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a b s t r a c t

The paper investigates the computational complexity of quantified Boolean formulas with
fixed maximal deficiency. The satisfiability problem for quantified Boolean formulas with
maximal deficiency 1 is shown to be solvable in polynomial time. For k ≥ 1, it is shown
that true formulas with fixed maximal deficiency k have models in which all Boolean
functions can be represented as CNF formulas over at most 24k/3 universal variables. As
a consequence, the satisfiability problem for QCNF formulas with fixedmaximal deficiency
is in NP and for fixed deficiency the minimal falsity problem is in DP . For two subclasses
of quantified Boolean formulas with PSPACE-complete evaluation problem, QEHORN and
QE2-CNF , we show that for fixed deficiency the minimal falsity problem can be decided in
polynomial time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A propositional formula in conjunctive normal form (CNF) is called minimal unsatisfiable (MU) if the formula is
unsatisfiable and any proper subformula is satisfiable. The problem of decidingwhether a formula isminimal unsatisfiable is
known to be DP -complete [11]. DP is the class of problemswhich can be described as the difference of two NP-problems, and
the completeness is based on many-one polynomial time reductions. A measure for the structural complexity of formulas
is the so-called deficiency. The deficiency is defined as the difference between the number of clauses and the number of
variables. For any fixed k, the minimal unsatisfiability problem for formulas with deficiency k is solvable in polynomial time
[3,8]. The maximal deficiency of a CNF formula ϕ is the maximum of deficiencies of all subformulas of ϕ. For formulas with
fixed maximum deficiency the satisfiability can be decided in polynomial time [3,8].
The concept of minimal unsatisfiability for CNF has been extended to QCNF, the class of quantified Boolean formulas

with matrix in CNF, for which the satisfiability problem is PSPACE-complete. A QCNF formula is said to be minimal false if
the formula is false and deleting any clause results in a true formula. Clearly, minimal falsity is a generalization of minimal
unsatisfiability. The minimal falsity problem is still PSPACE-complete [7]. The notion of deficiency can be extended to QCNF
formulas. The deficiency for quantified Boolean formulaswith CNFmatrices is defined as the difference between the number
of clauses and the number of existential variables. The set of minimal false QCNF formulas with deficiency k is denoted as
MF(k). We will show that the minimal falsity problemMF(1) is solvable in polynomial time. In contrast to the propositional
case, for k > 1 the computational complexity of the minimal falsity problem MF(k) remains open.

I A preliminary version has been published in the proceedings of the Conference SAT06, LNCS 4121, pp. 339–352.
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For any QCNF formula Φ , the maximal deficiency is the maximum of deficiencies of all subformulas. For any minimal
false formula, its deficiency coincides with its maximal deficiency. It will be shown that for any fixed k > 1, the satisfiability
problem for formulas with maximal deficiency k is in NP, whereas the minimal falsity problem MF(k) is in DP .
The proofs are based on a property on models of quantified Boolean formulas. Let Φ = ∀x1∃y1∀x2∃x2 · · · ∀xk∃ykϕ be a

closed quantified Boolean formula. The formula is true if and only if there are Boolean functions fi : {x1, . . . , xi} → {0, 1}
such that ∀x1 · · · ∀xkϕ[y1/f1(x1), . . . , yk/fk(x1, . . . , xk)] is true. A sequence of Boolean functions M = (f1, . . . , fk) is called
amodel forΦ , if the formula is true for these functions. The Boolean functions fi are represented as propositional formulas.
We shall show that for any fixed k and for any true QCNF formula Φ with maximal deficiency k, there is a set U of at most
24k/3 universal variables such that Φ has a model in which each Boolean function is a propositional formula over variables
in U . That property can be used to prove that for the subclasses of quantified Boolean formulas QEHORN and QE2-CNF the
minimal falsity problemMF(k) is solvable in polynomial time. QEHORN (resp. QE2-CNF) is the set of QNF formulas for which
after the deletion of the universal variables the formulas are in QHORN (resp. Q2-CNF). That means, the existential part of
the formulas are Horn formulas (resp. 2-CNF formulas). The satisfiability problem is PSPACE–complete for QEHORN and
QE2-CNF [4].
Besides the theoretical insight to the complexity of the satisfiability problem, we think that the work of this paper

may also have its practical value. Although there seems no practical problem which can be encoded to a formula with
low deficiency, during the running of DPLL-like QSAT-solves, the current formula may have very low deficiency. Therefore,
efficient algorithms solving formulaswith lower deficiencymight provide a possibility to improve the performance of QSAT-
solvers by determining directly the truth value of the formulas with lower deficiency instead of splitting further.
The paper is organized as follows. After the notations and the definition of models, deficiency, and minimal falsity in

Section 3, we prove in Section 4 the polynomial solvability of the minimal falsity problem for formulas with deficiency 1.
In Section 5 we discuss the computational complexity of the minimal falsity problem for formulas with fixed (maximal)
deficiency. The section contains the main theorem, that any quantified Boolean formula with maximal deficiency k, which
is true, has model functions depending on at most 24k/3 universal variables.
Here we would like to mention the related research which studies the ratio of the number of clauses to the number of

variables. For k-CNF formulas, there is a critical ratio c(k). Below c(k), almost k-CNF formulas are satisfiable, whereas above
c(k) almost all are unsatisfiable. It is known that c(2) = 1 [5], but determining the exact location of c(k) for k ≥ 3 remains
open. To understand the hardness level from 2SAT to 3SAT, authors in [10,12] investigated formulas with mixtures of 2-
clauses and 3-clauses. Their work shows that the critical ratio and the complexity of satisfiability have close relationship
with the ratio of the number of 3-clauses to the number of all clauses in the formulas.

2. Notations

A literal is a variable or a negated variable. Let X be a set of variables, then lit(X) is the set of literals over the variables in
X . Clauses are disjunctions of literals. Clauses are also considered as sets of literals. A propositional formula in conjunctive
normal form (CNF) is a conjunction of clauses. We forbid tautological clauses in CNF formulas because deleing them does
not change the satisfiability. CNF formulas will be considered as multi-sets of clauses. Thus, they may contain multiple
occurrences of clauses. The set of all variables occurring in a formula ϕ is denoted as var(ϕ).
QBF is the class of all closed quantified Boolean formulas. Any formula Φ in QCNF has the form Φ = Q1x1 · · ·Qnxnϕ,

where Q ∈ {∃,∀} and ϕ is a CNF formula. Q1x1 · · ·Qnxn is the prefix of Φ , and ϕ is called the matrix of Φ . Sometimes we
use an abbreviation and write Φ = Qϕ. The set of universal variables is denoted as var∀(Φ) and var(Φ) is the set of all
variables.
LetΦ = Q1x1 · · ·Qnxnϕ,Φ ′ = Q1x1 · · ·Qnxnϕ′ be twoQCNF formulas.We sayΦ ′ is a subformula ofΦ , denoted asΦ ′ ⊆ Φ ,

