
Theoretical Computer Science 407 (2008) 231–241

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

BincoloringI

Sven O. Krumke a, Willem E. de Paepe b, Jörg Rambau c, Leen Stougie d,e,∗
a Department of Mathematics, University of Kaiserslautern. Paul-Ehrlich-Str. 14, 67653 Kaiserslautern, Germany
b Capgemini Nederland B.V., Papendorpseweg 100, P.O. Box 2575, 3500GN Utrecht, The Netherlands
c Department of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
d Department of Mathematics and Computer Science, Technical University of Eindhoven, P.O. Box 513, 5600MB Eindhoven, The Netherlands
e Centre for Mathematics and Computer Science (CWI), P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 20 August 2007
Received in revised form 11 March 2008
Accepted 20 May 2008
Communicated by A. Fiat

Keywords:
Competitive analysis
NP-hardness

a b s t r a c t

We introduce a new problem that was motivated by a (more complicated) problem arising
in a robotized assembly environment. The bin coloring problem is to pack unit size colored
items into bins, such that the maximum number of different colors per bin is minimized.
Each bin has size B ∈ N. The packing process is subject to the constraint that at anymoment
in time at most q ∈ N bins are partially filled. Moreover, bins may only be closed if they
are filled completely. We settle the computational complexity of the problem and design
an approximation algorithm for a natural version which gives a solution whose value is at
most one greater than the optimal one.
We also investigate the existence of competitive online algorithms, which must pack

each item without knowledge of any future items. We prove an upper bound of 3q − 1
and a lower bound of 2q for the competitive ratio of a natural greedy-type algorithm, and
show that surprisingly a trivial algorithmwhich uses only one open bin has a strictly better
competitive ratio of 2q − 1. Moreover, we show that any deterministic algorithm has a
competitive ratio Ω(q) and that randomization does not improve this lower bound even
when the adversary is oblivious.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One of the commissioning departments in the distribution center of Herlitz PBS AG, Falkensee, a main distributor of
office supplies in Europe, is devoted to greeting cards. The cards are stored in parallel shelving systems. Order pickers on
automated guided vehicles collect the orders from the storage systems, following a circular course through the shelves. At
the loading zone, which can hold q vehicles, each vehicle is logically ‘‘loaded’’ with B orders which arrive online. The goal is
to avoid congestion among the vehicles (see [1] for details). Since the vehicles are unable to pass each other and the ‘‘speed’’
of a vehicle is correlated to the number of different stops it must make, this motivates assigning the orders to vehicles in
such a way that the vehicles stop as few times as possible.
The above situation motivates the following bin coloring problem (Bcp): one receives a finite sequence of unit size items

σ = r1, r2, . . . where each item has a color ri ∈ N, and is asked to pack them into bins of size B. The goal is to pack the items
into the bins ‘‘most uniformly’’, that is, to minimize the maximum number of different colors assigned to a bin. The packing
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process is subject to the constraint that at any moment in time, at most q ∈ N bins may be partially filled. Bins may only be
closed if they are filled completely. (Notice that without these strict bounded space constraints the problem is trivial since
in this case each item can be packed into a separate bin.)
In the online version, the online bin coloring problem (OlBcp), each itemmust be packed without knowledge of any future

items. Trivially, any online algorithm for the OlBcp is B-competitive, where B denotes the size of the bins.
We study the online and offline bin coloring problem. For the offline problem Bcp we derive complexity and approx-

imability results. For the online problem OlBcpwe investigate which competitive ratios are achievable. Our results reveal a
curiosity of competitive analysis: a truly stupid algorithm achieves essentially a (non-trivial) best possible competitive ratio
for the problem whereas a seemingly reasonable algorithm performs provably worse in terms of competitive analysis.
This paper is organized as follows. In Section 2we formally define the Bcp andOlBcp. Section 3 investigates the complex-

ity of the offline problem Bcp and show that for a special case which is still NP-complete, the fitting bincoloring problem,
there is an approximation algorithm with additive error of one. In Section 4 we describe and analyze the obvious algorithm
greedyfit. In Section 5we introduce and analyze the trivial algorithm onebinwhich surprisingly obtains a better competitive
ratio than greedyfit. Sections 6 and 7 contain general lower bounds for deterministic and randomized algorithms.

2. Problem definition

We start by defining the problems under study.

Definition 1 ((Online) Bin Coloring Problem). In the bin coloring problem (BcpB,q)with parameters B, q ∈ N (B, q ≥ 2), one is
given a sequence σ = r1, . . . , rm of unit size items (requests), each with a color ri ∈ N, and is asked to pack them into bins
with size B, that is, each bin can accommodate exactly B items. The packing is subject to the following constraints:

(1) The items must be packed according to the order of their appearance, that is, item imust be packed before item k for all
i < k.

(2) At most q partially filled bins may be open to further items at any point in time during the packing process.
(3) A bin may only be closed if it is filled completely, i.e., if it has been assigned exactly B items.

The objective is to minimize the maximum number of different colors assigned to a bin.
In the online bin coloring problem (OlBcpB,q), an online algorithm must pack each item ri (irrevocably) without

knowledge of requests rk with k > i.

In the sequel itwill be helpful to use the following viewon the bins used to process an input sequenceσ . Each open bin has an
index x, where the number x satisfies x ∈ {1, . . . , q}. Each time a bin with index x is closed (since it is filled completely) and
a new bin is opened the new bin will also have index x. If no confusion can occur, we will refer to a bin with index x as bin x.

3. Offline-bin coloring

We first consider the general offline problem, and show that it isNP-complete. Thenwe consider the problem in a slightly
different setting, where the number of items is exactly qB, and items have to be packed in exactly q bins. We show that even
this problem is NP-complete.

Theorem 2. The decision version of BcpB,q is NP-complete.

