
Theoretical Computer Science 407 (2008) 532–544

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Monotonicity in digraph search problemsI

Boting Yang ∗, Yi Cao
Department of Computer Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada

a r t i c l e i n f o

Article history:
Received 8 March 2008
Received in revised form 6 August 2008
Accepted 15 August 2008
Communicated by D.-Z. Du

Keywords:
Digraph searching
Pursuit-and-evasion problem
Monotonicity
NP-completeness

a b s t r a c t

In this paper, we study the monotonicity and complexity of five digraph search problems:
directed searching, mixed directed searching, internal directed searching, internal strong
searching, and internal weak searching. In the first three search problems, both searchers
and intruder must follow the edge directions when they move along edges. In the internal
strong search problem, the intruder must move in the edge directions but searchers need
not. In the internal weak search problem, searchers must move in the edge directions
but the intruder need not. There are three actions for searchers in the first two search
problems: placing, removing and sliding, and there are only two actions for searchers
in the last three internal search problems: placing and sliding. Note that the internal
strong searching is a ‘‘strong’’ version of the internal directed searching, the internal weak
searching is a ‘‘weak’’ version of the internal directed searching, and the internal edge
searching is an analogy of the internal directed searching on undirected graphs. We prove
that the first three problems are monotonic and the last two problems are non-monotonic,
respectively. It is interesting that the internal directed searching is monotonic while the
internal strong searching, the internal weak searching and the internal edge searching are
all non-monotonic. We also show that the first four problems are NP-complete and the last
problem is NP-hard. We solve the open problem on whether a non-monotonic searching
problem can be NP-complete.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world problems can be naturally modeled by graph search problems. Examples include: capturing intruders
in a building, clearing a complex system of interconnected pipes which are contaminated by some noxious gas, and killing
a computer virus in a network system. The meaning of a cleared or contaminated edge varies with the problems. For
example, in the problem of capturing intruders, a cleared edge means that there is no intruder hiding along this edge, while
a contaminated edge means that there may be some intruders hiding along this edge.
In general, a graph or digraph search problem is to find the minimum number of searchers required to capture an intruder

hiding in a graph or digraph. In the edge search problem introduced in [14], there are three types of actions for searchers,
i.e., placing, removing and sliding, and an edge is cleared only by a sliding action in a proper way. In the node search problem
introduced in [11], there are only two types of actions for searchers, i.e., placing and removing, and an edge is cleared if both
end vertices are occupied by searchers. Kirousis and Papadimitriou [11] showed that the node search number is equal to the
pathwidth plus one. Bienstock and Seymour [5] introduced the mixed search problem that combines the edge search and
node search problems. Thus, in the mixed search problem, an edge is cleared if both end vertices are occupied by searchers

I A preliminary version of part of this work was presented in the Proceedings of the 4th International Conference on Theory and Applications of Models
of Computation, 2007.
∗ Corresponding author. Tel.: +1 306 585 4774; fax: +1 306 585 4745.
E-mail addresses: boting@cs.uregina.ca (B. Yang), caoyi200@cs.uregina.ca (Y. Cao).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.025

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:boting@cs.uregina.ca
mailto:caoyi200@cs.uregina.ca
http://dx.doi.org/10.1016/j.tcs.2008.08.025

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 533

Table 1
Monotonicity and NP-completeness of search problems
Search problem Monotonicity Complexity

Directed search Monotonic NP-complete
Mixed directed search Monotonic NP-complete
Internal directed search Monotonic NP-complete
Internal strong search Non-monotonic NP-complete
Internal weak search Non-monotonic NP-hard
Internal edge search Non-monotonic NP-hard

or cleared by a sliding action in a proper way. In the mixed search problem, searchers have three actions: placing, removing
and sliding. Barrière et al. [4] introduced the internal edge search problem, inwhich searchers have only two actions: placing
and sliding. A survey of graph searching results can be found in [1,8].
When studying search problems from a computational complexity viewpoint, we are interested in deciding the search