if ϕ′ is a subformula of ϕ.
Suppose we have a formula Q ϕ ∈ QCNF with ∃-variables x1, . . . , xn. Then ϕ|∃ is the conjunction of clauses we obtain

after the deletion of all occurrences of universal literals in ϕ. For example, if Φ = ∀y1∀y2∃xϕ with ϕ = (y1 ∨ x) ∧ (y2 ∨
¬x)∧ (¬y1 ∨ x), then ϕ|∃ = x∧¬x∧ x. Please note, that the propositional formula ϕ|∃ may contain multiple occurrence of
clauses. A clause is termed universal if the clause contains only universal literals.
QEHORN is the set of QCNF formulas Φ = Qϕ, for which ϕ|∃ is a HORN formula. That means, the existential part of the

matrix is a Horn formula. Analogously, QE2CNF is the class of QCNF formulas, whose existential part is a 2CNF formula, i.e.
any existential part of the clauses contains at most two literals.
In our investigations we make use of substitutions of variables by formulas. For a quantified Boolean formula Φ ,

Φ[y1/f1, . . . , yn/fn] denotes the formula obtained by simultaneously replacing in the matrix the occurrences of variables yi
by the formula fi and eliminating the existential quantifiers from the prefix. For example, forΦ := ∀x∃y(x∨ y)∧ (¬x∨¬y),
Φ[y/¬x] is the formula ∀x(x ∨ ¬x) ∧ (¬x ∨ x). For Ey = y1, . . . , yn, and M = (f1, . . . , fn), we sometimes write Φ[Ey/M]
instead ofΦ[y1/f1, . . . , yn/fn].

3. Models, deficiency, and minimal falsity

Let Φ = ∀x1∃y1∀x2∃y2 · · · ∀xk∃ykϕ be a closed quantified Boolean formula. The formula is true if and only if there are
Boolean functions fi : {x1, . . . , xi} → {0, 1} such that ∀x1 · · · ∀xkϕ[y1/f1(x1), . . . , yk/fk(x1, . . . , xk)] is true. A sequence of



450 H. Kleine Büning, X. Zhao / Theoretical Computer Science 407 (2008) 448–457

Boolean functionsM = (f1, . . . , fk) is called amodel forΦ , if the formula is true for these functions. Subsequently, we assume
that the Boolean functions fi are represented as propositional formulas. If the Boolean functions fi are given as CNF–formulas,
then we callM = (f1, . . . , fk) a CNF–model.
In our proofs we will make use of the length of models. We introduce the following definition.

Definition 1. Let t : N→ N be a function andB a subclass of QBF.
Suppose, every true formulaΦ inB has a modelM = (f1, . . . , fm), such that the size of each function given as propositional
formula is smaller than or equal to t(|Φ|). Then we say B has t(n)-size models. If t is a polynomial, then we say B has
polynomial size models.

For some subclasses of QCNF the structure and the length of models are known. For example, QHORN has linear size
models and Q2-CNF has constant size models [6]. Note that the problem of determining whether a sequence of Boolean
functions is a model of a quantified Boolean formula is in co-NP. Whereas deciding whether a quantified Boolean formula
has a model is a PSPACE problem, since a formula is true if and only if it has a model. Therefore, assuming PSPACE 6= ΣP2 ,
QCNF has no polynomial size propositional models.
Next we recall the definition of deficiency for CNF and QCNF. Let ϕ be a CNF formula over n variables with n+ k clauses,

then we say k is the deficiency of ϕ. For the deficiency of a formula ϕ we write d(ϕ).

Definition 2. For a formula Φ = Qϕ ∈ QCNF, the deficiency of Φ , denoted by d(Φ), is the difference between the number
of clauses and the number of existential variables.
The maximal deficiency ofΦ is defined as d∗(Φ) := max{d(Φ ′) | Φ ′ ⊆ Φ} = max{d(ϕ′

|∃
) | ϕ′ ⊆ ϕ} := d∗(ϕ|∃).

A formulaΦ is termed stable if for any proper subformulaΦ ′ ⊂ Φ , d(Φ ′) < d(Φ).

The notion of stable QCNF formulas can be understood as a generalization of matching lean CNF formulas [9]. A formula
ϕ ∈ CNF is called matching lean if d(ϕ′) < d(ϕ) for any proper subformula ϕ′ ⊂ ϕ. By Definition 2,Φ is stable if and only if
ϕ|∃ is matching lean.
A formula φ1 ∧ · · · ∧ φn in CNF is called minimal unsatisfiable, if the formula is unsatisfiable and for any clause φi the

formula φ1 ∧ · · · ∧ φi−1 ∧ φi+1 ∧ · · · ∧ φn is satisfiable. The class of minimal unsatisfiable formulas is denoted by MU.
The definition can be extended to formulas in QCNF as follows:

A formula Q (φ1 ∧ · · · ∧ φn) in QCNF is called minimal false, if the formula is false and for any clause φi the formula
Q (φ1 ∧ · · · ∧ φi−1 ∧ φi+1 ∧ · · · ∧ φn) is true. The class of minimal false formulas is denoted by MF.

Definition 3. Let k be fixed. Then we define
MU(k) := {ϕ : ϕ ∈ MU and d(ϕ) = k}, and
MF(k) := {Φ : Φ ∈ MF and d(Φ) = k}.

The classMU is DP -complete [11], whereasMF is PSPACE-complete [7]. Anyminimal unsatisfiable formula has deficiency
greater than 0 [1]. Moreover, it has been shown that MU(k) is solvable in polynomial time [3].

Lemma 1. LetΦ = Qϕ be a formula in QCNF with matrix ϕ.

(1) If ϕ|∃ is satisfiable thenΦ is true. Moreover, if d∗(Φ) = 0 thenΦ is true.
(2) If d∗(Φ) > 0, thenΦ can be divided into two formulasΦ ′ = Qϕ1 andΦ ′′ = Qϕ2, that is,Φ = Q (ϕ1 ∧ ϕ2), such that
• Φ ′ is stable,
• Φ is true iffΦ ′ is true, and
• there is a set E of existential variables occurring only inΦ ′′ and a truth assignment for E satisfyingΦ ′′.

(3) IfΦ ∈ MF, thenΦ is stable, i.e., d∗(Φ) = d(Φ) and for any proper subformulaΦ ′ it holds d(Φ ′) < d(Φ).
(4) Any minimal false formula has deficiency greater than 0.
(5) LetΦ = Qϕ be in MF(1), then we have ϕ|∃ ∈MU(1).

