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a b s t r a c t

We study online interval coloring problems with bandwidth. We are interested in some
variants motivated by bin packing problems. Specifically we consider open-end coloring,
cardinality constrained coloring, coloringwith vector constraints and finally a combination
of both the cardinality and the vector constraints. We construct competitive algorithms for
each of the variants. Additionally, we present a lower bound of 24/7 for interval coloring
with bandwidth, which holds for all the above models, and improves the current lower
bound for the standard interval coloring with bandwidth problem.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We study variants of the online interval coloring with bandwidth problem. In these coloring problems, the intervals are
presented one by one and the online algorithm must assign each interval a color before the next interval arrives. In the
classical problem, the intervals do not have bandwidth and two intersecting intervals cannot be colored by the same color.
We are interested in the case where every interval has an associated bandwidth in (0, 1]. This problem (standard coloring
of intervals with bandwidth) was introduced by Adamy and Erlebach [1]. A set of intervals can be assigned the same color
c , if for any point p on the real line, the sum of the bandwidths of intervals colored c and containing p, does not exceed 1.
We refer to a coloring satisfying the above condition as a proper coloring.
Online coloring of intervals with bandwidth is a simultaneous generalization of two major problems. The first one is

online bin packing, the study of which dates back to the works of Johnson and Ullman in the early 1970’s [13,22], see also
[7] for a survey. If all the presented intervals intersect, colors correspond to bins. The second problem is the classical online
interval graph coloring problem, introduced by Kierstead and Trotter [16].
As mentioned in [1], the problem of coloring intervals with bandwidth arises in many applications. Most of these

applications come from the field of networks. Consider a network with a line topology that consists of links, where each
link has channels of constant capacity. This can be either an all-optical WDM (wavelength-division multiplexing) network
or an optical network supporting SDM (space-division multiplexing). A connection request is from one network node a to
another node b, and has a bandwidth associated with it. The set of requests assigned to a channel must not exceed the
capacity of the channel on any of the links on the path [a, b]. The goal is to minimize the number of channels (colors) used.
A connection request from a to b corresponds to an interval [a, b]with the respective bandwidth requirement and the goal
is to minimize the number of required channels to serve all requests. Another network related application is one where
requests have constant duration c , and we have to serve all requests as fast as possible. With respect to the online interval
coloring problem, the colors correspond to time slots, and the total number of colors corresponds to the schedule length.

I A preliminary version of this paper appeared in Proc. of 30thMathematical Foundations of Computer Science (MFCS 2005), LNCS 2618, pages 295–307.
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The last example comes from scheduling, a requested job has a duration and resource requirement during its execution. Jobs
(intervals) arrive online andmust be assigned to amachine (color) immediately. All themachines have the same capabilities
and the objective is to minimize the number of machines used.
The unweighted (classical) problem is equivalent to coloring an interval graph, where each interval corresponds to a

node and an edge between two nodes appears if the corresponding intervals intersect. Interval graphs are perfect, therefore
the chromatic number of the graph is the maximum clique size [12]. In the case of interval graphs, the maximum clique size
represents a point where the largest number of intervals intersect.
We study online coloring problems in terms of competitive analysis, that is, in terms of the absolute competitive ratio and

the asymptotic competitive ratio. Thus we compare an online algorithm to an optimal offline algorithm OPT that knows the
complete sequence of intervals in advance.
Let B(σ ) (or B, if the sequence σ is clear from the context), be the cost of algorithm B on the request sequence σ . An

algorithm A isR-competitive (with respect to the absolute competitive ratio) if for every sequence σ , A(σ ) ≤ R · OPT (σ ).
The absolute competitive ratio of an algorithm is the infimum value ofR such that the algorithm isR-competitive.
The asymptotic competitive ratio for an online algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
A(σ )
OPT (σ )

∣∣∣∣OPT (σ ) = n} .
All results given in this paper apply to both the absolute and the asymptotic competitive ratios.
Coloring of interval graphs has been intensively studied. Kierstead and Trotter [16] gave upper and lower bounds of 3

on the competitive ratio. Much research has been done analyzing the performance of the simple First Fit algorithm for the
unweighted problem. Upper bounds on the competitive ratio of 40, 25.72 and 10 were given in [14,15,20] respectively.
Chrobak and Slusarek [6] showed a lower bound close to 4.5 on the competitive ratio of First Fit. See [21] for recent
developments.
The interval coloring problem with bandwidth was first posed in 2003 in [1] by Adamy and Erlebach. They presented an

online algorithm with a competitive ratio of at most 195. Azar et al. [2] presented a new algorithm with a competitive ratio
of 10. In [9] we studied several extensions of this problem including coloring of unit length intervals.
Motivated by the well known bin packing problem, we investigate four variants studied in the past with respect to bin

packing. Namely, Open-endbinpacking, Vector packing, Cardinality constrainedpacking andVector packingwith cardinality
constraints. Open-end online bin packing (also called the Ordered open-end problem) was introduced by Yang and Leung
[23]. Online vector packing was studied by Garey et al. as a scheduling problemwith resource constraints [11]. This problem
was studied also in [17,10,4]. Cardinality constrained bin packing was first studied by Krause, Shen and Schwetman [18,19].
It was also studied in [3,8]. The vector packing problem with cardinality constraints was mentioned in [5]. In that paper it
is treated as a special case of the vector packing problem.
We make adjustments to these variants to suit the interval coloring with bandwidth problem in the following way.