number of a graph. Megiddo et al. [14] showed that the edge search problem is NP-hard. This problem belonging to the NP
class follows from the monotonicity result of [12] in which LaPaugh showed that recontamination of edges cannot reduce
the number of searchers needed to clear a graph.Monotonicity is a very important issue in graph search problems. Bienstock
and Seymour [5] proposed a method that gives a succinct proof for the monotonicity of the mixed search problem, which
implies themonotonicity of the edge search problemand the node search problem. Fomin and Thilikos [7] provided a general
framework that can unify monotonicity results in a unique min–max theorem.
An undirected graph is not always sufficient in representing all the information of a real-world problem. For example,

directed edges are required if the graphmodels one-way streets in a road system. Johnson et al. [10] generalized the concepts
of tree-decomposition and treewidth to digraphs and introduced a digraph search problem accordingly. Reed [15] defined
another treewidth on digraphs. Safari [16] introduced a new parameter of digraphs, d-width, which is related to the directed
treewidth of a digraph. Evans and Safari [6] identified the class of digraphs whose directed treewidth and d-width are both
equal to one. Barat [3] generalized the cops-and-robber game to digraphs. He proved that an optimal monotonic search
strategy for a digraph needs at most one more searcher than the search number of the digraph. There are several other
digraph searching models studied in [9,13]. In all of the above digraph search problems, both searchers and intruders can
stay only on vertices. Yang and Cao [18] introduced the strong search model in which the intruder must follow the edge
directions but searchers need not when they move along edges. Yang and Cao [19] also introduced the weak search model
in which searchers must follow the edge directions but the intruder need not when they move along edges. They proved
that both the strong search model and the weak search model are monotonic. In [20] Yang and Cao introduced the directed
vertex separation and investigated the relations between different digraph search models, directed vertex separation, and
directed pathwidth. In the digraph searchmodels in [18,19], there are three types of actions for searchers: placing, removing
and sliding. Alspach et al. [2] proposed three digraph search models, the internal directed search, the internal strong search
and the internal weak search, in which searchers cannot be removed from digraphs. In all digraph search problems in [2,18,
19], both searchers and intruders can stay on both vertices and edges.
The main problem left unresolved in [2] is the monotonicity issue of the three internal search problems on digraphs.

In this paper, we prove that the internal directed search problem is monotonic, and the internal strong and the internal
weak search problems are non-monotonic. These results are surprising because, while the internal directed searching is
monotonic, the internal edge searching, which is an analogy of the internal directed searching on undirected graphs, is
non-monotonic [4], the strong version of the internal directed searching (i.e., internal strong searching) is non-monotonic,
and the weak version of the internal directed searching (i.e., internal weak searching) is also non-monotonic. In this paper,
we also introduce and study the directed searching and mixed directed searching. The definitions of these problems are
given later in Section 2. We prove the monotonicity of the mixed directed search problem by using the method proposed
by Bienstock and Seymour [5]. We also prove the monotonicity of the directed search problem. From these monotonicity
results, we prove that the mixed directed search, directed search, and internal directed search problems are NP-complete,
respectively. In the open problem session of the first GRASTA workshop1, Dimitrios Thilikos proposed an open problem
on whether a non-monotonic searching problem can be NP-complete. We solve this problem by showing that the internal
strong search problem is NP-complete although it is non-monotonic. For the internal weak search problem, we can only
prove that it is NP-hard, and we conjecture that it is also NP-complete. Table 1 summarizes these results.
This paper is organized as follows. In Section 2, we give some definitions and notation. In Section 3, we prove the

monotonicity of themixed directed search problem. In Section 4, we prove themonotonicity of the directed search problem.
In Section 5, we prove that the internal directed search problem is monotonic and both internal strong and internal weak
search problems are non-monotonic. In Section 6, we show the NP-completeness results. Finally, we conclude this paper in
Section 7.