Proof. (1) Obviously, any satisfying truth assignment of ϕ|∃ is a model of Φ . Thus, if ϕ|∃ is satisfiable, then Φ has a model,
and hence it is true. Suppose d∗(Φ) = 0. Then by definition any subformula of ϕ|∃ has deficiency less or equal than 0. Since
any unsatisfiable formula in CNF contains a minimal unsatisfiable formula, andminimal unsatisfiable formulas have at least
deficiency 1 [1], ϕ|∃ must be satisfiable.
(2) By Definition 2, Φ = Qϕ is stable if and only if ϕ|∃ is matching lean. Since the union of two matching lean formulas

is also matching lean [9], it follows that for two stable QCNF formulas Qϕ1 and Qϕ2, the formula Q (ϕ1 ∪ ϕ2) remains stable.
Moreover, the union of all stable subformulas of Φ is the largest stable formula of Φ . Theorem 7.5 of [9] allows another
characterization of the largest stable subformula. The largest stable subformula of Φ is the smallest subformula Φ ′ with
d∗(Φ ′) = d∗(Φ).
Suppose Φ ′ = Qϕ1 is the largest stable subformula of Φ . Then d(Φ ′) = d∗(Φ). Let Φ ′′ := Q (ϕ − ϕ1), and let Ψ ′′ be

obtained fromΦ ′′ by the deletion of all positive and negative occurrences of existential variables occurring in the matrix of
Φ ′. Since Φ ′ has maximal deficiency, we can see that d∗(Ψ ′′) = 0 (otherwise, we would get a subformula with deficiency
greater than d∗(Φ)). Then Ψ ′′ is true, hence Φ ′′ is true. Since Φ ′ and Ψ ′′ have distinct existential variables and Φ ′′ is true
for a truth assignment for E the existential variables not occurring in Φ ′, Φ ′′ is true independently to Φ ′. Consequently, Φ
is true if and only ifΦ ′ is true.
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(3) Let Φ be minimal false. Because of (1), we have d∗(Φ) > 0. Then by (2) there is a stable subformula Φ ′ such that
d(Φ ′) = d∗(Φ) and Φ ′ is also false. However, since Φ is minimal false, it follows that Φ ′ = Φ . Therefore, Φ is stable, and
we obtain our desired equation d(Φ) = d∗(Φ).
(4) LetΦ beminimal false. Because of (1) and the falsity ofΦ , we know d∗(Φ) > 0. Together with (3) we have d(Φ) > 0.
(5) Suppose Φ = Qϕ ∈ MF(1). Then ϕ|∃ is unsatisfiable and d(ϕ|∃) = 1. Using (3) we see that any proper subformula

Φ ′ of Φ has deficiency d(Φ ′) < 1. That means any proper subformula of ϕ|∃ has a deficiency less than 1. That implies
the satisfiability of the proper subformulas of ϕ|∃, because any unsatisfiable propositional formula contains a minimal
unsatisfiable formula with deficiency greater than 0. Altogether we have shown ϕ|∃ ∈MU(1). �

The inverse of part (5) in Lemma 1 is invalid. For an example of a true formula Φ = Qϕ with ϕ|∃ ∈ MU(1) please see
Example 1 in Section 4.

4. Maximal deficiency 1

In this chapter we will show: (1) The satisfiability problem for QCNF formulas with maximal deficiency 1 is solvable in
polynomial time, and (2) for any true QCNF formula with d∗(Φ) = 1, there exists one universal variable y and a model for
Φ such that all model functions are either the constants 0 or 1, or the formulas y, ¬y.
Corollary 7.10 of [9] says that the largest matching lean subformula can be computed in polynomial time. This implies

that the largest stable formula can also be computed in polynomial time. More precisely, given a QCNF formula Φ = Qϕ,
we compute the largest matching lean subformula ψ of ϕ|∃, then we add to the clauses in ψ the removed occurrences of
the universal literals, the resulting formula is the subformula ϕ′ ⊆ ϕ such that (ϕ′)|∃ is ψ . Clearly, Qϕ′ is the largest stable
subformula ofΦ . Since a QCNF formula has the same truth as its largest stable subformula, it is sufficient to consider stable
formulas. Please note, that any false stable formulaΦwith deficiency 1must beminimal false. Thus,we only need to consider
the complexity of MF(1).
In our polynomial time algorithm for deciding the minimal falsity problem MF(1) we make use of the connectivity of

clauses. In order to motivate the definition at first we give some examples.

Example 1. LetΦ := ∃x∀y∃x1∃x2ϕ be a quantified Boolean formula, where ϕ is the following formula (the columns are the
clauses)

ϕ =


x ¬x

y ¬y
¬x1 x1

¬x2 x2

 .
That is, ϕ = (y∨¬x1)∧ (x1∨¬x2)∧ (x∨¬y∨ x2)∧ (¬x). Clearly, ϕ|∃ is in MU(1). The first and the third clauses contain the
complementary pair of universal variables y and¬y. Moreover, these clauses are connected bymeans of the complementary
pairs of existential variables (¬x1, x1) and (¬x2, x2). None of these existential variables dominates the universal variable y
in the prefix. We can say that the first and the third clauses are connected without the dominating existential variable x. The
formulaΦ is true, because for y = 1 we can choose x1 = x2 = 1. For¬y = 1 we set ¬x1 = ¬x2 = 1.

Example 2. LetΦ := ∃x1∃x3∀y∃x2∃x4 ϕ, where ϕ is the following formula

ϕ =

{ x1 ¬x1 ¬x3 x3 x4
¬x2 y x2 ¬y

¬x2 ¬x4

}
.

As in Example 1, the existential part of this ϕ is also in MU(1). However, we can check that Φ is false. The difference here
from Example 1 lies in the fact that the two clauses containing a pair of complementary universal literals y and ¬y, i.e. the
second and the fourth clauses, are not connected without the dominating existential variables x1 and x3. Our task is to show
that the unconnectedness is the reason of the falsity.

Definition 4. SupposeΦ = Qϕ is a formula with ϕ|∃ ∈ MU(1), f , g are clauses in ϕ, and X is a subset of var(ϕ|∃).
We say f and g are directly connected without X inΦ if f = g , or if there is some existential literal L 6∈ lit(X) such that L ∈ f
and ¬L ∈ g .
We say f and g are connected without X in Φ if there are in ϕ clauses f = f1, f2, . . . , fn = g such that fi and fi+1 are directly
connected without X .

