(n/p) and O(np (c − 2wmin)). The parallel sorting of nweights

by using p ≤ n processors in an EREWPRAM is bounded byO((np+log
2 n) log n) [1], the identification of the optimal solution

demands timeO(log n), and the Phase (IV) continues to be bounded byO(n). Therefore, the overall time spent by this parallel
scalable algorithm is O(np (c − 2wmin)+

c
p +

n
p log n+ n). The space remains O(n+ c).

Let the time complexity be considered into the following intervals: (a) p ≥ log2 n and (b) p ≤ log2 n. In the first
case, the time complexity is O(np (c − 2wmin) +

c
p + n) = O(

n
p (c − 2wmin)); in the second case, the time complexity is

O(np (c − 2wmin + log n)+
c
p). For convenience, the algorithm will be referred as Algorithm 2a and Algorithm 2b for cases (a)

and (b), respectively.

4. Algorithm 3: log2(n − 2 log2 c) ≤ p ≤ n − 2 log2 c processors

Soma and Toth [17] conceived a algorithm for the SSP, which combines the dynamic programming and the two-list
paradigms. In short, it has four main phases:

(1) Among the n objects of the knapsack, choose the first log2 c ones and determine by exhaustive enumeration all the
2log2 c = c possible combinations of those weights, storing them in a vector g1 as in Yanasse and Soma algorithm, i.e.,
g1[k] = i means that there is a filling of the knapsack with capacity k such that the largest index of the weights in this
partial solution is i. If two or more filling possess the same capacity, g1 stores the smallest index among the largest ones
present in those solutions.

(2) For other log2 c objects, generate a second vector g2 as in g1.
(3) Apply Yanasse and Soma algorithm for the remainder n− 2 log2 c objects, but using g1 already mounted in (1) as initial
values.

(4) As in the two-list algorithm, search g1 in ascending order and g2 in descending order, adding your elements to find the
optimal solution.

Next, it is presented a parallelization of this algorithm in a CREW PRAM. First, it is considered that the number of
processors is p = 2q, where log2 log2(n − 2 log2 c) ≤ q ≤ log2(n − 2 log2 c). This interval on the quantity of processors is
due to the use of Algorithm 2a in the parallelization proposed.
Similar to the Soma and Toth algorithm, the Algorithm 3 has four phases:

C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348 347

Phase (1): Generation of g1 by combining log2 c weights. Without any loss of generality, let these log2 c weights be
w0, w1, . . . , wlog2 c−1. This phase has four steps as given next. Notice that initially a list L of size c is generated, which will
store all the combinations of these log2 c weights in a non-decreasing order.
Step 1: Generate a list L, void in the beginning, of all the combinations of weights w0, w1, . . . , wq−1. To do so, each

processor Pi, 0 ≤ i < 2q, generates the sum of the weights w’s corresponding to its index i expressed in binary. Moreover,
to every generated sum, an index ind of the largest weight present in this sum is stored.
Step 2: Sort list L in increasing order by using 2q processors. If two sums have the same value, consider the least value of

ind.
Step 3:

for i← q to log2 c − 1 do in parallel
(3.1) Copy list L in another list L′ and addwi

to every element of L′, evaluating the
new indices in ind.

(3.2) Perform a parallel merge among lists L
and L′, storing the resulting list in L.

end for

To the parallel merge, the value of ind is used to break ties whenever there are two equal sums.
Step 4: Let L = [l0, l1, . . . , lc−1] be the generated list in the previous step, where lk = (l1k, l

2
k), 0 ≤ k < c. l1k is the value

of the sum of the weights and l2k is its corresponding value of ind, 0 ≤ k < c . Each processor Pi, 0 ≤ i < p, will write l2j in
g1[l1j] provided that l

1
j 6= l

1
j−1, where idc/pe ≤ j < min{(i + 1)dc/pe, c}. To avoid writing conflicts in vector g1, Pi tests at

the beginning if l1idc/pe 6= l
1
idc/pe−1.