1 The First Workshop on Graph Searching, Theory and Applications (GRASTA), Crete, Greece, October 9–12, 2006.

534 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

2. Definitions and notation

All graphs and digraphs in this paper contain at least one edge. Throughout this paper, we use D to denote a digraph,
(u, v) to denote a directed edge with tail u and head v, and u v to denote a directed path from u to v. An undirected
path between two vertices u, v ∈ V (D) is defined as a path between u and v in the underlying graph of D, and is denoted
as u ∼ v. We assume that before the first action is carried out in any search model studied in this paper, D contains one
intruder and no searchers, and all edges of D are contaminated. This means that the intruder is invisible and may hide on
any edge or vertex of D initially. In any search model, a search strategy is a sequence of searchers’ actions such that the final
action leaves all edges of D uncontaminated (or cleared), which means that the intruder is captured. The digraph D is cleared
if all of its edges are cleared.
In the internal directed search model, both searchers and intruder must move in the edge directions. The intruder can

move at a great speed at any time from vertex u to vertex v along a directed path u v that contains no searchers. There
are two types of actions for searchers: (1) placing a searcher on a vertex, and (2) sliding a searcher along an edge from its
tail to its head. A contaminated edge (u, v) can be cleared in one of two ways by a sliding action: (1) sliding a searcher from
u to v along (u, v)while at least one searcher is located on u, or (2) sliding a searcher from u to v along (u, v)while all edges
with head u are already cleared. A cleared edgewill be recontaminated if there is a directed path containing this cleared edge
and a contaminated edge pointing to the cleared edge such that there are no searchers stationing on any internal vertex of
this directed path. The minimum number of searchers needed to clear D in this model is called the internal directed search
number of D, denoted by ids(D).
In the internal strong search model, the intruder must move in the edge directions but searchers need not. The intruder

can move at a great speed at any time from vertex u to vertex v along a directed path u v that contains no searchers.
There are two types of actions for searchers: (1) placing a searcher on a vertex, and (2) sliding a searcher along an edge
from one end vertex to the other. A contaminated edge (u, v) can be cleared in one of three ways by a sliding action: (1)
sliding a searcher from u to v along (u, v)while at least one searcher is located on u, (2) sliding a searcher from u to v along
(u, v) while all edges with head u are already cleared, or (3) sliding a searcher from v to u along the edge (u, v). A cleared
edge will be recontaminated if there is a directed path containing this cleared edge and a contaminated edge pointing to the
cleared edge such that there are no searchers stationing on any internal vertex of this directed path. The minimum number
of searchers needed to clear D in this model is called the internal strong search number of D, denoted by iss(D).
In the internal weak search model, searchers must move in the edge directions but the intruder need not. The intruder

can move at a great speed at any time from vertex u to vertex v along an undirected path u ∼ v that contains no searchers.
There are two types of actions for searchers: (1) placing a searcher on a vertex, and (2) sliding a searcher along an edge from
its tail to its head. A contaminated edge (u, v) can be cleared in one of two ways by one sliding action: (1) sliding a searcher
from u to v along (u, v)while at least one searcher is located on u, or (2) sliding a searcher from u to v along (u, v)while all
edges incident with u except (u, v) are already cleared. A cleared edge will be recontaminated if there is an undirected path
containing this cleared edge and a contaminated edge such that there are no searchers stationing on any internal vertex of
this undirected path. The minimum number of searchers needed to clear D in this model is called the internal weak search
number of D, denoted by iws(D).
In directed and mixed directed search models, both searchers and intruder must move in the edge directions when they

slide along edges. The intruder can move at a great speed at any time from vertex u to vertex v along a directed path u v
that contains no searchers. A cleared edge will be recontaminated if there is a directed path containing this cleared edge and
a contaminated edge such that there are no searchers stationing on any internal vertex of this directed path.
In the directed searchmodel, there are three types of actions for searchers: (1) placing a searcher on a vertex, (2) removing

a searcher from a vertex, and (3) sliding a searcher along an edge from its tail to its head. A contaminated edge (u, v) can be
cleared in one of two ways by a sliding action: (1) sliding a searcher from u to v along (u, v) while at least one searcher is
located on u, or (2) sliding a searcher from u to v along (u, v)while all edges with head u are already cleared. The minimum
number of searchers needed to clear D in the directed search model is called the directed search number of D, denoted by
ds(D).
In the mixed directed search model, there are four types of actions for searchers: (1) placing a searcher on a vertex that

is not occupied, (2) removing a searcher from a vertex, (3) clearing an edge whose two end vertices are occupied, and (4)
sliding a searcher from u to v along an edge (u, v) satisfying that before the sliding, all in-edge of u are cleared and v is not
occupied. A contaminated edge (u, v) can be cleared by action (3) or (4). The minimum number of searchers needed to clear
D in the mixed directed search model is called themixed directed search number of D, denoted by xds(D).
In the above five searchmodels, onedifference iswhether searchers and intruder obey the edgedirectionwhen theymove

along edges. Another difference is whether searchers can be removed from digraphs. We summarize these differences in
Table 2.
We say that a vertex in D is occupied at some moment if at least one searcher is located on this vertex at this moment.

