
Theoretical Computer Science 407 (2008) 389–399

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Dense open-shop schedules with release times
Rongjun Chen a,∗, Wanzhen Huang b, Guochun Tang c
a School of Sciences, Changzhou Institute of Technology, Changzhou, Jiangsu, 213002, China
b Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada P7B5E1
c Institute of Management Engineering, Shanghai Second Polytechnic University, Shanghai, 201209, China

a r t i c l e i n f o

Article history:
Received 14 March 2008
Received in revised form 28 June 2008
Accepted 23 July 2008
Communicated by D.-Z. Du

Keywords:
Scheduling
Open-shop
Dense schedule
Performance ratio
Job release time

a b s t r a c t

We study open-shop scheduling problems with job release times. The objective is to
minimize themakespan. Dense schedules, easy to construct, are often used as approximate
solutions. Performance ratios of the makespans from dense schedules and that of the
optimal schedule of the problem are used to evaluate the quality of approximate schedules.
It is conjectured (proved for a limited number of machines) that this performance ratio is
bounded above by (2−1/m) form-machine open-shopproblemswithout job release times.
In this paper, we extend the conjecture to open-shop problems with job release times. The
results proved in this paper are: 1. Dense schedule performance ratio is bounded above
by 2 for three-machine open-shop problems with job release times; 2. The conjectured
performance ratio upper bound of 5/3 is proved for two special cases of three-machine
open-shop problems with job release times; 3. A performance ratio upper bound of 7/4 is
proved for three-machine problems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In a shop scheduling model we are given m ≥ 2 machines and n jobs. Each job consists of a number of operations, each
to be processed on a specified machine for a specific amount of time. Each machine processes no more than one job at a
time, and each job is processed on at most one machine at a time. No pre-emption is allowed in processing any operation,
i.e. once started, the processing of any operation must not be interrupted before it is completed.
Traditionally, in scheduling theory three basic shop scheduling models are considered: job-shop, flow-shop and open-

shop. In the job-shop setting, each job consists of a chain of a number of operations with specified order, each of which
should be processed by a specified machine. The flow-shop is a special case of the job-shop where the operation chains
of all jobs consist of exactly m operations, one on each of m machines, and the orders are the same for all these jobs. The
open-shop differs from the flow-shop in the sense that the operations of jobs can be processed in any order.
For each of the three models, one of the well-known objectives is to minimize the makespan, the time when the last

job is completed. Following a standard notation [4], we denote these problems by J||Cmax, F ||Cmax, and O||Cmax, respectively.
All these three problems are strongly NP-hard [4]. Therefore, it is important to develop efficient polynomial approximation
algorithms. Usually, the quality of a polynomial approximation algorithm is measured by its worst-case performance ratio
sup Cmax(S)C∗

, where Cmax(S) is themakespan of a schedule S found by the algorithm, C∗ is the correspondingminimumpossible
makespan, and the supremum is taken over all problem instances.
Recently, it has been discovered that finding a guaranteed good approximate solution for any shop scheduling problem is

as difficult as finding an optimal one. It is shown in [2] that, unless P = NP , there is no polynomial approximation algorithm
for any of these shop scheduling problems with a worst-case performance ratio less than 5/4.

∗ Corresponding author. Tel.: +86 0519 88596322.
E-mail addresses: chenrjecust@163.com (R. Chen), wzhuang@sleet.lakeheadu.ca (W. Huang), gtang@sh163.net (G. Tang).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.07.030

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:chenrjecust@163.com
mailto:wzhuang@sleet.lakeheadu.ca
mailto:gtang@sh163.net
http://dx.doi.org/10.1016/j.tcs.2008.07.030

390 R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399

Nevertheless, there is an interesting simple class of shop schedules that can be constructed by a greedy algorithm. A
schedule is said to be dense, if it satisfies the following condition: If any machine Mi is idle at time t , then all jobs, that are
processed onMi after time t must be processed at time t on machines other thanMi. It is observed [5] that the makespan of
any dense open-shop schedule is at most twice that of the optimal one. It is conjectured that, for m ≥ 2, the makespan of
any dense open-shop schedule is at most 2− 1/m times the optimal makespan [10]. This conjecture has been proved for up
tom ≤ 6 [8]. It is shown in [1,6] that the bound of 2− 1/m cannot be further reduced.
Up until now, all jobs are assumed to be available at time zero. Consider the open-shop with jobs arriving at different

release times, no pre-emptions allowed, and the makespan as the objective to be minimized — that is, Om|rj|Cmax. Lawer et
al. [3] prove that O2|rj|Cmax is strong NP-hard. In this paper we study dense schedules for the problem with arrival times,
which can be easily constructed by the following greedy algorithm: being from the initial time and whenever a machine
becomes available, select one of the released and available jobs to process on the machine and avoid unnecessary idleness.
Obviously dense schedule is not unique. We conjecture that the makespan of any dense schedule is at most 2− 1/m times
that of the optimal one when jobs are released at different times. Chen [7] proves that the performance ratio of any dense
schedule is bounded above by 3/2 for problem O2|rj|Cmax. In this paper we study the performance ratio of dense schedules
for O3|rj|Cmax.
The rest of this paper is organized as follows. After introducing necessary notations and giving preliminaries in Section 2,

we prove that the conjecture is true for two special kinds of dense schedules for problem O3|rj|Cmax. A weaker bound of 2 is
established in Section 3. In Section 4 we improve the bound of 2 to 74 in general and to

5
3 for its special cases. We conclude

the paper in Section 5 and provide the complete proof of Theorem 4 in the Appendix.

