
Theoretical Computer Science 407 (2008) 85–96

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Online unit clustering: Variations on a theme
Leah Epstein a,∗, Asaf Levin b, Rob van Stee c
a Department of Mathematics, University of Haifa, 31905 Haifa, Israel
b Department of Statistics, The Hebrew University, Jerusalem, Israel
cMax-Planck-Institut für Informatik, Saarbrücken, Germany

a r t i c l e i n f o

Article history:
Received 19 October 2007
Received in revised form 17 April 2008
Accepted 24 April 2008
Communicated by D. Peleg

Keywords:
Online algorithms
Clustering
Coloring

a b s t r a c t

Online unit clustering is a clustering problem where classification of points is done in
an online fashion, but the exact location of clusters can be modified dynamically. We
study several variants and generalizations of the online unit clustering problem, which are
inspired by variants of packing and scheduling problems in the literature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Clustering problems involve a partition of a set of points into groups, which are often called clusters. The goal is typically
the optimization of a given objective function. Clustering problems are fundamental and have numerous applications. Such
applications include the use of clustering for computer related purposes, such as information retrieval and data mining, and
also various applications in other fields, such as medical diagnosis and facility location.
In the online scenario whichwe study, points are presented one by one to the algorithm, andmust be assigned to clusters

upon arrival. An assignment of a point to a cluster becomes fixed at this time, and cannot be changed later. Wemeasure the
performance of an online algorithmA by comparing it to an optimal offline algorithm opt using the competitive ratio, which
is defined as supσ

A(σ)
opt(σ) . Here σ is the input, i.e. a sequence of request points, and alg(σ) denotes the cost of an algorithm

alg for this input, which is the number of clusters in the basic problem, and is a function of the solution in a more general
setting. For an algorithm alg, if σ is clear from the context, we drop σ from the notation and use alg to denote the cost of the
algorithm alg. For randomized algorithms, we replaceA(σ)with E(A(σ)), and define the competitive ratio as supσ

E(A(σ))
opt(σ) .

An algorithm with competitive ratio of at mostR is calledR-competitive.
A study of online partitioning of points into clusters was presented by Charikar et al. [6]. They considered the so-called

online unit covering problem. In this problem, a set of n points needs to be covered by balls of unit radius, and the goal is to
minimize the number of balls used. They gave an upper bound of O(2dd log d) and a lower bound ofΩ(log d/ log log log d)
on the competitive ratio of deterministic online algorithms in d dimensions. This problem is fully online in the sense that
points arrive one by one, each point needs to be assigned to a ball upon arrival, and if it is assigned to a new ball the exact
location of this ball is fixed at this time. The tight bounds on the competitive ratio for d = 1 and d = 2 are respectively 2
and 4.
Chan and Zarrabi-Zadeh [5] introduced the unit clustering problem. In this problem the input and goals are very similar to

unit covering. This is an online problem as well, but it is more flexible in the sense that it does not require fixing the exact

∗ Corresponding author. Tel.: +972 54 7277300; fax: +972 4 8240024.
E-mail addresses: lea@math.haifa.ac.il (L. Epstein), levinas@mscc.huji.ac.il (A. Levin), vanstee@mpi-inf.mpg.de (R. van Stee).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.04.046

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:lea@math.haifa.ac.il
mailto:levinas@mscc.huji.ac.il
mailto:vanstee@mpi-inf.mpg.de
http://dx.doi.org/10.1016/j.tcs.2008.04.046

86 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

position of each ball in advance. The algorithm needs to make sure that a set of points which is assigned to one ball (cluster)
can always be covered by a single ball. The goal is still to minimize the total number of balls used. Therefore, the algorithm
may terminate having clusters that still havemore than one option for their location. In an offline scenario, unit covering and
unit clustering are the same problem. However, in the online model, an algorithm now has the option of shifting a cluster
after a newpoint arrives, as long as this cluster still covers all the points that are assigned to it. In [5,12], the two-dimensional
problem is considered in the L∞ norm rather than the L2 norm. Thus ‘‘balls’’ are actually squares or cubes. In this paper, we
focus on the case d = 1, for which the two metrics are identical.
Note that online clustering is an online graph coloring problem. If we see the clusters as colors, and the points are seen as

vertices, then an edge between two points occurs if they are too far apart to be colored using the same color. The resulting
graph for the one-dimensional problem is the complement of a unit interval graph (alternatively, the problem can be seen
as a clique partitioning problem in unit interval graphs). See [18] for a survey on online graph coloring. Note that online
coloring is a difficult problem, which does not admit a constant competitive ratio, even if the considered graphs are trees
[15,20]. There is a small number of classes that admit constant competitive algorithms, one of which is interval graphs [19].
For the one-dimensional case, it was shown in [5] that several naïve algorithms all have a competitive ratio of 2. Some

of these algorithms are actually designed to solve the unit covering problem and thus cannot be expected to overcome this
bound (due to the lower bound of [6]). Chan and Zarrabi-Zadeh [5] also showed that any randomized algorithm for unit
covering has a competitive ratio of at least 2. Thus randomization by itself without additional relaxation of the problem
would not allow us to overcome the lower bound of 2. To demonstrate the difference between unit covering and unit
clustering, i.e. the role of shifting clusters, they presented a randomized algorithmwith a competitive ratio of 15/8 = 1.875
(later improved by the same authors to 1.833 in [23]). Finally, they showed a lower bound of 4/3 on the competitive ratio of
any randomized algorithm. The deterministic lower bound that is implied by their work is 3/2 = 1.5. A multi-dimensional
extension of their algorithm, that they design, results in a 11/3-competitive algorithm for two dimensions, and a 2d ·11/12-
competitive algorithm for general d.
Epstein and van Stee [12] improved these results by presenting a relatively simple deterministic algorithm which attains

a competitive ratio of 7/4 = 1.75. Using the construction presented by Chan and Zarrabi-Zadeh [5], this implies an upper
bound of 2d · 7/8 in d dimensions. Moreover, they improve the randomized lower bound to 3/2 = 1.5 and show a
deterministic lower bound of 8/5 = 1.6. Finally, they give a deterministic lower bound of 2 and a randomized lower bound
of 11/6 ≈ 1.8333 in two dimensions. The deterministic lower bound holds for the L2 norm as well.
In the current paper, we study several variants and generalizations of this problem. These are presented below together

with our results. Formost versions, we givematching upper and lower bounds on the best possible performance of an online
algorithm. In all versions except the one with resource augmentation, the maximum possible length of a cluster is still 1 as
before.
We study the following problems.

1. Clustering with rejection. An input point has a non-negative value associated with it, which is called its rejection
penalty. For each point that is not assigned to a cluster, its penaltymust be paid. Problemswith rejection have application
in customer service, where the rejection penalty represents the compensation to be paid to a disappointed customer, or
if a customer cannot be refused, it is the cost for servicing this customer in an alternative way (such as outsourcing).
We note that the clustering with rejection problem is the online coloring with rejection problem when restricted to the
complement of a unit interval graph. A previous study of the online coloringwith rejection of other graph classes appears
in [11]. Many other combinatorial optimization and online problems were studied in this scenario, see e.g. [13,4,7,8]. We
design an algorithm of competitive ratio 3 for this problem and prove a matching lower bound.

