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a b s t r a c t

We consider the problem of finding pairs of vertices that share large common
neighborhoods in massive graphs. We give lower bounds for randomized, two-sided error
algorithms that solve this problem in the data-stream model of computation. Our results
correct and improve those of Buchsbaum, Giancarlo, and Westbrook [On finding common
neighborhoods in massive graphs, Theoretical Computer Science, 299 (1–3) 707–718
(2004)]
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1. Introduction

We study the problem of finding pairs of vertices with large common neighborhoods in directed graphs. We consider
the space complexity of the problem in the data-stream model proposed by Henzinger, Raghavan, and Sajagopalan [13]. In
this model of computation, the input arrives as a sequence of elements (for a graph, e.g., a sequence of arcs). Complexity is
measured in terms of the number of times an algorithm can scan the input (in order) and the amount of space it requires to
store intermediate results. Buchsbaum, Giancarlo, and Westbrook [4] claimed results for common neighborhood problems
(defined below) in these models, but some of their lower-bound proofs are incorrect. We present improved results that
rectify these issues.
The motivation for studying such problems in data-stream models remains unchanged from the earlier paper [4], and

we use it here verbatim. Many large-scale systems generate massive sequences of data: records of telephone calls in a
voice network [6,14], transactions in a credit card network [5,20], alarms signals from network monitors [17,21], etc. From
a practical standpoint, many applications require real-time decision making based on current information: e.g., fraud and
intrusion detection [5,6,20] and fault recovery [17,21]. Data must be analyzed as they arrive, not off-line after being stored
in a central database. From a theoretical (as well as practical) standpoint, processing and integrating the massive amounts
of data generated by a myriad of continuously operating sources poses many problems. For example, external memory
algorithms [23] are motivated by the fact that many classical algorithms do not scale when data sets do not fit in main
memory. At some point, however, data sets become so large as to preclude most computations that require more than one
scan of the data, as they stream by, without the ability to recall arbitrary pieces of input previously encountered.
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Common neighborhoods represent a natural, basic relationship between pairs of vertices in a graph. In transactional data
like telephone calls and credit card purchases, common neighborhoods indicate users with shared interests (such as who
they call or what they buy); inverted, they also represent market-basket information [8,12,22] (e.g., which products tend
to be purchased together). In graphs representing relationships such as hyperlinks in the World Wide Web or citations by
articles in a scientific database, common neighborhoods can yield clues about authoritative sources of information [15] or
seminal items of general interest [13].
Informally, we show that for infinitely many values of n and c , any O(1)-pass, randomized (two-sided error) data-stream

algorithm that determines if any two vertices in a directed, n-vertex graph have more than c common neighbors requires
Ω(
√
cn3/2) bits of space. The definitions in Section 2 formalize the problems, and the results are formally presented in

Theorems 5, 6, 8 and 9. In addition to using reductions from communication complexity, we also use results from extremal
graph theory to prove our claims.

2. Preliminaries

2.1. Data-stream models

In the k-pass data-stream model, an algorithm A accesses a one-way, read-only input tape, a two-way, read-write work
tape, and a one-way, write-only output tape.A is allowed an arbitrary amount of internal computation (albeit restricted to
use the tapes for input, working memory, and output) as well as an arbitrary number of the standard operations on any of
the tapes: read or write the symbol under the head, and move the head to the next position.A is also allowed k− 1 rewind
operations on the input tape, each of which resets the head to point at the first symbol on the tape. The space required
is the length of the work tape in the worst-case over all possible inputs. A randomized k-pass data-stream algorithm A can
also access a one-way, read-only random tape, which contains an infinitely long string of random bits, and must report the
correct answer with probability 1− ε for a given ε. The space required is the length of the work tape in the worst-case over
all possible inputs and random tapes.
These models were formalized by Henzinger, Raghavan, and Sajagopalan [13], who considered some neighborhood and

connectivity problems in directed graphs. Variations now underly a substantial literature in streaming algorithms, aptly
surveyed by Muthukrishnan [18].