Any searcher that is not on D at some moment is said free at this moment. Note that all searchers are initially free.
LetM be one of the above five search models on digraphs and sM(D) denote the search number of digraph D under the

modelM. Let S be a search strategy ofM and Ai be the set of cleared edges immediately after the ith action. S ismonotonic
if Ai ⊆ Ai+1 for each i. We say that the modelM ismonotonic if for any digraph D, there exists a monotonic search strategy
that can clear D using sM(D) searchers. We say that the modelM is non-monotonic if there exists a digraph D such that any

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 535

Table 2
Differences between search models

Search models Directed or mixed directed Int. directed Int. strong Int. weak

Searchers obey direction Yes Yes No Yes
Intruder obeys direction Yes Yes Yes No
Searchers can be removed Yes No No No

Table 3
Notation of search numbers

Search problem Search number

Directed search ds
Monotonic directed search mds
Mixed directed search xds
Internal directed search ids
Monotonic internal directed search mids
Internal strong search iss
Monotonic internal strong search miss
Internal weak search iws
Monotonic internal weak search miws
Node search ns

monotonic search strategy requires more than sM(D) searchers to clear D. Monotonicity can be defined similarly for other
search models. Table 3 summarizes the notation used in this paper.

3. Monotonicity of the mixed directed search model

In this section, we will show that the mixed directed search model is monotonic, which means that recontamination
does not help to reduce the mixed directed search number of a digraph. We will extend the method proposed by Bienstock
and Seymour [5]. We first define the exposed vertex set.

Definition 3.1. Let D be a digraph. For an edge set X ⊆ E(D), a vertex in V (D) is an exposed vertex with respect to X if it is
the tail of an edge in X and the head of an edge in E(D)− X . The set of all exposed vertices with respect to X is denoted by
∂(X).

In the directed or mixed directed search model, it follows from Definition 3.1 that at any moment, an exposed vertex
with respect to the cleared edge set must be occupied by a searcher. Thus, such an exposed vertex is also called a critical
vertex. The following result appeared in [3] (we give a proof for completeness).

Lemma 3.2. For any X, Y ⊆ E(D), |∂(X ∩ Y)| + |∂(X ∪ Y)| ≤ |∂(X)| + |∂(Y)|.

Proof. We have to prove that every exposed vertex counted on the left-hand side is also counted at least as many times on
the right-hand side. If v ∈ ∂(X ∩ Y) and v ∈ ∂(X ∪ Y), then there is an edge e ∈ X ∩ Y with tail v and there is an edge
e′ /∈ X ∪ Y with head v. Thus e ∈ X with tail v and e′ /∈ X with head v, and e ∈ Y with tail v and e′ /∈ Y with head v.
Therefore v ∈ ∂(X) and v ∈ ∂(Y). Similarly, if v ∈ ∂(X ∩ Y), then v ∈ ∂(X) or v ∈ ∂(Y); and if v ∈ ∂(X ∪ Y), then v ∈ ∂(X)
or v ∈ ∂(Y). �

Definition 3.3. Let D be a digraph. A campaign in D is a sequence (X0, X1, . . ., X`) of subsets of E(D) such that X0 = ∅,
X` = E(D) and |Xi − Xi−1| ≤ 1, for 1 ≤ i ≤ `. The width of the campaign is defined as max0≤i≤n |∂(Xi)|. A campaign is
progressive if X0 ⊆ X1 ⊆ · · · ⊆ X` and |Xi − Xi−1| = 1, for 1 ≤ i ≤ `.

Similar to [3,5], we have the following lemma for the progressive campaign (we give a proof for completeness).

Lemma 3.4. If there is a campaign in D of width at most k, then there is a progressive campaign in D of width at most k.