Open-end interval coloring: Given a point p and color c , we remove the restriction that all intervals intersecting point p
coloredwith c should have total bandwidth of at most 1. Instead, we require that if the last interval which received
color c and intersects p is removed, then the total bandwidth of all such other intervals, is strictly less than 1. A
possible application of thismodel is the situationwhere the decision on the color of a new interval does not depend
on the exact value of its bandwidth, but on the current load of each color. This is consistent with our algorithms
which use a partition into classes of bandwidth rather than using the exact bandwidth to classify a new interval
and to assign it a color.

Interval coloring with vector constraints: Instead of one dimensional bandwidths, the intervals are associated with d-
dimensional vectors. This is a generalization of the standard interval coloring with bandwidth problem. Here each
interval has d distinct weights and each color has d corresponding unit capacities. An interval can receive color c if
the assignment is valid according to all d components. This variantmodels amultiple number of available resources
that each request needs and all requests must share, rather than a single resource as in the standard problem.

Cardinality constrained interval coloring: The cardinality constrained coloring, also called the k-bounded interval
coloring with bandwidth problem, additionally imposes the constraint that at each point p, at most k intersecting
intervals are allowed to use one color. This variant models applications where only a limited number of requests
can be satisfied simultaneously, a restriction that occurs in addition to the bandwidth constraints. We assume
k > 1, otherwise the problem is equivalent to standard online interval coloring [16].

Cardinality and vector constrained interval coloring: This is a combination of the two previous variants. Each interval is
associated with a d-dimensional vector of d distinct bandwidths and each color has d corresponding capacities.
Additionally at most k intersecting intervals are allowed in one color at each point. We assume k > 1, otherwise
the problem would also reduce to standard online interval coloring.

Our results:We present competitive online algorithms for each of the variants. We use ideas which are extensions of the
algorithm in [2]. For the open-end coloring model we present an algorithm with competitive ratio of at most 12. For the
cardinality constrained variant we suggest an algorithm with competitive ratio of min{10 + 2 · k

k−1 , k + 3}, for odd k and
min{12, k+ 3}, for even k.
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Table 1
Results obtained in this paper and previous work

Lower bound Upper bound

Interval coloring with 24/7 10 [2]
Bandwidth

Open-End coloring 24/7 12

Cardinality constraints 24/7 min{12, k+ 3} (even k)
min{10+ 2 k

k−1 , k+ 3} (odd k)

Vector constraints 24/7 10d
Vector and cardinality 24/7 min{10d+ 2, 3k} (even k)
Constraints min{10d+ 2 k

k−1 , 3k} (odd k)
The results are given in terms of competitive ratio.

We design a 10d-competitive algorithm for the vector constrained model and an algorithm of competitive ratio at most
min{10d + 2, 3k}, for even k and min{10d + 2 k

k−1 , 3k} for odd k, for the combined model of both vector and cardinality
constraints.
We also present a lower bound of 247 ≈ 3.428571, an improvement of the previously known lower bound of 3.26 for

standard interval coloring with bandwidth presented in [9]. The latter lower bound does not apply for most variants studied
in the current paper. For cardinality constrained coloring, a simplification of that lower bound can be applied only to very
large values of k. It is also not valid for the open-end model. However the lower bound of Kierstead and Trotter [16] can be
used in both these models. By using intervals of bandwidth 1, as done in the construction of [16], two intersecting intervals
can not receive the same color in any of our models. Therefore the best lower bound previously known for these cases
is 3. Our lower bound can be easily modified and applied to all the variants considered in this paper by a simple change of
parameter.
Our results are summarized in Table 1.

2. Preliminaries

A weighted interval graph G of a set of intervals S, is a graph where each node corresponds to an interval. The weight of
the node is the bandwidth of the interval in S related to it. If two intervals intersect, there is an edge between their related
nodes in G. Recall that we denote the optimal coloring of the offline algorithm by OPT .
Letω(G) orω(S) denote the size of themaximum cardinality clique in G (ω for short), i.e., ignoring the weights. Letω∗(G)

or ω∗(S) (ω∗ for short) denote the largest weighted clique in G. A weighted clique is the sum of the weights of the vertices
in a clique. Note that for the interval coloring problem with bandwidth we have OPT ≥ dω∗e.
Below we give the generalized presentation of the algorithm of Kierstead and Trotter [16] presented in [9]. For

convenience we include the full presentation and list four relevant lemmas from [9] and their proofs.
Let σ = v1, . . . , vn be the list of vertices of G, in the order of arrival. Algorithm KTl,b is defined for inputs σ such that,

b(vi) ∈ (0, b]. The algorithm partitions the intervals (i.e. the vertices of G) into sets Am (for integer values of m, such that
m ≥ 1). We use Cm to denote the set of colors dedicated to Am. Every set Am is colored using First Fit, independently of other
sets. Therefore the colors have the property Cx ∩ Cy = ∅ for x 6= y.

Algorithm 1. KTl,b
On a new interval vi:
1: For every integerm ≥ 1, let Vm(vi) and Em(vi) be the following sub-sets of V (G) and E(G) respectively.
Vm(vi) = {vj ∈ V (G) : j < i,m(vj) ≤ m};
Em(vi) = {(u, v) ∈ E(G) : u, v ∈ Vm(vi)};
Let Gm(vi) = G(Vm(vi), Em(vi))
Gm(vi) ∪ {vi} = G(Vm(vi) ∪ {vi}, Em(vi) ∪ {(u, vi) ∈ E(G) : u ∈ Vm(vi)})
For an arbitrary interval graph H , let ω∗i (H) denote the size of the maximum weighted clique among cliques containing
the interval vi in graph H

2: Letm(vi) be the smallestm such that ω∗i (Gm(vi) ∪ {vi}) ≤ m · l.
3: Am(vi) ← Am(vi) ∪ {vi}
4: Color vi considering only the intervals of Am(vi) using First Fit on colors of Cm(vi).

