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a b s t r a c t

We study the structure of satisfying assignments of a random 3-Sat formula. In particular,
we show that a random formula of density α ≥ 4.453 almost surely has no non-trivial
‘‘core’’ assignments. Core assignments are certain partial assignments that can be extended
to satisfying assignments, and have been studied recently in connection with the Survey
Propagation heuristic for random Sat. Their existence implies the presence of clusters of
solutions, and they have been shown to exist with high probability below the satisfiability
threshold for k-Sat with k ≥ 9 [D. Achlioptas, F. Ricci-Tersenghi, On the solution-space
geometry of random constraint satisfaction problems, in: Proc. 38th ACM Symp. Theory
of Computing, STOC, 2006, pp. 130–139]. Our result implies that either this does not hold
for 3-Sat, or the threshold density for satisfiability in 3-Sat lies below 4.453. The main
technical tool that we use is a novel simple application of the first moment method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The study of random instances of 3-Sat has been a major research focus in recent years, both because of its inherent
interest, and because it is a natural test case for thewider understanding of the complexity of computational tasks on random
inputs. In random 3-Sat the input is a formula drawn uniformly at random from all formulas of fixed density α, i.e., formulas
with αn clauses on n variables. Friedgut [7] proved that there exists a function αc(n), known as the satisfiability threshold,
such that for any positive ε, random formulas of density αc(n) − ε have satisfying assignments with high probability, and
random formulas of density αc(n)+ ε have no satisfying assignment with high probability. It is conjectured that αc(n) is a
constant (and that its value is about 4.27), but currently all that is known is that, for large n, 3.520 ≤ αc(n) ≤ 4.506 [11,8,6].
In the range of densities for which the formula is satisfiable with high probability, the interesting algorithmic question

is whether we can find even one of the many satisfying assignments in polynomial time. The lower bound on αc(n) is a
result of the analysis of such a polynomial time algorithm [11,8]. This algorithm belongs to a family of algorithms known as
‘‘myopic’’ because they assign variables greedily, one by one, in an order that is based only on the number of positive and
negative occurrences of each variable.
An apparently much more powerful algorithm is Survey Propagation [17,18]. In experiments on very large instances

(say, with n = 106 variables), it finds solutions for formulas of densities only just below the conjectured threshold value
α = 4.27; however, a rigorous analysis of its performance is still far from our reach. Like the myopic algorithms, it also
assigns variables, one by one, in a greedy manner, but its choices are based on more global information about the role of
each variable in the formula. That information is provided by the fixed point of a sophisticated message passing dynamics
between variables and clauses.
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The message passing procedure is based on an intriguing (informal) picture of the properties of the solution space of
a random formula, which is derived from the 1-step Replica Symmetry Breaking ansatz of statistical physics [16]. A key
postulate of this physical picture is that, for formulas of density higher than a certain value (estimated to be 3.92), the space
of solutions is split into ‘‘clusters’’. Within the same cluster it is possible to reach any satisfying assignment from any other
by flipping one variable at a time, while always keeping the formula satisfied. On the other hand, in order to get from a
solution in one cluster to a solution in another, the values of a linear number of variables have to be flipped at the same
time. Loosely speaking, the message passing procedure of Survey Propagation was proposed as a way to collect information
about the clusters of assignments, rather than individual assignments.
The remarkable performance of Survey Propagation is a compelling reason to explore properties of the solution space of

typical formulas, as a way to further our understanding of random 3-Sat, its hardness, and the satisfiability threshold, and
also (lookingmuch further ahead) in order to systematically design algorithms formore general problemswith distributional
inputs.
A detailed study of the Survey Propagation algorithmundertaken in [14,3] led to an interpretation of themessage passing

procedure as the more familiar Belief Propagation algorithm [19] applied to a particular probability distribution on partial
assignments, i.e., assignments of values from the set {0, 1, ∗}. Here ∗ is to be interpreted as ‘‘unassigned’’, and a variable is
allowed to be unassigned only if it is not forced to be assigned 0 or 1 in order to satisfy a clause.
Among these partial assignments, the set of ‘‘core’’ assignments plays a central role. These are partial assignments

that are obtained from a satisfying assignment by successively replacing each unconstrained variable by ∗. (A variable
is unconstrained if changing its value does not make any clause unsatisfied.) Any satisfying assignment has a unique
corresponding core. Moreover, since all assignments in a cluster have the same core, cores can be viewed (informally) as
‘‘summaries’’ of clusters. Of course, this view is useful only if different clusters tend to have distinct non-trivial cores. (The
trivial core assignment is the one without any assigned variables.) Recently, Achlioptas and Ricci-Tersenghi [1] showed
that, in random k-Sat for k ≥ 9, for some range of densities up to the satisfiability threshold, with high probability every
satisfying assignment has a non-trivial core assignment associated with it. This implies that clusters have a large number of
frozen variables; indeed, for large k the fraction of frozen variables comes arbitrarily close to 1. (The clustering picture has
also been confirmed for 8-Sat by [15,1] using a different method that does not say anything about cores.)
The above results hold only for random k-Sat with k ≥ 8 or 9. In this paper we investigate similar questions for the

apparently harder case of random 3-Sat. Our main result is the following:

Theorem 1. For random instances of 3-Satwith density greater than 4.453, with high probability there exist no non-trivial core
assignments.