2. Max clustering. Every input point has a weight. Points are to be assigned to clusters, so that every cluster would not
exceed the length of 1. The cost of a cluster is the maximum weight of any point assigned to it. The goal is to minimize
the total cost of the clusters. Max coloring of graphs was introduced by Pemmaraju, Raman and Varadarajan [22] and
studied in an online environment in [10].
We show that the Grid algorithm has competitive ratio 2 for this problem and prove a matching lower bound.

3. Clustering with cardinality constraints. In this variant we are given a parameter k, where each cluster can serve at
most k points that can all be covered by one interval of length 1. This model assumes that the service provided by the
cluster is limited to a given number of clients.
A large amount of work on capacitated variants of combinatorial optimization and online problems exists in the

literature [21,14,3,9].
We design algorithms of competitive ratio 32 for k = 2 and 2 for k ≥ 3. We prove matching lower bounds for k = 2

and k ≥ 4 and a lower bound of 1.75 for k = 3.
4. Clustering with resource augmentation. Resource augmentation, or extra resource analysis is a generalization of
competitive analysis, where the online algorithmmay use resources that are not available to an optimal offline algorithm
to which the online algorithm is compared [17]. We study a resource augmented variant of clustering where the online
algorithmuses clusters of length atmost b, where b > 1 is a given parameter,whereas the clusters of the offline algorithm
are still of length at most 1. We show a tight bound of 1 for any b ≥ 2, a lower bound of 3/2 for any cluster size in (1, 2),
and an algorithm of competitive ratio exactly 5/3 for b ≥ 3/2.

5. Clustering with temporary request points. In this variant, requests are not permanent but arrive and leave over time.
The duration of a request point is unknown until the time it leaves. Each point needs to be covered at all times of its

L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96 87

duration. The momentary cost of an algorithm at any point in time is determined by the number of clusters that are
serving a nonempty subset of request points. The cost of an algorithm is its maximummomentary cost over time.
Previous work on online problems with temporary requests can be found in [16,1,2].
We show that the Grid algorithm has competitive ratio 2 for this problem and prove a matching lower bound.

Note that in this paper we consider only the (absolute) competitive ratio and not the asymptotic competitive ratio. This
is motivated by the fact that in all the variants that we consider one can repeat the input sequencemultiple times in disjoint
parts of the real line. These disjoint parts cannot be assigned to the same sets of clusters, and therefore the cost of the solution
is the sum of all costs (of the different parts).
We conclude this paper in Section 7 by noting that most of our results apply also to the similar variants of the online

covering problem.

2. Clustering with rejection

In this variant of the problem, each point p has two attributes. In addition to its location on the real line, a point has a
non-negative weightwp (which is interpreted as its rejection penalty) associated with it. Each arriving point must be either
assigned to a cluster upon arrival (i.e. accepted) or rejected. The set of points assigned to one cluster must lie within an
interval of length 1.
A rejected point does not need to be assigned to a cluster; instead of the assignment, the algorithm pays a penalty for not

serving the point. Thus the cost of an algorithmA is the sum of rejection penalties of points rejected byA plus the number
of clusters used for the accepted points.
Clustering with rejection is a generalization of standard unit clustering, i.e. unit clustering is the special case of clustering

with rejection where all rejection penalties are infinite.
The following algorithm Grid ([5]) is used as a building block in this section.

For every integer−∞ < k <∞, Grid considers points arriving in the interval Ik = (k, k+1] separately and independently
from other points. Upon arrival of the first point in Ik, a new cluster is opened in the interval [k, k+ 1] and all future points
in this interval are assigned to this cluster.
We prove a tight bound of 3 for this problem. We begin with a description of an algorithm which is based on Grid.
Denote the subsequence (of the input sequence) of points which belong to Ik by Pk. As long as the total weight of points

in Pk does not exceed 12 , all such points are rejected. Let pk be the first point which causes the total weight of points in Pk
that arrived so far to be at least 12 . Upon arrival of pk, a new cluster is opened in the interval [k, k+ 1] and all future points
in Pk are assigned to it. We call this algorithm Rejective Grid (RGrid).

Theorem 1. The competitive ratio of RGrid is 3 and this is best possible.

Proof. We start with the proof of the upper bound. Consider an optimal offline algorithm opt. We analyze each interval of
the form (k, k+ 1] separately, thus we assign shares of the cost of opt to such intervals so that the sum of shares of the cost,
that are assigned to the union of all intervals, is exactly opt. The cost of every point rejected by opt is simply assigned to the
unique interval it belongs to. Without loss of generality, we assume that opt always uses clusters of size 1. For every cluster
of opt, this cluster then contains points of exactly two such intervals. We thus assign its cost in equal shares to both these
intervals.
Wewill prove that the cost of RGrid on every interval is at most three times the cost of opt that is assigned to it. Consider

an interval Ik = (k, k+ 1] that contains at least one point (the algorithm pays a total of zero on an interval with no points,
and thus the cost for this interval clearly does not exceed three times the cost of opt that was assigned to this interval).
If the total weight of points in Ik, which we denote by rk, is less than 12 , the algorithm does not open a cluster for this

interval and pays exactly rk. On the other hand, opt either covers some of these points by at least one cluster, or rejects all
these points. In the first case, at least one cluster of opt overlaps with Ik, so a share of at least 12 from the cost of opt was
assigned to Ik. In the second case, a share of cost of at least rk was assigned to this cluster. In both cases the assigned cost is
no smaller than the cost of RGrid.
Finally, if rk ≥ 1

2 , the cost of RGrid on Ik is no larger than
3
2 . This cost results from the rejection penalties of all points

arriving before pk, which is less than 12 , and the cost of one cluster, which is an additional 1. Similarly to the previous case,
opt either has at least one cluster overlapping with Ik, or rejects all points of Pk. In the first case a cost of at least 12 is assigned
to this interval and in the second case, a cost of rk ≥ 1

2 is assigned to it. The ratio of the cost of RGrid on Ik, and the share of
cost of opt that is assigned to Ik, is no larger than 3.
We next prove a lower bound of 3 on the competitive ratio of any algorithm. Let N be a large enough integer. Consider

the following sequence. The first phase consists of the points i
16N for i = 1, 2, . . ., each one of these points has a weight of

1
N (the denominator 16N is chosen for simplicity). These points are presented one by one until a cluster is opened. The point
for which a cluster is opened is the last point of this phase. If no cluster is opened, the first phase stops after 4N points are
given, in this case no further points will be defined and the sequence stops. Otherwise, let i′ be the index of the last point
presented. The next phase consists of multiple instances of the point i

′
−1
16N − 1, where each such instance has a penalty of

1
N .

Note that the distance between these points and the point for which a cluster was opened is 1+ 1
16N , thus the points of the

88 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

second phase cannot be assigned to the same cluster. Such points are presented for i = 0, . . ., until a new cluster is opened
or until 4N points are presented. The sequence terminates here in both cases.
Consider first the case where 4N points were presented in the first phase and no cluster was opened. All points of the

first phase lie in an interval of length 14 , thus they can fit in one cluster and opt = 1. The total rejection penalty paid by the
algorithm is 4, which results in a competitive ratio of 4.
Next, we consider the case that 4N points were presented in the second phase, but no additional cluster was opened.