2.2. Common neighborhoods

LetG = (V , A)be a directed graph. Inwhat follows,n = |V | andm = |A|. For each vertex a, defineN(a) = {b : (a, b) ∈ A};
we call each b ∈ N(a) a neighbor of a. Also define deg(a) = |N(a)|, the out-degree of a. Given two vertices a and b, define
N({a, b}) = N(a) ∩ N(b); we call N({a, b}) the common neighborhood of a and b.
Define CN(G) = {{u, v} : |N({u, v})| ≥ T ({u, v})}, where T ({u, v}) is a given threshold function, which may depend

on u and v. Given the threshold function, we wish to find CN(G). Since we are primarily interested in lower bounds, we
concentrate on variations with uniform thresholds, in particular the following.

(1) For all u, v ∈ V , T ({u, v}) = c , for some c ∈ [1, n− 1].
(2) For all u, v ∈ V , T ({u, v}) = αmin(|N(u)|, |N(v)|), where 0 < α ≤ 1.

Also due to our focus on lower bounds, we consider only the corresponding decision problem of determining if |CN(G)| ≥
τ , for some integer parameter τ . When τ = 1, solving the decision problem determines whether there exists any pair of
verticeswhose common neighborhood size is greater than the given threshold function;we call this the non-emptiness query
or the non-emptiness problem.
Define f εCN(n, c) to be the space required for a randomized data-stream algorithm to answer the non-emptiness query on

an n-vertex graph, for T ({u, v}) = c , with probability 1 − ε of being correct. We assume that the input graph G is given as
an adjacency list; i.e., as a sequence of the form {(a1,N(a1)); (a2,N(a2)); . . . ; (an,N(an))}, for some arbitrary ordering of
the vertices in V . Because any adjacency list corresponds to an edge list, while edge lists must be sorted to obtain adjacency
lists, this assumption provides more powerful lower bounds than those assuming edge-list inputs.

2.3. Communication complexity

We use reductions from two basic problems in communication complexity. Henzinger, Raghavan, and Rajagopalan [13]
also used these problems to lower bound several data-stream problems on graph algorithms. See Nisan and Kushilevitz [19]
for a general introduction to communication complexity.
In the following problems there are two players, A and B; their goal is to compute a function value f (x, y)with A having

parameter x and B having parameter y. Thus they need to communicate. In a one-round protocol, A sends B a single message
(sequence of bits), after which B must compute f (x, y). In a multi-round protocol, A and B alternate the transmission of
messages, and the protocol ends when one of them computes f (x, y). The cost of a protocol is the total number of bits
transmitted over all rounds in the worst case over all possible input pairs (x, y).
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• In the bit-vector index problem, denoted IND, player A has an n-bit vector x, player B has an index y ∈ {1, 2, . . . , n}, and
the function to compute is f (x, y) = xy; i.e., B must output the yth bit of the input vector x.
• In the bit-vector disjointness problem, denoted DISJ, each player A and B has an n-bit vector, x and y respectively, under
the assumption that there is at most one index i such that xi = yi = 1; f (x, y) = 1 if there exists such an index i, and
f (x, y) = 0 otherwise.1

We are particularly interested in randomized protocols for these problems.We assume the private-coin, two-sided model,
in which both A and B have access to private sources of random bits and, for a given error parameter ε, the reported answer
must be correct with probability 1 − ε. The cost in this model is the worst-case number of bits transmitted in all rounds
over all possible inputs and random choices of A and B.
Denote by f εIND(n) and f

ε
DISJ(n) the respective complexities of the IND and DISJ functions for some arbitrary but fixed

protocol in this model. Kremer, Nisan, and Ron [16, Theorem 3.7] show that for any one-round protocol and constant
ε < 1/3, f εIND(n) = Ω(n). Bar-Yossef et al. [1, Theorem 6.6] show that for any multi-round protocol, f

ε
DISJ(n) ≥

n
4

(
1− 2

√
ε
)
.