2. Notation and preliminaries

We now formally describe the open-shop scheduling model. Let M = {M1,M2, . . . ,Mm} be the set of machines and
N = {1, 2, . . . , n} the set of jobs. Each job j is available at time rj, consists of a set {O1,j, . . . ,Om,j} of operations, and operation
Oi,j has to be processed on machineMi for pi,j time units. Without loss of generality, we assume that

0 = r1 ≤ r2 ≤ · · · ≤ rn.
TheworkloadWi of machineMi is the total processing time of all operations assigned to themachine, i.e.,Wi =

∑n
j=1 pi,j.

The length Pj of job j is the total processing time of all the operations of the job j, i.e.,Pj =
∑m
i=1 pi,j.

A schedule S of the problem can be identified as a set of intervals {I(Oi,j), i = 1, . . . ,m, j = 1, . . . , n}, where
I(Oi,j) = [Bi,j, Ci,j), Bi,j and Ci,j is the start and completion time of operation Oi,j, respectively, with Ci,j − Bi,j = pi,j. A
machineMi is said to be busy at time t if t ∈

⋃n
j=1[Bi,j, Ci,j), otherwise we say that machineMi is idle at time t . Let Cmax(S)

and C∗ denote the makespan of S and the optimal makespan of the problem, respectively. It is easy to verify the following.

C∗ ≥ max
j∈N

(rj + Pj), (2.1)

C∗ ≥ max
1≤j≤n

max
1≤i≤m

{
rj +

n∑
k=j

pi,k

}
, (2.2)

and

C∗ ≥ max
1≤i≤m

{
n∑
k=1

pi,k

}
= max
1≤i≤m
{Wi}, (2.3)

which is a special case of (2.2) when j = 1.
Definition 2.1. An idle interval I = [b, e) on machineMi for a given schedule S is called reasonable if one of the following
conditions holds for job j, j = 1, 2, . . . , n,
(1) Job j has been finished on machineMi before time b, i.e. Ci,j ≤ b; or
(2) Job j is being processed on a machine other thanMi at any time t in I , i.e. , I ⊆

⋃
i′ 6=i[Bi′,j, Ci′,j); or

(3) Job j released after time e, i.e. rj ≥ e.
A schedule S is dense if all idle intervals are reasonable.
Without loss of generality, we may assume that release time rj, j = 1, 2, . . . , n does not belong to any idle interval. If it

happens, we can simply break the idle interval into smaller intervals at the release times.
For schedule S, we also define
Li(t ′, t ′′) = total idle time on machineMi between times t ′ and t ′′

for t ′ ≤ t ′′, i = 1, 2, . . . ,m.
Obviously,

Li(0, rj) ≤ rj, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. (2.4)

Let S be a dense schedule for problem Om|rj|Cmax. The following three lemmas are straightforward by the definition of a
dense schedule.

R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399 391

Lemma 1. If Oi,j is processed in [Bi,j, Ci,j), then

Li(rj, Bi,j) ≤
∑

{k:Ok,j∈Fi,j}

pk,j,

where Fi,j = {Ok,j : Ck,j ≤ Bi,j} is the set of operations for job j that have been finished before operation Oi,j starts.

Lemma 2. If m machines are not idle simultaneously in a time interval [a, b), then
m∑
i=1

Li(a, b) ≤ (m− 1)(b− a).

Lemma 3. Let Midle(t) ≥ 1 be the number of machines that are idle at time t. Then there are at most m−Midle(t) jobs that are
released before t will be processed on these idle machines after t.
As a special case when Midle(t) = m, i.e. all machines are idle at time t, then jobs released before t must all be completed by

time t.

3. Weaker bound for O3|rj|Cmax

We now study the performance ratio of a dense schedule for three-machine open-shop problem with job release times.
Without loss of generality, we assume that machineM3 terminates the dense schedule S.
In the first theorem, we prove that the conjecture is true if there is no idle time onM3 after the last job’s release time rn.

Theorem 1. Suppose there is no idle time on M3 after rn. Then

Cmax/C∗ ≤ 2−
1
3
. (3.1)

Proof. If there is no idle time on machineM3, then S is optimal, since

Cmax = L3(0, Cmax)+W3 = W3 ≤ C∗.