Notice, that if X is empty, then any two clauses in ϕ are connected without X , because ϕ|∃ is minimal unsatisfiable.
For convenience to state the main result, we introduce a natation: For a formula Φ = Qϕ ∈ QCNF, and a universal

variable y, we use ϕ(y) to denote the formula obtained from ϕ by deleting of all universal literals from ϕ except y and
¬y. For example, if Φ = ∃x1∀y1∀y2∃x2ϕ with ϕ = (x1 ∨ y1 ∨ y2 ∨ ¬x2) ∧ (¬x1 ∨ y1 ∨ x2) ∧ (x1 ∨ ¬y2 ∨ ¬x2) then
ϕ(y1) = (x1 ∨ y1 ∨ ¬x2) ∧ (¬x1 ∨ y1 ∨ x2) ∧ (x1 ∨ ¬x2).
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Theorem 1. LetΦ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ be a formula with ϕ|∃ in MU(1). Then we have:
Φ is false ⇔ for all variables y ∈ Yi, 1 ≤ i ≤ m, for all f , g ∈ ϕ(y):

(y ∈ f ,¬y ∈ g)⇒ f and g are not connected without
X1 ∪ · · · ∪ Xi in ϕ(y).

Corollary 1. MF(1) can be solved in polynomial time.

Proof. By Theorem 1, to see whether a formulaΦ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ is in MF(1), first check that ϕ|∃ ∈MU(1). If
this condition holds, check for each y ∈ Yi, i = 1, . . . ,m, and for any two clauses f , g containing y and¬y respectively, that
f and g are not connected without X1 ∪ · · · ∪ Xi.
Whether two clauses are connected without X can be decided in polynomial time as follows: For every clause we have a

node labelledwith the clause, two clauses are joined by an edge if there is some x 6∈ X such that x occurs in one of the clauses
and¬x in the other clause. Then two clauses are connected without X if and only if there is a path between the clauses. That
can be decided in polynomial time.
Since there at most quadratic many pairs of clauses containing complementary universal literals, and the connectivity

can be tested in polynomial time, MF(1) can be solved in polynomial time. �

The proof of Theorem1 can be divided into two parts ( Lemmas 2 and 3). Lemma 2 reduces the number of alternations and
universal variables in the prefix to one universal variable. Lemma 3 states the relationship between the truth of a formula
and the property ‘‘connected without dominating variables".

Lemma 2. LetΦ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ be a formula with ϕ|∃ in MU(1). Then,
Φ is false ⇔ for all variables y ∈ Yi, 1 ≤ i ≤ m, the formula

∃X1 · · · ∃Xi∀y∃Xi+1 · · · ∃Xm+1ϕ(y) is false.

Lemma 3. LetΦ = ∃X∀y∃Zϕ be a formula with ϕ|∃ in MU(1). Then,
Φ is false ⇔ ∀f , g ∈ ϕ : (y ∈ f ,¬y ∈ g)⇒

f and g are not connected without X in ϕ.

Our next task is to prove Lemmas 2 and 3. In our proofs we need some properties of MU(1) formulas, i.e. minimal
unsatisfiable formulas with deficiency 1.
For any formula ϕ ∈ MU(1) and x ∈ var(ϕ), ϕ[x/0] (resp. ϕ[x/1]) contains a unique minimal unsatisfiable subformula

which is also inMU(1) [2], denoted byϕx (reps.ϕ¬x).We call (ϕx, ϕ¬x) a splitting ofϕ over x. In general, the splitting formulas
ϕx and ϕ¬x may have common clauses. However, we have the following nice structural property.

Proposition 1 ([2]). For any formula ϕ ∈ MU(1) , there is a variable x ∈ var(ϕ) such that ϕx and ϕ¬x have distinct variables
and therefore no common clause.

Let ϕ, x, ϕ¬x, ϕx be as in Proposition 1, then we call (ϕx, ϕ¬x) a disjunctive splitting of ϕ over x.

Example 3. Let ϕ be the following formula:

ϕ =


x1 ¬x1

x2 ¬x2
x3 ¬x3
x ¬x ¬x

x4 ¬x4
x5 x5 ¬x5

 .

We can see

ϕx =

(x1 ¬x1
x2 ¬x2

x3 ¬x3,

)
, ϕ¬x =

(
x4 ¬x4
x5 x5 ¬x5

)
.

Suppose ϕL is a splitting formula, y ∈ var(ϕL), then we can split ϕL again and get formulas (ϕL)K with K ∈ {y,¬y}. For
simplicity, we write (ϕL)K as ϕLK . Generally, we have ϕL1···Lk (which we still call a splitting formula) after several steps of
splitting. Please notice, that when performing splitting, we remove the occurrences of splitting literals. During the proof
of the polynomial-time solvability of MF(1) we have to recover some of the removed occurrences of literals. Suppose θ is
a splitting formula, L a literal, θ L denotes the formula obtained from θ by recovering the occurrences of L properly. Please
notice, that if the original clauses from which θ is obtained (by deleting some splitting literals) does not contain L, then L
will not occur in θ L.
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Example 4. Let ϕ be the formula in Example 3. We can see

ϕx =

(x1 ¬x1
x2 ¬x2

x3 ¬x3

)
, ϕxx2 = (x1,¬x1) , ϕx¬x2 = (x3,¬x3) .

Then

ϕxx =

x1 ¬x1x2 ¬x2
x3 ¬x3
x

 , ϕxxx2 = ϕxx2 , ϕxx¬x2 =

(
x3 ¬x3
x

)
.

Proposition 2. Suppose ϕ ∈MU(1), x ∈ var(ϕ) with a disjunctive splitting (ϕx, ϕ¬x). Suppose further y ∈ var(ϕL) for some
L ∈ {x,¬x}. Then for K ∈ {y,¬y}, we have the following:
If ϕLLK does not contain L then ϕK = ϕLK .
If ϕLLK contains L then ϕK = ϕ

L
LK + ϕ

¬L
¬L , moreover, ϕLK = ϕKL.

Proof. If ϕLLK does contain L then ϕLK = ϕLLK . That means ϕLK ⊆ ϕ[K/0]. Thus ϕK = ϕLK . Suppose ϕLLK contains L then
ϕLLK + ϕ

¬L
¬L is in MU(1), and a subformula of ϕ[K/0], therefore, it must be ϕK . �

In Examples 3 and 4, we can see that ϕx2 = ϕxx2 , while ϕ¬x2 = ϕ
x
x¬x2
+ ϕ¬x

¬x .

Lemma 4. Let ϕ be a MU(1) formula and x ∈ var(ϕ). Then ϕ[L/0] −ϕL can be satisfied by a partial truth assignment defined on
var(ϕ[L/0] − ϕL)− var(ϕL), for L ∈ {x,¬x}.

Proof. We prove the lemma by induction on the number of variables in ϕ. If ϕ has only one variable, the lemma clearly
holds. Suppose ϕ has more than one variable. If (ϕx, ϕ¬x) is a disjunctive splitting, then the assertion follows. So, we assume
(ϕx, ϕ¬x) is non-disjunctive. By Proposition 1, there is some y 6= x such that (ϕy, ϕ¬y) is a disjunctive splitting. W.o.l.g., we
assume that x ∈ var(ϕy). There are two possibilities.