Proof. Choose a campaign (X0, X1, . . . , X`) of width at most k such that it satisfies two conditions: (i)
∑n
i=0(|∂(Xi)| + 1) is

minimum, and (ii) subject to (i),
∑n
i=0 |Xi| is minimum. We will show that (X0, X1, . . . , X`) is progressive.

If |Xj−Xj−1| = 0, 1 ≤ j ≤ `, then Xj ⊆ Xj−1 and (X0, . . ., Xj−1, Xj+1, . . ., X`) is a campaign of width at most k, contradicting
condition (i). Thus |Xj − Xj−1| 6= 0. Since |Xj − Xj−1| ≤ 1, we know that |Xj − Xj−1| = 1, 1 ≤ j ≤ `.
We now prove that Xj−1 ⊆ Xj, 1 ≤ j ≤ `. If |∂(Xj−1 ∪ Xj)| < |∂(Xj)|, then |∂(Xj−1 ∪ Xj)| < k and (X0, . . . , Xj−1, Xj−1 ∪

Xj, Xj+1, . . . , X`) is a campaign of width at most k, contradicting condition (i). Thus, we have |∂(Xj−1 ∪ Xj)| ≥ |∂(Xj)|,
1 ≤ j ≤ `. From Lemma 3.2, we know that |∂(Xj−1 ∩ Xj)| ≤ |∂(Xj−1)|. Hence, (X0, . . ., Xj−2, Xj−1 ∩ Xj, Xj, . . ., X`) is a
campaign of width at most k. From condition (ii), we have |Xj−1 ∩ Xj| ≥ |Xj−1|which implies that Xj−1 ⊆ Xj.
By Definition 3.3, we know that (X0, X1, . . . , X`) is progressive. �

536 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

In the remainder of this section, we will prove that the mixed directed search problem is monotonic. The searchers’
actions of the mixed directed searching look more complicated than those in other models. It is necessary to describe them
precisely as follows.

Definition 3.5. Let S = (s1, s2, . . . , s`) be a mixed directed search strategy for a digraph D. For 1 ≤ i ≤ `, let Ai be the set of
cleared edges and Zi be the set of occupied vertices immediately after action si such that ∂(Ai) ⊆ Zi. Let A0 = Z0 = ∅. Each
action si, 1 ≤ i ≤ `, is one of the following four types:

(a) (placing a searcher on v) Zi = Zi−1 ∪ {v} for some vertex v ∈ V (D)− Zi−1 and Ai = Ai−1 (note that each vertex in Zi has
exactly one searcher);

(b) (removing a searcher from v) Zi = Zi−1 − {v} for some vertex v ∈ Zi−1 and Ai = {e ∈ Ai−1: for any directed path u w
containing e and an edge e′ ∈ E(D) − Ai−1 such that w is the head of e and u is the tail of e′, the path u w has an
internal vertex in Zi};

(c) (node-search-clearing e) Zi = Zi−1 and Ai = Ai−1 ∪ {e} for some edge e = (u, v) ∈ E(D)with both ends u and v in Zi−1;
(d) (edge-search-clearing e) Zi = (Zi−1 − {u}) ∪ {v} and Ai = Ai−1 ∪ {e} for some edge e = (u, v) ∈ E(D)with u ∈ Zi−1 and

v ∈ V (D)− Zi−1 and every (possibly 0) edge with head u belongs to Ai−1.

From Definition 3.5, we know that at most one edge can be cleared in one action and each vertex is occupied by at most
one searcher at any time. Note that recontamination in the mixed directed search problem is caused only by removing
actions. In (c) and (d), if e ∈ Ai−1, thenwe say this action is superfluous. Adding or deleting superfluous actions will not affect
the number of searchers used in a search strategy, however, sometimes allowing superfluous actions may make arguments
simple.
The following lemma establishes a relation between the mixed directed searching of D and a campaign in D.

Lemma 3.6. Let D be a digraph without multiple edges. If xds(D) ≤ k, then there is a campaign in D of width at most k− 1.