This theorem requires some interpretation. Note first that the density 4.453 lies above the conjectured threshold value
of 4.27, but below the current best known upper bound of 4.506. Thus we may deduce:

Corollary 2. One of the following statements holds for random 3-Sat:

• αc(n) ≤ 4.453; or
• there is a range of densities immediately below the satisfiability threshold for which, with high probability, there are no non-
trivial core assignments.

One interpretation of Theorem 1 is as evidence for an improved upper bound on the threshold of the form αc(n) ≤ 4.453. On
the other hand, if in fact αc(n) > 4.453 then the theorem establishes a range of densities immediately below the threshold
for which with high probability the formula is satisfiable but has no non-trivial core assignments. This would represent a
surprising difference between the properties of random 9-Sat and random 3-Sat. Interestingly, experiments with 3-Sat and
solutions of large formulas found by Survey Propagation do not find cores (see [14]). It is quite conceivable that both of the
statements in the above corollary hold.
We now briefly discuss our proof technique, which involves a novel application of the first moment method and is, we

believe, perhaps more noteworthy than the result itself. A straightforward application of the first moment method to the
set of core assignments only allows us to show that, with high probability, there are no cores of small size or of large size. To
handle core assignments of intermediate size, it is further necessary to bound the probability that a partial assignment can
be extended to a satisfying assignment. This probability is equivalent to the probability that a random formula with a given
density of 2-clauses and 3-clauses is satisfiable. For this sub-problem, it is natural to use one of the methods that have been
previously introduced for bounding the probability of satisfiability of random 3-Sat formulas [10,5,13,9,12,6]. However, the
most powerful method, from [6], is very heavy numerically, and it does not seem possible to carry it out for the whole range
of required densities; on the other hand, simplermethods such as those in [13] are apparently not powerful enough. Instead,
we introduce a new method, which we now briefly outline (for a detailed description, see Section 3.2).
Traditionally, bounds on the probability of satisfiability, such as thosementioned above, are obtained by applying the first

momentmethod to a random variable which counts the number of satisfying assignments of a particular kind. Indeed, much
of the work on bounding the satisfiability threshold has been directed towards identifying a set of satisfying assignments
that is a strict subset of the set of all satisfying assignments (so that its expected size is much smaller), but is always non-
empty if the formula is satisfiable. The novelty in our approach lies in identifying a new random variable which depends
not only on satisfying assignments but also on partial assignments. This random variable is at least 1 for every satisfiable
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formula, it exploits the clustering structure of the solution space, and most importantly, it is significantly easier to compute
than many alternative approaches.
Finally we note that the proof of our theorem depends on a claim that a particular analytic function takes only negative

values in a given range. We do not provide a complete proof of this numerical claim, but we outline the steps needed for
completing the proof, and give very strong numerical evidence that all the corresponding statements hold. The difficulty
with making the proof completely rigorous is that this would require too much computational effort, which we feel is not
justified at this stage given that the bound we obtain is still some distance from the satisfiability threshold. The results
presented here should rather be considered as a proof of concept.
The remainder of this paper is structured as follows. In Section 2 we give necessary background, and precise definitions

of the various concepts used in the paper. Section 3 is devoted to the proof of our main result, Theorem 1. We conclude in
Section 4 with some final remarks and suggestions for future work.

2. Technical definitions

Let x1, . . . , xn be a set of n Boolean variables. A literal is either a variable or its negation. A 3-Sat formula is a formula in
CNF, where each clause is a disjunction of 3 distinct literals (on different variables). For every clause c we will denote the
set of variables that appear in the clause by V (c). The distribution that we consider is the following: for a given density α
we choose uniformly at random and with replacementm = bαnc clauses out of all possible clauses on 3 distinct variables.
For a clause c and a variable xi ∈ V (c) we denote by sc,i and uc,i the value for variable xi that is respectively satisfying and
unsatisfying for clause c.
Suppose that the variables x = (x1, . . . , xn) are allowed to take values in {0, 1, ∗}, which we refer to as a partial

assignment. A variable taking value ∗ (star) should be thought of as unassigned.
Definition 1. A partial assignment to x is invalid for a clause c if either (a) all variables are unsatisfying; or (b) all variables
are unsatisfying except for one index j ∈ V (c), for which xj = ∗. Otherwise, the partial assignment is valid for clause c. We
say that a partial assignment is valid for a formula (or just ‘‘valid’’) if it is valid for all of its clauses.
For a valid partial assignment, the subset of variables that are assigned either 0 or 1 values can be divided into constrained

and unconstrained variables in the following way:
Definition 2. We say that a variable xi is the unique satisfying variable for a clause c if it is assigned sc,i, whereas all other
variables in the clause (i.e., the variables {xj : j ∈ V (c)\{i}}) are assigned uc,j. A variable xi is constrained by clause c if it is
the unique satisfying variable for c.
A variable is unconstrained if it has 0 or 1 value, and is not constrained by any clause. Thus for any partial assignment
σ ∈ {0, 1, ∗}n, the variables are divided into stars, constrained and unconstrained variables. Let S∗(σ ) be the set of
unassigned variables, and n∗(σ ) and no(σ ) denote respectively the number of stars and the number of unconstrained
variables. We define the weight of a valid partial assignment to be