Case 1. y occurs in ϕyyx. Then we have ϕx = ϕ
y
yx + ϕ

¬y
¬y . Hence

ϕ[x/0] − ϕx = (ϕy[x/0] − ϕyx)y.

Now the assertion follows from the induction hypothesis.
Case 2. y does not occur in ϕyyx. Then ϕx = ϕyx. Thus

ϕ[x/0] − ϕx = (ϕy[x/0] − ϕyx)y + ϕ
¬y
¬y .

By the induction hypothesis, ϕy[x/0] − ϕyx is satisfied by a truth assignment t defined on var(ϕy[x/0] − ϕyx) − var(ϕyx).
Please note that y 6∈ var(ϕx) and var(ϕ¬y)∩ var(ϕy) = ∅. Thus we can extend t to t ′ such that t ′(y) = 0 and t ′ satisfies ϕ

¬y
¬y .

Hence, the assertion is valid.
By the same argument we can show the assertion for ϕ[x/1] − ϕ¬x. �

Suppose Φ = Qϕ is a QCNF formula with ϕ|∃ ∈MU(1), and ((ϕ|∃)x, (ϕ|∃)¬x) is a splitting of ϕ|∃ over x. Please note that
ϕ|∃ is obtained from ϕ by removing all occurrences of universal literals. Nowwe add the occurrences of all universal literals
according to their original occurring places to the clauses in ((ϕ|∃)x, (ϕ|∃)¬x), the result is denoted as (ϕx, ϕ¬x) which we
still call a splitting of ϕ over x. In fact, ϕx (resp. ϕ¬x) is the subset of ϕ[x/0] (resp. ϕ[x/1]) such that (ϕx)|∃ = (ϕ|∃)x (resp.
(ϕ¬x)|∃ = (ϕ|∃)¬x).

Corollary 2. LetΦ = ∃xQϕ be a QCNF formula with ϕ|∃ ∈ MU(1). ThenΦ[x/0] (resp.Φ[x/1]) and Qϕx (resp. Qϕ¬x) have the
same truth. Moreover,Φ is false if and only if both Qϕx and Qϕ¬x are false.

Proof of Lemma 2. We first show the direction from left to right. IfΦ is false then ∃X1 · · · ∃Xi∀y∃Xi+1 · · · Xm+1ϕ(y) is false,
because the deletion of some universal literals preserves the falsity. Here, ϕ(y) is the result of the deletion of all universal
literals from ϕ except y and¬y.
For the other direction, we suppose Φ is true. Pick x ∈ X1, let X ′1 := X1 − {x}. W.l.o.g we assume Φ[x/0] =

∃X ′1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ[x/0] is true. Then by Corollary 2, the formula Ψ := ∃X
′

1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕx is true.
If X ′1 is empty and m = 1, then Ψ = ∀Y1∃X2ϕx. Since Ψ is true and the existential part of ϕx is in MU(1), there must

be some y ∈ Y1 occurring positively and negatively. Then ∀y∃X2(ϕx)(y) is true. By Lemma 4, then ∀y∃X2(ϕ[x/0])(y) is true,
hence ∃X1∀y∃X2ϕ(y) is true.
Suppose X ′1 is empty butm > 1. ThenΨ = ∀Y1∃X2∀Y2 · · · ∃Xm∀Ym∃Xm+1ϕx. Suppose some y ∈ Y1 occurs both negatively

and positively in ϕx, then it is easy to see that ∀y∃X2 · · · ∃Xm+1 (ϕx)(y) is true. By Lemma 4, ∀y∃X2 · · · ∃Xm+1(ϕ[x/0])(y) is
true. Therefore, ∃X1∀y∃X2 · · · ∃Xm+1ϕ(y) is true. Suppose no variable y ∈ Y1 occurs both negatively and positively, then
∃X2∀Y2 · · · ∃Xm∀Ym∃Xm+1(ϕx)′ is also true, here (ϕx)′ is obtained from ϕx by the deletion of all occurrences of y or¬y for all
y ∈ Y1. Now Lemma 2 follows from the induction hypothesis and Lemma 4.
If X ′1 is non-empty, Lemma 2 follows from the induction hypothesis and Lemma 4. �
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Lemma 5. Let Φ = ∃X∀y∃Zϕ be in QCNF with ϕ|∃ ∈ MU(1). Then, Φ is true if and only if there exist L1, . . . , Ls ∈ lit(X) such
that var(ϕL1···Ls) ∩ X = ∅ and ∀y∃ZϕL1···Ls is true.

Proof. For X = {x1, . . . , xn}, we proceed by an induction on n. For n = 1 the claim follows from Corollary 2. Suppose n > 1.
Again by Corollary 2,Φ is true if and only if either ∃x2 · · · ∃xnQϕx1 is true or ∃x2 · · · ∃xnQϕ¬x1 is true. Now the lemma follows
from the induction hypothesis. �

Before proving Lemma 3 we will show some propositions on splitting.

Proposition 3. Suppose ϕ ∈MU(1), x ∈ var(ϕ) with (ϕx, ϕ¬x) a disjunctive splitting. We consider ϕLL1···Ls for L ∈ {x,¬x}.
(1) Suppose ϕLLL1···Ls does not contain L, then ϕL1···Ls = ϕLL1···Ls .
(2) Suppose ϕLLL1···Ls contains L, then ϕL1···Ls = ϕ

L
LL1···Ls

+ ϕ¬L
¬L .

(3) Suppose ϕxxL1···Ls contains x, and ϕ
¬x
¬xLs+1···Lm

contains ¬x, then ϕL1···Lm = ϕ
x
xL1···Ls

+ ϕ¬x
¬xLs+1···Lm

.

Proof. (1) This can be seen by induction on s. When s = 1 the assertion follows from Proposition 2. Suppose s > 1. If
ϕLLL1 does not contain L then ϕL1 = ϕLL1 , and the assertion follows. So, we assume ϕ

L
LL1
contains L. Then by Proposition 2,

ϕLL1 = ϕL1L. Thus, ϕLL1···Ls = ϕL1LL2···Ls . Then by the induction hypothesis, ϕL1L2···Ls = ϕL1LL2···Ls , and the assertion follows.
(2) If s = 1, the claim follows fromProposition 2. Suppose s > 1. FromProposition 2,ϕLL1 = ϕL1L, thenϕLL1···Ls = ϕL1LL2···Ls .

Thus by the induction hypothesis, ϕL1L2···Ls = ϕ
L
L1LL2···Ls

+ ϕ¬LL1¬L. Since ϕL1 = ϕ
L
LL1
+ ϕ¬L

¬L , ϕL1¬L = ϕ¬L. The claim follows.
(3) Please notice, that for each i = 1, · · · s, ϕxL1···Li contains x. Thus from Proposition 2, ϕxL1L2···Ls = ϕL1xL2···Ls = · · · =

ϕL1···Lsx. Then by (2) we have

ϕL1···Ls = ϕ
x
xL1···Ls + ϕ

¬x
¬x = ϕ

x
L1···Lsx + ϕ

¬x
¬x .