2.4. Previous results on streaming graph problems

While plentiful results on streaming algorithms for many types of problems now grace the literature [18], such results
for graph problems are still relatively few.
Henzinger, Raghavan, and Sajagopalan [13] give upper and lower bounds for solving various neighbor and path queries

on graphs. Bar-Yossef, Kumar, and Sivakumar [2] give a general reduction tool for a class of ‘‘list-efficient’’ primitives and use
it to devise a streaming algorithm for counting triangles in undirected graphs. Feigenbaumet al. [9,10] give streaming results
for various distance problems on undirected graphs, including the construction of spanners, which was also discussed by
Elkin and Zhang [7]. Feigenbaum et al. also give streaming results for computing matchings [9] as well asΩ(n) results for a
general class of ‘‘balanced’’ graph problems [10].
For computing non-emptiness in directed graphs, Buchsbaum, Giancarlo, and Westbrook [4] claimed results similar to

ours. Their results for single-pass algorithms relied on a lemma [4, Lemma 2.1], the proof of which is incorrect. Specifically,
they assume that a particular association from a graph class to a memory image of 2g possible configurations is onto.
This assumption, however, is unjustified: one is not free to reduce the memory size to make it true, because g is fixed
by assumption. For O(1)-pass algorithms, they use a different proof technique to show anΩ(n)-bit lower bound, which we
strictly improve.
Our results show that finding common neighborhoods does not even fit into the ‘‘semi-streaming’’ model of Feigenbaum

et al. [9], which allows O(n logO(1) n) bits of space to process an n-vertex input graph.

3. Single-pass data-stream algorithms

Lemma 1. Assume that for a given s, m, and integer c ∈ [2, s], there exists an undirected graph Gu with s vertices and m edges
that does not contain K2,c as a subgraph. Then there exists a family of 2m directed graphs, each of which has 3s+ c − 1 vertices,
for which any randomized, single-pass data-stream algorithm A that with probability 1− ε correctly answers the non-emptiness
query for T ({u, v}) = c must use at least f εIND(m) bits of space.

Proof. Form directed graph G by arbitrarily directing the edges of Gu; there are 2m possible such G’s. Now augment G so that
each original vertex has out-degree at least c and has a unique neighbor not shared by any other vertex, as follows.
Assign an arbitrary labeling 1, . . . ,m to the original arcs. For each original vertex u, add two new vertices, fu and hu, and

add arc (u, fu); this is the only arc to fu. Each original vertex now has out-degree at least one. We call hu the shadow vertex
of u and will use it below. Finally add c − 1 new vertices g1, . . . , gc−1, and for each original vertex u′ with fewer than c
neighbors, add arcs (u′, gi) for 1 ≤ i ≤ c − deg(u′). Call this augmented graph G′. See Fig. 1(a–b).
Note that only original vertices have positive out-degree, each original vertex now has out-degree at least c , and G′ still

has no K2,c . The latter claim follows because:

(1) Only original vertices have non-zero out-degree.
(2) Any original vertex u has fu as a neighbor not shared with any other vertex and thus requires degree exceeding c to have
c neighbors in common with another vertex.

(3) Any vertex u with degree exceeding c has only fu in addition to its original neighbors, no other vertex is adjacent to fu,
and no K2,c existed before the augmentation.

Now we reduce IND to the non-emptiness problem. Players A and B both start with knowledge of G′.
Player A has anm-bit vector z. For each 1 ≤ i ≤ m, if zi = 1, hemaintains the original ith arc, say (a, b), in the augmented

graph; otherwise, he changes this arc to (a, hb). Call the result G′′. Player A then runs A on G′′ and transmits the final memory
image (contents of the work tape), which represents the entire state of A, to Player B.

1 The assumption that x and y share at most one 1-bit is typical in the literature but not strictly necessary for our reduction.
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Fig. 1. (a) A directed graph G on vertices a, b, d, e, kwith 7 labeled arcs and no K2,3 . (b) The augmented graph G′ , for c = 3. (c) A possible instance of G′′′ . In
this example, Player A’s bit vector is 1011100, so the original arcs (a, b), (b, k), and (k, d) are replaced by (a, hb), (b, hk), and (k, hd). Player B’s query index
is 2, corresponding to arc (a,b), so he adds vertex v with N(v) = {fa, b, k, hk}; alternatively, he could set N(v) = {fa, b, d, hd} or N(v) = {fa, b, e, he}, not
shown.