A critical point, q, in interval vi ∈ Am(vi), is a point where ω
∗

i (Gm(vi)−1(vi) ∪ {vi}) > (m(vi)− 1) · l. Since vi ∈ Am(vi), there
is at least one such point for every interval in Am(vi).

Lemma 1. Given an interval vi, let m = m(vi). For the set Am and every critical point q ∈ vi, the total bandwidth at q of intervals
in Am does not exceed b+ l.
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Proof. Proof by contradiction, assume that there is a critical point, q ∈ vi ∈ Am, where the size of the weighted clique of
intervals in Am is strictly larger than b+ l. Consider all intervals, vt , where vt ∈ Am and q ∈ vt . Let vk be the last such interval
(in the order of presentation). Clearly i ≤ k and after vk is presented, the total bandwidth of Am at point q does not increase.
Since b(vi) ≤ b, and q is a critical point of vi, the total bandwidth at point q for intervals in Gm−1(vi) is greater than

(m − 1) · l − b. Since m(vk) = m we have ω∗k (Gm(vk)) ≤ m · l, in particular, the total bandwidth at point q ∈ vi ∩ vk does
not exceedm · l.
Since {vj ∈ V (G) : j < i,m(vj) < m, q ∈ vj} ⊆ {vj ∈ V (G) : j < k,m(vj) < m, q ∈ vj}, the bandwidth of

intervals of Gm−1(vk) containing q (at the time vk arrives) is more than (m − 1) · l − b. Also by the assumption, the total
bandwidth at point q in Am is more that b+ l. We combine the total bandwidth at point q in Gm(vk)∪{vk} and get more than
((m− 1) · l− b)+ (l+ b) = m · l. This contradicts the fact thatm(vk) = m. �

Lemma 2. For every m, ω∗(Am) ≤ 2(b+ l).
Proof. Proof by contradiction, assume that there is a weighted clique of more than 2(b + l) in Am obtained at point pj. By
the previous lemma, this point is not a critical point of any interval in Am. For every interval vi ∈ Am, where pj ∈ vi, there is
a critical point either to the right of pj or the left of pj or both. Denote the closest critical point (of any interval of Am which
contains pj) to the left of pj, ql and the closest critical point to the right of pj, qr . Since there is at least one critical point for
every vi, either ql ∈ vi or qr ∈ vi or both for every vi ∈ Am (since the critical point of vi cannot be in the interval (ql, qr)). But
this means that either ql or qr has a total bandwidth of more than b+ l. By Lemma 1, this is not possible. Note that either ql
or qr or both must exist. If one of qr or ql does not exist, we get the contradiction at the point that exists. �

Lemma 3. If all intervals have the same bandwidth, b, and l is divisible by b, for every m, ω∗(Am) ≤ 2l.
Proof. Similarly to Lemma 1, we show the following. Given an interval vi let m = m(vi). For the set Am and every critical
point q ∈ vi, the total bandwidth at q of intervals in Am does not exceed l. To prove this claim we use the same notations
given in the proof of Lemma 1. Unlike in the previous case, here the total bandwidth at point q for intervals in Gm−1(vi) is
exactly (m−1)·l, since l is divisible by b. By contradictionwe assume that the total bandwidth of point q exceeds l. Therefore,
the total bandwidth at point q in Gm(vk)∪ {vk} is more than (m− 1) · l+ l = m · l. This contradicts the fact thatm(vk) = m.
By the same argument given in Lemma 2 we get ω∗k (Am) ≤ 2l. �

Lemma 4. (i) The largest value of m ever used in KTl,b is dω
∗

l e.
(ii) The number of colors used by KTl,b is at most dω

∗

l e(maxm FF(Am)), where FF(Am) denotes the number of colors used by First
Fit on the set Am of intervals that were presented online.

Proof. (i): For a maximum weighted clique of ω∗ and for every interval vi ∈ σ , ω∗(Gd ω∗l e
(vi) ∪ {vi}) ≤ ω∗ ≤ dω

∗

l e · l.

(ii): By (i) the largest value ofm is at most dω
∗

l e. For eachm, Am is colored by First Fit using the related colors of Cm (last step
of the algorithm). �

Note that KT1,1 without bandwidth is equivalent to the original algorithm of Kierstead and Trotter [16]. In their algorithm
every layer can be colored by First Fit with atmost 3 colors. The number of layers equals the size of themaximum cardinality
clique. Therefore the number of colors used is at most 3OPT .

3. Upper bounds

In this section we present algorithms for different models. We denote the optimal offline algorithm for a specific variant
A, by OPTA, e.g., for the open-end model we denote the optimal offline algorithm that follows the restrictions of the model
by OPTOpen-End. When we write simply OPT , we refer to the minimum number of colors required to color the input if the
considered variant is standard online coloring with bandwidth.

3.1. Open-End coloring

In the Open-End version, colors can consist of intersecting intervals with a total bandwidth of more than 1. However,
for any given point, the removal of the last interval colored with a specific color must bring the color’s level back to strictly
below 1 at that point.
Theorem 1. There exists an online algorithm with competitive ratio of at most 12 for the open-end interval coloring.
Proof. Algorithm. Perform an online partition of the intervals into three disjoint sub-sequences S1, S2, and S3 according to
the bandwidth of the intervals. The sub-sequences are defined as follows.
For an interval I ,

– I ∈ S1 if b(I) ≤ 1
4

– I ∈ S2 if 14 < b(I) < 1
– I ∈ S3 if b(I) = 1.