Proof. We provide a polynomial time reduction from 3-Partition which is well known to be NP-complete in the strong
sense [2, Problem SP15]. An instance of 3-Partition is given by a set of numbers S = {a1, . . . , a3t} with

∑
i ai = tM ,

M/4 < ai < M/2 for all i, and ai ∈ Z+ for all i and a bound M ∈ Z+. The question asked is whether S can be partitioned
into t disjoint sets S1, . . . , St such that

∑
i:ai∈Sj

ai = M .
We can assume that M ≥ 4. We construct an instance of BcpB,q with q = t bins of size B = M as follows. The input

sequence σ starts with a1 items of color 1, followed by a2 items of color 2 and so on until a3t items of color 3t . Then follow
3t additional items, each with a new color not used before. Thus, there are 6t colors overall. We will show that the instance
of BcpB,q constructed has a solution of cost at most 3 if and only if the original instance of 3-Partition has a yes-answer.
Suppose that there is a yes-answer to the instance of 3-Partition and let S1, . . . , St be sets such that

∑
i:ai∈Sj

ai = B.
We put all items corresponding to ai ∈ Sj into bin j, for all i = 1, . . . , 3t . After this, each bin contains exactly B items of at
most three different colors. Consequently, all bins will be closed, and q empty bins can be used for placing the last 3t items.
Assigning three of the remaining items to every bin will give a solution of cost 3.
If there is no yes-answer for 3-Partition, one of the following is true. There is at least one non-empty bin after the first

tB items, or there has been a bin that contained items of at least four different colors. In the latter case, we cannot have a
solution of cost at most 3, so we can assume that all bins contain items of at most three colors, and there is at least one
non-empty bin. SinceM/4 < ai < M/2 for all i, we know that the non-empty bins that contain items of only one different
color have at leastM/2+ 1 = B/2+ 1 ≥ 3 empty places, and that the non-empty bins that contain items of two different
colors have at least two empty places. Non-empty bins containing items of three different colors must have at least one
empty place, otherwise the bin would have been replaced by an empty bin. In order to establish a solution of cost at most 3,
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none of the non-empty bins can be completely filled (and replaced) by assigning one or more of the last 3t items to it, since
these items all have a different color. As a consequence, all 3t itemsmust be distributed over the t currently open bins. Since
at least one bin is non-empty, at least one bin ends up with four or more different colors. �

Now consider the problem where the sequence σ consists of exactly qB items, and all items must be assigned to no more
than q bins. We call this the fitting bincoloring problem. Observe that for the fitting bincoloring problem the order in which
the items are given is irrelevant. First we show that deciding whether or not there exists a solution of cost at most 2 is
NP-compete.

Theorem 3. The decision version of the fitting bincoloring problem is NP-complete.

Proof. Again we use a reduction from 3-Partition. Given any instance of 3-Partitionwith
∑3t
i=1 ai = tM andM/4 < ai <

M/2, we construct an instance of the fitting bincoloring problem with q = 3t bins with capacity B = M/2. We will provide
an input sequence σ such that the fitting bincoloring instance has a solution of cost at most two if and only if the instance
of 3-Partition has a solution.
The sequence σ consists of a set αi of 1 ≤ M/2− ai = B− ai ≤ B/2− 1 items of color i, for i = 1, . . . , 3t , and of a set βi

ofM = 2B items of color 3t + i, for i = 1, . . . , t .
Suppose that the instance of 3-Partition has a solution S1, . . . , St . We first assign all items of αi to bin i. Hence, bin i

has exactly ai free space left. Now, for j = 1, . . . , t we consider set Sj = {aj1 , aj2 , aj3} in the solution of 3-Partition and we
distribute the items of βj over bins j1, j2 and j3. Since aj1 + aj2 + aj3 = M = 2B this completely fills up the corresponding
bins. Hence, we obtain a solution of cost 2.
Conversely, suppose that there is a solution of cost at most 2. Each set αi has at least one item, and at most B/2−1 items,

i = 1, . . . , 3t . Hence each of these sets can fill only less than half of a bin, hence in any solution of cost at most 2 they have
to be allocated to 3t separate bins.
To reach a solution of cost 2, the items of every set βj, j = 1, . . . , t , have to be assigned to bins such that those bins

are completely filled by these items together with the already present α-items. It is easy to see that each set βj must be
distributed over exactly 3 bins and that this implies that the instance of 3-Partition has a solution. �

The fitting bincoloring problem has been investigated in [5], where the authors provided a polynomial time algorithm
which for every instance finds a solution of cost at most OPT(σ ) + 1. Here, we give a much simpler two-step strategy
roundrobin which achieves the same performance of OPT(σ ) + 1 for the fitting bincoloring problem. We note that it is
trivial to find the optimal solution if there exists a solution of value 1. Theorem 3 implies a lower bound of 3/2 on the
approximation ratio.

Theorem 4. Given an instance of the fitting bincoloring problem with input sequence σ , strategy roundrobin finds a solution of
cost at most OPT(σ )+ 1.

Proof. Let C1, . . . , Ck be the color sets in the given instance. Observe that OPT(σ ) ≥ k/q. Suppose that at the moment that
Step 1 of roundrobin ends, already the items C1, . . . , Cs have been assigned to bins. At this moment, by construction the
following properties are satisfied:

Algorithm roundrobin

Step 1: Group the items by color, and sort the sets by increasing cardinality. Let C1, . . . , Ck be the
monochromatic sets such that |C1| ≤ |C2| ≤ · · · ≤ |Ck|.
Fill the bins with monochromatic sets in a round robin fashion, i.e., bin 1 receives the items of set C1,

bin 2 gets the items of set C2, etc., until the current set does not fit completely into the current bin. Notice
that at every moment, a set of items is assigned to the bin with the least number of items.
Call all bins with B items closed. The remaining bins are divided into available and unavailable bins. A

binwith the same amount of colors as the current bin is termed available, otherwise the bin is unavailable.
Notice that the unavailable bins contain one more color than the available bins.
Step 2: If the number of different colors of the items yet to be assigned is at most the number of available
bins, assign the remaining monochromatic sets to the bins as follows. If there are unavailable bins
remaining, each set will be used to fill up at least one unavailable bin, and the remaining items of this
color are assigned to an available bin, that will be marked as unavailable from that point. The bin that is
filled is marked as closed. Continue like this until all items are assigned. If there are no unavailable bins
left, use an available bin instead of an unavailable bin.
If the number of remaining colors is greater than the number of available bins, fill the bins in a round

robin fashion, starting from the bin with the least number of items, and assigning the remaining items of
a color set to the next bin.