Player B has a query index i ∈ [1,m], which he will use to create a new vertex v and an appropriate neighborhood. He
will finish running algorithm A, starting from the received memory image, by feeding (v,N(v)) to it, so that the answer to
the non-emptiness query will be identical to bit i in A’s input vector z.
Let (a, b) be the ith original arc. First set the neighbors of v to be the following: b, fa, and any c − 2 additional neighbors

of a in G′. Then add to the neighbor set of v the shadow vertex for each original vertex in N(v) except that for b. Call the
result G′′′. See Fig. 1(c). Notice that:
(1) Based on the choices of player A induced by vector z, for each pair x, y of original vertices, atmost one of (x, y) and (x, hy)
appears as an arc in G′′. Thus any v′ 6= v may have at most c common neighbors with v in G′′′.

(2) Because only a and v have arcs to fa, only amay have c common neighbors with v in G′′′.
(3) If bit iwas zero in the input x of player A, then b is not a common neighbor of a and v, and thus CN(G′′′) = ∅; if bit iwas
one, then CN(G′′′) ⊇ {{a, v}}.

Thus the output of A after B’s additional input reports an answer to original instance of IND with the same correctness
criteria. Because the only message transmitted from A to B was the memory image of A after the modified graph was input
to it, the lemma follows.
Remark 1. If the directed graph G in the preceding proof has only vertices of degree r and 0, then any graph on which A
is run has only vertices of degree r + 1 and 0 (except v). Thus we can change the threshold function to be T ({u, v}) =
αmin(|N(u)|, |N(v)|) so long as c ≤ α(r + 1), and the proof will still work if we ensure that v has at least r + 1 neighbors:
b, fa, and dα(r + 1)e − 2 neighbors of the respective vertex a along with any shadow vertices of such, and possibly some
new vertices. The number of extra vertices needed is linearly bounded, so the lower bound applies asymptotically to any
algorithm solving the non-emptiness problem for T ({u, v}) = αmin(|N(u)|, |N(v)|).
For s and c denote by ex(s, K2,c) the maximum number of edges a graph with s vertices may have without containing

a subgraph isomorphic to K2,c . Lemma 1 implies that f εCN(n, c) = Ω(ex(n, K2,c)). Bounding ex(n, K2,c) in terms of n and c
is a problem in extremal graph theory, related to an open problem posed by Zarankiewicz [24]. Füredi [11] has given an
algebraic graph construction to gain exact asymptotics for this problem. The following theorem and proof closely match
Füredi’s result. We specify them to make the constructed graphs regular, which will benefit the sequel.

Theorem 2 (Füredi [11]). For any prime power q and c such that q−1c−1 is an integer, there exists a bipartite q-regular graph on

two classes of q
2
−1
c−1 vertices that has no K2,c as a subgraph.

Proof. For simplicity, let t = c − 1. Let F be the q-element field, and let h ∈ F be an element of order t . Let H = {hα : α =
0, 1, . . . , t − 1} be the set of powers of h.
Consider the set F × F \ {(0, 0)} and the following equivalence relation ∼: for any pairs (x, y) and (x′, y′), let (x, y) ∼

(x′, y′) if and only if there exists an α such that x′ = xhα and y′ = yhα . Each equivalence class contains t pairs; thus the
number of equivalence classes is q

2
−1
t =

q2−1
c−1 .

Consider a bipartite graph on vertex sets A and B, each vertex set corresponding to the set of equivalence classes of
F× F \ {(0, 0)}. For each (x, y) ∈ A and (x′, y′) ∈ B, connect them with an edge if and only if xx′ + yy′ ∈ H .
Let (x, y) ∈ A be a vertex. Assume without loss of generality that x 6= 0. Then for any y′ ∈ F and α ∈ {0, 1, . . . , t − 1}

there is a unique solution for x′ to the equation xx′ + yy′ = hα . There are thus tq solutions (x′, y′) to xx′ + yy′ ∈ H , which
form equivalence classes of size t each. Therefore (x, y) in A has q neighbors in B.
Consider a pair (x, y) and (x′, y′) of distinct vertices in A. For any common neighbor (u, v) ∈ B of them, the following

equations hold for some α, β ∈ {0, 1, . . . , t − 1}:

xu+ yv = hα

x′u+ y′v = hβ .
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Considering this as a linear system of equations in variables u, v it follows that:

• If the determinant∣∣∣∣x y
x′ y′

∣∣∣∣
is non-zero, then for each α, β the equation has a unique solution for (u, v). There are t2 choices for the pair α, β . As the
solutions come in equivalence classes of size t , the vertices (x, y) and (x′, y′) have exactly t common neighbors.
• If the above determinant is zero, then there is an element g ∈ F \ {0} such that x′ = xg and y′ = yg . (Recall that neither
(x, y) nor (x′, y′) can be (0, 0).) Then the system of equations has no solution unless hβ = hαg , from which g ∈ H , and
thus (x, y) ∼ (x′, y′), which is a contradiction.

We formalize the end of the preceding proof for later use.

Lemma 3. For the bipartite graph for parameters q and c constructed by Theorem 2, the following holds: The vertices of A can be
partitioned into q+ 1 classes, each having q−1c−1 elements, such that any two vertices in the same class have no common neighbors
and any two vertices in different classes have exactly c − 1 common neighbors.

Proof. Recall the construction in the proof of Theorem 2. For any (x, y) ∈ A, consider the vertices (x′, y′) = (xg, yg) ∈ A for
g ∈ F \ {0}. As g traverses the cosets of H , we get a class of q−1t vertices in A, no pair of which has a common neighbor. Thus

we can classify the vertices of A into q
2
−1
t ·

t
q−1 = q+ 1 classes, each having

q−1
t elements, such that any two vertices in the

same class have disjoint neighborhoods, and any two vertices from different classes share exactly t common neighbors.

The following upper bound will be essential in giving near-optimal algorithms for the common neighborhood problem.

Claim 4. For directed graphs ex(n,
−→
K2,c) ≤

√
cn3/2.

Proof. Theorem 2.3 of Bollobás [3, p. 310] states that

ex(n, Ks,t) ≤
1
2
(s− 1)1/t(n− t − 1)n1−1/t +

1
2
(t − 1)n.

The claim follows by setting s = c and t = 2.

We are now ready to state the main theorems of this section.

Theorem 5. For any constant ε < 1/3, there exist infinitely many values of n and c such that f εCN(n, c) = Ω(
√
cn3/2) for one-

pass data stream algorithms. There exists a deterministic, one-pass data stream algorithm that solves the non-emptiness problem
with T ({u, v}) = c using O(

√
cn3/2) cells (O(

√
cn3/2 log n) bits) of space.

Proof. By Theorem 2, for infinitely many values of s and c there exists a graph with s vertices andΩ(
√
cs3/2) arcs that does

not contain K2,c . The lower bound follows from Lemma 1 by setting n = 3s+ c− 1 and using the result from Kremer, Nisan,
and Ron [16, Theorem 3.7] that for any one-round protocol and constant ε < 1/3, f εIND(k) = Ω(k).
For the upper bound consider the following algorithm. Store the entire graph and process it off-line if the number of arcs

does not exceed
√
cn3/2. Otherwise by Claim 4 the proper answer to the non-emptiness query is ‘‘yes.’’

To get a similar lower bound for the non-emptiness problem with T ({u, v}) = αmin(|N(u)|, |N(v)|) we use Remark 1
with the graphs of Theorem 2.

Theorem 6. For any α ∈ (0, 1], there exist infinitely many values of n such that f εCN(n, αmin(|N(u)|, |N(v)|)) = Ω(αn2).

Proof. For any fixed α > 0, we can fix a β ∈ (α/2, α) such that there are infinitely many prime powers q and c
dividing q − 1 with c

q−1 ∈ [β, α]. Thus there are graphs for infinitely many n having n = 2
q2−1
c = Θ(q/α) vertices

andΘ(nq) = Θ( q
2

α
) = Θ(α

q2

α2
) = Θ(αn2) arcs. The theorem follows from Remark 1.