Each sub-sequence is colored by a different set of colors. The colors to be assigned are split into three disjoint classes C1, C2,
and C3. Each class is designated to intervals of one sub-sequence, i.e., C1 for S1, C2 for S2 and C3 for S3.
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The classes of colors are built dynamically, when a new color is required, the first unused color is assigned. When a color
is assigned to one of the three classes, it can no longer be assigned to any of the other classes.
Run in parallel (i.e., independently) the following three sub-algorithms:

Sub-Algorithm AS1 . Use KT 14 , 14 on the intervals of S1 ignoring the open-end option.
Sub-Algorithm AS2 . Use a variant of KT1,1 without bandwidth on S2. In lines 1–3 of the algorithm KT1,1, treat all intervals

as if they have bandwidth of exactly 1. The change is made in line 5 of the algorithm. Instead of using at most 3
colors for each Am, use only one color.

Sub-Algorithm AS3 . Use the Algorithm of Kierstead and Trotter, i.e., KT1,1 without bandwidth.

Lemma 5. (i) AS1 uses at most 5 · OPTOpen-End(S1) colors;
(ii) AS2 uses at most 4 · OPTOpen-End(S2) colors;
(iii) AS3 uses at most 3 · OPTOpen-End(S3) colors;
Proof. Sub-Algorithm AS1 . According to Lemma4part (i), the number of colors used byKT 14 , 14 is atmost d

ω∗

1
4
emaxm FF(Am),

where FF(Am) denotes the number of colors used by First Fit on the set Am of intervals that were presented online.
By Lemma 2, for everym,ω∗(Am) ≤ 1. Therefore maxm FF(Am) = 1 and we get that the number of colors used is at
most d4ω∗e. In the open-end version, the total bandwidth for each color may exceed 1. Since all the intervals in S1
have a maximum bandwidth of 14 , OPTOpen-End can use each color for a total bandwidth of at most

5
4 . Therefore any

algorithmneeds at least d 45ω
∗
e colors. Hence, we get, AS1(S1) ≤ d4ω

∗
e = d5· 45ω

∗
e ≤ 5·d 45ω

∗
e ≤ 5OPTOpen-End(S1).

Sub-Algorithm AS2 . Note that in this variant of KT1,1 without bandwidth, all the sets of intervals Am should contain the
same intervals as if we had used the regular KT1,1 without bandwidth. The only difference is the coloring of the
intervals within these sets.
First we claim that this variant results in a proper coloring. By Lemma 3, the cardinality clique is at most 2 in

each Am. In the Open-End variant, two intersecting intervals each of bandwidth strictly less than 1 can be colored
by the same color. Since every interval I ∈ S2 satisfies 14 < b(I) < 1 every Am can be colored by a single color, and
the claim is proved.
Next we show that the number of colors used by AS2(S2) is at most 4 · OPTOpen-End(S2). Algorithm AS2 uses at

most ω colors, where ω is the largest cardinality clique and not the largest weight clique. Since for every I ∈ S2,
b(I) > 1

4 , OPTOpen-End(S2) can use atmost four intersecting intervals in a single color. Therefore OPTOpen-End(S2) uses
at least ω4 colors. Thus we get that AS2 uses at most 4 · OPTOpen-End(S2) colors.

Sub-Algorithm AS3 . According to the analysis of the algorithm of Kierstead and Trotter, we have the following bound on
the number of colors used, AS3(S3) ≤ 3OPT (S3). Since for every I ∈ S3, b(I) = 1, every two intersecting intervals
cannot receive the same color. Thus OPT (S3) = OPTOpen-End(S3). �

Since the algorithms run obliviously of each other, we need to sum their competitive ratios. By combining the competitive
ratios of the sub-algorithms of AS1 , AS2 and AS3 , we get a competitive ratio of 12 for the complete algorithm. �

3.2. Coloring with vector constraints

In the vector constrained variant, each interval has a vector of d distinct weights and each color has d corresponding unit
capacities. Given a point p, the total bandwidth of each of the d components in intervals intersecting p, which receive the
same color must not exceed the unit capacity of the corresponding component of their color. This constraint must hold for
each of the d components simultaneously. The d-dimensional coloring problemwe study here is a generalization of the prob-
lem of interval coloring with bandwidth, the latter problem can be viewed as a 1-dimensional vector constrained problem.
Denote by bi(I), the bandwidth of the i’th coordinate of the vector of bandwidths of interval I .

Theorem 2. There exists an online algorithm for vector constrained interval coloring with competitive ratio of at most 10d, where
d is the dimension of the vector constraints.
Proof. Perform an online partition of the intervals into d disjoint sub-sequences S1, . . . , Sd according to the bandwidth
vector of the intervals. The sub-sequences are defined as follows. For every interval I , I ∈ Si if 1 ≤ i ≤ d is the smallest
number satisfying that bi(I) ≥ bj(I) for every j 6= i.
Each sub-sequence is colored by a different set of colors. The colors to be assigned are split into d disjoint classes

C1, . . . , Cd. Each class is designated to color intervals of one sub-sequence, i.e., C1 for S1, C2 for S2 and so on.
For every i run an instance of the algorithmof [2] on Si using the colors of Ci. Any interval I ∈ Si is treated by this algorithm

as an interval of the one-dimensional bandwidth bi(I). From the definition of Si, bi(I) ≥ bj(I) for every j 6= i, therefore the
resulting coloring is proper. The algorithm of [2] can be summarized by the general presentation of Kierstead and Trotter
given in the preliminaries as follows.
For an interval I ,

– I ∈ B1 if b(I) ≤ 1
4

– I ∈ B2 if 14 < b(I) ≤
1
2

– I ∈ B3 if 12 < b(I) < 1.
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Algorithm of [2].