• No bin is able to accommodate any of the remaining sets Cs+1, . . . , Ck completely.
• No more than q different colors are remaining.
• The available bins have bs/qc different colors, the unavailable bins have bs/qc + 1 different colors.
• OPT(σ ) ≥ bs/qc + 1.
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If the number of remaining colors is at most the number of available bins, at most two new colors are assigned to any
originally available bin during Step 2, and at most one new color is assigned to any originally unavailable bin. Themaximum
number of colors in a bin is therefore at most bs/qc + 2 ≤ OPT(σ )+ 1.
If the number of remaining colors is greater than the number of available bins, then the total number of different colors

is at least (bs/qc + 1)q, and hence OPT(σ ) ≥ bs/qc + 2. Each bin gets at most two new colors, resulting in a solution of at
most bs/qc + 3 ≤ OPT(σ )+ 1. �

4. The Algorithm greedyfit

We now turn to the online problem OlBcp. In this section we introduce a natural greedy-type strategy, which we call
greedyfit, and show that the competitive ratio of this strategy is at most 3q but no smaller than 2q (provided the capacity B
is sufficiently large).

Algorithm greedyfit

If upon the arrival of request ri the color ri is already contained in one of the currently open bins, say bin b,
then put ri into bin b. Otherwise put item ri into a bin that contains the least number of different colors
(which means opening a new bin if currently less than q bins are non-empty). Ties are broken arbitrarily.

The analysis of the competitive ratio of greedyfit is essentially via a pigeon-hole principle argument. We first show a
lower bound on the number of bins that any algorithm can use to distribute the items in a contiguous subsequence and then
relate this number to the number of colors in the input sequence.

Lemma 5. Let σ = r1, . . . , rm be any request sequence for theOlBcpB,q and let σ ′ = ri, . . . , ri+` be any contiguous subsequence
of σ . Then any algorithm packs the items of σ ′ into at most 2q+ b(`− 2q)/Bc different bins.

Proof. Let ALG be any algorithm and let b1, . . . , bt be the set of open bins for ALG just prior to the arrival of the first item
of σ ′. Denote by f (bj) ∈ {1, . . . , B − 1} the empty space in bin bj at that moment in time. To close an open bin bj, ALG
needs f (bj) items. Opening and closing an additional new bin needs B items. To achieve the maximum number of bins
(≥ 2q), ALGmust first close each open bin and put at least one item into each newly opened bin. From this moment in time,
opening a new bin requires B new items. Thus, it follows that the maximum number of bins ALG can use is bounded from
above as claimed in the lemma. �

Theorem 6. Algorithm greedyfit is c-competitive for the OlBcpB,q with c = min{2q+ b(qB− 3q+ 1)/Bc, B}.

Proof. Let σ be any request sequence and suppose greedyfit(σ ) = w. It suffices to consider the case w ≥ 2. Let s be the
smallest integer such that greedyfit(r1, . . . , rs−1) = w − 1 and greedyfit(r1, . . . , rs) = w. By the construction of greedyfit,
after processing r1, . . . , rs−1 each of the currently open bins must contain exactly w − 1 different colors. Moreover, since
w ≥ 2, after processing additionally request rs, greedyfit has exactly q open bins (where, as an exception, we count here the
bin where rs is packed as open even if by this assignment it is just closed). Denote those bins by b1, . . . , bq.
Let bin bj be the bin among b1, . . . , bq that has been opened last by greedyfit. Let rs′ be the first item that was assigned

to bj. Then, the subsequence σ ′ = rs′ , . . . , rs consists of at most qB− (q− 1) items, since between rs′ and rs no bin is closed
and at the moment rs′ was processed, q − 1 bins already contained at least one item. Moreover, σ ′ contains items with at
leastw different colors. By Lemma 5OPT distributes the items of σ ′ into at most 2q+b(qB−3q+1)/Bc bins. Consequently,

OPT(σ ) ≥
w

2q+ b(qB− 3q+ 1)/Bc
,

which proves the theorem. �

Corollary 7. Algorithm greedyfit is c-competitive for the OlBcpB,q with c = min{3q− 1, B}. �

We continue to prove a lower bound on the competitive ratio of algorithm greedyfit. This lower bound stated in the next
theorem shows that the analysis of the previous theorem is tight up to a (small) constant factor.

Theorem 8. greedyfit has a competitive ratio greater or equal to 2q for the OlBcpB,q if B ≥ 2q3 − q2 − q+ 1.

The proof of Theorem 8 is divided into a couple of steps. Before we go into the technical details, we briefly sketch the idea
and the key properties of the lower bound construction.
We construct a request sequence σ that consists of a finite numberM of phases in each of which qB requests are given.

The sequence is constructed in such a way that after each phase the adversary has q empty bins.
Each phase consists of two steps. In the first step q2 items are presented, each with a new color which has not been used

before. In the second step qB− q2 items are presented, all with a color that has occurred before. We will show that we can
choose the items given in Step 2 of every phase such that the following properties hold for the bins of greedyfit:

Property 1. The bins with indices 1, . . . , q− 1 are never closed.

Property 2. The bins with indices 1, . . . , q− 1 contain only items of different colors.
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Property 3. There is an assignment of the items of σ such that no bin contains items with more than q different colors.