Again by (2) we obtain ϕL1···Lm = ϕ
x
xL1···Ls

+ ϕ¬x
¬xLs+1···Lm

. �

Lemma 6. Suppose ϕ ∈MU(1) and X ⊆ var(ϕ), f , g ∈ ϕ. Then,
f and g are connected without X if and only if there is a splitting formula ϕL1···Lm such that (f − {L1, . . . , Lm}) and (g −
{L1, . . . , Lm}) ∈ ϕL1···Lm , Li ∈ lit(X), i = 1, . . . ,m, and ϕL1···Lm contains no variable in X.

Proof. (⇐) Suppose the splitting formula ϕL1···Lm contains the two clauses (f − {L1, . . . , Lm}) and (g − {L1, . . . , Lm}), but
contains no variable in X . Then, (f − {L1, . . . , Lm}) and (g − {L1, . . . , Lm}) are connected without X , hence f , g must be
connected without X .
(⇒) Suppose f and g are connected without X . We proceed by induction on the number of variables in ϕ. Suppose ϕ has

only one variable, say x. If X is empty, clearly the assertion is true since ϕ itself contains no variable in X . Suppose X = {x},
then there is no variable outside X . That means, f = g , say the unit clause x, then the empty clause f − {x} is in ϕx which
contains no variable. Hence, the assertion is true.
Suppose, ϕ has more than one variable. Let x be a variable such that (ϕx, ϕ¬x) is a disjunctive splitting.
Case 1. x ∈ X . Since f and g are connectedwithoutX , f and gmust be in the samepart. Say for example (f−{x}), (g−{x}) ∈

ϕx. Obviously, (f − {x}), (g − {x}) are connected without X ∩ var(ϕx). Then by the induction hypothesis, there is a splitting
formula ϕxL1···Lm which do not contain any variable in X , but contains both (f − {x, L1, . . . , Lm}) and (g − {x, L1, . . . , Lm}).
The lemma follows.

Case 2. x 6∈ X .
Subcase 2.1. f and g lie in the same part. W.l.o.g., we assume that (f − {x}), (g − {x}) ∈ ϕy. Now (f − {x}), (g − {x})

are still connected without X ∩ var(ϕy). Then by the induction hypothesis there is a splitting formula ϕxL1,···Lm which do
not contain any variable in X , but contains both (f − {x, L1, . . . , Ls}) and (g − {x, L1, . . . , Ls}). If ϕxxL1···Ls contains no x, then
ϕL1···Ls = ϕxL1···Ls by Proposition 3(1), and the lemma follows. So, suppose ϕ

x
xL1···Ls

contains x. Let ¬x ∨ h ∈ ϕ which is
connected to itself. Then by the induction hypothesis there is a splitting formula ϕ¬xLs+1···Lm in which no variable of X occurs
but the clause (h− {Ls+1 · · · Lm}) appears. Now we can see that ϕ¬x¬xLs+1···Lm contains ¬x. Then

ϕxxL1···Ls + ϕ
¬x
¬xLs+1···Lm

is in MU(1), which is in fact ϕL1···Lm by Proposition 3(3). The lemma follows.
Subcase 2.2. f and g lie in different part. Say, (f−{x}) ∈ ϕxwhile (g−{¬x}) ∈ ϕ¬x. Please notice that f and g are connected

without X . Thus, f must be connected without X to a clause f ′ containing x, and g must be connected without X to clause g ′
containing¬x. Then by the induction hypothesis, there are ϕxL1···Ls and ϕ¬xLs+1···Lm such that they do not contains variables in
X , but (f−{x, L1, . . . , Ls}), (f ′−{x, L1, . . . , Ls}) ∈ ϕxL1···Ls , and (g−{¬x, Ls+1, . . . , Lm}), (g

′
−{¬x, Ls+1, · · · Lm}) ∈ ϕ¬xLs+1···Lm .

Then we can see that ϕxxL1···Ls contains x and ϕ
¬x
¬xLs+1···Lm

contains ¬x. Thus ϕxxL1···Ls + ϕ
¬x
¬xLs+1···Lm

is in MU(1), which is in fact
ϕL1···Lm by Proposition 3(3). The assertion follows. �
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Proof of Lemma 3. ForΦ = ∃X∀y∃Zϕ with ϕ|∃ in MU(1)we have

Φ is true (Lemma 5)
⇔ there exist L1, . . . , Ls ∈ lit(X) such that in ϕL1···Ls no variable of X occurs
and ∀y∃ZϕL1···Ls is true.
⇔ there exist L1, . . . , Ls ∈ lit(X) such that in ϕL1···Ls no variable of X occurs
and both y and ¬y occur in ϕL1···Ls .
⇔ there exist L1, . . . , Ls ∈ lit(X) such that in ϕL1···Ls no variable of X occurs
and there are f , g ∈ ϕ such that y ∈ f ,¬y ∈ g and
f − {L1, . . . , Ls}, g − {L1, . . . , Lm} ∈ ϕL1···Ls . (reordering)
⇔ there are f , g ∈ ϕ with y ∈ f ,¬y ∈ g and there exist
L1, . . . , Ls ∈ lit(X) such that in ϕL1···Ls no variable of X occurs
and f − {L1, . . . , Ls}, g − {L1, . . . , Ls} ∈ ϕL1···Ls . (by Lemma 6)
⇔ there are f , g ∈ ϕ such that y ∈ f ,¬y ∈ g and f , g are connected without X . �

We shall conclude this section by showing that there is a polynomial-time algorithm which can find models for true
QCNF formulas with maximal deficiency 1. First, we need the following proposition.

Proposition 4. Supposeϕ ∈ MU(1), f1, · · · fn are some clauses inϕ and x1, . . . , xn−1 some variables ofϕ. If xi ∈ fi and¬xi ∈ fi+1
for each i, then ϕ − {f1, . . . , fn} can be satisfied by a truth assignment defined on var(ϕ)− {x1, . . . , xn−1}.

Proof. We shall prove the proposition by induction on the number of variables in ϕ.
Suppose ϕ = {x,¬x}. Then there are two cases: n = 1 or n = 2. If n = 1 then the proposition is true since we need

not remove any variable. When n = 2 the assertion is also true because after the deletion of the clauses f1, f2, the resulting
formula is the empty formula.
Now suppose ϕ hasmore than one variables. Then there is a variable x such that (ϕx, ϕ¬x) is a disjunctive splitting. Please

note that the proposition holds when n = 1. Thus we assume n > 1.
Case 1. x 6∈ {x1, . . . , xn}. Then the clauses f1, . . . , fnmust be in one part because of the disjunctive splitting. The assertion

follows easily from the induction hypothesis.
Case 2. x is xi for some i = 1, . . . , n. Then f1, . . . , fi are in one part while fi+1, . . . , fn lie in the other part. Obviously, the

proposition follows from the induction hypothesis. �

Lemma 7. There is a polynomial-time algorithm which, can decide the truth value of a input formula Φ with d∗(Φ) = 1, and
besides, can compute a model forΦ if it is true.