Note that the interval [i
′
−1
16N − 1,

i′−1
16N] contains all points but the last point of phase 1, and thus opt can open one cluster and

reject just one point. We get opt ≤ 1+ 1
N . However, the algorithm pays at least 1 for the first phase and 4 for the rejection

penalties of the second phase, which gives a total of at least 5. This case results in a competitive ratio of more than 4.
Consider now the casewhere clusters were opened in both phases. Let i′′ denote the index of the point for which a cluster

was opened in the second phase. The cost of the algorithm is i
′
+i′′
N + 2. As we saw above, we have opt ≤ 1 +

1
N . Another

possible offline solutionwould be to reject all points, and get the cost i
′
+i′′+2
N . Thus opt ≤ min{ i

′
+i′′+2
N , N+1N } . If i

′
+i′′+3 ≤ N ,

the cost of the algorithm is at least i
′
+i′′
N + 2 ≥ 3(

i′+i′′+2
N) ≥ 3opt. Otherwise, i′ + i′′ ≥ N − 2, the cost of the algorithm is

at least i
′
+i′′
N + 2 ≥ 3 −

2
N ≥

3N−2
N+1 opt. Since N can be chosen to be arbitrarily large, we obtain a lower bound of 3 on the

competitive ratio. �

3. Max clustering

In this variant of the problem, each point p has a non-negative weightwp associated with it. Each arriving point must be
assigned to a cluster upon arrival. The set of points assigned to one cluster must lie within an interval of length 1. The cost of
a cluster is the largest weight of any point assigned to this cluster. The cost of an algorithm is the sum of costs of the clusters
defined by the algorithm.
This problem is the generalization of standard unit clustering, since unit clustering is the special case of max clustering

where all weights are equal.
We prove a tight bound of 2 for this problem. The upper bound is achieved by simply applying Grid for this problem.

Theorem 2. The competitive ratio of Grid is 2 and this is best possible.
Proof. We start with the proof of the upper bound. Consider an optimal offline algorithm opt. We analyze each interval of
the form (k, k+1] separately, thus we assign shares of the cost of opt to such intervals, so that the sum of shares of cost that
are assigned to the union of all intervals is exactly opt. Without loss of generality, we assume that opt always uses clusters
of size 1. For every cluster of opt of cost w, this cluster then contains points of exactly two such intervals. We therefore
assign its cost in equal shares to both these intervals, i.e. a cost of w2 to each one of them.
We will prove that the cost of Grid on every interval is at most twice the cost of opt that is assigned to it. Consider an

interval Ik = (k, k+ 1] that contains at least one point (the algorithm pays a total of zero on an interval with no points, and
thus the cost for this interval clearly does not exceed twice the cost of opt that was assigned to this interval).
Consider an interval Ik for which the cluster in Grid has weight a. Thus Ik contains a request point of weight a. This point

is covered by some cluster of optwhich hasweight at least a. Thus a cost of at least a2 was assigned to this interval. Therefore,
the ratio of the cost of RGrid on Ik and the cost assigned to Ik is no larger than 2.
We next prove a lower bound of 2 on the competitive ratio of any algorithm. Let M be a large enough integer, and let

N = M2. Consider the following sequence. The first request point is 0, and has weight 1. Clearly the algorithm must open a
cluster for this point. Additional points are presented until the algorithm opens an additional cluster or until all these points
are presented. The points are iN for i = 0, . . . ,N , where the point

i
N has weight 1+

iM
N . If no additional cluster was opened,

a last request for the point 1+ 1
N with weightM + 1 arrives.

If the last point arrived, it means that the algorithm must open a cluster for this point, since its distance from the very
first point is larger than 1. Thus the cost of the algorithm for the first cluster is the weight of the point in position 1, which is
M + 1, and the cost of the second cluster isM + 1 as well. An optimal algorithm would assign all points but the first one to
a common cluster, having a cost ofM + 1 for this cluster, and the first point can be assigned to an additional cluster, which
will have the cost 1. This gives a competitive ratio of at least 2(M+1)M+2 = 2−

2
M+2 .

If the last point did not arrive, it means that the sequence stopped right after a second cluster was opened. Let i′ ≥ 1
denote the index of the last request point that was presented. An optimal algorithm would use a single cluster of weight
1+ i′M

N for all requests. The algorithm uses two clusters, where the first cluster contains all points but the last one, and thus

costs 1+ (i′−1)M
N , and the second cluster costs 1+ i

′M
N . We get a competitive ratio of at least

2+(2i′−1)M/N
1+i′M/N =

2M+2i′−1
M+i′ ≥ 2−

1
M .

SinceM can be taken to be arbitrarily large, this results in a lower bound of 2 on the competitive ratio of any algorithm. �

4. Clustering with cardinality constraints

In this section we consider the unit clustering problem, where a parameter k limits the number of points that can be
assigned to one cluster. Clearly, the case k = 1 is trivial. A cluster can contain a set S of points if it is contained in an interval
of length 1, and on top of that, |S| ≤ k.

L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96 89

The next proposition resolves the case k = 2. For this case we can apply a greedy algorithm that inserts a point into an
existing cluster if possible, and otherwise opens a new cluster for it. Note that this approach is based on a greedy algorithm
for finding a maximum cardinality matching.

Proposition 1. The competitive ratio of the greedy algorithm for k = 2 is 32 , and this is best possible.

Proof. For the upper bound, we show the relation tomaximummatchings. Letm be the cardinality of amaximummatching
on the graph of request points (when twopoints share an edge if the distance between them is atmost 1). Let n be the number
of request points. We have opt = n−m, since an optimal algorithm is one that maximizes the number of clusters that cover
two points. Since for each edge of the maximum matching implied by opt at least one endpoint was assigned to a cluster
with two points by the algorithm (by the greedy assignment rule), we get that at least m points are in such clusters. Thus
the cost of the algorithm is at most n− m

2 . Using n ≥ 2mwe get
n−m/2
n−m ≤ 1+

m/2
n−m ≤

3
2 .

For the lower bound, consider the two points 1 and 2. If the algorithm assigns them to two clusters the sequence stops.
Clearly opt = 1, which gives a competitive ratio of 2. Otherwise, two additional points 0 and 3 are presented. The algorithm
opens two new clusters, whereas opt = 2, this gives a competitive ratio of 32 . �

We next consider the case k = 3.

Theorem 3. Any algorithm for k = 3 has competitive ratio of at least 74 = 1.75.

Proof. The first three points are in positions 2, 2.5, 3. These three points must be assigned by the online algorithm to one
cluster that we denote by A (otherwise, the input sequence stops and the online algorithm paid at least twice the cost of the
optimal offline solution). Note that by the cardinality constraint no further point can be assigned to A. In this case, we say
that A is full. The next point is in position 3.5 and it must be assigned to a new cluster that we denote by B. The fifth point is
in position 4.5, and it can be assigned to B or to a new cluster C .