– Use KT 1
4 ,
1
4
(taking bandwidth into account) on the intervals of B1.

– Use a variant of KT1,1 without bandwidth on B2. In lines 1–3 of the algorithm KT1,1, treat all intervals as if they have
bandwidth of exactly 1. The change is made in line 4 of the algorithm. For each Am use only one color.

– Use KT1,1 without bandwidth on B3.

This algorithm has competitive ratios of 4, 3 and 3 for the classes S1, S2 and S3, respectively. Since we run in parallel d
instances of the algorithm of [2], each of which has a competitive ratio of at most 10, we get the combined competitive ratio
of at most 10d. �

3.3. Coloring with cardinality constraints

In the cardinality constrained, or the k-bounded interval coloring with bandwidth problem there is an additional
restriction. In this variant, for each point p and color c , at most k intersecting intervals colored using color c and intersecting
point pmay exist.
Note that the cardinality constraint can be expressed by giving vector constraints of dimension d = 2. The first

component can be defined to be the bandwidth requirement, whereas the second component would be defined to be 1k
for all intervals. This would result in an algorithm of competitive ratio of at most 20 using the algorithm of [2]. A slightly
more careful analysis results in a competitive ratio of 14 for the same algorithm, since all intervals which would be colored
according to their second componentwould be assigned to the same subclass of intervals.We design an improved algorithm
with competitive ratio as follows.

Theorem 3. There exists an online algorithm for cardinality constrained interval coloring with a competitive ratio of at most
min{10+ 2 · k

k−1 , k+ 3} for odd k, and of at mostmin{12, k+ 3} for even k, where k is the cardinality constraint.

Proof. Algorithm. If min{10+ 2 · kk−1 , k+ 3} = 10+ 2 ·
k
k−1 for odd k or min{12, k+ 3} = 12 for even k, use the algorithm

described in case 1. Otherwise use case 2.

Case 1. Perform an online partition of the intervals into two disjoint sub-sequences S1 and S2 according to the bandwidth
of the intervals. The sub-sequences are defined as follows.
For an interval I ,

– I ∈ S1 if b(I) ≤ 1
k

– I ∈ S2 if 1k < b(I) < 1.
Sub-Algorithm AS1 .

Even k. Take the bandwidth of every interval in S1 to be exactly 1k and use algorithm KT 12 , 1k .
Odd k. Take the bandwidth of every interval in S1 to be exactly 1

k−1 and use algorithm KT 12 , 1k−1 , with the
following change. The sets A1 and A2 are considered together in the application of First Fit in line 4.

Sub-Algorithm AS2 . Use the algorithm presented in [2] on S2. See details of this algorithm in the proof of
Theorem 2).

Case 2. Perform an online partition of the intervals into two disjoint sub-sequences R1 and R2 according to the bandwidth
of the intervals. The sub-sequences are defined as follows.
For an interval I ,
– I ∈ R1 if b(I) ≤ 1

2
– I ∈ R2 if 12 < b(I) < 1.
Sub-Algorithm AR1 . Use a variant of KT1,1 without bandwidth on R1. In lines 1–3 of the algorithm KT1,1, treat all
intervals as if they have bandwidth of exactly 1. The change is made in line 4 of the algorithm. Instead of using
at most 3 colors for each Am, use only one color.

Sub-Algorithm AR2 . Use KT1,1 without bandwidth, treating every interval as if its bandwidth is exactly 1.

We next analyze the competitive ratio.

Case 1.
Sub-Algorithm AS1

Even k. Since each color can be used for a total of k intersecting intervals, we can treat all intervals in S1 as
if they have bandwidth of exactly 1k . The value ω

∗ is computed using this assumption.
The number of colors used by KT 1

2 ,
1
k
is at most dω

∗

1
2
emaxm FF(Am), according to Lemma 4 part (ii). Since now

all intervals have the same bandwidth 1k , and since
1
2 is divisible by

1
k , by Lemma 3, we get that for every m,

ω∗(Am) ≤ 1. Thereforemaxm FF(Am) = 1 andwe get that the number of colors used by our algorithm is at most
d2ω∗e ≤ 2dω∗e.
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Odd k. In this case, the value ω∗ is computed based on the assumption that every interval has bandwidth
1
k−1 .
Similarly to the previous case, we would get a competitive ratio of 2 if an optimal algorithm could use only

k− 1 intersecting intervals for every color. However OPTk-Bounded can use k intersecting intervals for each color.
Therefore the OPTk-Bounded uses at least k−1k ω

∗ colors. If the algorithm uses a single color, then the competitive
ratio is 1, since OPTk-Bounded ≥ 1, for an input with at least one interval. Otherwise, the sets A1, A2 are colored
together using First Fit, and since the size of the largest weighted clique in A1 ∪ A2 is at most 1, a single color
is used for A1 ∪ A2. Therefore, the algorithm uses dω∗e − 1 ≤ ω∗ colors. Hence we get a competitive ratio of
2 · k

k−1 .
Sub-Algorithm AS2 . The algorithm presented in [2] has a competitive ratio of at most 10 on intervals in (0, 1].
Since for every I ∈ S2, b(I) in (0, 1], the competitive ratio for this part is also at most 10.