Property 4. There is an M ∈ N such that during Phase M greedyfit assigns for the first time an item with a new color to a bin
that already contains items with 2q2 − 1 different colors.

We analyze the behavior of greedyfit by distinguishing between the items assigned to the bin with index q and the items
assigned to bins with indices 1 through q − 1. In the sequel we let Lk denote the set of colors of the items assigned to bins
1, . . . , q− 1 and let Rk be the set of colors assigned to bin q during Step 1 of Phase k.
We now describe the construction of the request sequence. During Step 1 of Phase k, k = 1, 2, . . . , we give q2 items each

with a different color which has not occurred before. During Step 1 there are items with |Rk| different colors assigned to
bin q by greedyfit.
For themoment, suppose that |Rk| ≥ q (wewill justify this condition in the next lemma).We then partition the atmost q2

colors in |Rk| into q disjoint non-empty sets S1, . . . , Sq. We give qB − q2 ≥ 2q2 items with colors from |Rk| such that the
number of items with colors from Sj is B− q for every j, and the last |Rk| items all have a different color. The sequence stops,
if for the first time greedyfit assigns an item with a new color to a bin which contains already 2q2 − 1 different colors.
In order for our construction to work, we must make sure that |Rk| ≥ q for all k ≥ 1. This claim clearly holds for k = 1,

since after Step 1 of Phase 1 each bin of greedyfit contains exactly q colors, so |R1| ≥ q. The next lemma shows that (among
other things) the condition |Rk| ≥ q is invariably true.

Lemma 9. We can construct a request sequence, divided into phases, such that for k ≥ 1 the following statements are true,
provided greedyfit does not assign an item with a new color to a bin which contains already 2q2 − 1 different colors.

(i) At the beginning of Phase k bin q of greedyfit contains exactly the colors from Rk−1 (where R0 := ∅).
(ii) Bin q is not closed by greedyfit before the end of Step 1 of Phase k.
(iii) After Step 1 of Phase k, each of the bins 1, . . . , q− 1 of greedyfit contains at least |Rk| + |Rk−1| − 1 different colors.
(iv) In Step 2 of Phase k greedyfit packs all items into bin q.
(v) |Rk| ≥ q.
(vi) At the end of Phase k, bin q of greedyfit contains exactly B−

∑
j≤k |Lj| items, and this number is at least q

2.

Proof. The proof is by induction on k. All claims are easily seen to be true for k = 1. Hence, in the inductive step we assume
that statements (i)–(vi) are true for all phases 1, . . . , k and we consider Phase k+ 1.

(i) By the induction hypothesis (iv) all items from Step 2 presented in Phase k were packed into bin q by greedyfit. Since at
the end of Phase k bin q contains at least q2 ≥ |Rk| items (see induction hypothesis (vi)) and the last |Rk| items presented
in Phase k had different colors, it follows that at the beginning of Phase k + 1, bin q contains at least all colors from Rk.
On the other hand, since all the Bq− q2 > B items from Step 2 of phase kwere packed into bin q by greedyfit(induction
hypothesis (iv)), this bin was closed during this process and consequently can only contain colors from Rk.

(ii) By the induction hypothesis (vi) at the end of phase k, the empty space in bin q is
∑
j≤k |Lj|. Since there are exactly q

2 items
presented in Step 1 of the phase, the claim follows if we can show that

∑
j≤k |Lj| ≥ q

2 at the beginning of phase k+ 1: in
that case, there is even enough space in bin q to accommodate all items given in Step 1 without filling it. We show that
|L1| + |L2| ≥ q2 which implies that |

∑
j≤k Lj| ≥ q

2.
After Phase 1, each bin of greedyfit contains q colors, which yields |L1| = q(q − 1). By induction hypothesis (iv) for

k = 1 all items presented in Step 2 of the first phase are packed into bin q by greedyfit. By induction, hypothesis (vi), at
the end of Phase 1 bin q contains at least q2 items. Since the last |Rk| items presented in Step 2 of phase k have all different
colors (and all of these are packed into bin q by induction hypothesis (iv))we can conclude that at the beginning of Phase 2
bin q of greedyfit already contains q colors. Thus, in Step 1 of Phase 2 greedyfit again puts q items into each of its bins. At
this point, the total number of distinct colors in the first q− 1 bins is at least (q− 1)q+ (q− 1)q = 2q2 − 2q ≥ q2 for
q > 1, so that |L1| + |L2| ≥ q2. As noted above, this implies the claim.

(iii) By (ii), bin q is not closed before the end of Step 1. After Step 1 all colors from Rk+1 are already in bin q by construction.
Since by (i) before Step 1 also all colors from Rk were contained in bin q, it follows that bin q contains at least |Rk|+ |Rk+1|
different colors at the end of Step 1.
By construction of greedyfit each of the bins 1, . . . , q− 1 must then contain at least |Rk| + |Rk+1| − 1 different colors.

(iv) When Step 2 starts, all colors from Rk+1 are already in bin q by construction. Therefore, greedyfitwill initially pack items
with colors from Rk+1 into bin q as long as this bin is not yet filled up. We have to show that after bin q has been closed
the number of colors in any other bin is always larger than in bin q. This follows from (iii), since by (iii) each of the
bins 1, . . . , q− 1 has at least |Rk| + |Rk+1| − 1 colors after Step 2 of Phase k+ 1 and by the induction hypothesis (v) the
estimate |Rk| ≥ q holds, which gives

|Rk| + |Rk+1| − 1 ≥ |Rk+1| + q− 1 > |Rk+1|.