W (σ ) := ρn∗(σ )(1− ρ)no(σ ), (1)
where ρ is a parameter in the interval [0, 1]. The weight of an invalid partial assignment is 0.
In [14] the Survey Propagation algorithm is interpreted as a special case of a larger family of Belief Propagation algorithms

applied to a family of distributions on valid partial assignments. This family of distributions, parameterized by ρ, is defined
as Pr[σ ] ∝ W (σ ). At one extreme, ρ = 0, this becomes just the uniform distribution over (full) satisfying assignments. The
other extreme, ρ = 1, corresponds to Survey Propagation. The pure version of Survey Propagation corresponds to setting
ρ = 1. Intermediate values of ρ interpolate between these extremes.
Next we define a natural partial order (represented by an acyclic directed graph) on valid partial assignments. The vertex

set of the directed graph G consists of all valid partial assignments. The edge set is defined in the following way: for a given
pair of valid partial assignments σ and τ , the graph includes a directed edge from σ to τ if there exists an index i ∈ {1, . . . , n}
such that (i) σj = τj for all j 6= i; and (ii) τi = ∗ and σi 6= ∗.
Valid partial assignments can be separated into levels based on their number of star variables, i.e., the assignment σ

is in level n∗(σ ). Thus every edge goes from an assignment in level l − 1 to one in level l, where 1 ≤ l ≤ n. G is acyclic
and we write τ < σ if there is a directed path in G from σ to τ . In this case we will also say that the assignment τ is
consistent with the assignment σ . The outgoing edges of any valid partial assignment σ correspond to its unconstrained
variables, and therefore its outdegree is equal to no(σ ). The minimal assignments in this ordering are the assignments
without unconstrained variables, i.e., the positive weight assignments for ρ = 1.
Definition 3. A core of a satisfying assignment σ is a minimal assignment τ such that τ < σ .
The following proposition about cores is proved in [14].

Proposition 3 ([14]). Any satisfying assignment σ has a unique core. Furthermore, if satisfying assignments σ 1, σ 2 ∈ {0, 1}n
belong to the same cluster of solutions, then they have the same core.
In the above proposition, a cluster is simply a connected component of the graph on solutions, in which two solutions

are connected by an edge if and only if they are at Hamming distance 1.
Definition 4. A cover is a valid partial assignment that contains no unconstrained variables.
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In particular, the core of any satisfying assignment is a cover. On the other hand not all cover assignments are cores (because
they may not be extendable to satisfying assignments). We say that a cover assignment τ is non-trivial if n∗(τ ) < n, so that
it has at least one assigned variable.
The proof of Theorem 1 uses a surprising property of the weights (1), which was observed in [14] but was not utilized

there. (A more general statement and a connection to a combinatorial object known as ‘‘convex geometry’’ was developed
in [2].) Specifically, the total weight of partial assignments consistent with a given satisfying assignment is exactly 1. This
fact implies that the probability of satisfiability is at most the expected total weight of partial assignments.
Theorem 4 ([14]). For every ρ ∈ [0, 1],

∑
τ≤σ W (τ ) = ρ

n∗(σ ) for any valid partial assignment σ ∈ {0, 1, ∗}n. In particular, if
σ is a satisfying assignment then

∑
τ≤σ W (τ ) = 1.

In our proof,wewill apply Theorem4with various values forρ ∈ (0.8, 1). In each application,wewill chose the value ofρ
to get the best bound possible for the probability that a formula chosen from some distribution has a satisfying assignment.
In particular, if a satisfying assignment exists, the total weight of valid partial assignments is at least 1. Therefore, the
probability of satisfiability is at most as large as the expected value of the total weight of partial assignments. Applying
this idea directly to the original distribution on 3-Sat formulas leads to an upper bound on the threshold αc that is weaker
than the currently best known bound of 4.506. However, the derivation is simpler than other approaches, which makes
it possible to apply the same method to bound the probability that a fixed valid partial assignment can be extended to a
satisfying assignment. (This amounts to applying the method to random formulas coming from a variety of distributions on
formulas with both 2-clauses and 3-clauses.) This allows us to estimate the probability of the existence of a non-trivial core,
and thus to prove the theorem.

3. Proof of the main theorem

This section contains a proof of Theorem 1.We begin with an overview of the entire proof, in the course of which wewill
state various technical lemmas; these lemmas will be proved in the three subsections that follow.
Note first that for α ≥ 4.506 the statement of the main theorem follows from the fact that random 3-Sat formulas of

density at least 4.506 are known to be unsatisfiable with high probability [6]. Hence from now on we focus on the case that
α ∈ [4.453, 4.506]. Our goal is to prove that, for densities above 4.453, with high probability there are no non-trivial covers
that can be extended to satisfying assignments, i.e., there are no non-trivial cores.
To this end, define the size of a cover (or of a core) to be the number of variables assigned value 0 or 1. The following

lemma, proved in [14], establishes that with high probability all non-trivial covers (and consequently cores) are of linear
size.
Lemma 5 ([14]). For a random 3-Sat formula of density α, with high probability, there are no non-trivial covers of size strictly
less than 1

αe2
n.

This lemma implies that it is sufficient to consider core assignments of size an for a ∈ [1/(αe2), 1]. Let Xa denote the number
of cover assignments of size banc, and Ya denote the number of core assignments of size banc.
In addition to the density α, the size measure a, and the weight parameter ρ ∈ [0, 1] from Theorem 4, we will use two

further parameters, d and b, whose precise definitions will be given in the proofs in the following subsections. Roughly
speaking, d is the fraction of clauses that are constraining with respect to a given partial assignment, and b is the fraction
of constrained variables with respect to a given partial assignment. The ranges of these parameters are d ∈ (a/α, 1] and
b ∈ [0, 1− a]. We will also make use of a derived parameter r which is defined by d, a and α. It appears in connection to the
event that the constraining clauses succeed in constraining all constrained variables. Specifically, r is the value satisfying
the equation d = ar

α
ln r
r−1 . (Note that such a value r always exists and is unique as the right-hand side is monotonic in r .)