4. O(1)-pass data-stream algorithms

In this section we will derive bounds similar to those of the previous section. As the algorithms are allowed a constant
number of passes over the input, the players can exchange messages in both directions, so we can no longer use a small and
isolated augmentation of the graph depending only on the input of one player. This makes the reductionmore complex, and
our main tool will be the DISJ problem, for which multi-round protocols have been bounded.

Lemma 7. Assume that for some m and d > 0 there exists a bipartite graph G0(X, Y , E) with m edges such that:

(1) X is partitioned into known classes X1, . . . , Xk;
(2) no pair of vertices in any one class of X has more than one common neighbor;
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(3) no pair of vertices in two distinct classes of X has more than d common neighbors.

Then for any c > d there exists a family of directed graphs with 3|X | + |Y | + k(c − 2) vertices each for which any randomized,
O(1)-pass data-stream algorithm A that with probability 1 − ε correctly answers the non-emptiness query for T ({u, v}) = c
must useΩ(f εDISJ(m)) bits of space.

Proof. Wewill give a reduction fromDISJ, using a similar framework to the reduction used in the proof of Lemma 1. UsingG0
wewill define a family of directed graphs Gwith three classes X ′, Y ′, and Z ′ of vertices. Neighborhoods of vertices in X ′ (rsp.,
Y ′) will depend on the input vector x of player A (rsp., y of player B); vertices in Z ′ will have out-degree zero. Then player A
will run A on the adjacency lists of vertices in X ′, after which he will transmit the memory image of A to player B. Player B
will then continue the run of A by inputting the adjacency lists of vertices in Y ′ and transmit the resulting memory image
back to player A. A and B will iterate this procedure, always starting from the most current memory image received, until
one declares the answer to the non-emptiness query. By construction, this answer will be identical to that for the instance
of DISJ, and hence the lower bound for the latter will apply to the total number of bits transmitted in the protocol for A. By
assumption only O(1) passes are used, so the bound applies asymptotically to at least one pass.
Assign an arbitrary labeling 1, . . . ,m to the edges of graph G0. Let the vertices of graph G be the following:

• for each vertex u ∈ X in G0, three vertices µ0(u), µ1(u), µ2(u);
• for each vertex v ∈ Y in G0, one vertex ν(v);
• for 1 ≤ i ≤ k, c − 2 vertices γ i1, . . . , γ

i
c−2.

Define the arcs of G as follows. (See Fig. 2.)

• For each u ∈ X in G0, let i be such that u ∈ Xi, and create arcs (µ1(u), µ0(u)), (µ2(u), µ0(u)), and for 1 ≤ j ≤ c − 2,
(µ1(u), γ ij ) and (µ2(u), γ

i
j ). Thus µ0(u), γ

i
1, γ

i
2, . . . , γ

i
c−2 are common neighbors of µ1(u) and µ2(u) in G.

• For each i such that bit xi = 1, create arc (µ1(u), ν(v)) corresponding to the ith edge (u, v) of G0.
• For each i such that bit yi = 1, create arc (µ2(u), ν(v)) corresponding to the ith edge (u, v) of G0.

Define vertex classes X ′ = {µ1(u) : u ∈ X}, Y ′ = {µ2(u) : u ∈ X}, and Z ′ = {µ0(u) : u ∈ X} ∪ {ν(v) : v ∈ Y } ∪ {γ ij :
1 ≤ i ≤ k, 1 ≤ j ≤ c− 2}. Then based upon G0 and their respective input vectors, players A and B each know the vertex set
of G; player A knows the neighbors of vertices in X ′; and player B knows the neighbors of vertices in Y ′. Vertices in Z ′ have
out-degree zero.
For any a, b ∈ X such that a 6= b, we claim µ1(a) and µ1(b) in G have at most c − 1 common neighbors. If a and b are in

the same class Xi, then µ1(a) and µ1(b) have c − 2 common neighbors γ i1, . . . , γ
i
c−2 plus a common neighbor ν(z) for any