Proof. LetΦ be the input formula with d∗(Φ) = 1. First compute a stable sub-formulaΦ ′ ofΦ such that d(Φ ′) = 1. Please
note that Φ ′ can be computed in polynomial time [9]. Then the remaining part can be satisfied by a truth assignment t
defined on existential variables not occurring in the matrix of Φ ′. Again, such a t can be computed efficiently. Then any
model ofΦ ′ can be easily extended to a model ofΦ by assigning the remaining existential variables the constant functions
determined by t . Thus w.o.l.g. we assume thatΦ itself is stable.
Then check the satisfiability of ϕ|∃. If it is satisfiable, then compute a {0, 1}-model forΦ . This can be done in polynomial

time since d∗(Φ) = 1. So, we suppose ϕ|∃ is unsatisfiable, that is, ϕ|∃ ∈ MU(1).
If for any universal variable y, there are no clauses (y ∨ f ) and (¬y ∨ g) such that they are connected without

X := {x | ‘‘∃x" procedes ‘‘∀y" in the prefix ofΦ}, then output false and stop. Else, find a universal variable y, clauses
f1 := (y ∨ f ), f2, . . . , fn−1, fn := (¬y ∨ g), and literals L1, L2, . . . , Ln−1 satisfying

(1) For each 1 ≤ i < n, Li is an existential literal not in X ∪ {¬x | x ∈ X}.
(2) For each 1 ≤ i < n, Li ∈ fi,¬Li ∈ fi+1.

This can also be done in polynomial time since a path from two nodes can be found efficiently if they are connected.
By Proposition 4we know thatQ (ϕ−{f1, . . . , fn}) can be satisfied by a {0, 1}-modelM defined on all existential variables

except those of L1, . . . , Ln−1. From the proof of Proposition 4 it is not hard to see thatM can be find in polynomial time.
Now we extend M to M ′ as follows. For each Li (1 ≤ i ≤ n), if Li is positive, say xj, then assign ¬y to xj; if Li is ¬xj, then

assign y to xj. That is, Li always takes the same value as ¬y. Clearly, for all clauses among f1, . . . , fn, after replacing each Li
by ¬y, the resulting clauses are tautological. Thus,M ′ is a model ofΦ . This completes the proof. �

5. Maximal deficiency k

In this chapter we prove the general theorem that the truth of formulas with maximal deficiency k depends, besides the
existential variables, only on a fixed number of universal variables. As a consequence we can show that the satisfiability
problem for formulas with fixed deficiency is in NP and that the minimal falsity problemMF(k) is in DP . Moreover, we prove
the polynomial–time solvability of MF(k) if we restrict ourselves to the subclasses QEHORN and QE2-CNF.

Theorem 2. For any k ≥ 1 and any true QCNF formula Φ = Qϕ with d∗(Φ) = k, there is a set U of universal variables with
|U| ≤ 24k/3, and there is a CNF-model M = (f1, . . . , fm) for Φ such that for all i, var(fi) ⊆ U and the number of clauses of fi is
not more than 2k.
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Proof. Suppose, Φ is not stable and has the form Qϕ. Then the formula can be divided into two parts, Q (ϕ1 ∧ ϕ2), where
Φ1 := Qϕ1 is a stable subformula with d(Φ1) = k (Lemma 1(2)). The formula ϕ2 contains a non-empty set E of existential
variables, such that none of the variables in E occurs in the clauses of ϕ1, but any clause of ϕ2 contains such a variable.
The formula Qϕ2 can be made true independently of the stable subformula and the model formulas are either 0 or 1.
Subsequently, we therefore assume that the formulas are stable.
We prove the theorem by an induction on k ≥ 1.

Suppose k = 1. If ϕ|∃ is satisfiable, then clearly Φ has a {0, 1}-model, and the theorem follows. So, we suppose ϕ|∃ is
unsatisfiable. Because Φ is stable, that means any proper subformula has a deficiency less than 1, any subformula of ϕ|∃
is satisfiable. Therefore, ϕ|∃ is in MU(1).
Notice that Φ is true. Theorem 1 implies, that the truth of the formula depends besides the existential variables only

on at most one universal variable. Say y is that universal variable. Then we can delete all the other universal variables and
obtain a formula ∃x1 · · · ∃xm∀y∃z1 · · · ∃znφ. Obviously, the model formulas for xi are constants and the model formulas for
zj are constants or depend only on the universal variable y.
Suppose k > 1 and the assertion holds for formulas with maximal deficiency less than k. We proceed by an induction on

the length of the prefix. In case of one quantifier, thatmeans a formula of the form ∃yφ, obviously themodel is a constant 0 or
1. Now, assume that the prefix contains more than one quantifier. There are two cases according to the left-most quantifier.

Case 1: Φ = ∃yQϕ. Then the model formula for y is either 0 or 1. We simplify the formula by means of this truth value.
Then Qϕ[y/1] (resp. Qϕ[y/0]) is true. Moreover, the maximal deficiency of Qϕ[y/1] (resp. Qϕ[y/0]) is at most k, because
Φ is stable. By the induction hypothesis the theorem holds.

Case 2. Φ = ∀xQϕ. If x (resp ¬x) is a pure literal, then Φ is true if and only if Qϕ′ is true. Here, ϕ′ is obtained from ϕ by
the deletion of all occurrences of x (resp. ¬x). Thus, any model of Qϕ′ is a model of Φ , too. Now the assertion follows from
the induction hypothesis.
We assume that x occurs positively and negatively in Φ . At first we consider Qϕ[x/1]. Clearly, (ϕ[x/1])|∃ is a proper

subset of ϕ|∃. Thus, Qϕ[x/1] has maximal deficiency at most k − 1. Then by the induction hypothesis, let U1 be a set of
universal variables with |U1| ≤ 24(k−1)/3, and (f1, f2, . . . , fm) be a CNF-model of Qϕ[x/1] such that var(fi) ⊆ U1, and fi has
at most 2k−1 clauses for each i = 1, . . . ,m.
By the same argument, let U0 be a set of universal variables with |U0| ≤ 24(k−1)/3, and (g1, g2, . . . , gm) be a CNF-model

of Qϕ[x/0] such that var(gi) ⊆ U0, and gi has at most 2k−1 clauses for each i = 1, . . . ,m.
Now we define hi for each 1 ≤ i ≤ m as follows: hi = (¬x∨ fi)∧ (x∨ gi). Since hi[x/1] = fi, hi[x/0] = gi, it follows that

(h1, h2, . . . , hm) is a model ofΦ .
Note that hi is not a CNF formula, however, by the distributive lawwe can distribute¬x (resp. x) to each clause of fi (resp.

gi). Then we get a CNF-model (h′1, h
′

2, . . . , h
′
m). The number of clauses of h

′

i is at most 2
k−1
+ 2k−1 = 2k.