Otherwise, let I = [b, e) be the last idle interval on machineM3, then I ⊆ [rk−1, rk) for some job k, 2 ≤ k ≤ n.
If all jobs in {1, 2, . . . , k− 1} are finished before time e, then e = rk. From inequality (2.2) we have

Cmax = rk + p3,k + p3,k+1 + · · · + p3,n ≤ C∗,

which implies (3.1). Otherwise, we assume that there are g jobs in {1, 2, . . . , k − 1} that still need to be processed on M3
starting from time e. Because S is dense, these jobs must be on other machines during the time interval I , and therefore,
g ≤ 2. We assume these jobs to be {j1, . . . , jg}, with

1 ≤ j1 < · · · < jg ≤ k− 1.

We consider the following two cases.
Case 1. There is a job j ∈ {j1, . . . , jg} such that p3,j ≥ C∗/3.
OnM3 which terminates the schedule, we have

Cmax = W3 + L3(0, rj)+ L3(rj, e)
≤ C∗ + rj + p1,j + p2,j (by Lemma 1)
= C∗ + rj + Pj − p3,j
≤ (2− 1/3)C∗ (by (2.1)),

which proves (3.1).
Case 2. For any

j ∈ {j1, . . . , jg}, p3,j < C∗/3. (3.2)

We get

Cmax ≤ rk + p3,j1 + · · · + p3,jg + p3,k + p3,k+1 + · · · + p3,n
≤ C∗ + p3,j1 + · · · + p3,jg (by (2.2))
≤ C∗ + (g/3)C∗, (by (3.2))

which, together with g ≤ 2, implies (3.1). �

In the next theorem, we consider a dense schedule with idle times on machineM3 after the last job’s release time.

Theorem 2. Suppose there exist idle times on machine M3 after time rn. If there is a job j processed on M3 after the last idle time
with p3,j ≥ C∗/3, then (3.1) holds.

392 R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399

Fig. 1. The optimal schedule of the 3-job instance with makespan of 6.

Fig. 2. A dense schedule of the 3-job instance with makespan of 8.

Fig. 3. The optimal schedule of the 4-job instance with makespan of 3.

Fig. 4. A dense schedule of the 4-job instance with makespan of 5.

Proof. The proof is similar to that of Case 2 in Theorem 1. �

In Theorem 3, we can see that a weaker bound of 2 holds for three-machine open-shop with job release times.

Theorem 3. The makespan of any dense schedule for problem O3|rj|Cmax is less than 2 times that of the optimal schedule.

Proof. Let j ∈ N terminate the schedule and its last operation processed onM3, i.e. Cmax = C3,j. We have

Cmax ≤ rj +W3 + L3(rj, Cmax)
≤ rj +W3 + p1,j + p2,j (by Lemma 1)
< rj +W3 + Pj ≤ C∗ + C∗ = 2C∗,

by inequalities (2.1) and (2.3). �

The following instance shows the bound of 2 is not tight.
Instance. Consider three machines and three jobs with the processing times specified by vectors P1, P2, P3, respectively,

P1 = (3, 2, 1), P2 = (1, 2, 2), P3 = (1, 1, 2),

and the release times are r1 = r3 = 0, r2 = 1. For the problem, an optimal schedule and a dense schedule are given in
Figs. 1 and 2, respectively. We have Cmax/C∗ = 4

3 < 2.
If we consider four jobs with the processing times specified by vectors P1, P2, P3, P4, respectively,

P1 = (0, 1, 1), P2 = (1, 0, 1), P3 = (1, 1, 0), P4 = (1, 1, 1),

and the release times are r1 = r2 = r3 = 0. For this problem, an optimal schedule and a dense schedule are given in Figs. 3
and 4, respectively. We have Cmax/C∗ = 5

3 < 2. �
Remark: The results of Theorems 1–3 can be easily generalized tommachines.

4. Improved bound for O3|rj|Cmax

In this section we further consider the three-machine open-shop problems with job release times. Assume that machine
M3 terminates the schedule. When m = 3, we have 2 − 1/m = 5/3. The next theorem indicates that the ratio is 7/4, the
difference of which from 5/3 is only 0.08333.

Theorem 4. The makespan of any dense schedule for the three-machine open-shop with job release times is at most 7/4 times
that of an optimal schedule.

R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399 393

Proof. Detailed proof will be given in the Appendix because of its length. �

Now we give two classes of three-machine problems that the performance ratio can actually achieve the bound of 5/3.
The first case is when the processing times are independent of machines. The problem is denoted by O3|rj, pi,j = pj|Cmax

which is proved to be NP-hard [11].

Theorem 5. For any dense schedule of problem O3|rj, pi,j = pj|Cmax, there holds that Cmax/C∗ ≤ 5/3.