(v) At the beginning of Phase k + 1, bin q contains exactly |Rk| colors by (i). By the induction hypothesis (iii) and (iv) each
of the bins 1, . . . , q − 1 contains at least |Rk| + |Rk−1| − 1 ≥ |Rk| colors. Hence, at the beginning of Phase k + 1, the
minimum number of colors in bins 1, . . . , q− 1 is at least the number of colors in bin q. It follows from the definition of
greedyfit that during Step 1 of Phase k+ 1, bin q is assigned at least the q2/q = q colors. In other words, |Rk+1| ≥ q.
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(vi) After Phase k+ 1, exactly (k+ 1)qB items have been given. Moreover, after k phases bins 1 through q− 1 contain exactly∑
j≤k |Lj| items because the items of Step 2 are always packed into bin q by greedyfit. Thus, the number of items in bin q

of greedyfit equals

kqB−
∑
j≤k

|Lj| mod B ≡ B−
∑
j≤k

|Lj|︸ ︷︷ ︸
<B

mod B.

We show that B−
∑
j≤k |Lj| ≥ q

2. This implies that B−
∑
j≤k |Lj| mod B = B−

∑
j≤k |Lj|.

Since k < M we know that each of the bins 1 through q − 1 contains at most 2q2 − 1 colors. Thus,
∑
j≤k |Lj| ≤

(2q2 − 1)(q− 1) = 2q3 − 2q2 − q+ 1. It follows from the assumption on B that B−
∑
j≤k |Lj| ≥ q

2. �

At this this point we have shown that we can actually construct the sequence as suggested. Let us now bound the optimal
offline cost and prove that the first three of the intended properties are indeed satisfied:

Lemma 10. Properties 1–3 hold for the sequence constructed, as long as no bin from greedyfit contains 2q2 colors.

Proof. Properties 1 and 2 are an immediate consequence of the fact that bins 1, . . . , q− 1 receive only bins in the first step
of each phase (see Lemma 9).
We now address Property 3: in each phase, the adversary assigns the items of Step 1 such that every bin receives q items,

and the items with colors in the color set Sj go to bin j. Clearly, the items in every bin have no more than q different colors.
By construction of the sequence, the items given in Step 2 can be assigned to the bins of the adversary such that all bins are
completely filled, and the number of different colors per bin does not increase. �

As a final step, we need to prove that there is a number M ∈ N such that after M phases there is a bin from greedyfit that
contains items with 2q2 different colors (Property 4). We will do this by establishing the following lemma:

Lemma 11. In every two subsequent Phases k and k+ 1, either |Lk ∪ Lk+1| > 0 or bin q contains items with 2q2 different colors
during one of the two phases.

Proof. Suppose that there is a Phase k in which |Lk| = 0. This means that all q2 items given in Step 1 are assigned to bin q
(|Rk| = q2). By Lemma 9(i), at the beginning of Phase k+ 1, bin q still contains q2 different colors. If in Step 1 of Phase k+ 1
again all q2 items are assigned to bin q, bin q contains items with 2q2 different colors (recall that bin q is never closed before
the end of Step 1 by Lemma 9(ii)). If fewer than q2 items are assigned to bin q then one of the other bins gets at least one
item, and |Lk+1| > 0.

We can conclude from Lemma 11 that at least once every two phases the number of items in the bins 1 through q−1 grows.
Since these bins are never closed (Property 1), and all items have a unique color (Property 2), after a finite number M of
phases, one of the bins of greedyfitmust contain items with 2q2 different colors. This completes the proof of the Theorem 8.

5. The trivial algorithm onebin

This section is devoted to arguably the simplest (andmost trivial) algorithm for theOlBcp, which surprisingly has a better
competitive ratio than greedyfit. Moreover, as wewill see later this algorithm achieves essentially the best competitive ratio
for the problem.

Algorithm onebin

The algorithm uses only at most one open bin at any point in time. The next item ri is packed into the
open bin. A new bin is opened only if the previous item has closed the bin by filling it up completely.

The proof of the upper bound on the competitive ratio of onebin is along the same lines as that of greedyfit.

Lemma 12. Let σ = r1, . . . , rm be any request sequence. Then for i ≥ 0 any algorithm packs the items riB+1, . . . , r(i+1)B into at
mostmin{2q− 1, B} bins.

Proof. It is trivial that the B items riB+1, . . . , r(i+1)B can be packed into at most B different bins. Hence we can assume that
2q− 1 ≤ B, which means q ≤ (B− 1)/2 ≤ B.
Consider the subsequence σ ′ = riB+1, . . . , r(i+1)B of σ . Let ALG be any algorithm and suppose that just prior to the arrival

of the first item of σ ′, algorithm ALG has t open bins. If t = 0, the claim of the lemma trivially follows, so we can assume
for the rest of the proof that t ≥ 1. Denote the open bins by b1, . . . , bt . Let f (bj) ∈ {1, . . . , B− 1} be the number of empty
places in bin bj, j = 1, . . . , t . Notice that

t∑
j=1

f (bj) ≡ 0 mod B. (1)
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Suppose that ALG uses at least 2q bins to distribute the items of σ ′. By arguments similar to those given in Lemma 5, ALG
can maximize the number of bins used only by closing each currently open bin and put at least one item into each of the
newly opened bins. To obtain at least 2q bins at least

∑t
j=1 f (bj)+ (q− t)+ q items are required. Since σ

′ contains B items
and t ≤ q it follows that

t∑
j=1

f (bj)+ q ≤ B. (2)

Since by (1) the sum
∑t
j=1 f (bj) is a multiple of B and q ≥ 1, the only possibility that the left hand side of (2) can be bounded

from above by B is that
∑t
j=1 f (bj) = 0. However, this is a contradiction to f (bj) ≥ 1 for j = 1, . . . , t . �

As a consequence of the previous lemma we obtain the following bound on the competitive ratio of onebin.

Theorem 13. Algorithm onebin is c-competitive for the OlBcpB,q where c = min{2q− 1, B}.