In fact, because of the form of this expression, it will be more convenient to think of d as being determined by r , a, and α.
Whenever we take the supremum over one of these parameters, we always mean the supremum over its allowed range.
We now define two functions that play a central role in our analysis:

f (α, a, r) := a ln(2)+ H(a)+ αH(d)+ αd ln
(
3a3

8

)
+ α(1− d) ln

(
1−

a2(3− a)
4

)
+αd ln(r/e)− a ln(r − 1);

h(α, a, r, ρ, b) := b ln(2)+ (1− a− b) ln(ρ)+ (1− a)H(b/(1− a))

−α(1− d)b
b(6− 5b− 15a)+ 12(1− a)a

2(4− a2(3− a))
+ b ln

(
1− ρe

−3α(1−d) b(b+2a)
2(4−a2(3−a))

)
.

Here H denotes the entropy function H(x) = −x ln(x)− (1− x) ln(1− x).
The first ingredient in the proof of Theorem 1 is the following lemma, whose proof is presented in Section 3.1.

Lemma 6. For a random 3-Sat formula of density α ≥ 1, and for every a ∈ [0, 1],

lim
n→∞

1
n
ln (E[Xa]) ≤ sup

r
f (α, a, r).
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A simple application of Markov’s inequality immediately yields:

Corollary 7. If α ≥ 1 and a ∈ [0, 1] are such that, for every r > 1 with d = ar
α
ln r
r−1 ≤ 1, it holds that f (α, a, r) < 0, then

with high probability random 3-Sat formulas of density α do not have covers of size an.

The second ingredient in the proof of Theorem 1 is the following lemma, which is proved in Section 3.2.

Lemma 8. For a random 3-Sat formula of density α ≥ 1, and for every a ∈ [0, 1] and ρ ∈ [0, 1),

lim
n→∞

1
n
ln (E[Ya]) ≤ sup

r
(f (α, a, r)+min{0, sup

b
h(α, a, r, ρ, b)}).

Remark. This lemma can be strengthened by allowing ρ to depend on r; however, we will not need to use this stronger
version.

Since every core is a cover, we know that Ya ≤ Xa. Hence (in light of Lemma 6) Lemma 8 is interesting only when
supb h(α, a, r, ρ, b) is negative. In fact, we shall prove Lemma 8 by showing that this supremum bounds the logarithm of
1/n times the probability that a particular cover of size a can be extended to a satisfying assignment. (For a precise statement,
see Lemma 11 in Section 3.2.) An immediate corollary of Lemma 8 is the following.

Corollary 9. If α ≥ 1, a ∈ [0, 1] and there exists ρ ∈ [0, 1) such that for every r > 1 with d = ar
α
ln r
r−1 ≤ 1, and for every

b ∈ [0, 1− a], it holds that f (α, a, r)+ h(α, a, r, ρ, b) < 0, then with high probability random 3-Sat formulas of density α do
not have cores of size an.

The final ingredient in the proof of Theorem 1 is the following numerical claim, whose proof we discuss in Section 3.3.

Claim 10. For every α ∈ [4.453, 4.506], a ∈ [1/(4.506e2), 1], and r > 1 with d = ar
α
ln r
r−1 ≤ 1, it holds that either

f (α, a, r) < 0 or for every b ∈ [0, 1− a], f (α, a, r)+ h(α, a, r, 0.4a+ 0.7, b) < 0.

Remark. In Claim 10 we have used the weight ρ ≡ ρ(a) = 0.4a + 0.7. We arrived at this particular choice of ρ by first
optimizing numerically for ρ at 100 values for a ∈ [1/4.506, 1], and then fitting a simple function to the values for ρ that
were found. Since Lemma 8 holds for every value of ρ, we may choose any convenient function. Using a simple analytic
function guarantees that h is also analytic, which makes the numerical analysis of h easier.

Finally, combining Claim 10 with Corollary 9 completes the proof of Theorem 1.

3.1. The expected number of covers: Proof of Lemma 6

Let s = banc. Then we have

E[Xa] = E

[ ∑
σ∈{0,1,∗}n

Ind[σ is valid ∩ (n∗(σ ) = n− s) ∩ (no(σ ) = 0)]

]
=

∑
σ∈{0,1,∗}n:n∗(σ )=n−s

Pr[σ is valid ∩ (no(σ ) = 0)]

=

(
n
s

)
2s Pr[σ = (0s ∗n−s) is valid and x1, . . . , xs are constrained].

We denote by P the probability that σ = (0s ∗n−s) is valid and all of its assigned variables are constrained. P is equivalent
to the probability of the following event in an experiment with m = αn balls thrown uniformly and independently at
random into 23

(n
3

)
bins. There are 3 kinds of bins:

1. Bins of type 1 should be empty. These correspond to clauses that are not allowed:
• (xi1 ∨ xi2 ∨ xi3), with i1, i2, i3 ∈ {1, 2, . . . , s};
• (xi1 ∨ xi2 ∨ x̄j), with i1, i2 ∈ {1, 2, . . . , s} and j > s;
• (xi1 ∨ xi2 ∨ xj), with i1, i2 ∈ {1, 2, . . . , s} and j > s.
The total number of these is(

s
3

)
+ 2(n− s)

(
s
2

)
= n3

(
a3

6
+ a2(1− a)

)
+ o(n3).