Proof. We only need to consider Case 2 in the proof of Theorem 4. Let I = [b, e) be the last idle interval on machine M3.
Because of the density of S, j1 and j2 have been processed right before e onM2 andM1, respectively. Due to the condition of
Case 2, any two machines have no common idle between [rj2 , e) andM1 andM2 have no common idle during [rj1 , rj2).
First let us consider the subcase in which p1,j1 ≤ p1,j2 . Suppose L2(rj2 , e) = 0. We have

Cmax ≤ C∗ + L1(0, rj2)+ L1(rj2 , e)+ p3,j1 + p3,j2 , (4.1)
Cmax ≤ C∗ + L2(0, rj2)+ p3,j1 + p3,j2 , (4.2)
Cmax ≤ C∗ + L3(0, rj2)+ L3(rj2 , e). (4.3)

Summing up (4.1)–(4.3) and taking into account the following two inequalities:

L1(0, rj2)+ L2(0, rj2)+ L3(0, rj2) ≤ 2rj2
and

L1(rj2 , e)+ L3(rj2 , e) ≤ p1,j2 + p2,j2 ,

we get

3Cmax ≤ 3C∗ + 2rj2 + pj2 + p3,j2 + 2p3,j1
≤ 3C∗ + 2(rj2 + pj2) ≤ 5C∗,

which proves the theorem.
Next we assume L2(rj2 , e) > 0. According to the density, L1(rj2 , e) = 0. We can prove Theorem 5 similarly by exchanging

M1 andM2.
Now consider the other subcase in which p1,j1 > p1,j2 . Suppose that M1 and M3 have common idle during [rj1 , rj2) and

let I1 = [b1, e1) be the last common idle interval. We have I1 ⊆ [rl−1, rl), where rj1 < rl ≤ rj2 . After e1, there is at most one
job j1 released before rl is processed on M3. According to the density, we have L1(rj2 , e) = L2(rj2 , e) = 0 and the following
two inequalities

Cmax ≤ rl +
n∑
k=l

p1k + L1(rl, rj2)+ p3,j1 + p3,j2

≤ C∗ + L1(rl, rj2)+ p3,j1 + p3,j2 , (4.4)

Cmax = W3 + L3(0, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e)
≤ C∗ + rj1 + L3(rj1 , rj2)+ L3(rj2 , e). (4.5)

Summing up (4.4) and (4.5), together with the fact that

L1(rl, rj2)+ L3(rj1 , rj2)+ L3(rj2 , e) ≤ p1,j1 + p2,j1 ,

we have

2Cmax ≤ 2C∗ + rj1 + pj1 + p3,j2 ≤ 10/3C∗,

which proves Theorem 5.
Next we assume M1 and M3 have no common idle during [rj1 , rj2). At this time, if M2 and M3 have common idle during

[rj1 , rj2) and let I1 = [b1, e1) be the last common idle interval, thenwe have I1 ⊆ [rl−1, rl), where rl ≤ rj2 . Letµ be the length
of the processing time for O1,j1 before rl (if any). From the density, it follows that

L1(rj2 , e)+ L3(rj2 , e) ≤ p1,j2 + p2,j2 ,
L2(rj1 , rl)+ L3(rj1 , rl) ≤ rl − rj1 + µ (4.6)

and

L1(rl, rj2)+ L2(rl, rj2)+ L3(rl, rj2) ≤ rj2 − rl. (4.7)

In addition, after e1 both M2 and M3 process one job j1 released before rl. Thus the idle length of M2 after rl is less than
p1,j1 + p2,j1 − µ. We obtain

Cmax ≤ C∗ + L1(0, rj1)+ L1(rl, rj2)+ L1(rj2 , e)+ p3,j1 + p3,j2 ,
Cmax ≤ C∗ + L2(0, rj1)+ L2(rj1 , rl)+ p1,j1 + p2,j1 − µ,

394 R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399

and
Cmax ≤ C∗ + L3(0, rj1)+ L3(rj1 , rl)+ L3(rl, rj2)+ L3(rj2 , e).

Summing up the inequalities above, together with Lemma 2, (4.6) and (4.7), we have

3Cmax ≤ 3C∗ + 2rj1 + pj1 + p3,j2 + p1,j1 + p2,j1
≤ 3C∗ + 2(rj1 + pj1) ≤ 5C∗,

which proves the bound of 5/3. Otherwise, ifM2 andM3 have no idle during [rj1 , rj2), we can prove Theorem 5 similarly to
the subcase where p1,j1 ≤ p1,j2 . �

The second special class of problems is that the number of operations is nomore than 2 for all jobs, which is also NP-hard
[9].
Theorem 6. For problem O3|rj|Cmax, where the number of operations is no more than 2 for all jobs, there holds that Cmax/C∗ ≤
5/3.
Proof. Similarly to the proof of Theorem 5, we only need to prove for Case 2. According to the density, j1 and j2 have been
processed right before e on M2 and M1, respectively. We have L2(rj1 , rj2) = L2(rj2 , e) = 0. There are two subcases we have
to consider.
Case 2.1.M2 andM3 have no common idle. This yields

Cmax ≤ C∗ + L2(0, rj1)+ p3,j1 + p3,j2 , (4.8)

and

Cmax ≤ C∗ + L3(0, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e). (4.9)

Summing up (4.8) and (4.9), together with
L2(0, rj1)+ L3(0, rj1) ≤ rj1

and
L3(rj1 , rj2)+ L3(rj2 , e) ≤ p2,j1 ,

we have
2Cmax ≤ 2C∗ + rj1 + pj1 + p3,j2 ≤ 10/3C∗.