Combining the competitive ratio of this case we get at most 10+ 2k
k−1 for odd k and at most 12 for even k.

Case 2.
Sub-Algorithm AR1 . Note that in this variant of KT1,1 without bandwidth, all the sets of intervals Am contain the
same intervals as if we had used the regular KT1,1 without bandwidth. The only difference is the coloring of the
intervals within these sets.
First we claim that this variant results in a proper coloring. By Lemma 3, the cardinality clique is at most 2

in each Am. Since every interval I ∈ R1 satisfies b(I) ≤ 1
2 every Am can be colored by a single color and the claim

is proved.
We next show that the number of colors used by AR1(R1) is at most k · OPTk-Bounded(R1). Algorithm AR1 uses

at most ω colors, where ω is the cardinality clique of the set R1 and not the weighted clique. In the cardinality
constrained variant OPTk-Bounded can only color k intersecting intervals with the same color. Therefore it uses at
least ωk colors. Thus we get that AR1(R1) uses at most k · OPTk-Bounded(R1) colors.

Sub-Algorithm AR2 . We have AR2(R2) ≤ 3OPT (R2) and OPT (R2) = OPTk-Bounded(R2). The last equality is valid since
for every I ∈ R2, b(I) > 1

2 , so no two intersecting intervals can receive the same color.
Combining the competitive ratio of this case we get k+ 3.

To complete the analysis, since k is known in advance, the algorithm uses the best option for a specified k, thus getting
the minimum competitive ratio out of the two cases. �

3.4. Coloring with vector and cardinality constraints

This case is a combination of the previous two variants. There is a d-dimensional vector for each interval with d distinct
bandwidths and each color has d corresponding capacities. Additionally at most k intersecting interval are allowed in one
color as required in the cardinality constraint. Note that the cardinality constraint can be expressed using an additional
((d+ 1)-th) component of the vector constraint, which is defined to be 1k for all intervals. This would result in an algorithm
of competitive ratio of at most 10(d + 1) using the algorithm of Section 3.2. A slightly more careful analysis results in
a competitive ratio of 10d + 4 for the same algorithm, since all intervals which would be colored according to their last
component would be assigned to the same subclass of intervals. We design an improved algorithm with competitive ratio
as follows.

Theorem 4. There exists an online algorithm for interval coloring with vector and cardinality constraints with a competitive ratio
of at mostmin{10d+ 2, 3k} for even k and of at mostmin{10d+ 2 k

k−1 , 3k} for odd k, where k is the cardinality constraint and
d is the dimension of the vector constraints.

Proof. Algorithm. If min{10d + 2, 3k} = 10d + 2 (for even k) or min{10d + 2 k
k−1 , 3k} = 10d + 2

k
k−1 (for odd k) use the

algorithm described in case 1. Otherwise use case 2.

Case 1. The algorithm is similar to the algorithm presented for interval coloring with vector constraints. We introduce a
new sub-sequence S0. Interval I ∈ S0 if for every 1 ≤ i ≤ d, bi(I) ≤ 1

k . The other sub-sequences are defined as
follows.
For every interval I , I ∈ Si if 1 ≤ i ≤ d is the smallest number satisfying bi(I) ≥ bj(I) for every j 6= i and

bi(I) > 1
k .

For every i ≥ 1 run an instance of the algorithm of [2] on Si using the colors of Ci (for the details of this algorithm
see the proof of Theorem 2).

Even k. Take the bandwidth of every coordinate in the bandwidth vector of the intervals in S0 to be exactly 1k and
use algorithm KT 1

2 ,
1
k
.

Odd k. Take the bandwidth of every coordinate in the bandwidth vector of the intervals in S0 to be exactly 1
k−1

and use algorithm KT 1
2 ,

1
k−1
, with the change that the sets A1 and A2 are considered together in the application

of First Fit in line 4.
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Case 2. Take the bandwidth of every coordinate in the bandwidth vector of all the intervals to be exactly 1 and use
algorithm KT1,1 without bandwidth.

Analysis of the competitive ratio
Denote by OPTVP-k-Bounded an optimal offline algorithm for vector packing with cardinality constraints.

Case 1. The algorithm presented in [2] has a competitive ratio of 10 on intervals with bandwidth in (0, 1]. Since for every
I ∈ Si, bi(I) ∈ (0, 1], the number of colors used for each Si, where i ≥ 1 is at most 10OPTVP-k-Bounded(Si). Also since
for every j 6= i, bi(I) ≥ bj(I), the coloring is proper.
The coloring of S0 is similar to the coloring of the sub-algorithm AS1 presented for bounded cardinality. Since all

the bandwidths in the vector are at most 1k , the coloring of S0 is proper. The number of colors used for odd k is at
most 2· kk−1OPTVP-k-Bounded(S0). For even values of k, the number of colors is atmost 2OPTVP-k-Bounded(S0). Combining
both parts, we get a competitive ratio of 10d+ 2 for even values of k and 10d+ 2 k

k−1 for odd values of k.
Case 2. In this case we simply apply the algorithm of Kierstead and Trotter ignoring the bandwidth vector. Since

OPTVP-k-Bounded can color at most k intersecting intervals with the same color, we lose an additional factor of k.
Therefore, the competitive ratio of this case is 3k. �

4. Lower bound

In this sectionwe present a lower bound of 247 ≈ 3.428571 on the competitive ratio of any algorithm for interval coloring
with bandwidth. This is an improvement of the previously known lower bound of 3.26 for standard interval coloring with
bandwidth presented in [9]. Note that the lower bound of [9] does not apply for most variants studied in this paper. For
cardinality constrained coloring, a simplification of that construction can be applied only to very large values of k. It is not
valid for the open-end model either. However the lower bound of Kierstead and Trotter [16] can be used in both these
models. By using intervals of bandwidth 1, as done in the construction of [16], two intersecting intervals can not receive the
same color in any of our models. Therefore the best lower bound previously known for these cases is 3.
We prove the following theorem, using a single type of construction for allmodels. The construction uses parameters, and

the lower bound for each model separately can be achieved by fixing the parameters appropriately. The theorem holds for
all models studied in this paper. The variant with vector constraints is a generalization of standard coloring with bandwidth,
where the vector has dimension 1. Additional dimensions can be added trivially by adding zero components. Similarly, the
variant with both vector and cardinality constraints is a generalization of cardinality constrained coloring.

Theorem 5. Any deterministic online algorithm for interval coloring with bandwidth in the standard model, open-end model,
and cardinality constrained model, has competitive ratio of at least 247 ≈ 3.428571.

Proof. The general structure of the input sequence is as follows. In the first part of the construction, all intervals have
bandwidth α and in the second (optional) part all intervals have bandwidth β > α. The values of α and β are picked
depending on the exact problem. The choice is such that it is possible to assign the same color to two intersecting intervals
of bandwidth α, or even to one interval of bandwidth α and one of bandwidth β , which are intersecting. However, we need
to make sure that it is impossible to assign the same color to two intersecting intervals of bandwidth β , or to any three
intersecting intervals of bandwidth at least α.
Such choices can be e.g. α = 0.4 and β = 0.6 for the standard problem, or to the cardinality constrained problem, for

any k ≥ 2 (since the case k = 1 is equivalent to standard interval coloring, it is impossible to improve the lower bound of 3
in this case). For the open-end problem, we can take α = 0.6 and β = 1.
Given an integer value s, the first part of the sequence is built so that the largest clique size (ignoring the bandwidth) is

2s. Since interval graphs are perfect, it is clearly possible to color the graph using 2s colors, so that no two intervals colored
with the same color may intersect. We next show that it is possible to color the input using s colors, as follows. First, we
distribute 2s colors so that no two intersecting intervals receive the same color. Then we can partition colors into pairs, and
unite every two colors into one. This can be done since at every point there will be at most two intersecting intervals of
bandwidth α.
The second part of the sequence is built in a way that the largest clique size (again, ignoring the bandwidth) of intervals

introduced in this part is 2s. The complete sequence can be colored using 2s colors, similarly to the explanation above, by
coloring each part of the sequence using 2s colors. The same palette of 2s colors can be used for both parts.
Consider a sub-set of the input, usually this is a sub-set of input intervals contained in somemega-interval (a continuous

part of the real line). A color which was used for at least one interval in the sub-set is called a ‘‘used color". Next, we define
the notion of ‘‘full colors" and ‘‘partial colors" in a coloring of this sub-set as follows. If there exists an interval colored with
color c , from the second part of the input in the sub-set, i.e., there exists an interval with bandwidth β colored with color c ,
then c is a full color. Moreover, if there exists a point p and a color c such that two distinct intervals X and Y from the first
part of the input, such that p ∈ X and p ∈ Y , both received the color c , then c is a full color. Otherwise, if this does not hold,
but c is a used color, then it is a partial color. This happens if there exists at least one interval in the sub-set that is colored
with c , and all intervals in the sub-set that are colored with c are independent, that is, no two of them overlap.
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The construction of the two parts of the sequence are adaptations of the lower bound in [16]. The first part of the sequence
uses intervals of bandwidth α and therefore two intersecting intervals may receive the same color. This is a main difference
with the proof in [16], since we need to deal with such a situation, whereas in [16] all intervals have bandwidth 1. Another
difference, that we already used in the construction in [9] is the assumption that some information on the optimal cost
(which is either s or 2s in our case) is known in advance. The construction of each part works in phases, after a phase we
shrink some parts of the line into single points. Consider a point p, that is a result of shrinking an interval [a, b]. Every interval
presented in the pastwhich is contained in [a, b] is also shrunk into p and therefore such a point inherits a list of used (partial
and full) colors that some interval received. A partial color can be used again exactly once in some interval containing p. A
full color cannot be assigned to any interval that contains the point p. This is done for simplification. In practice it means that
for a given point p that is the result of shrinking, every future interval either contains this point or not, i.e., it either contains
all intervals that were shrunk into this point, or has no overlap with any of them.
Wewould like to show that either the number of colors used in the first part is at least 24s−27 , or the number of colors used

after the second step is at least 48s−47 . This would imply the lower bound. Therefore, the sequence construction can clearly
stop once 7s colors have been used. Therefore wemay assume that we are initially given a palette of 7s colors, 1, . . . , 7s, that
may be used by the algorithm. The ith color ever used by the algorithm is called color number i. As soon as color 7s is used,
the proof is complete. This is just one stopping condition. We may stop the sequence earlier as well, as will be discussed
later.
The first part of the sequence has intervals of bandwidth α and starts with introducing S(0) non-intersecting intervals,

this is phase 1. A bound on the value S(0) is fixed later.
Since the algorithm is using at most 7s colors, this means that there exists a set of S(0)7s intervals that share the exact same

color c. We shrink all intervals into single points. Later phases result in additional points. Since there are no intersecting
intervals, color c is partial in all points colored with it.
We now define phase i ≥ 2. The phases are constructed in a way that in the beginning of phase i there is a set of at least

S(i− 1) points that contain two given sub-sets of the 7s colors. The first sub-set is of P(i− 1) partial colors and the second
is of F(i− 1) full colors. These points are called points of interest. Note that after phase 1 we have P(1) = 1 and F(1) = 0.
There exist some other points containing other sub-sets of full and partial colors. All these points are called void points.