2. Bins of type 2 correspond to constraining clauses: (xi1 ∨ xi2 ∨ x̄t), with i1, i2, t ∈ {1, 2, . . . , s}. For each variable xt
there are

(s−1
2

)
= n2 a

2

2 + o(n
2) clauses that could constrain it and at least one has to be included. Equivalently, there

has to be at least one ball in one of those bins for every xt with t ∈ {1, 2, . . . , s}. The total number of these clauses is
s
(s−1
2

)
= n3 a

3

2 + o(n
3).
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3. There are no constraints for the remaining bins, of type 3. Their total number is

23
(
n
3

)
− n3

(
a3

6
+ a2(1− a)

)
− n3

a3

2
+ o(n3) =

n3

3
(4− a2(3− a))+ o(n3).

Supposem′ = dm of the clauses we choose are of type 2, and the remainingm−m′ are of type 3. The probability of this
event is

pm′ =
(
m
m′

)(
3 a3

8
+ o(1)

)m′ (
1−

a2 (3− a)
4

+ o(1)
)m−m′

.

The probability that them′ clauses of type 2 are such that there is at least one of each kind is the same as the coupon collectors
probability of success, with s = banc different coupons, andm′ = (dα)n trials. We will use the following general fact from
[4], which was previously used in a very similar context in [12]: Let q(cN,N) denote the probability of collecting N coupons
within cN trials. If c < 1, q(cN,N) = 0. Otherwise, as N goes to infinity q(cN,N) grows like g(c)N , where g(c) =

( r0
e

)c 1
r0−1
,

and r0 is the solution of r ln
( r
r−1

)
= c. More precisely, limN→∞ 1

N ln (q(cN,N)) = ln(g(c)). We have

P =
m∑
m′=0

(
m
m′

)(
3 a3

8
+ o(1)

)m′ (
1−

a2 (6− 2a)
8

+ o(1)
)m−m′

q(m′, s)

≤ m max
m′

{(
m
m′

)(
3 a3

8
+ o(1)

)m′ (
1−

a2 (3− a)
4

+ o(1)
)m−m′

q(m′, s)

}
.

Finally,

E[Xa] ≤
(
n
s

)
2smmax

m′

{(
m
m′

)(
3 a3

8
+ o(1)

)m′ (
1−

a2 (3− a)
4

+ o(1)
)m−m′

q(m′, s)

}
,

and hence

lim
n→∞

1
n
ln (E[Xa]) ≤ ln

(
2a

aa(1− a)1−a

)
+ sup

d

α ln

(
3 a3
8

)d (
1− a2 (3−a)

4

)1−d
dd (1− d)1−d

+ a ln(g (dα
a

))
= sup

d
f (α, a, r) = sup

r
f (α, a, r).

This completes the proof of Lemma 6.

3.2. The probability that a cover assignment is a core: Proof of Lemma 8

For a partial assignment σ , it will be convenient to denote by ϕσ (xS∗(σ )) the formula that is obtained by substituting the
variables that have 0/1 assignments in σ , i.e., removing from ϕ clauses that are satisfied by at least one of the assigned
variables and removing all remaining appearances of assigned variables. This is a formula on n∗(σ ) variables. Notice that if
σ is a valid assignment for ϕ, then the formula ϕσ contains no empty clauses and no unit clauses. Furthermore all clauses of
type 2 (from the previous section) are removed, because they are satisfied by their constrained variables. Among the clauses
of type 3, there are clauses that are removed, there are clauses that become two-variable clauses, and there are clauses that
remain untouched. Since there is no simple way to describe the resulting distribution on formulas, we will keep referring to
the set of all clauses of type 3, even the ones that are removed in ϕσ . When we condition on the fact that σ is a cover andm′
of the clauses are of type 2, as in the previous section, we know that the set of clauses we are interested in are distributed
exactly as a uniform set of (m−m′) clauses of type 3. Thus we can express the expected number of cores as

E[Ya] =
∑

σ∈{0,1,∗}n:n∗(σ )=n−s

Pr[σ is a cover] × Pr[σ is a core | σ is a cover]

=

(
n
s

)
2s Pr[σ = (0s ∗n−s) is a cover] × Pr[σ = (0s ∗n−s) is a core | σ is a cover]

=

(
n
s

)
2s ×

m∑
m′=s

pm′ q(m′, s)

× Pr[ϕσ (xs+1, . . . , xn) is satisfiable | σ = (0s ∗n−s), m−m′ clauses are of type 3].

Wewill bound this probability using the Poisson approximation, which is a standard technique in this area. There are two
related randommodels. In the first model, which we call the exact model, (m−m′) clauses are chosen uniformly at random
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with replacement from allM = n3(4−a2(3−a))/3+o(n3) clauses of type 3. In the secondmodel, whichwe call the Poisson
model, each of theM clauses is included in the formula with probability p = (m−m′)/M − 1/(n2

√
log n) = 3α(1−d)

n2(4−a2(3−a))
+

o
(
1
n2

)
. The expected number of clauses in both models is the same up to a term δ = M/(n2

√
log n) = Θ(n/

√
log n), which

is sub-linear in n.
The Poisson model has been studied before in the context of random 3-Sat. It can be shown, as the example below

demonstrates, that whenever a property holds with high probability in the exact model, it also holds with high probability
in the corresponding Poisson model. Applying first moment techniques to the Poisson model is usually easier, because the
clauses are independently chosen; however the bounds obtained are usually weaker.
Next,we relate the probability thatϕσ is satisfiable under the twomodels. Let Prp denote probability in the Poissonmodel,

and Pre denote probability in the exact model. Let the random variable J denote the number of distinct clauses included in
the formula. Then

Prp[ϕσ is satisfiable] =
M∑
i=0

Prp[J = i] × Pr[ϕσ is satisfiable | J = i]

≥

m−m′−δ∑
i=0

Prp[J = i] × Pr[ϕσ is satisfiable | J = i].