Case 2.2. M2 and M3 have common idle. Let I1 = [b1, e1) be the last common idle. We have I1 ⊆ [rl−1, rl), where rl ≤ rj1 .
After e1, there is at least one machine ofM2 andM3 that does not process any job released before rl, sayM2. We obtain that,

Cmax ≤ rl +
n∑
k=l

p2,k + L2(rl, rj1)+ p3,j1 + p3,j2

≤ C∗ + L2(rl, rj1)+ p3,j1 + p3,j2 , (4.10)

and

Cmax ≤ rl + L3(rl, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e)+ C∗. (4.11)

Summing up (4.10) and (4.11), together with
rl + L3(rl, rj1)+ L2(rl, rj1) ≤ rj1

and
L3(rj1 , rj2)+ L3(rj2 , e) ≤ p2,j1 ,

we get
2Cmax ≤ 2C∗ + rj1 + pj1 + p3,j2 ≤ 10/3C∗,

which completes the proof. �

5. Conclusion

In this paper, we study dense schedules for three-machine open-shop problems with job release times. We prove that
the makespan of a dense schedule is at most 53 times the optimum schedule if the dense schedule S satisfies either of the
following conditions:
1. There is no idle time on machineM3 after the last job’s release time; or
2. There is a job j processed after the last idle interval onM3 with the processing time p3,j ≥ C∗/3.
We also prove the bound of 2 is an upper bound for the worst-case performance ratio for problem O3|rj|Cmax. An improved
bound of 7/4 is proved in general, and a bound of 5/3 is proved for special caseswhere the processing times are independent
of machines or the number of operations is no more than 2.

R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399 395

Acknowledgments

The first and the third authors were supported by the National Natural Science Foundation of China under grant number
20710015. The second author was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
The first author would also like to acknowledge Dr. Wenci Yu, late professor at East China University of Science and

Technology, for his valuable advice during the initial stage of this research work.

Appendix. Proof of Theorem 4

Theorem 4. The makespan of any dense schedule for the three-machine open-shop with job release times is at most 7/4 times
that of an optimal schedule.

Proof. Without loss of generality, assumemachineM3 terminates the schedule. If there is no idle time on machineM3 after
rn, or there exist idle times on M3 after rn and a job j processed after the last idle interval on M3 with p3,j ≥ C∗/3, then the
theorem is proved due to Theorem 1 or 2, respectively.
Next we consider the situation in which there exist idle times on machine M3 after rn and all jobs j processed after the

last idle time onM3 satisfy p3,j < C∗/3.
We use mathematical induction to prove the theorem for number of jobs n.
For n = 1, the inequality is trivial because Cmax = P1 = C∗. We now assume that the theorem is true for up to n− 1 jobs.

We need to prove the theorem for n jobs.
If all three machines are idle at a certain time, let I = [b, e) be the last such idle interval, then I ⊆ [rk−1, rk) for some

k ∈ {2, 3, . . . , n}. Then by Lemma 3, all jobs in {1, 2, 3, . . . , k−1} are finished before time b, and other jobs are not released
until e = rk. We now consider a new problem with only the last n − k + 1 (<n) jobs, with the same processing times and
modified release times as r ′j = rj − rk, for all j = k, k+ 1, . . . , n. Let C

′
∗
be the optimal makespan of the new problem with

n− k+ 1 jobs. It is obvious that

C∗ = C ′∗ + rk.

For any dense schedule of the original problem, the processing of the last n− k+ 1 jobs forms a dense schedule for the
new problem, and obviously we have Cmax = C ′max + rk. Since the new problem has less than n jobs, by the induction we
have C ′max/C

′
∗
< 7/4. Therefore

Cmax/C∗ = (C ′max + rk)/(C
′

∗
+ rk) ≤ C ′max/C

′

∗
< 7/4,

since C ′max ≥ C
′
∗
.

Now we assume that three machines are never idle at the same time. Let I = [b, e) be the last idle interval on M3 after
the last job’s release time. i.e. b ≥ rn. The remaining proof is to exhaustively analyze all possible cases. For each possible
case, we will give an upper bound for the performance ratio. At the end, we will find that the largest upper bound for the
three-machine case is 7/4.
Since I ∈ [rn, Cmax) and the schedule is dense, we know that there are at most two jobs onM3 after time e. Based on the

number of jobs after time e on machineM3, we consider Case 1 and Case 2 as follows.
Case 1. There is only one job, say job j, processed after the last idle interval I = [b, e) on machineM3. Because the schedule
is dense, job jmust be just completed from one of the other machines at time e, sayM2. i.e. [B2,j, C2,j) = [B2,j, e).
Case 1.1. C1,j = B2,j. Because of the density, we know

Li(rj, B1,j) = 0, i = 1, 2, 3.