Clearly, Step 1 can be performed in timeO(q). For Step 2, it is possible to use anO(q) algorithm [5]. However, as it is shown
next, other parallel sorting algorithms of time O(q2) [2] could also be used, because this will not affect the time complexity
of this phase.
To evaluate the complexity of Step 3, the commands interactions in (3.1) and (3.2) are analyzed separately. The first

iteration in (3.1) is executed in constant time since there are p = 2q processors and a list with 2q elements: every processor
Pj, 0 ≤ j < p, should add the value of wi to the j-th element of list L′. In the following step, this time will double and so on,
up to the last step. Therefore, the overall time of command (3.1) is

∑log2 c−1−q
k=0 O(2k) = O(2log c−q) = O(c/p).

Additionally, it is well known that, to a CREW PRAM with p processors, two sorted lists of size k can be merged in a
time O(k/p + log k) [1]. Moreover, it is possible to observe that command (3.2) is executed log2 c − q + 1 times and,
since there are p = 2q processors, it is immediate to conclude that the total time spent with these iterations in Step 3 is
O(2log2 c−q + log2 c − q2)= O(cp + log

2 c). Finally, since Step 4 is bounded by O(c/p), Phase (1) can be evaluated in a time
O(cp + log

2 c).
Phase (2): Insertion of n− 2 log2 c weights in g1. Once vector g1 contains all the feasible combinations of the first log2 c

weights, the insertion of additional n− 2 log2 c weights can be done in parallel with log2(n− 2 log2 c) ≤ p ≤ n− 2 log2 c
processors through Algorithm 2a in time O((n−2 log2 c)(c−2wmin)

p +
c
p + n− log c

2).
Phase (3): Generation of g2 with the combinations of the last log2 c weights. This phase is similar to Phase (1).

However, differently from vector g1, g2 will be the sorted list with c elements, i.e., the list L of Phase (1). As presented
before, this list g2 can be obtained in a time O(c/p).

Phase (4): Search of the optimal solution. It is used an analogous procedure of Sanches et al. [16]. Initially, a Prune Phase
is executed: it consists in splitting both lists in p equal size blocks and selecting pairs of blocks (one for each list) which can
contain the optimal solution. With p = 2q processors, the Prune Phase spends a time O(log p) = O(log n) and it selects at
most 2p pairs of blocks. The sole difference with the Sanches et al. [16] algorithm is that, instead of two sorted lists, there
is a vector g1 and a sorted list g2. Moreover, it is worth of mentioning that g1 and g2 store data of distinct nature: in g1 there
are indices of weights (values ranging from 0 to n, this latter one if no combination of weights is found for that knapsack
capacity); on the other hand, in g2 it is stored sums of weights.
Still, both structures possess the same size c and, for the Prune Phase, it is necessary that every processor Pi, 0 ≤ i < p,

detects first the largest and the smallest element of the i-th block of vector g1. This can be achieved in a time proportional
to O(c/p), that is the size of the blocks. From that point on, simultaneous binary searches can be performed in the list g2,
throughout the remaining of the Prune Phase.
Finally, every processor has associated to itself one or two pair of blocks. Since these blocks have size proportional to

dc/pe, this phase can be executed in a time O(c/p).
Therefore, the total time of Phase (4) is O(cp + log n).

Overall Complexity. The four phases presented before perform a total time of O(cp + log
2 c + (n−2 log2 c)(c−2wmin)

p + n −

log c2 + log n) = O((n−2 log2 c)(c−2wmin)
p +

c
p + n− log c

2
+ log2 c) = O(np (c − 2wmin)), and this is the final time complexity

of Algorithm 3. In terms of space, just O(n+ c) is necessary.