• Assume that the fifth point is assigned to cluster B. The location of B is then fixed. The sixth point is in position 5, and it
cannot be assigned to A or B, and hence we must open a new cluster denoted as C for this point. The seventh point is in
position 4, and it can be assigned to either B or C or to a new cluster D.
– Assume that the seventh point is assigned to cluster B. B is now full. The next point is in position 4.4. This point cannot
be assigned to cluster B due to the cardinality constraint, and hence it must be assigned to either C or to a new cluster
D.
* Assume that point 8 is assigned to cluster C . In this case, the next points are at positions 1.7, 2.8, 3.9, 5.5. None
of these points can be assigned to existing clusters, thus there are now seven clusters. The points can be served
using only four clusters that contain three points each: [1.7, 2.5], [2.8, 3.5], [3.9, 4.4], [4.5, 5.5]. Therefore, the
competitive ratio in this case is at least 7/4.
* Assume that point 8 is assigned to cluster D. The next two points are at 3.3 and 2.1, two new clusters are opened
for them. Two additional points then appear at 1.1 and 2.2, and at least one additional cluster must be opened for
them, giving seven clusters. The points can be served using only four clusters: [1.1, 2.1], [2.2, 3], [3.3, 4], [4.4, 5].
Therefore, the competitive ratio in this case is at least 7/4.

– Assume that the seventh point is assigned to cluster C . The position of C is then fixed. The next points appear at
positions 1.1, 2.2, 3.4, 5.5 andmust be assigned to four newclusters. Thepoints canbe servedusing only four clusters:
[1.1, 2.0], [2.2, 3], [3.4, 4], [4.5, 5.5]. Therefore, the competitive ratio in this case is at least 7/4.

– Assume that the seventh point is assigned to cluster D. Now, two points appear at positions 2.9 and 1.8. Neither one
can be assigned to an existing cluster, so there are now six clusters. The points can be served using only three clusters:
[1.8, 2.5], [2.9, 3.5], [4, 5]. Therefore, the competitive ratio in this case is at least 2.

• Assume that the fifth point is assigned to cluster C . The sixth point is in position 1.1, and it must be assigned to a new
cluster D. The seventh point is in position 0.1 and it can be either assigned to cluster D or to a new cluster E.
– Assume that the seventh point is assigned to cluster D. The next points appear at positions 0, 1.2, 2.3 and must be
assigned to three new clusters, since A is full and the location ofD is fixed. The points can be served using four clusters:
[0, 0.1], [1.1, 2], [2.3, 3], [3.5, 4.5]. Therefore, the competitive ratio in this case is at least 7/4.

– Assume that the seventh point is assigned to cluster E. The eighth point is in position 4. The input so far can be
served using three clusters: [0.1, 1.1], [2, 3], [3.5, 4.5]. Therefore, the online algorithm cannot use a new cluster for
the eighth point. Since the distance to the sixth and seventh point is too large, the online algorithm must assign the
eighth point to B or C .
* Assume that the eighth point is assigned to cluster B. The next points are at positions 3.3, 3.4. At most one
of these can be assigned to B, the other one must be assigned to a new cluster. Finally there is a point
at position 2.2, it must also be assigned to a new cluster. The points can be served using four clusters:
[0.1, 1.1], [2, 2.5], [3, 3.4], [3.5, 4.5]. Therefore, the competitive ratio is again at least 7/4.
* Assume that the 8-th point is assigned to cluster C . The final two points appear at positions 5.5 and 2.3 andmust be
assigned to new clusters: A is full and C cannot serve both 5.5 and 4. The points can be served using four clusters:
[0.1, 1.1], [2, 2.5], [3, 4], [4.5, 5.5]. Therefore, the competitive ratio in this case is at least 7/4.

We conclude that in all cases the competitive ratio of the online algorithm is at least 7/4. �

90 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

Finally, we consider the case k ≥ 4. For this case we can show a tight bound of 2. The algorithm Constrained Grid
(CGrid) acts as follows. CGrid applies Grid in order to partition the request points into mega-clusters. Each mega-cluster is
partitioned in an online fashion into clusters consisting of at most k points. All these clusters are defined in the exact same
interval as the mega-cluster. Thus, there is at most one active cluster for each mega-cluster at each time. A new point is
assigned to a mega-cluster and then to an active cluster of this mega-cluster. If as a result the active cluster has k points, it
is closed. If a point is assigned to a mega-cluster which has no active cluster, such an active cluster is opened.

Theorem 4. CGrid has a competitive ratio of 2, which is best possible for any k ≥ 4.

Proof. Consider the cost of an optimal solution opt′ to the problem P ′ where every cluster must be contained in an interval
of the form (k, k + 1]. This cost is also denoted by opt′. We can show that opt′ ≤ 2opt as follows. Given a cluster of opt,
[x, y]where y ≤ x+ 1. We can assume without loss of generality that x and y are request points, otherwise we can reduce
the length of the cluster so that it fulfills this property. Let z = dxe. If z ≥ y, then we are done, since the interval is already
contained in an interval of the form (k, k + 1]. Otherwise, let z ′ be the leftmost request point in (x, y] that is larger than z,
since the input consists of a finite number of points, and since y is a request point and y > z, the point z ′ must exist. We
split this cluster into the two parts [x, z] and [z ′, y]. We show that our algorithm provides an optimal solution to P ′. Since
clusters of opt′ are always contained in an interval of the form (j, j + 1], given a set of points Jk in the interval (k, k + 1],⌈
|Jk|
k

⌉
clusters of opt′ are required for this set, and this is exactly the number of clusters that the algorithm uses. Thus the

competitive ratio of CGrid is at most 2.
To prove the lower bound, we define the following sequence. It starts with k requests, k − 2 of the point 1 and two of

the point 2. At this time opt = 1 and thus if at least two clusters are opened then we are done. If a single cluster is opened,
this cluster cannot be used any further. Next, two points arrive which are 43 and

5
3 . If two additional clusters are opened, the

point 3 is requested. We have opt = 2 (by assigning the k− 2 points at 1, and the two points at 43 and
5
3 to one cluster, and

the other three points to another cluster). The new point is too far from any cluster that can still receive points and thus
the algorithm uses four clusters. Otherwise, a single new cluster is opened. Two new points are presented; 83 and

1
3 . These

points require two new clusters. However, an optimal solution would be to assign all k points in the interval [13 ,
4
3] to one

cluster, and the remaining four points in [53 ,
8
3] to another cluster. The competitive ratio is again 2. �

5. Clustering with resource augmentation

In this variant of the problem, the online algorithm uses clusters of maximum length bwhich is larger than the length of
clusters used by an optimal offline algorithm which is used for comparison. Thus, each arriving point must be assigned to
a cluster upon arrival. The set of points assigned to one cluster by an online algorithm must lie within an interval of length
b. The cost of an algorithm is the number of the clusters defined by the algorithm. An offline algorithm can assign a set of
points S to one cluster if the maximum distance between any two points is S is at most 1.