On each of the three machines, we get

Cmax ≤ C∗ + L1(0, rj)+ p2,j + p3,j,
Cmax ≤ C∗ + L2(0, rj)+ p1,j + p3,j,
Cmax ≤ C∗ + L3(0, rj)+ p1,j + p2,j.

Summing up the three inequalities above, noting the fact that there is no common idle time on all three machines which
implies

L1(0, rj)+ L2(0, rj)+ L3(0, rj) ≤ 2rj,

we have

3Cmax ≤ 3C∗ + 2rj + 2Pj ≤ 5C∗,

or

Cmax/C∗ ≤ 5/3.

396 R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399

Case 1.2. C1,j < B2,j. In this case, we have B2,j ≤ b. It is easy to see that

Li(rj, B1,j) = 0, i = 1, 2, 3,

and

Li(C1,j, B2,j) = 0, i = 2, 3.

The following three situations should be considered.
Case 1.2.1.M2 andM3 have no common idle time up to C1,j.
In this case,

L2(0, C1,j)+ L3(0, C1,j) ≤ rj + p1,j.

We also have

Cmax ≤ C∗ + L2(0, C1,j)+ p3,j
and

Cmax ≤ C∗ + L3(0, C1,j)+ p2,j.

Summing up the two, we get

2Cmax ≤ 2C∗ + rj + p1,j + p2,j + p3,j ≤ 3C∗,

or

Cmax/C∗ ≤ 3/2.

Case 1.2.2. M2 and M3 have common idle time before C1,j and the last common idle interval I1 = [b1, e1) ⊆ [B1,j, C1,j).
Also we assume I1 ⊆ [rl−1, rl) for some l > j. After I1, machines M2 and M3 can process at most one job released before I1
(Lemma 3), which can only be job j. Therefore e1 = rl. Also we know that all jobs released before rl, except job j, are finished
fromM2 andM3 by then. On machinesM2 andM3, we have

Cmax ≤ C∗ + L2(0, rj)+ L2(rj, rl)+ L2(rl, C1,j)+ p3,j
≤ C∗ + rj + L2(rj, rl)+ L2(rl, C1,j)+ p3,j,

Cmax ≤ rl +
n∑
k=l

p3,k + L3(rl, C1,j)+ L3(C1,j, e)+ p3,j

≤ C∗ + L3(rl, C1,j)+ p2,j + p3,j.

Note that

L2(rj, rl)+ L2(rl, C1,j)+ L3(rl, C1,j) ≤ p1,j.

Summing up the inequalities above we have

2Cmax ≤ 2C∗ + rj + p1,j + p2,j + 2p3,j ≤ 10/3C∗,

or

Cmax/C∗ ≤ 5/3.

Case 1.2.3. M2 and M3 have common idle time before C1,j and the last common idle interval I1 ⊆ [0, rj). Thus M3 and M2
have no common idle after rj and we have

L2(rj, e)+ L3(rj, e) ≤ p1,j + p2,j.

Again we assume I1 ⊆ [rl−1, rl) for some l ≤ j. From Lemma 3, we know that after time e1, M2 and M3 cannot process
more than one job released before rl. Next we need to consider the following three subcases.
Case 1.2.3.1. By time rl, machineM2 has finished all jobs released before rl. OnM2 andM3, we have

Cmax ≤ rl +
n∑
k=l

p2,k + L2(rl, rj)+ L2(rj, e)+ p3,j

≤ C∗ + L2(rl, rj)+ L2(rj, e)+ p3,j,

Cmax ≤ C∗ + L3(0, rl)+ L3(rl, rj)+ L3(rj, e)
≤ C∗ + rl + L3(rl, rj)+ L3(rj, e).

Summing up the two inequalities above we have

2Cmax ≤ 2C∗ + rl + (L2(rl, rj)+ L3(rl, rj))+ L2(rj, e)+ L3(rj, e)+ p3,j
≤ 2C∗ + rl + (rj − rl)+ p1,j + p2,j + p3,j ≤ 3C∗,

R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399 397

or

Cmax/C∗ ≤ 3/2.

Case 1.2.3.2. By time rl, machineM3 has finished all jobs released before rl. The proof is similar to Case 1.2.3.1.
Case 1.2.3.3. After I1, bothM2 andM3 have to process jobs released before rl. According to the density, there is only one such
job, say job k, with rk ≤ rl−1. Let Ii = [bi, ei) be the other common idle intervals ofM2 andM3 before I1, and λi be the length
of Ii, i = 2, 3, . . . , r . We have

L2(0, rj)+ L3(0, rj) ≤ rj +
r∑
i=1

λi.