Proof. Let S = (s1, s2, . . . , sm) be a mixed directed search strategy of D using at most k searchers. For 1 ≤ i ≤ m, let Ai be
the set of cleared edges and Zi be the set of occupied vertices immediately after si, and let A0 = Z0 = ∅. We first normalize
S such that the normalized search strategy can also clear D using at most k searchers. The normalized search strategy may
contain some superfluous actions, but this will not increase the number of searchers required to clear D.
The normalization is conducted by inserting some node-search-clearing actions after each placing action and edge-

search-clearing action. Specifically, for each 1 ≤ i ≤ m, if Zi − Zi−1 is empty, i.e., si is a removing or node-search-clearing
action, thenwe leave si unchanged; otherwise, Zi−Zi−1 contains a vertex v, i.e., si is a placing or edge-search-clearing action
such that v is occupied just after si, then let E1v = {(u, v) ∈ E(D): u ∈ Zi−1}, E

2
v = {(v, u) ∈ E(D): u ∈ Zi−1 and all edges with

head u except (v, u) are in Ai−1}, and E3v = {(v, u) ∈ E(D): u ∈ Zi−1 and (v, u) /∈ E
2
v }, and we then insert a subsequence of

node-search-clearing actions between si and si+1, such that each edge in E1v is cleared first, then each edge in E
2
v , and finally

each edge in E3v (edges in the same set are cleared in an arbitrary order). After the normalization, we obtain a new sequence
of actions that contains each old action and some new node-search-clearing actions. It is easy to see that this new sequence
of actions, denoted by (s′1, s

′

2, . . . , s
′

`), is still a mixed directed search strategy of D using at most k searchers.
For 1 ≤ i ≤ `, let A′i be the set of cleared edges and Z

′

i be the set of occupied vertices immediately after s
′

i , and let
A′0 = Z

′

0 = ∅. Since ∂(A
′

i) ⊆ Z
′

i , |Z
′

i | ≤ k, and |A
′

i − A
′

i−1| ≤ 1, 1 ≤ i ≤ `, we know that (A
′

0, A
′

1, . . . , A
′

`) is a campaign in D of
width at most k.
We now show that the campaign (A′0, A

′

1, . . . , A
′

`) can be converted into a campaign (X0, X1, . . . , X`) of width at most
k − 1. For each i from 0 to `, if |∂(A′i)| ≤ k − 1, then let Xi = A

′

i . If |∂(A
′

i)| = k, then ∂(A
′

i) = Z
′

i . Let v be the last vertex
occupied by a searcher in Z ′i . Recall that just after v receives a searcher in a placing or edge-search-clearing action, the
following actions clear all edges in E1v , E

2
v and E

3
v by node-search-clearing. Note that at the step when an edge (u, v) ∈ E

1
v is

cleared, v is not a critical vertex at this step. When an edge (v, u) ∈ E2v is cleared, since D has no multiple edges, all edges
with head u are cleared and thus u is not a critical vertex. Hence, when |∂(A′i)| = k, s

′

i must be a node-search-clearing action
that clears an edge in E3v . Therefore, each vertex in Z

′

i has at least one contaminated edge with tail not in Z
′

i . Let s
′

j be the first
removing action after s′i . Such an action must exist; otherwise, D will not be cleared because each vertex in Z

′

i has at least
one contaminated edge with tail not in Z ′i . Let R = A

′

j−1 − A
′

j and Xp = A
′
p − R for i ≤ p ≤ j. Since |A

′
p − A

′

p−1| ≤ 1, i ≤ p ≤ j,
we know that |Xp − Xp−1| ≤ 1 for 1 ≤ p ≤ j. Suppose that s′j removes the searcher on w. Then all edges with tail w must
be contaminated immediately after s′j , which means that A

′

j contains no edges with tailw. Hence, Xp contains no edges with
tail w for i ≤ p ≤ j. Thus w /∈ ∂(Xp) and |∂(Xp)| ≤ k − 1 for i ≤ p ≤ j. We then consider A′j+1 and construct Xj+1. We can
continue this process and finally we obtain a campaign (X0, X1, . . . , X`) in D of width at most k− 1. �

Lemma 3.7. For a digraph D, if (X0, X1, . . . , X`) is a progressive campaign in D of width at most k− 1, then there is a monotonic
mixed directed search strategy that clears Dusing atmost k searchers such that the edges of D are cleared in the order e1, e2, . . . , e`,
where ei = Xi − Xi−1, 1 ≤ i ≤ `.