348 C.A.A. Sanches et al. / Theoretical Computer Science 407 (2008) 342–348

Table 1
Parallel algorithms
Algorithms PRAM Time Processors

Algorithm 1 CREW O(np (c − wmin)+
c+wmax−wmin

p + n+ log p) p ≤ wmin

Algorithm 2a EREW O(np (c − 2wmin)+
c
p + n) log2 n ≤ p ≤ n

Algorithm 3 CREW O((n−2 log2 c)(c−2wmin)
p +

c
p + n− log c

2
+ log2 c) log2(n− 2 log2 c) ≤ p ≤ n− 2 log2 c

5. Conclusions

The first scalable parallel algorithms for solving a variation of the Knapsack Problem – SSP with n objects and capacity c
– in time O(np (c−wmin)) and space O(n+ c)were presented. They were designed to a PRAMwith p processors and improve
the current time and space upper-bounds.
Table 1 summarizes the computational complexity time of these algorithms, with the respective PRAM model and the

number of processors being used.

Acknowledgements

The first author’s work was partially financed by FAPESP (grants 99/09483-5 and 06/05325-1).

References

[1] S.G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[2] K.E. Batcher, Sorting networks and their applications, in: Proceedings of AFIS 1968 SJCC, 32, Montvale, NJ, 1968, pp. 307–314.
[3] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.
[4] Chung,Vijaya, A randomized linear-work EREW PRAM algorithm to find a minimum spanning forest, Algorithmica 35 (2003) 257–268.
[5] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (1988) 770–785.
[6] A.K. Datta, R.K. Sen, o(log n) time parallel maximal matching algorithm using linear number of processors, Parallel Algorithms and Applications 19
(2004) 19–32.

[7] A. Goldman,D. Trystram, An efficient parallel algorithm for solving the knapsack problemonhypercubes, Journal of Parallel andDistributedComputing
64 (2004) 1213–1222.

[8] P.S. Gopalakrishnam, I.V. Ramakrishnam, L.N. Kanal, Parallel approximate algorithms for the 0–1 knapsack problem, in: Proceedings of International
Conference on Parallel Processing, 1986, pp. 444–451.

[9] E. Horowitz, S. Sahni, Computing partitions with applications to the knapsack problem, Journal of ACM (1974) 277–292.
[10] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, 2004.
[11] G.A.P. Kindervater, J.K. Lenstra, An introduction to parallelism in combinatorial optimization, Discrete Applied Mathematics 14 (1986) 135–156.
[12] J. Lee, E. Shragowitz, S. Sahni, A hypercube algorithm for the 0/1 knapsack problem, Journal of Parallel and Distributed Computing 5 (1988) 438–456.
[13] J. Lin, J. Storer, Processor efficient hypercube algorithm for the knapsack problem, Journal of Parallel and Distributed Computing 3 (1991) 332–337.
[14] E.W.Mayr, Parallel approximation algorithms, in: Proceedings of International Conference on Fifth Generation Computer Systems, 1988, pp. 542–551.
[15] S. Rajasekaran, Efficient parallel hierarchical clustering algorithms, IEEE Transactions on Parallel and Distributed Systems 16 (2005) 497–502.
[16] C.A.A. Sanches, N.Y. Soma, H.H. Yanasse, An optimal and scalable parallelization of the two-list algorithm for the subset-sum problem, European

Journal of Operational Research 176 (2007) 870–879.
[17] N.Y. Soma, P. Toth, An exact algorithm for the subset sum problem, European Journal of Operational Research 136 (2002) 57–66.
[18] S. Teng, Adaptive parallel algorithms for integral knapsack problems, Journal of Parallel and Distributed Computing 8 (1990) 400–406.
[19] Y.R. Wang, S.J. Horng, An O(1) time algorithm for the 3D Euclidean distance transform on the CRCW PRAM model, IEEE Transactions on Parallel and

Distributed Systems 14 (2003) 973–982.

	Parallel time and space upper-bounds for the subset-sum problem
	Introduction
	Algorithm 1: For pleq wmin processors
	Algorithm 2: For pleq n processors
	Algorithm 3: log2 (n-2log2 c) leq p leq n-2log2 c processors
	Conclusions
	Acknowledgements
	References