z that is a common neighbor of a and b in G0; by assumption there is at most one such z. If, on the other hand, a and b are in
distinct classes of X , then µ1(a) and µ1(b) only have common neighbors ν(z) for all z that are common neighbors of a and
b in G0; by assumption there are at most d < c such z’s. Similarly the pairs µ1(a), µ2(b); µ2(a), µ1(b); and µ2(a), µ2(b)
have at most c − 1 common neighbors in G.
Thus the only pairs of vertices in Gwith at least c common neighbors are of the form µ1(u), µ2(u) for some u ∈ X . Such

a pair has c common neighbors if and only if there is some v ∈ Y such that (µ1(u), ν(v)) and (µ2(u), ν(v)) are arcs in G,
which occurs if and only if the ith bit is 1 in both input vectors, where (u, v) is the ith edge in G0.
The answer to the non-emptiness query is therefore identical to that for the instance of DISJ. Note that it does not matter

whether the specification of DISJ assumes that the input vectors have at most one common bit set.

We can use Füredi’s constructions to bound the space requirement in terms of the number n of vertices for a fixed c.

Theorem 8. For any fixed c > 2, there exist infinitely many values of n such that f εCN(n, c) = Ω(n3/2(1− 2
√
ε)) for O(1)-pass

data stream algorithms.

Proof. Theorem 2 posits the existence of K2,2-free bipartite graphs on s+ s vertices withΘ(s3/2) edges for infinitely many
s. To any such graph, apply Lemma 7with just one K2,2-free class of vertices, and set n = 4s+ c−2. Bar-Yossef et al.’s result
[1, Theorem 6.6] that for any multi-round protocol, f εDISJ(k) ≥

k
4

(
1− 2

√
ε
)
, completes the proof.

To gain asymptotics similar to Theorem 5 for the space needed in the O(1)-pass model, we exploit the more detailed
view given by Lemma 3.

Theorem 9. There exist infinitelymany values of n and c with c = O(n1/3) such that f εCN(n, c) = Ω(
√
cn3/2(1−2

√
ε)) for O(1)-

pass data stream algorithms. This is sharp up to a logarithmic factor; i.e., there exists an algorithm that solves the non-emptiness
query with O(

√
cn3/2 log n) bits of space.

Proof. For infinitely many values of q and c , Lemma 3 posits the existence of bipartite graphs G0(X, Y , E) such that
|X | = |Y | = q2−1

c−1 ; |E| = q
q2−1
c−1 ; and X can be partitioned into q+ 1 classes of

q−1
c−1 vertices each, such that any two vertices

in identical classes have disjoint neighborhoods, and any two vertices in different classes have c− 1 common neighbors. To
any such graph, apply Lemma 7with d = c−1—the partition of X is given by Lemma 3—and set n = 4 q

2
−1
c−1 + (q+1)(c−2).



308 A.L. Buchsbaum et al. / Theoretical Computer Science 407 (2008) 302–309

Fig. 2. (a) Bipartite graph G0(X, Y , E)with X = {u1, . . . , u6} partitioned into two, circled classes; Y = {v1, . . . , v6}; and 12 labeled edges. G0 satisfies the
hypothesis for, e.g., d = 3. (b) Directed graph G for c = 4 induced by the bit vectors x = 101100010110 and y = 100110100101.

To keep n = Θ(
q2

c ), we must further bound qc = O(
q2

c ), yielding the requirement c = O(
√
q). Thus q

2

c = Ω(q3/2), so it
suffices to assume c = O(n1/3).
Now, |E| = q q

2
−1
c−1 = Θ(

q3

c ) = Θ(
√
c q

3

c3/2
) = Θ(

√
cn3/2). Again, Bar-Yossef et al.’s result [1, Theorem 6.6] completes the

proof of the lower bound. The upper bound was presented in the proof of Theorem 5.

5. Conclusion

We have provided lower bounds on the space needed for O(1)-pass, randomized data-stream algorithms to determine
if a given directed graph has a pair of vertices with a common neighborhood of a given size. An open problem is to remove
the restriction ‘‘c = O(n1/3)’’ from the result of Theorem 9; currently it is an artifact of the proof construction.
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