Since this conditional probability decreases as i increases, and Prp[J ≤ Ep[J]] ≥ 1/2, where Ep[J] = m−m′ − δ, we have

Prp[ϕσ is satisfiable] ≥ Pr[ϕσ is satisfiable | J = m−m′ − δ] ×
m−m′−δ∑
i=0

Pr[J = i]

≥ Pr[ϕσ is satisfiable | J = m−m′ − δ] ×
1
2
.

On the other hand, for the exact model

Pre[ϕσ is satisfiable] =
m−m′∑
i=0

Pre[J = i] × Pr[ϕσ is satisfiable | J = i]

≤

(
m−m′−δ∑
i=0

Pre[J = i]

)
+ Pr[ϕσ is satisfiable | J = m−m′ − δ]

≤ Pre[at least δ clauses repeated] + 2 Prp[ϕσ is satisfiable]

≤

(
m−m′

δ

)(
m−m′

M

)δ
+ 2 Prp[ϕσ is satisfiable]

≤

(
(m−m′)2

M

)δ
+ 2 Prp[ϕσ is satisfiable]

= θ(2−n
√
log n)+ 2 Prp[ϕσ is satisfiable].

Thus if the probability of satisfiability in the Poisson model is bounded above by c−n, for some constant c , then
limn→∞ 1

n ln (Pre[ ϕσ is satisfiable]) ≤ c . Therefore, it suffices to get a bound for the Poisson model. Any of the first moment
techniques for bounding the satisfiability threshold of 3-Sat can be adapted to bound the probability that ϕσ is satisfiable.
Of the ones that are technically applicable (i.e., result in an explicit analytic expression for every setting of the parameters
s andm′), we obtain the strongest result using the novel approach of applying the first moment method to the distribution
on partial assignments defined by the weights in Eq. (1).

Lemma 11. In the Poisson model with parameters n, m = αn, m′ = dm, s = banc and for σ = (0s ∗n−s), and r such that
d = ar

α
ln r
r−1 ,

lim
n→∞

1
n
ln
(
Prp[ ϕσ (xs+1, . . . , xn) is satisfiable]

)
≤ inf

ρ∈[0,1)
sup

b∈[0,1−a]
h(α, a, r, ρ, b).

Proof. Wewill apply Theorem 4 to the formula ϕσ (xs+1, . . . , xn). The theorem implies that if ϕσ has a satisfying assignment
then

∑
τ∈V W (τ ) ≥ 1 where W (τ ) = ρn∗(τ )(1 − ρ)no(τ ) and the sum is over the set V of all partial assignments

τ ∈ {0, 1, ∗}n−s that are valid for ϕσ . Thus the probability of satisfiability is bounded from above by the expected value
of
∑

τ∈V W (τ ). This holds for any value of ρ ∈ [0, 1]. We bound this expectation.
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For any t ∈ {0, 1, . . . , n − s} let Zt denote the sum of the weights of valid assignments τ for ϕσ (xs+1, . . . , xn) such that
n∗(τ ) = n− s− t . Then

E[Z] =
n−s∑
t=0

E[Zt ] ≤ n max
t∈{0,1,...,n−s}

E[Zt ].

E[Zt ] =
t∑
u=0

ρn−s−t(1− ρ)u
∑

τ∈{0,1,∗}n−s
Prp [τ is valid ∩ (n∗(τ ) = n− s− t) ∩ (no(τ ) = u)]

= ρn−s−t
t∑
u=0

(1− ρ)u
∑

τ∈{0,1,∗}n−s : n∗(τ )=n−s−t

Prp[τ is valid ∩ (no(τ ) = u)]

= ρn−s−t
t∑
u=0

(1− ρ)u
(
n− s
t

) (
t
u

)
2t Prp[τ = (0t ∗n−s−t) is valid and xs+1, . . . , xs+u are unconstrained]

Next we derive the probability that the assignment (xs+1, xs+2, . . . , xn) = (0t ∗n−s−t) is valid and the first u variables
are unconstrained. Recall that ϕσ is obtained from ϕ by setting its first s variables according to σ . Only clauses of type 3
influence ϕσ and according to the Poissonmodel, each of them is included independently with probability p. The probability
that the assignment (xs+1, xs+2, . . . , xn) = (0t ∗n−s−t) is valid and the first u variables are unconstrained is equivalent to
the probability that among the included clauses of type 3, there are no clauses of the following kinds:

• (xi1 ∨ xi2 ∨ xi3), with i1 ∈ {1, 2, . . . , s+ t}, i2, i3 ∈ {s+ 1, s+ 2, . . . , s+ t},
• (xi1 ∨ xi2 ∨ x̄j), with i1 ∈ {1, 2, . . . , s+ t}, i2 ∈ {s+ 1, s+ 2, . . . , s+ t} and j > s+ t ,
• (xi1 ∨ xi2 ∨ xj), with i1 ∈ {1, 2, . . . , s+ t}, i2 ∈ {s+ 1, s+ 2, . . . , s+ t} and j > s+ t ,
• (xi1 ∨ xi2 ∨ x̄j), with i1 ∈ {1, 2, . . . , s+ t}, i2 ∈ {s+ 1, s+ 2, . . . , s+ t} and j ∈ {s+ 1, . . . , s+ u},

and for every j ∈ {s + u + 1, . . . , s + t}, the formula contains a clause (xi1 ∨ xi2 ∨ x̄j), with i1 ∈ {1, 2, . . . , s + t},
i2 ∈ {s+ 1, . . . , s+ t}.
In the Poisson model all clauses are independent, so it is easy to put these events together to obtain:

Q = Prp[τ = (0t ∗n−s−t) is valid and xs+1, . . . , xs+u are unconstrained]

= (1− p)
(
(t3)+s(

t
2)
)
+ 2(n−s−t)

(
(t2) + st

)
+ u

(
(t2)+st

)
×

(
1− (1− p)(

t
2)+st

)t−u
.