If
∑r
i=1 λi ≤ C∗/3, we get

Cmax ≤ C∗ + L2(0, rj)+ L2(rj, e)+ p3,j,
Cmax ≤ C∗ + L3(0, rj)+ L3(rj, e),

and the sum becomes

2Cmax ≤ 2C∗ + rj +
r∑
i=1

λi + p3,j ≤ 10/3C∗,

or

Cmax/C∗ ≤ 5/3.

If
∑r
i=1 λi > C∗/3, we have

rk + p1,k ≥
r∑
i=1

λi > C∗/3.

Because rk + Pk ≤ C∗, it follows that

p2,k + p3,k ≤ 2/3C∗.

We obtain on machinesM2 andM3,

Cmax ≤ rl +
n∑
h=l

p2,h + p2,k + L2(rl, rj)+ L2(rj, e)+ p3,j

≤ C∗ + p2,k + L2(rl, rj)+ L2(rj, e)+ p3,j,

Cmax ≤ rl +
n∑
h=l

p3,h + p3,k + L3(rl, rj)+ L3(rj, e)

≤ C∗ + p3,k + L3(rl, rj)+ L3(rj, e),

with the sum

2Cmax ≤ 2C∗ + (rj − rl)+ p2,k + p3,k + Pj

≤ 2C∗ + rj + Pj −
r∑
i=1

λi + p2,k + p3,k

≤ 3C∗ − 1/3C∗ + 2/3C∗ ≤ 10/3C∗,

or

Cmax/C∗ ≤ 5/3.

Case 2. There are two jobs processed on machine M3 after time e, say jobs j1 and j2. Without loss of generality, we assume
that job j2 is processed immediately after time e and followed by job j1. In this case, we assume jobs j1 and j2 are processed
on one of the two other machines right before e, say j2 is processed onM1 and j1 is processed onM2. Also assume rj1 ≤ rj2 (If
rj1 ≥ rj2 , the proof is similar). It is easy to see that any two of the three machines have no common idle during [rj2 , e). Also
M1 andM2 have no common idle during [rj1 , rj2).
Next we need to consider the following three subcases.

Case 2.1. M1 and M3 have common idle in [rj1 , rj2). Let I1 = [b1, e1) be the last common idle interval, then I1 ⊆ [rl−1, rl),
where rj1 < rl ≤ rj2 . According to the density, M2 must process j1 during the entire interval of [b1, e). In this case, we also
have

L2(rj2 , e) = L1(rj2 , e) = 0.

398 R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399

On machinesM1 andM3, we have

Cmax ≤ rl +
n∑
k=l

p1,k + L1(rl, rj2)+ p3,j2 + p3,j1

≤ C∗ + L1(rl, rj2)+ p3,j2 + p3,j1 ,

Cmax = C∗ + L3(0, rj1)+ L3(rj1 , e)
≤ C∗ + rj1 + L3(rj1 , e).

Summing up the two inequalities above, together with the fact that

L1(rl, rj2)+ L3(rj1 , e) ≤ p1,j1 + p2,j1 ,

we get

2Cmax ≤ 2C∗ + rj1 + p3,j1 + p3,j2 ≤ 10/3C∗,

or

Cmax/C∗ ≤ 5/3.

Case 2.2.M2 andM3 are idle simultaneously in [rj1 , rj2). Let I1 = [b1, e1) be the last common idle, then I1 ⊆ [rl−1, rl), where
rj1 < rl ≤ rj2 . After e1 bothM3 andM2 process at most one job released before rl. Evidently the job is j1 and processed during
I1 byM1.
M1 has no idle in [rj1 , rl) and any two machines have no common idle in (rl, e). We have

L1(rj1 , rj2)+ L3(rj1 , rj2) ≤ rj2 − rj1 . (A.1)

It follows from the density that

L1(rj2 , e)+ L3(rj2 , e) ≤ p1,j2 + p2,j2 . (A.2)
L2(rj1 , rj2)+ L2(rj2 , e)+ L3(rl, rj2)+ L3(rj2 , e) ≤ p1,j1 + p2,j1 . (A.3)

In addition we have:

Cmax ≤ L1(0, rj1)+ L1(rj1 , rj2)+ L1(rj2 , e)+ p3,j1 + p3,j2 + C∗.
Cmax ≤ L2(0, rj1)+ L2(rj1 , rj2)+ L2(rj2 , e)+ p3,j1 + p3,j2 + C∗.
Cmax ≤ L3(0, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e)+ C∗.

Cmax ≤ rl +
n∑
k=l

p3,k + L3(rl, rj2)+ L3(rj2 , e)+ p3,j1

≤ L3(rl, rj2)+ L3(rj2 , e)+ p3,j1 + C∗.

Summing up the four inequalities above, together with Lemma 2 and (A.1)–(A.3), we have

4Cmax ≤ 4C∗ + rj1 + pj1 + rj2 + pj2 + 2p3,j1 + p3,j2 ≤ 7C∗.