Proof. Let σ = r1, . . . , rm be any request sequence for the OlBcpB,q and suppose that onebin(σ ) = w. Let σ ′ =
riB+1, . . . , r(i+1)B of σ be the subsequence on which onebin getsw different colors. Clearly, σ ′ contains items with exactlyw
colors. By Lemma 12 OPT distributes the items of σ ′ into at most min{2q − 1, B} different bins. Hence, one of those bins
must be filled with at least w

min{2q−1,B} colors. �

The competitive ratio proved in the previous theorem is tight as the following example shows. Let B ≥ 2q− 1. First we
give (q − 1)B items. The items have q different colors, every color but one occurs B − 1 times, one color occurs only q − 1
times. After this, in a second step q items with all the different colors used before are requested. Finally, in the third step
q− 1 items with new (previously unused) colors are given.
After the first (q− 1)B items by definition onebin has only empty bins. The adversary assigns all items of the same color

to the same bin, using one color per bin. When the second set of of q items arrives, the adversary can now close q− 1 bins,
still using only one color per bin. onebin ends up with q different colors in its bin.
The adversary can assign every item given in the third step to an empty bin, thus still having only one different color per

bin, while onebin puts these items in the bin where already q different colors where present.

6. A general lower bound for deterministic algorithms

In this section we prove a general lower bound on the competitive ratio of any deterministic online algorithm for the
OlBcp. We establish a lemma which immediately leads to the desired lower bound but which is even more powerful. In
particular, this lemma will allow us to derive essentially the same lower bound for randomized algorithms in Section 7.
In the sequel we will have to refer to the ‘‘state’’ of (the bins managed by) an algorithm ALG after processing a prefix of

a request sequence σ . To this end we introduce the notion of a C-configuration.

Definition 14 (C-Configuration). Let C be a set of colors. A C-configuration is a packing of items with colors from C into at
most q bins. More formally, a C-configuration can be defined as a mapping K : {1, . . . , q} → SB, where

SB = {S : S is a multiset over C containing at most B elements from C}

with the interpretation that K(j) is the multiset of colors contained in bin j. We omit the reference to the set C if it is clear
from the context.

We are now ready to prove the key lemma which will be used in our lower bound constructions.

Lemma 15. Let B, q, s ∈ N be numbers such that s ≥ 1 and the inequality B/q ≥ s− 1 holds. There exists a finite set C of colors
and a constant L ∈ N with the following property: For any deterministic algorithm ALG and any C-configuration K there exists
an input sequence σALG,K of OlBcpB,q such that

(i) The sequence σALG,K uses only colors from C and |σALG,K | ≤ L, that is, σALG,K consists of at most L requests.
(ii) If ALG starts with initial C-configuration K then ALG(σALG,K ) ≥ (s− 1)q.
(iii) If OPT starts with the empty configuration (i.e., all bins are empty), then OPT(σALG,K ) ≤ s. Additionally, OPT can

process the sequence in such a way that at the end again the empty configuration is attained.

Moreover, all of the above statements remain true even in the case that the online algorithm is allowed to use q′ ≥ q bins instead
of q (while the offline adversary still only uses q bins). In this case, the constants |C| and K depend only on q′ but not on the
particular algorithm ALG.

Proof. Let C be a set of (s − 1)2q2q′ colors and ALG be any deterministic online algorithm which starts with some initial
C-configuration K . The construction of the request sequence σALG,K works in phases, where at the beginning of each phase
the offline adversary has all bins empty.
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During the run of the request sequence, a subset of the currently open bins of ALGwill bemarked. We will denote by Pk
the subset of marked bins at the beginning of Phase k. Then, P1 = ∅ and we are going to show that during some Phase M ,
one bin in PM will contain at least (s− 1)q colors. In order to assure that this goal can in principle be achieved, we keep the
invariant that each bin b ∈ Pk has the property that the number of different colors in b plus the free space in b is at least
(s − 1)q. In other words, each bin b ∈ Pk could potentially still be forced to contain at least (s − 1)q different colors. For
technical reasons, Pk is only a subset of the bins with this property.
For bin j of ALGwe denote by n(j) the number of different colors currently in bin j and by f (j) the space left in bin j. Then

every bin j ∈ Pk satisfies n(j)+ f (j) ≥ (s− 1)q. By min Pk := minj∈Pk n(j)we denote the minimum number of colors in a bin
from Pk.
The idea of the construction is the following (cf. Claim 17):Wewill force that in each phase either |Pk| ormin Pk increases.

Hence, after a finite number of phases we must have min Pk ≥ (s− 1)q. On the other hand, we will ensure that the optimal
offline cost remains bounded by s during the whole process.
We now describe Phase kwith 1 ≤ k ≤ q(s−1)q′. The adversary selects a set of (s−1)q new colors Ck = {c1, . . . , c(s−1)q}

from C not used in any phase before and starts to present one item of each color in the order

c1, c2, . . . , c(s−1)q, c1, c2, . . . , c(s−1)q, c1, c2, . . . (3)

until one of the following cases appears:

Case 1 ALG puts an item into a bin p ∈ Pk.
In this case we let Q := Pk \ { j ∈ Pk : n(j) < n(p) }, that is, we remove all bins from Pk which have less than n(p)

colors.
Notice that minj∈Q n(j) > min Pk, since the number of different colors in bin p increases.

Case 2 ALG puts an item into some bin j /∈ Pk which satisfies

n(j)+ f (j) ≥ (s− 1)q. (4)

In this case we set Q := Pk ∪ {j} (that is, we tentatively add bin j to the set Pk).