The expression for the expectation can be simplified:

E[Zt ] = ρn−s−t
(
n− s
t

)
2t

t∑
u=0

(1− ρ)u
(
t
u

)
Q

= ρn−s−t
(
n− s
t

)
2t (1− p)(

t
3) + s(

t
2) + 2(n−s−t)

(
(t2) + st

)

×

t∑
u=0

(
t
u

)
(1− ρ)u (1− p)u

(
(t2)+st

)
×

(
1− (1− p)(

t
2)+st

)t−u
= ρn−s−t

(
n− s
t

)
2t (1− p)(

t
3) + s(

t
2) + 2(n−s−t)

(
(t2) + st

)

×

(
(1− ρ)(1− p)(

t
2)+st +

(
1− (1− p)(

t
2)+st

))t
= ρn−s−t

(
n− s
t

)
2t (1− p)(

t
2)(6n−5t−3s−2)/3+2(n−s−t)st

(
1− ρ(1− p)(

t
2)+st

)t
.

Let t = bn, and recall that s = banc, p = 3α(1−d)
n2(4−a2(3−a))

+ o
(
1
n2

)
. Then

lim
n→∞

1
n
ln (E[Zt ]) = ln

(
(1− a)1−a 2b ρ1−a−b

bb (1− a− b)1−a−b

)
−
α (1− d) b (b(6− 5b− 3a)+ 12(1− a− b)a)

2(4− a2(3− a))

+ b ln
(
1− ρe

−
3α(1−d)b(b+2a)
2(4−a2(3−a))

)
= h(α, a, r, ρ, b).
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Fig. 1. The pairs (a, r) such that f (4.453, a, r) > −0.0001, and the value of r that maximizes f (4.453, a, r) for every a.

Finally,

lim
n→∞

1
n
ln
(
Prp[ ϕσ (xs+1, . . . , xn) is satisfiable]

)
≤ lim
n→∞

1
n
ln (E[Z]) ≤ sup

b∈[0,1−a]
h(α, a, r, ρ, b),

which is the statement of Lemma 11. �

Substituting the bound of Lemma 11 into the expression for the expectation yields

lim
n→∞

1
n
ln (E[Ya]) ≤ sup

r
(f (α, a, r)+min{0, sup

b
h(α, a, r, ρ(a, r), b)}),

completing the proof of Lemma 8.

3.3. Numerical analysis: Steps to the proof of Claim 10

What remains is to verify the numerical claim that for every α ∈ [4.453, 4.506], a ∈ [1/(4.506e2), 1], and r > 1 with
d = ar

α
ln r
r−1 ≤ 1, it holds that either f (α, a, r) < 0, or for every b ∈ [0, 1 − a], f (α, a, r) + h(α, a, r, 0.4a + 0.7, b) < 0.

We outline the steps towards a proof.
There are two stages. First, we identify the (a, r) pairs such that for every α ∈ [4.453, 4.506] it holds that f (α, a, r) < 0.

Second, for the remaining range of values of (a, r)we show that for every b ∈ [0, 1−a], f (α, a, r)+h(α, a, r, 0.4a+0.7, b) <
0.
The derivative of f with respect to r is

∂ f
∂r
= a

(
ln
(
1+

1
r − 1

)
−

1
r − 1

)
× ln

 3
(
α − ar ln

( r
r−1

))
2
(
4
a2
− 3+ a

)
ln
( r
r−1

)
 .

Since the first factor is always negative, the derivative is 0 when

3α = ln
(
r
r − 1

)(
8
a2
− 6+ 2a+ 3ar

)
. (2)

This equation has a unique root for every a ∈ [1/(4.506e2), 1], α ∈ [4.453, 4.506] (the derivative of the right-hand side is
negative). Therefore we can conclude that for every a and α in the above range, f is at first increasing with r then decreasing.
Its maximum is achieved at the root of Eq. (2). Fig. 1 shows the values for r where f is maximized, with respect to a, when
α = 4.453.
Since the root of (2) is monotone decreasing with respect to a and α, we can find values r1 and r2 such that for every a

and α in the range, if r < r1 then ∂ f /∂r > 0, and if r > r2 then ∂ f /∂r < 0. Values satisfying this condition are r1 = 1.2
and r2 = 670. Thus if we show that f (α, a, r) is negative for r = r1 and r = r2 then it is negative for any r outside the range
(1.2, 670).
We will use the shorthand notation q := r ln r

r−1 . For r ∈ (1.2, 670) we have q ∈ (1.0007, 2.16). The whole range
satisfies the condition that d = ar

α
r ln r

r−1 ≤ 1.
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Fig. 2. The values of supr f (α, a, r) and supr,b(f (α, a, r)+ h(α, a, r, 0.4a+ 0.7, b)) for α = 4.453, 4.470, 4.490, and 4.506.