5.1. Two initial results

The typical question in problems with resource augmentation is whether it is possible to reach a competitive ratio of 1,
or an even smaller competitive ratio. We show that the former is impossible for b < 2 and the latter is never possible.

Proposition 2. For any b > 1, the competitive ratio of any algorithm is at least 1. For any 1 < b < 2, the competitive ratio of
any algorithm is at least 32 .

Proof. An input which consists of a single point proves the first claim. The second claim follows from the lower bound proof
in Proposition 1. The first case is the same. In the second case, two new clusters must be opened if b < 2. �

Wedefine the following algorithm Center, which is based on an algorithm suggested in [5] for the standard unit covering
problem. For every new request point, it is assigned to an existing cluster if possible. Otherwise, for a request at x, a cluster
[x− 1, x+ 1] is opened.

Proposition 3. The competitive ratio of Center for b ≥ 2 is 1.

Proof. We assign each cluster opened by Center to a cluster used by an optimal offline algorithm opt. The assignment is
done so that at most one cluster of Center is assigned to each cluster of opt, and thus the competitive ratio follows.
Given a cluster of Center, A = [a−1, a+1], the point a is a request point. Thus optmust have a cluster Owhich contains

it.We assign A toO. Note thatO is contained in A. We next show that no other clusters of Center are assigned toO. Assume by
contradiction that cluster B = [b− 1, b+ 1] of Center is assigned to O. Then b is a request point. Without loss of generality,
assume that B is opened after A. Then the point b does not belong to the interval [a− 1, a+ 1], and thus b does not belong
to O, contradiction. �

L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96 91

5.2. Simple algorithms

Before we design an algorithm, we show that simple generalizations of previously known algorithms that simply use
longer clusters do not have a competitive ratio which is smaller than 2.
For a given value 1 < b < 2 we define the algorithm Long Greedy (LGreedy) as follows. A new point p fits into a cluster

C if p can be assigned to C , so that its length does not exceed b. LGreedy assigns an arriving point to a cluster into which it
fits, if such a cluster exists (ties are broken arbitrarily). If no such cluster exists, a new cluster is opened for the new point.

Proposition 4. The competitive ratio of LGreedy for any fixed value of b, such that 1 < b < 2, is at least 2.

Proof. Consider the following input. Let M be a large enough integer. For i = 1, ...,M the points 2i, 2i + b are requested
(the points arrive from left to right). Next, the points 2i+ 1+ b

2 are requested for i = 0, . . . ,M . These points requireM + 1
additional clusters. Therefore, LGreedy uses 2M + 1 clusters. An optimal offline solution opens the clusters [2i+ 1, 2i+ 2]
for i = 0, . . . ,M , thus opt = M + 1. AsM grows, the competitive ratio tends to 2. �

We next define the algorithm Long Grid (LGrid) as follows. Create a grid which consists of all points of the form i · b for
all (possibly negative, or zero) integer values of i. If a new point p does not fit into a previously existing cluster, an interval
of the form (j · b, (j+ 1)b] is determined, such that the point p belongs to it, and a cluster is opened at [j · b, (j+ 1)b].

Proposition 5. The competitive ratio of LGrid for any fixed value of b, such that 1 < b < 2, is at least 2.

Proof. Consider the following input. LetM be a large enough integer. For i = 0, ...,M−1 the points 2ib−1/2 and 2ib+1/2
are requested. LGrid opens a cluster for each point, so these points require 2M clusters. An optimal offline solution opens
the clusters [2ib− 1/2, 2ib+ 1/2] for i = 0, . . . ,M − 1, thus opt = M . �

Another generalization of a known algorithm is Long Center (LCenter). If a new point p does not fit into a previously
existing cluster, this algorithm opens a cluster of length b centered at p.

Proposition 6. The competitive ratio of LCenter for any fixed value of b, such that 1 < b < 2, is at least 2.

Proof. Consider the following input. Let M be a large enough integer. For i = 1, ..., 2M the point i is requested. LCenter
opens a cluster centered at each point, so the only integer point contained in each cluster is its center point. Therefore, these
points require 2M clusters. An optimal offline solution opens the clusters [2i− 1, 2i] for i = 1, . . . ,M , thus opt = M . �

Since previously known algorithms do not succeed in making use of the extended length of clusters, we design an
algorithm for b ∈ [3/2, 1)which fixes some clusters similarly to the algorithm of [12]. Unlike that algorithm, the algorithm
makes use of extending clusters, but only in particular cases, and otherwise it is based on Greedy with clusters of length 1.

5.3. An algorithm with resource augmentation for b ∈ [32 , 2)

The main idea of this algorithm is simple: we take advantage of the resource augmentation by not having to create new
clusters between two clusters that are relatively close together (Step 1) and we do our best to avoid the situation where
three clusters intersect a common interval of length 1 (Step 2).
We first discuss a general property of algorithms of this type. An algorithm is called thrifty if it never opens a new cluster

for a request point which fits in an existing cluster without extending its length beyond 1.

Lemma 1. For a thrifty algorithm, there can be no interval of length 1 which completely contains two clusters.

Proof. Assume that two clusters that are defined by a thrifty algorithm are contained in an interval of length 1. Let A and B
be two such consecutive clusters (i.e. such that there is no cluster between them).
Without loss of generality, denote by A the cluster that is defined earlier by the algorithm. Let b be the first request point

in B. We consider the time at which b is assigned to a cluster. Since the point b fits in A without extending its length above
1, a thrifty algorithm cannot create B at this time, which leads to a contradiction. �

The algorithm is defined as follows. A cluster is called single unless it has been joinedwith another cluster in Step 1 or in
Step 2. Let p be the new arriving point.

1. If p appears between two existing single clusters A and B, and the minimum distance between two points from A and B
is at most 1, and p cannot be assigned to either cluster while keeping the lengths at most 1, we extend both clusters to
the point that is in the middle of the gap between them. Now p is contained in (at least) one of the clusters. Assign p to a
cluster it is contained in. We now call A and B joined clusters.

2. If p appears between two existing single clusters A and B, and p can be assigned to both of themwhile keeping the lengths
at most 1, there are three cases.
(a) If there exist two additional clusters C andD that are atmost 1 away from p, join A and B at point p. Assign p arbitrarily
to A or B.

(b) If there exists one additional cluster C such that d(p, C) ≤ 1, assign p to the cluster among A and B which is closer
to C .

92 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

Fig. 1. Creation of a joined pair in Step 1 and 2(a), and other assignments.

(c) Else, assign p arbitrarily to A or B.
3. If p appears between a single cluster A and a joined cluster B, B was joined in Step 2, d(p, q) ≤ 1 for all request points
q ∈ A and d(p, q) ≤ 1 for all points q ∈ B, then we assign p to B unless this brings B within a distance of 1 of another
cluster C; in that case, assign p to A.

4. If p appears between two joined clusters and can be assigned to both of them while keeping their lengths at most 3/2,
assign p arbitrarily to one of them.

5. If p can be assigned to only one existing cluster while keeping its length at most 1, do so.
6. If p is not assigned to a cluster by the previous rules, open a new cluster for p.