Notice that after a finite number of requests one of these two cases must occur: Let b1, . . . , bt be the set of currently open
bins of ALG. If ALG never puts an item into a bin from Pk then at some point all bins of {b1, . . . , bt} \ Pk are filled and a
new bin, say bin j, must be opened by ALG by putting the new item into bin j. But at this moment bin j satisfies n(j) = 1,
f (j) = B− 1 and hence n(j)+ f (j) = B ≥ (s− 1)qwhich gives (4).
Since the adversary started the phase with all bins empty and during the current phase we have given no more than

(s − 1)q colors, the adversary can assign the items to bins such that no bin contains more than s − 1 different colors (we
will describe below how this is done precisely). Notice that due to our stopping criterions from above (Case 1 and Case 2) it
might be the case that in fact we have presented less than (s− 1)q colors so far.
In the sequel we imagine that each currently open bin of the adversary has an index x, where 1 ≤ x ≤ q. Let

ϕ : Ck → {1, . . . , q}be anymapping of the colors from Ck to the offline bin index such that |ϕ−1({x})| ≤ s−1 for j = 1, . . . , q.
We imagine color cr to ‘‘belong’’ to the bin with index ϕ(cr) even if no item of this color has been presented (yet). For those
items presented already in Phase k, each item with color cr goes into the currently open bin with index ϕ(cr). If there is no
open bin with index ϕ(cr) when the item arrives a new bin with index ϕ(cr) is opened by the adversary to accommodate
the item.
Our goal now is to clear all open offline bins so that we can start a new phase. During our clearing loop the offline bin

with index x might be closed and replaced by an empty bin multiple times. Each time a bin with index x is replaced by an
empty bin, the new bin will also have index x. The bin with index x receives a color not in ϕ−1({x}) at most once, ensuring
that the optimum offline cost still remains bounded from above by s. The clearing loop works as follows:

(1) (Start of clearing loop iteration) Choose a color c∗ ∈ Ck which is not contained in any bin from Q . If there is no such
color, goto the ‘‘good end’’ of the clearing loop (Step 4).

(2) Let F ≤ qB denote the current total empty space in the open offline bins. Present items of color c∗ until one of the
following things happens:

Case (a): At some point in time ALG puts the `th item with color c∗ into a bin j ∈ Q for some 1 ≤ ` < F . Notice that
the number of different colors in j increases. Let

Q ′ := Q \ {b ∈ Q : n(b) < n(j)},

in other words, we remove all bins b from Q which currently have less than n(j) colors. This guarantees that

min
b∈Q ′
n(b) > min

b∈Q
n(b) ≥ min Pk. (5)

The adversary puts all ` items with color c∗ into bins with index ϕ(c∗). Notice that during this process the open bin with
index ϕ(c∗)might be filled up and replaced by a new empty bin with the same index.
Set Q := Q ′ and go to the start of the next clearing loop iteration (Step 1). Notice that the number of colors from Ck

which are not contained in Q decreases by one, but minb∈Q n(b) increases.
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Case (b): F items of color c∗ have been presented, but ALG has not put any of these items into a bin from Q .
In this case, the offline adversary processes these items differently from Case (a): The F items of color c∗ are used to

fill up the exactly F empty places in all currently open offline bins. Since up to this point, each offline bin with index x
had received colors only from the s − 1 element set ϕ−1({x}), it follows that no offline bin has contained more than s
different colors.
We close the clearing loop by proceeding as specified at the ‘‘standard end’’ (Step 3).

(3) (Standard end of clearing loop iteration)
In case we have reached this step, we are in the situation that all offline bins have been cleared (we can originate

only from Case (b) above). We set Pk+1 := Q and end the clearing loop and the current Phase k.
(4) (Good end of clearing loop iteration)

Stop the current phase and issue additional requests such that all offline bins are closedwithout increasing the offline
cost. After this, end the sequence.

We analyze the different possible endings of the clearing loop. Firstwe show that in case of a ‘‘good end’’we have successfully
constructed a sufficiently bad sequence for ALG.

Claim 16. If the clearing loop finishes with a ‘‘good end’’, then one bin in Q contains at least (s− 1)q different colors.

Proof. If the clearing loop finisheswith a ‘‘good end’’, thenwe have reached the point that all colors from Ck are contained in
a bin from Q . Before the first iteration, exactly one color from Ck was contained in Q . The number of colors from Ck which are
contained in bins from Q can only increase by one (which is in Case (a) above) if minb∈Q n(b) increases. Hence, if all colors
from Ck are contained in bins from Q , minb∈Q n(b) must have increased (s − 1)q − 1 times, which implies minb∈Q n(b) =
(s− 1)q. In other words, one of ALG’s bins in Q contains at least (s− 1)q different colors. �

What happens if the clearing loop finishes with a ‘‘standard end’’?

Claim 17. If the clearing loop of Phase k completes with a ‘‘standard end’’, thenmin Pk+1 > min Pk or |Pk+1| > |Pk|.

Before we prove Claim 17, let us show how this claim implies the result of the lemma. Since the case |Pk+1| > |Pk| can
happen at most q′ times, it follows that after at most q′ phases, min Pk must increase. On the other hand, since min Pk never
decreases by our construction and the offline cost always remains bounded from above by s, after at most q(s− 1)q′ phases
we must be in the situation that min Pk ≥ (s − 1)q, which implies a ‘‘good end’’. Since in each phase at most (s − 1)q new
colors are used, it follows that our initial set C of (s − 1)2q2q′ colors suffices to construct the sequence σALG,K . Clearly, the
length of σALG,K can be bounded by a constant L independent of ALG and K .