Next we take care of the boundary region with respect to a. Notice that the derivative of f is negative for a large enough
(close to 1), because of the entropy term in f . The derivative of f with respect to a is

∂ f
∂a
= ln(2)− ln

a
1− a

− q ln
3a2(α − aq)

2q(4− a2(3− a))
+ 3q−

3a(α − aq)(2− a)
4− a2(3− a)

+ q ln(r)− ln(r − 1).

The following observations are helpful for bounding this derivative:

• 3q+ q ln(r)− ln(r − 1) is maximized in the interval r ∈ [1.2, 670] at r = 1.2.
• a2(α − aq)/(4− a2(3− a)) is an increasing function of a.
• a(α − aq)(2− a)/(4− a2(3− a)) is an increasing function of a.

For a > 0.999, using the above facts, the derivative is negative. Thus if we show that f is negative for a = 0.999,
r ∈ (1.2, 670), α ∈ [4.453, 4.506] then f is negative also for every a > 0.999.
We are leftwith the region a ∈ [1/(4.506e2), 0.999], r ∈ (1.2, 670). In this region, all the derivatives of f can be bounded,

and a sufficiently fine grid can be chosen over which to evaluate f in order to identify the grid sections where the function
can take positive values. In particular, the derivative with respect to a is at most 28.2, and with respect to α it is at most 1.
Furthermore, since we know that for every a and α, f is maximized as a function of r at the root of Eq. (2), one can find this
maximum and the range of r where f (α, a, r) is positive using binary search. The points with f (4.453, a, r) > −0.0001 are
depicted in Fig. 1.
In the second stage we need to analyze f (α, a, r)+ h(α, a, r, 0.4a+ 0.7, b) for the remaining region of values for (a, r).
First, notice that we can take care of the boundary regions with respect to b by taking advantage of the entropy term,

which has very large slope for b close to 0, and very steep negative slope for b close to 1− a. Specifically, the derivative with
respect to b is

∂h
∂b
= ln(2)− ln(ρ)− ln

(
b

1− a− b

)
− α(1− d)

12b− 15b2 − 30ab+ 12a− 12a2

2(4− a2(3− a))

+ ln(1− ρe−A)+ 3α(1− d)b
ρe−A(a+ b)

(1− ρe−A)(4− a2(3− a))

where A = 3α(1−d)b(b+2a)
2(4−a2(3−a))

.
Using the bounds on all parameters: α ∈ [4.453, 4.506], a ∈ (0.28, 0.7), r ∈ (1.5, 14.3), and the ones that follow from

those: d ∈ (0.06, 0.26), A ∈ [0, 1.59], ρ ∈ (0.02, 0.21), we can conclude that

−3.04− ln
(

b
1− a− b

)
<
∂h
∂b

< 5.38− ln
(

b
1− a− b

)
.

The lower bound can be made positive by setting b/(1 − a − b) ≤ 0.04 and the upper bound can be made negative by
setting b/(1− a− b) ≥ 220. Therefore it suffices to show that h is negative for b in the range [0.01, 0.996(1− a)].
Again, using the bounds for the parameters, all the derivatives of f +h can be bounded, and a sufficiently fine grid can be

chosen over which to evaluate f +h. We did not perform the evaluation on a grid that is as fine as is required for the rigorous
proof because, based on the current bounds on the derivatives, we would need to evaluate the function at more than 1010
points. (As we discussed in the introduction, we feel that the computational effort is not yet justified.) For illustration, Fig. 2
shows the estimated values of supr f (α, a, r) and of supr,b(f (α, a, r) + h(α, a, r, ρ(a), b)) for α = 4.453, 4.470, 4.490,
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and 4.506. The maximum is taken over evaluations at a grid of step size 0.001 for the parameters r and b. We estimated
with better precision the location of the maximum of f + h by evaluating the function at a fine grid in the region where
the evaluations on the coarse grid give the largest values. The maximum found in this way is at α = 4.453, a = 0.62566,
b = 0.03568 and r = 2.00134 (d = 0.19473). The value of f + h at this point is−0.000058.

4. Concluding remarks

As mentioned in the introduction, all of the known rigorous upper bounds for the satisfiability threshold of 3-Sat are
based on the first moment method [10,5,13,9,12,6]; the corresponding upper bounds in this sequence of results are: 4.758,
4.64, 4.601, 4.596, 4.571, 4.506. The general method is to consider a random variable Z that is equal to the number of
satisfying assignments of a particular kind. These satisfying assignments are such that at least one exists if the formula
is satisfiable. Showing that above a certain density E[Z] → 0 thus implies (by Markov’s inequality) that Pr[Z = 0] → 1,
and consequently the probability that the formula is unsatisfiable also goes to 1. For example, [5] takes Z to be the number
of negatively prime solutions, i.e., solutions for which every variable assigned 1 is constrained.
Here, we have used the same idea but with Z taken to be the total weight of partial assignments under the weight

function (1) inspired by Survey Propagation. Given the dramatic success of Survey Propagation for random 3-Sat, it seems
plausible that this approach can potentially yield rather tight upper bounds on the threshold. We were able to achieve only
partial progress in this direction, but we are quite hopeful that extensions of our approach could lead to further progress.
One natural extension would be to use a different weight ρ for each variable, depending for example on the number of

positive and negative occurrences of the variable. The corresponding generalization of Theorem 4 is proved in [2]. It is quite
possible that the value of E[Z] in this case is significantly smaller.
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