Case 2.3. At most one machine idle at any time in [rj1 , rj2). In this case we have

L1(rj1 , rj2)+ L2(rj1 , rj2)+ L3(rj1 , rj2) ≤ rj2 − rj1 .

Also by Lemma 3, the number of idle machines during interval (rj1 , e) is at most one. We need to consider the following two
subcases:
Case 2.3.1.M2 has no idle in [rj2 , e). We have the following inequalities on three machines,

Cmax ≤ C∗ + L1(0, rj1)+ L1(rj1 , rj2)+ L1(rj2 , e)+ p3,j1 + p3,j2 ,
Cmax ≤ C∗ + L2(0, rj1)+ L1(rj1 , rj2)+ p3,j1 + p3,j2 ,
Cmax ≤ C∗ + L3(0, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e),

and also by Lemma 1,

Cmax ≤ C∗ + L3(0, rj1)+ p1,j1 + p2,j1 .

Summing up the four inequalities above, we have

4Cmax ≤ 4C∗ + [L1(0, rj1)+ L2(0, rj1)+ L3(0, rj1)] + [L1(rj1 , rj2)+ L1(rj1 , rj2)+ L3(rj1 , rj2)]
+ L3(0, rj1)+ L1(rj2 , e)+ L3(rj2 , e)+ p3,j1 + p3,j2 + p3,j1 + p3,j2 + p1,j1 + p2,j1
≤ 4C∗ + rj1 + pj1 + rj2 + pj2 + rj1 + p3,j1 + p3,j2
≤ 7C∗

R. Chen et al. / Theoretical Computer Science 407 (2008) 389–399 399

or

Cmax/C∗ ≤ 7/4.

Case 2.3.2.M2 has idle interval in [rj2 , e). Because of the density, we have

L1(rj1 , e) = 0,

and

L2(rj1 , e)+ L3(rj1 , e) ≤ p1,j1 + p2,j1 .

Consider,

Cmax ≤ C∗ + L1(0, rj1)+ p3,j1 + p3,j2 ,
Cmax ≤ C∗ + L2(0, rj1)+ L2(rj1 , rj2)+ L2(rj2 , e)+ p3,j1 + p3,j2 ,
Cmax ≤ C∗ + L3(0, rj1)+ L3(rj1 , rj2)+ L3(rj2 , e),

and also on machineM3,

Cmax ≤ C∗ + L3(0, rj2)+ L3(rj2 , e) ≤ C∗ + rj2 + p1,j2 + p2,j2 .

Summing up the four inequalities above, we get

4Cmax ≤ 4C∗ + rj1 + pj1 + rj2 + pj2 + rj1 + p3,j1 + p3,j2 ≤ 7C∗.

Combining all the above results, we reach the conclusion of Theorem 4. �

References

[1] B. Chen, V.A. Strusevich, Approximation algorithms for three machine open-shop scheduling, ORSA Journal on Computing 5 (1993) 321–326.
[2] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra, S.V. Sevastianov, D.B. Shmoys, Short shop schedules, Operation Research 45
(1997) 288–294.

[3] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan,Minimizingmaximum lateness in a two-machine open shop [J],Math. Oper. Res. 6 (1981) 153–158; Math.
Open. Res. 7 (1982) 635 (erratum).

[4] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and scheduling: Algorithms and complexity, in: S.C. Graves, et al. (Eds.),
in: Handbooks in OR. & MS, vol. 4, Elsevier Science Publishers B. V., Amsterdam, 1993, pp. 445–522.

[5] I. Bárány, T. Fiala, Nearly optimum solution of multimachine scheduling problems, SzigmaMathematika Közgadasági Folyoírat 15 (1982) 177–191 (in
Hungarian).

[6] J.M. Wein, Algorithms for scheduling and network problems, Ph.D. Thesis, MIT, Cambridge, MA, 1991.
[7] R. Chen, Dense schedules for open-shop with jobs release dates, OR Transactions 7 (2003) 73–77.
[8] R. Chen, W. Yu, Analysis of operation chain’s properties of dense schedules for open-shop, Journal of East China University of Science and Technology
29 (2003) 522–526.

[9] T. Geonzalez, S. Sahni, Open-shop scheduling to minimize finish time, Journal of the Association for Computing Machinery 23 (1976) 665–679.
[10] V.A. Aksjonov, A polynomial-time algorithm for an approximate solution of a scheduling problem, Upravlyaemye Sistemy 28 (1988) 8–11 (in Russian).
[11] R.J. Wittrock, An adaptable scheduling algorithms for flexible flow lines, Operations Research 36 (1985) 445–412.

	Dense open-shop schedules with release times
	Introduction
	Notation and preliminaries
	Weaker bound for O3|rj|Cmax
	Improved bound for O3|rj|Cmax
	Conclusion
	Acknowledgments
	Appendix. Proof of Theorem 4
	References