For an illustration, see Fig. 1. A pair of clusters that is joined in Step 1 is called a long pair, other joined pairs are called
short pairs. It can be seen that our algorithm is thrifty. Thus, it follows from Lemma 1 that if Case 2(a) occurs, clusters C and
Dmust indeed be at different sides of p. Note that by the definition of the algorithm, clusters never overlap.
Note that Lemma 1 holds even if there are joined clusters nearby. Specifically, the lemma shows that for two single

clusters A and B that both contain only one request point, we have d(A, B) > 1.

5.4. Analysis

A pair of clusters are called consecutive if there is no cluster that is located between them. In the following, we will
repeatedly discuss sets of consecutive clusters C1, C2, In such cases, denote the leftmost request point contained in Ci by
`i and the rightmost request point by ri. We now consider a fixed optimal offline algorithm.We call the clusters used by this
algorithm ‘‘optimal clusters’’. The clusters used by our algorithm are called ‘‘online clusters’’. We say that an optimal cluster
connects two online clusters if it intersects both of them.
As noted in [5], it is trivial to provide an optimal solution for a given input offline: starting from the left, repeatedly

define a cluster of length 1 that has as its left endpoint the leftmost unserved point. It can be seen that in this solution, no
two clusters overlap (not even at their endpoints). We will compare our algorithm to this solution.

Lemma 2. There can be no interval of length 1 which intersects with three different online single clusters.

Proof. Suppose there is such an interval which contains requests from the single clusters C1, C2 and C3 (from left to right).
Note that these three clusters are consecutive clusters, since otherwise, if there is a cluster C4 between C1 and C2 or between
C2 and C3, then C2 and C4 are fully contained in an interval of length 1 in contradiction to Lemma 1.
The assumption implies d(r1, `3) ≤ 1. Let q be the oldest request point in C2. There are two cases. If q is newer than r1

and `3, C1 and C3 would have been joined together when q arrived in Step 1 or Step 2, or qwould have been assigned to one
of them in Step 2 or 5.
Otherwise, without loss of generality, let r1 be newer than `3 (and q). When r1 arrives, it could be assigned to C2, since

r1 is less than 1 away from the furthest point in C2. If our algorithm does not do this, it must be because there was a second
possible cluster to assign r1 to (Step 2). However, in this case, C1 and C2 end up joined (Step 2(a)) or r1 gets assigned to C2
because C3 is less than 1 away from r1 (Step 2(b)). �

Definition 1. A group of online clusters is a maximal set of consecutive clusters such that each two successive clusters are
‘connected’ by an optimal cluster.

L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96 93

That is, if C1, . . . , Cm (numbered from left to right) are consecutive online clusters that form a group, there is an optimal
cluster which contains both ri and `i+1 for i = 1, . . . ,m− 1. (These optimal clusters are not necessarily all distinct.)
If there is more than one group, for each group we have that the leftmost point of the leftmost online cluster is not to the

right of the leftmost point of the leftmost optimal cluster by the way we construct our optimal solution. Two clusters that
are joined together are not necessarily in the same group.

Lemma 3. For m ≥ 3, at least m − 1 optimal clusters are needed to serve all the request points in m consecutive single clusters
that are in the same group.

Proof. If at mostm− 2 optimal clusters serve the requests inm consecutive single clusters, then there is either an optimal
cluster which serves all requests of at least two single clusters (impossible by Lemma 1) or, if there is no such cluster, an
optimal cluster that serves some requests from at least three online clusters by the pigeonhole principle. This is impossible
by Lemma 2. �

Lemma 4. It requires at least three optimal clusters to serve all requests from a long pair, and at least two optimal clusters to
serve all requests from a short pair. A long pair has at least one optimal cluster that is fully contained in the union of the pair of
online clusters.

Proof. In Step 1, p is more than one away from the furthest endpoints of both A and B, which are both request points. This
gives three points, each one of whichmust be in a different optimal cluster, which implies that at least three optimal clusters
are required to serve all the points in these two clusters. The cluster that serves p is completely containedwithin the interval
spanned by A and B.
In Step 2(a), the clusters A and B are not contained in an interval of length 1 by Lemma 1. Since their endpoints are request

points, the lemma follows. �

Lemma 5. Consider a cluster J in a short pair, that is joined to a cluster on its left. The first cluster on its right, say C, already
existed when J was joined. Just before J was joined, J and C were not contained in an interval of length 1.

Proof. When J was joined in Step 2, there was a cluster C ′ next to it that J does not get joined to. C ′ is at most 1 away from
the point p that caused J to be joined. Therefore, a future request point p′ between C ′ and J could be assigned to J , since it is
less than 1 away from p which is the left endpoint of J . Since our algorithm is thrifty, it does not open a new cluster for p′.
Therefore C ′ = C . The second statement follows from Lemma 1. �

Lemma 6. There can be no optimal cluster X which serves requests from two single clusters C, E and a joined cluster J , unless J
was joined in Step 1.

Proof. Assume by contradiction that X exists. By Lemma 1, these are three consecutive clusters.
We first prove that J is either to the left or to the right of the clusters C and E. Since online clusters do not overlap, if this

claim does not hold, then the cluster to which J is joined, J ′, as well as J , are between C and E. Since the distance between C
and E is at most 1, we conclude that J and J ′ are contained in an interval of length 1, which contradicts Lemma 1.
Without loss of generality, we assume that the order of the three clusters from left to right is J , C , E. J was joined to a

cluster J ′ in Step 2, so C must have existed when J was joined by Lemma 5.
While E could have also existed already at this point, it could not yet have been within distance 1 of J , since otherwise

wewould have three single clusters all intersecting an interval of length 1, contradicting Lemma 2. Any request point p′ that
appears between J and C can be assigned to either J or C without increasing the length of a cluster above 1. This holds for J
since C is of distance at most 1 from point pwhich is the left endpoint of J . This holds for C as the distance from J to E (or to
the future left endpoint of E, up to which C would never be extended) is at most 1. Therefore, the conditions of Step 3 hold,
and hence point p′ is assigned in Step 3 (since C remains single throughout the process considered here). The point p′ is not
assigned to J if this brings J within 1 of E.
Note that if a point p′ appears between C and E, it can be assigned to C without increasing the length of C above 1.

Therefore such a point p′ is not assigned in Step 1. Such a point p′ is not assigned to a cluster in Step 2(a) since otherwise C
and E would not be single. We have that p′ is of distance of at most 1 from J , so if p′ can be assigned to E, it is assigned to C
in Step 2(b). Otherwise, p′ is assigned to C in Step 5.
Consider the leftmost point p′′ in E. p′′ was not in E at the timewhen J was still single due to Lemma 2 (nomatter whether

E existed at that time or not). By the above argument, since p′′ is a new point between C and E, it must be inserted to C and
not to E. �

Lemma 7. Consider m ≥ 2 consecutive clusters, where the first and the last cluster are part of a short pair, and the other m− 2
clusters are single. If all these clusters are in one group, it takes at least m − 1 optimal clusters to serve all the requests of these
clusters. If m = 2, two optimal clusters are needed.