Proof (Proof of Claim 17). Suppose that the sequence (3) given at the beginning of the phase was ended because Case 1
occurred, i.e., ALG put one of the new items into a bin from Pk. In this case minb∈Q n(b) > min Pk. Since during the clearing
loop minb∈Q n(b) can never decrease and Pk+1 is initialized with the result of Q at the ‘‘standard end’’ of the clearing loop,
the claim follows.
The remaining case is that sequence (3) was ended because of a Case 2-situation. Then |Q | = |Pk ∪ {j}| for some j /∈ Pk

and hence |Q | > |Pk|. During the clearing loop Q can only decrease in size if mini∈Q n(i) increases. It follows that either
|Pk+1| ≥ |Pk| + 1 or min Pk+1 > min Pk which is what we claimed. �

This completes the proof of Lemma 15. �

As an immediate consequence of Lemma 15 we obtain the following lower bound result for the competitive ratio of any
deterministic algorithm:

Theorem 18. Let B, q, s ∈ N such that s ≥ 1 and the inequality B/q ≥ s− 1 holds. No deterministic algorithm for OlBcpB,q can
achieve a competitive ratio less than s−1s · q. Consequently, the competitive ratio of any deterministic algorithm for fixed B and q

is at least
(
1− q

B+q

)
q. In particular, for the general case with no restrictions on the relation of the capacity B to the number of

bins q, there can be no deterministic algorithm for OlBcpB,q that achieves a competitive ratio less than q.
All of the above claims remain valid, even if the online algorithm is allowed to use an arbitrary (but fixed) number q′ ≥ q of

open bins. �

7. A general lower bound for randomized algorithms

In this section we show lower bounds for the competitive ratio of any randomized algorithm against an oblivious
adversary for the OlBcpB,q. To this end we first recall Yao’s Principle:

Theorem 19 (Yao’s Principle). Let {ALGy : y ∈ Y } denote the set of deterministic online algorithms for an online minimization
problem. If X̄ is a probability distribution over input sequences { σx : x ∈ X } and c̄ ≥ 1 is a real number such that

inf
y∈Y

EX̄
[
ALGy(σx)

]
≥ c̄ EX̄ [OPT(σx)] , (6)

then c̄ is a lower bound on the competitive ratio of any randomized algorithm against an oblivious adversary. �
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Theorem 20. Let B, q, s ∈ N such that s ≥ 1 and the inequality B/q ≥ s− 1 holds. Then no randomized algorithm for OlBcpB,q
can achieve a competitive ratio less than s−1s · q against an oblivious adversary.

In particular for fixed B and q, the competitive ratio against an oblivious adversary is at least
(
1− q

B+q

)
q.

All of the above claims remain valid, even if the online algorithm is allowed to use an arbitrary (but fixed) number q′ ≥ q of
open bins.

Proof. Let A := {ALGy : y ∈ Y } be the set of deterministic algorithms for the OlBcpB,q. We will show that there is a
probability distribution X over a certain set of request sequences { σx : x ∈ X } such that for any algorithm ALGy ∈ A

EX
[
ALGy(σx)

]
≥ (s− 1)q,

and, moreover,

EX [OPT(σx)] ≤ s.

The claim of the theorem then follows by Yao’s Principle.
Let us recall the essence of Lemma 15. The lemma establishes the existence of a finite color set C and a constant L such

that for a fixed C-configuration K , any deterministic algorithm can be ‘‘fooled’’ by one of at most |C|L sequences. Since there
are no more than |C|qB configurations, a fixed finite set of at most N := |C|L+qB sequences Σ = {σ1, . . . , σN} suffices to
‘‘fool’’ any deterministic algorithm provided the initial configuration is known.
Let X be a probability distribution over the set of finite request sequences

{σi1 , σi2 , . . . , σik : k ∈ N, 1 ≤ ij ≤ N}

such that σij is chosen from Σ uniformly and independently of all previous subsequences σi1 , . . . , σij−1 . We call
subsequence σik the kth phase.
Let ALGy ∈ A be arbitrary. Define εk by

εk := PrX

[
ALGy has at least one bin with

at least (s− 1)q colors during Phase k

]
.

The probability that ALGy has one bin with at least (s− 1)q colors on any given phase is at least 1/N , whence εk ≥ 1/N for
all k. Let

pk := PrX
[
ALGy(σi1 . . . σik−1σik) ≥ (s− 1)q

]
.

Then the probabilities pk satisfy the following recursion:

p0 = 0 (7)
pk = pk−1 + (1− pk−1)εk. (8)

The first term in (8) corresponds to the probability that ALGy has already cost at least (s− 1)q after Phase k− 1, the second
term accounts for the probability that this is not the case but cost at least (s − 1)q is achieved in Phase k. By construction
of X , these events are independent. Since εk ≥ 1/N we get that

pk ≥ pk−1 + (1− pk−1)/N. (9)

It is easy to see that any sequence of real numbers pk ∈ [0, 1] satisfying (7) and (9) must converge to 1.
Hence, also the expected cost EX

[
ALGy(σx)

]
converges to (s− 1)q. On the other hand, the offline costs remain bounded

by s by the choice of the σij according to Lemma 15. �

8. Remarks

We have studied the bin coloring problem, which was motivated by applications in a robotized assembly environment.
The investigation of the online problem from a competitive analysis point of view revealed a number of oddities (see
Table 1 for an overview of our results). A natural greedy-type strategy greedyfit achieves a competitive ratio strictly
worse than arguably the most stupid algorithm (onebin). Moreover, no algorithm can be substantially better than the
trivial strategy (onebin). Even more surprising, neither randomization nor ‘‘resource augmentation’’ helps to overcome the
Ω(q) lower bound on the competitive ratio. This is in contrast to [4,6] where the concept of resource augmentation was
applied successfully to scheduling problems. Intuitively, the strategy greedyfit should perform well ‘‘on average’’ (which
was confirmed in preliminary experiments with random data, see [3]).
An open problem remains the existence of a deterministic (or randomized) algorithmwhich achieves a competitive ratio

of q (matching the lower bound of Theorems 18 and 20). However, the most challenging issue raised by our work seems to
be an investigation of OlBcp from an average-case analysis point of view.
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Table 1
Results for the OlBcp

Problem Competitive ratios Lower bounds
OlBcp onebin: min{2q− 1, B}

(Theorem 13)
greedyfit: min{3q, B}

(Corollary 7)

Deterministic algorithms:
(
1− q

B+q

)
q

(Theorem 18)

Randomized algorithms:
(
1− q

B+q

)
q

(Theorem 20)
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