At this time, we partition the points of interest into consecutive sets of four. At most three points of interest that do not
participate in this partitioning become void points.
We next define additional intervals, increasing the size of the largest cardinality clique (with respect to the number of

intervals, i.e., ignoring bandwidth) by exactly one. Given a set of four points listed from left to right a1, a2, a3, a4, let b be the
leftmost void point on the right hand side of a1, between a1 and a2. If no such point exists, then let b =

a1+a2
2 , i.e., the point

which is halfway between a1 and a2. Similarly, let d be the rightmost void point between a3 and a4, and if no such point
exists then d = a3+a4

2 . Let f be a point between a2 and a3 that is not a void point. We introduce the intervals I1 = [a1,
a1+b
2 ]

and I2 = [
d+a4
2 , a4].

If they both receive the same color (used or unused at points a1 and a4), we introduce the intervals I3 = [
a1+b
2 , f ] and

I4 = [f ,
d+a4
2 ]. The interval I3 intersects with a2, and with I1. The second interval I4 intersects I3, a3 and I2. We consider the

colors used for the four new intervals. If at most two distinct colors were used, then there exists a point in the range [a1, a4]
where two intersecting intervals received the same color, and therefore there is at least one new full color in this interval. If
a color that is partial in the point a1, a2, a3, a4 was used, then this color becomes full in [a1, a4]. If three unused colors were
used, then these colors become additional partial colors in [a1, a4].
If I1, I2 receive distinct colors (used or unused),we introduce the interval I5 = [

a1+b
2 ,

d+a4
2 ], instead of presenting intervals

I3 and I4 as was done in the previous case. Interval I5 intersects with I1, I2, a2, a3. We consider the colors used for the three
new intervals. If I5 gets the same color as I1 or I2, then this color becomes full in [a1, a4]. If a color which is partial in the point
a1, a2, a3, a4 was used, then this color becomes full in [a1, a4]. If three unused colors were used, then these colors become
additional partial colors in [a1, a4].
We shrink every such interval [a1, a4] into a single point. Each of the new shrunk points received either three new partial

colors, or one full (not necessarily new) color.
Note that we do not use more than 7s colors, and each new shrunk point receives a number of full and partial colors,

which is at most three colors in total. Four intervals are introduced only if the first two received the same color. If the point
has no new full colors, then it has exactly three new partial colors. Otherwise, it has at least one new full color, and possibly
one or two new partial or full colors. Before the phase, all points of intervals had the exact same sub-sets of partial and
full colors. This gives seven options for the type of new colors (or colors which changed status from partial to full). Let ‘‘f "
denote full and ‘‘p" denote partial, then the options are (p, p, p), (f , p, p), (f , f , p), (f , f , f ), (f , p), (f , f ), (f ). There are less
than (7s)3 options for each type, and thus in total, there are less then 7 · (7s)3 choices for the updated sub-sets given the
previous ones. We can choose at least S(i) = S(i−1)

4·7·(7s)3
points having the same sets of full and partial colors. Note that in

this calculation, we can neglect the (at most three) points of interest that may have become void. This is the case where
the number of points of interest is not divisible by 4. The values S(i− 1) are chosen such that all of them are divisible by 4.
Therefore, if any points of interest become void, it means that the number of points of interest is actually larger than S(i−1),
and does not get reduced below S(i− 1) by omitting these at most three points.
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The points containing these exact sets of colors become the points of interest of the next phase, and the others become
void points of the next phase. Points that are void points of previous phases and are not contained in shrunk intervals remain
void points. Note that the only points where the new intervals intersect are points with no previous intervals, and therefore
the clique size increases by exactly 1.
After the first 2s phases, the sequence may continue with the second part. If P(2s) + F(2s) ≥ 24s−2

7 the sequence stops
since the lower bound is obtained. Otherwise, the second part goes on for 2s phases, however the intervals have bandwidth
β , therefore no new partial colors are introduced, and every phase results in three new full colors. To verify this, it can
be checked that in both construction cases, the new intervals must receive three distinct colors, that are either unused or
partial. The number of full colors after all phases is at least F(2s)+6s. Let A be the number of phases among the first 2swhich
increased the number of partial colors by 3. Therefore 24s−27 > P(2s)+ F(2s) ≥ 3A+ 1 (since in the first phase exactly one
color is introduced, which must be partial). In all other phases except the first one and up to phase 2s, the number of full
colors increased. Therefore F(2s) ≥ 2s − 1 − A. We get 2s − 1 − F(2s) ≤ A < 24s−9

21 and therefore F(2s) > 6s−4
7 and

F(2s)+ 6s > 48s−4
7 , which proves the lower bound in this case.

Note that in each phase, the number of intervals which can be used for the next phase decreases by a factor of at
most 28 · (7s)3. To complete the construction, we need S(4s) ≥ 1. If the initial number of intervals introduced is
S(0) = (28 · (7s)3)4s, this holds and we are done. �

5. Conclusion

We designed competitive algorithms for several variants of interval coloring. Our lower bound on the competitive ratio
holds for all these models. For the vector constrained model, our upper bound is linear in d whereas our lower bound is
constant. It would be interesting to improve the lower bound so that it depends on d. Note that the same problem is known
to be open for the online vector packing problem as well (see [7]).
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