Proof. If m = 2, then if the two clusters are joined together as a short pair, then we are done by Lemma 4. If they are not
joined together, let the left pair be A and B and the right pair beD and E. The names are from left to right andwe are interested
in the optimal cost to serve the requests in B and D. Suppose A and B were joined first. When they were joined, since this
happened in Step 2, D already existed, but was not contained in an interval of length 1 together with B by Lemma 5. Since
all their endpoints were request points before Bwas joined, this proves the lemma.

94 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

Ifm = 3, then just before D is joined to E (using the same notations for the joined clusters), the single cluster C between
B and D already exists by Lemma 5, and we can apply Lemma 6 to B and the single clusters C and D.
Now considerm > 3. Denote the single clusters by C1, . . . , Cm−2. Again let A and B be the short pair that was joined first.

We know by Lemma 1 (if m = 4) and Lemma 3 that at least m − 3 optimal clusters are needed to serve the m − 2 single
clusters. Since the single clusters are all in one group, there are in factm−3 optimal clusters which serve requests from two
single clusters, because this is the number of gaps between the single clusters, and no optimal cluster can serve requests
from three single clusters by Lemma 2. If any of these m − 3 clusters also serves a request from B or D, then since no two
optimal clusters overlap, it must be one of the outermost optimal clusters, contradicting Lemma 6. This proves the existence
of two additional optimal clusters, proving the lemma. �

Theorem 5. This algorithm has a competitive ratio of 5/3.

Proof. We first show an upper bound of 5/3. We partition the real line into intervals. The endpoints of the intervals are
shared endpoints of joined pairs. If there are two consecutive clusters that are not in the same group, we also define an
endpoint between them if there was not one already. There are two half-bounded intervals on either side, and each group
may begin and end with a single cluster.
We consider the competitive ratio of our algorithm on each of these intervals separately. Note that as defined, each

interval is entirely containedwithin one group. If there are no joined pairswithin an interval, thenwe are done by Lemmas 1
and 3.
Next we consider intervals that have joined pairs at both ends. For long pairs we assign to both clusters of the pair 3/2

optimal clusters for the calculations, using Lemma 4.
For our analysis, it is irrelevant where exactly the optimal clusters are that serve the requests of joined pairs. This leaves

us with only a few cases, depending on the types of the pairs that form the endpoints of the current interval, and howmany
single clusters are between them.
First of all, if there are short pairs at both ends, thenwe are done immediately by Lemma 7. If there is a long pair at at least

one end, then some requests from two single clusters at that endmight be served by the same optimal cluster. For additional
single clusters after that, we have Lemma 3. Regarding an end with a short pair, we know that when J (the half of the short
pair which is inside the current interval) was joined, the single cluster C immediately next to it already existed, and J and C
were not contained in an interval of length 1 by Lemma 5. Moreover, there is no optimal cluster which serves requests from
J , C and a third single cluster by Lemma 6. Therefore, for the purposes of this analysis, J acts like a single interval.
Overall, we find the following results. The column Cost indicates upper bounds on the cost.

Left pair Right pair Number of single clusters Cost Optimal cost Proof

Short Short At most 1 3 2 Lemma 7
m ≥ 2 m+ 2 m+ 1 Lemma 7

Short Long 0 2 3/2 Assignment
1 or 2 4 5/2 Lemma 5
m ≥ 3 m+ 2 m+ 1/2 Lemmas 3, 6

Long Long 0 or 1 3 2 Note 1
2 or 3 5 3 Note 2
m ≥ 4 m+ 2 m Note 3

Note 1: we assign 3/2 from both ends to this interval, but we may count (at most) one optimal cluster twice, thus we
assign at least 2 in total.
Note 2: now there is no double counting by Lemma 1.
Note 3: them single clusters require at leastm−1 optimal clusters by Lemma 3. Each long pair contributes an additional

1/2 cluster that does not serve points of single clusters (Lemma 4).
Finally, we consider intervals that do not have a joined pair at both ends, but do not contain only single clusters. If an

interval contains only one (joined) cluster, this just adds 1 to the online and optimal cost of the interval that contains the
cluster with which it is joined, improving the competitive ratio on that interval.
If an interval contains more than one cluster, then w.l.o.g. let the rightmost cluster J be joined. Consider the offline cost

to serve all requests in the group up to and including J . If J is part of a long pair, we find a ratio of 2/1.5 = 4/3 if there is
only one single cluster, and the ratio decreases due to Lemmas 1 and 3 if there are more. If J is in a short pair, the ratio is
3/2 for one or two single clusters and decreases for more in the same way. This completes the proof of the upper bound.
We now show a matching lower bound for this algorithm. Let i run from 1 to M for some large value M . First we give

requests at the points 6i, 6i+1, 6i+2, 6i+3 for i = 1, . . . ,M . The algorithm creates 2M clusters. Then we give requests at
the points 6i+ 3/2 for i = 1, . . . ,M , this causes Step 1 to be executedM times. No new clusters are created in this phase.
We then give requests at points 6i+ 4, 6i+ 5 for i = 1, . . . ,M . The algorithm createsM additional clusters. Finally we

give requests at points 6i+10/3, 6i+17/3 for i = 1, . . . ,M . This generates 2M additional clusters for a total of 5M clusters.
It is easy to see that all request points can be served by the set of clusters [i, i + 1] for all odd i between 5 and 6M + 5.

This is a set of 6M/2+ 1 = 3M + 1 clusters. Thus for largeM , the ratio tends to 5/3. �

L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96 95

6. Clustering with temporary points

In this variant of the problem, points arrive and depart online. Every event is either an arrival or a departure of a point.
At every time, a cluster can serve points that belong to an interval of length at most 1. The points that need to be taken
into account at every time are those that already arrived and did not depart yet. The momentary cost of an algorithm (at
a given time) is the number of clusters that are used to cover at least one point at this time. The cost of an algorithm is its
maximum momentary cost over time. Each arriving point must be assigned to a cluster upon arrival and remains assigned
to this cluster until its departure.
We can show a tight bound of 2 for this problem. The algorithmwe use isGrid, where the algorithm closes clusters which

do not have points assigned to them due to departure of points.

Theorem 6. Grid has competitive ratio 2 for clustering with temporary points, and this is best possible.