Let U := U0 ∪ U1 ∪ {x}. Then for each i, it holds var(hi) ⊆ U . Because of k > 1, we have

|U| ≤ |U1| + |U0| + 1 ≤ 24(k−1)/3 + 24(k−1)/3 + 1 = 24k/3−1/3 + 1 ≤ 24k/3. �

The proof of Theorem 2 just tell us that there exists a small set U of universal variables, it does not provide a way to
construct the set U . Because such a set U exists only for true formulas, there seems no algorithms which constructs the set
U without testing the truth value of the formula.
LetΦ be in QCNF and U a set of universal variables, that means U ⊆ var∀(Φ). We delete all universal variables which are

not in U . The resulting formula is written as ΦU . For fixed k > 0, we introduce the sets QSAT(k) and SubQSAT(k). Roughly
speaking, QSAT(k) is the class of QCNF formulas Φ such that Φ has the maximal deficiency k, and that for each clause φ of
Φ ,Φ − {φ} is true. While subQSAT(k) is the class of true QCNF formulas with maximal deficiency≤ k. More technically,

QSAT(k) = {Φ ∈ QCNF | d∗(Φ) = k and for each clause φ there is some
U ⊆ var∀(Φ)with |U| ≤ 24k/3 and (Φ − {φ})U is true}

SubQSAT(k) = {Φ ∈ QCNF | d∗(Φ) ≤ k and there is some subset U ⊆ var∀(Φ)with |U| ≤ 24k/3 andΦU is true}.

Theorem 3. Let k be fixed.

(1) The satisfiability problem for QCNF with maximal deficiency k is in NP.
(2) The minimal falsity problem MF(k) for QCNF is in DP .

Proof. (1) Suppose a formulaΦ has maximal deficiency k. If k is less than 1 thenΦ is true, because of Lemma 1. Therefore,
we can assume k ≥ 1. Let Φ = ∀x1∃y1 · · · ∀xn∃ynϕ be a QCNF formula. To determine whether the formula is true, we can
guess a set U with at most 24k/3 universal variables and a sequence (f1, f2, . . . , fn) of CNF formulas such that var(fi) ⊆ U for
all i = 1, . . . , n. Thenwe checkwhether ϕU [y1/f1, . . . , yn/fn] is tautological. The correctness of the above procedure follows
from Theorem 2. Please note that ϕU [y1/f1, . . . , yn/fn] has at most 24k/3 variables. Hence, whether it is a tautology can be
decided in linear time depending on the length of the formulaΦ .
(2) Because for d∗(Φ) = k the formulasΦU and (Φ−ϕ)U havemaximal deficiency k, the classes QSAT(k) and SubQSAT(k)

belong to NP. It remains to show that MF(k) = QSAT(k)− SubQSAT(k).
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SupposeΦ ∈ MF(k). We have d∗(Φ) = k, because of Lemma 1. SinceΦ is false and by means of Theorem 2, we see that
Φ does not belong to SubQSAT(k). Because for each clause φ ∈ Φ , the formulaΦ − {φ} is true,Φ is in QSAT(k). That shows
Φ ∈ QSAT(k)− SubQSAT(k).
Now suppose, we have Φ ∈ QSAT(k) − SubQSAT(k). By means of Theorem 2 and because of Φ ∈ QSAT(k), Φ is true

after the deletion of an arbitrary clause. Since Φ 6∈ SubQSAT(k), the formula Φ is false. That proves Φ ∈ MF(k). Because of
Lemma 1(3) and d∗(Φ) = kwe have d(Φ) = k and thereforeΦ ∈ MF(k). �

The classes QEHORN and QE2-CNF are subclasses of QCNF, for which the existential part of the matrix is a Horn formula
or a 2-CNF formula. The evaluation problem for these two classes remains PSPACE-complete. The unfolding is a procedure
to transform a QCNF formula equivalently into an existentially quantified formula. More precisely, step by step as long as
an universal variable exists we can apply the following unfolding step to the formula: Replace Q∀x∃Eyϕ by Q∃Ey∃Ez(ϕ[x/1] ∧
ϕ[x/0, Ey/Ez]) for new variables Ez. Clearly, if Q∀x∃Eyϕ is in QEHORN (resp. QE2-CNF ) then Q∃Ey∃Ez(ϕ[x/1] ∧ ϕ[x/0, Ey/Ez])
remains in QEHORN (resp. QE2-CNF ). Thus, by unfolding formulas in QEHORN (resp. QE2-CNF ) we get an existentially
quantified QCNF with matrix in HORN (resp. 2-CNF). It is not hard to see that if we fix the number universal variables,
then the unfolding procedure costs polynomial time. Since the satisfiability problem for HORN and 2-CNF is tractable, by
Theorem 2 we have the following lemma.

Lemma 8. Let k be fixed.

(1) The satisfiability problem for formulas in QEHORN and QE2-CNF with maximal deficiency k is solvable in polynomial time,
(2) The minimal falsity problem for formulas in QEHORN and QE2-CNF with deficiency k can be decided in polynomial time.

Proof. We only prove (1) since (2) follows directly from (1). We apply the following polynomial-time algorithm to decide
the truth value of QEHORN (resp. Q2CNF) formulas with fixed maximal deficiency. Given an arbitrary input formula Φ in
QEHORN (resp. QE2CNF) with d∗(φ) = k. For each subset U of universal variables with |U| ≤ 24k/3, unfolding ΦU to an
existentially quantified HORN (resp. 2CNF) formula, denoted by ΨU . If ΨU is true for some U , then output YES. Otherwise
output NO. �

6. Conclusion

Based on the observation that any true QCNF formula with maximal deficiency k > 0 has a model over at most 24k/3
universal variables, we have shown that the evaluation problem for formulaswith fixedmaximal deficiency is in NP and that
the minimal falsity problem for MF(k) is in DP . Moreover, for two subclasses QEHORN and QE2-CNF of QCNF with PSPACE–
complete satisfiability problem a polynomial-time algorithmMF(k) has been established. It is known that MF(1) is solvable
in polynomial time, whereas for k > 1, whether MF(k) can be solved in polynomial time remains open. The model-size
approach seems not sufficient to analysis the exact complexity of MF(k), because it does not provide further information
about models (e.g., structure of model functions), and hence, to decide the truth value we have to non-deterministically
guess a potential model and check.
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