Proof. To prove the upper bound, we show in the sequel that at every time, themomentary cost of Grid is at most twice the
momentary cost of opt. This would imply a ratio of at most 2 between the costs of the two algorithms. Consider any time
t during processing, and let the set of points existing at this time (live points) be Jt . Let x be the number of intervals of the
form (a, a+ 1] that contain at least one live point. At this time, Grid has x open clusters, its momentary cost is x. However,
an optimal algorithm can serve by each one of its clusters points from at most two clusters, thus the momentary cost of opt
is at least x2 , as we claimed.
To prove a lower bound, we construct the sequence in phases. In each phase a set of three points arrives, and then one

point departs. Specifically, in phase i, the three points 4i, 4i + 1, 4i + 2 arrive. These points are too far from any previous
point and thus new clusters must be opened for them. The algorithmmust use exactly two different clusters, A and B for the
points 4i and 4i+ 2. If the point 4i+ 1 is in the same cluster as 4i, then the point 4i departs, and otherwise 4i+ 2 departs.
An optimal algorithm uses one cluster for the point that departs and another cluster for the points that remain.
For any i = 1, . . ., the momentary cost of opt after the arrival of the points of phase i, and before the departure of one

point of this phase, is i+ 1, since it opens two clusters for the new points of this phase. However, after the departure of one
point, the momentary cost of opt becomes i.
The algorithm will use at least 2i clusters after i phases, since the points of phase i enforce it to use at least two new

clusters, no matter if a point of this phase has departed already. Thus the lower bound will follow from applyingM phases
for an arbitrarily largeM , which gives a ratio of at least 2MM+1 → 2. �

7. Concluding remarks

In this paperwe study variants of the online clustering problem. Formost of these variantswe present tight bounds on the
competitive ratio of any online algorithms.We note that one can study these variants of the online covering problem aswell.
However, most of our results hold also for that model as discussed in the following. The lower bounds (for all our variants)
clearly hold also for the version of the online covering problem. As for the upper bounds, we note that the algorithms based
on Grid, or on Center fix the position of the cluster once it is opened. Therefore, we conclude that the following upper
bounds hold: the upper bound of 3 for online covering with rejection (using the analysis of RGrid), the upper bound of 2
for online max covering (using the analysis of Grid for the online max clustering problem), the upper bound of 2 for online
cardinality constrained covering problem (using the analysis of CGrid), an upper bound of 1 for the online covering with
resource augmentation of b ≥ 2 (using the analysis of Center), and an upper bound of 2 for online covering with temporary
points (using the analysis of Grid for the online clustering with temporary points). For most of these variants this gives tight
bounds as well.

Acknowledgement

The third author’s researchwas supported by the German Research Foundation (DFG).Work performedwhile this author
was at the University of Karlsruhe, Germany.

References

[1] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, Orli Waarts, On-line load balancing with applications to machine scheduling and virtual circuit
routing, Journal of the ACM 44 (1997) 486–504.

[2] Yossi Azar, Leah Epstein, On-line load balancing of temporary tasks on identical machines, SIAM Journal on Discrete Mathematics 18 (2) (2004)
347–352.

[3] Luitpold Babel, Bo Chen, Hans Kellerer, Vladimir Kotov, Algorithms for on-line bin-packing problems with cardinality constraints, Discrete Applied
Mathematics 143 (1–3) (2004) 238–251.

[4] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, Leen Stougie, Multiprocessor scheduling with rejection, SIAM Journal on
Discrete Mathematics 13 (2000) 64–78.

[5] Timothy M. Chan, Hamid Zarrabi-Zadeh, A randomized algorithm for onine unit clustering, in: Proc. 4th Workshop on Approximation and Online
Algorithms, WAOA 2006, in: Lecture Notes in Comput. Sci., vol. 4368, Springer, 2006, pp. 121–131.

[6] Moses Charikar, Chandra Chekuri, Tomás Feder, Rajeev Motwani, Incremental clustering and dynamic information retrieval, SIAM Journal on
Computing 33 (6) (2004) 1417–1440.

96 L. Epstein et al. / Theoretical Computer Science 407 (2008) 85–96

[7] György Dósa, Yong He, Bin packing problemswith rejection penalties and their dual problems, Information and Computation 204 (5) (2006) 795–815.
[8] Leah Epstein, Bin packing with rejection revisited, in: Proc. of the 4th InternationalWorkshop on Approximation and Online Algorithms,WAOA 2006,
in: Lecture Notes in Comput. Sci., vol. 4368, Springer, 2006, pp. 146–159. Also in Algorithmica (in press).

[9] Leah Epstein, Online bin packing with cardinality constraints, SIAM Journal on Discrete Mathematics 20 (4) (2006) 1015–1030.
[10] Leah Epstein, Asaf Levin, On the max coloring problem, in: Proc. 5th Workshop on Approximation and Online Algorithms, WAOA 2007, in: Lecture

Notes in Comput. Sci., vol. 4927, Springer, 2008, pp. 142–155.
[11] Leah Epstein, Asaf Levin, Gerhard J. Woeginger, Graph coloring with rejection, in: Proc. of the 14th Annual European Symposium on Algorithms,

ESA2006, in: Lecture Notes in Comput. Sci., vol. 4168, Springer, 2006, pp. 364–375.
[12] Leah Epstein, Rob van Stee, On the online unit clustering problem, in: Proc. 5th Workshop on Approximation and Online Algorithms, WAOA 2007,

in: Lecture Notes in Comput. Sci., vol. 4927, Springer, 2008, pp. 193–206.
[13] Michel X. Goemans, David P. Williamson, A general approximation technique for constrained forest problems, SIAM Journal on Computing 24 (2)

(1995) 296–317.
[14] Sudipto Guha, Refael Hassin, Samir Khuller, Einat Or, Capacitated vertex covering, Journal of Algorithms 48 (1) (2003) 257–270.
[15] András Gyárfás, Jenö Lehel, On-line and first-fit colorings of graphs, J. Graph Theory 12 (1988) 217–227.
[16] Edward G. Coffman Jr., Michael R. Garey, David S. Johnson, Dynamic bin packing, SIAM Journal on Computing 12 (1983) 227–258.
[17] Bala Kalyanasundaram, Kirk Pruhs, Speed is as powerful as clairvoyance, Journal of the ACM 47 (4) (2000) 617–643.
[18] Hal A. Kierstead, Coloring graphs on-line, in: Amos Fiat, Gergard J. Woeginger (Eds.), Online Algorithms: The State of the Art, Springer, 1998,

pp. 281–305.
[19] Hal A. Kierstead, William T. Trotter, An extremal problem in recursive combinatorics, Congressus Numerantium 33 (1981) 143–153.
[20] László Lovász, Michael E. Saks, W.T. Trotter, An on-line graph coloring algorithm with sublinear performance ratio, Discrete Mathematics 75 (1989)

319–325.
[21] Mohammad Mahdian, Yingyu Ye, Jiawei Zhang, A 2-approximation algorithm for the soft-capacitated facility location problem, in: Proc. of the 6th

International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2003, in: Lecture Notes in Comput. Sci.,
vol. 2764, Springer, 2003, pp. 129–140.

[22] Sriram V. Pemmaraju, Rajiv Raman, Kasturi R. Varadarajan, Buffer minimization using max-coloring, in: Proc. of 15th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’04, 2004, pp. 562–571.

[23] Hamid Zarrabi-Zadeh, Timothy M. Chan, An improved algorithm for online unit clustering, in: Proc. of the 13th Annual International Computing and
Combinatorics Conference, COCOON 2007, in: Lecture Notes in Comput. Sci., vol. 4598, Springer, 2007, pp. 383–393.

	Online unit clustering: Variations on a theme
	Introduction
	Clustering with rejection
	Max clustering
	Clustering with cardinality constraints
	Clustering with resource augmentation
	Two initial results
	Simple algorithms
	An algorithm with resource augmentation for b in [32,2)
	Analysis

	Clustering with temporary points
	Concluding remarks
	Acknowledgement
	References