Proof. We construct a monotonic mixed directed search strategy inductively. Suppose that we have cleared edges
e1, . . . , ej−1, 2 ≤ j ≤ `, in order, and that no other edges have been cleared yet. Let ej = (u, v) and Cj−1 = {p ∈ V (D): p
has no in-edge or all in-edges of p belong to Xj−1}. Before we clear (u, v), we may remove searchers such that each vertex

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 537

Fig. 1. xds(D) = 2 and ds(D) = 3.

Fig. 2. Converting D into D∗ .

in ∂(Xj−1) is occupied by one searcher and all other searchers are free. If |{u, v} ∪ ∂(Xj−1)| ≤ k, we may place free searchers
on both ends of ej and execute node-search-clearing. Assume that |{u, v} ∪ ∂(Xj−1)| > k. Since |∂(Xj−1)| ≤ k− 1, it follows
that |∂(Xj−1)| = k− 1 and {u, v} ∩ ∂(Xj−1) = ∅. Thus, we have one free searcher. We now prove that u ∈ Cj−1. If u /∈ Cj−1,
then u ∈ ∂(Xj) and |∂(Xj)| = k, which contradicts the condition that (X0, X1, . . . , X`) has width at most k − 1. Thus, u has
no contaminated in-edges and we can place the free searcher on u and then slide the searcher from u to v along (u, v) to
clear ej by edge-search-clearing. �
From Lemmas 3.4, 3.6 and 3.7, we have the following result.

Lemma 3.8. Given a digraph D that has no multiple edges, the following are equivalent:

(i) xds(D) ≤ k;
(ii) there is a campaign in D of width at most k− 1;
(iii) there is a progressive campaign in D of width at most k− 1; and
(iv) there is a monotonic mixed directed search strategy that clears D using at most k searchers.

From Lemma 3.8, we can prove the monotonicity of the mixed directed search model.
Theorem 3.9. Given a digraph D, if xds(D) = k, then there is a monotonic mixed directed search strategy that clears D using k
searchers.
Proof. If D has no multiple edges, then the result follows from Lemma 3.8. Otherwise, let D′ be a digraph obtained from
D by replacing all edges with the same tail and the same head by a single edge. Notice that D′ has no multiple edges. We
first show that xds(D′) = k. For a mixed directed search strategy that clears D using k searchers, it is also a mixed directed
search strategy that clearsD′ using k searchers (some actions are superfluous). Thus, xds(D′) ≤ k. From Lemma 3.8, there is a
monotonicmixed directed search strategy S that clearsD′ using atmost k searchers.We now extend S to amonotonicmixed
directed search strategy for D. For each node-search-clearing action s in S, if s clears an edge in D′ which has multiplicitym,
m ≥ 2, in D, then we insertm− 1 node-search-clearing actions just after s so that all the multiple edges can be cleared. For
each edge-search-clearing action t in S which slides a search λ from u to v along (u, v), if (u, v) has multiplicity m, m ≥ 2,
in D, then just after t , we insert m − 1 triples of actions: ‘‘removing λ from v’’, ‘‘placing λ on u’’ and ‘‘edge-search-clearing
one of the multiple edges with tail u and head v’’. These actions can clear all the multiple edges with tail u and head v. By
the extension of S, we obtain a monotonic mixed directed search strategy that clears D using at most k searchers. Note that
xds(D) = k. Therefore, there is a monotonic mixed directed search strategy that clears D using k searchers. �

4. Monotonicity of the directed search model

In Section 3, we have proved that the mixed directed search problem is monotonic. In this section we will prove that the
monotonicity of the mixed directed search problem implies the monotonicity of the directed search problem. The following
lemma describes a relationship between the directed searching and the mixed directed searching.
Lemma 4.1. If D is a digraph, then ds(D)− 1 ≤ xds(D) ≤ ds(D).
The two equalities in Lemma 4.1 can be achieved. For example, for a directed path, both search numbers equal 1, and for

the digraph D in Fig. 1, it is easy to see that xds(D) = 2 and ds(D) = 3.
From Lemma 4.1, we know that the difference between ds(D) and xds(D) is not a fixed constant. It is not easy to use this

lemma to prove the monotonicity of the directed search model. However, we can transform D into another digraph D∗ such
that ds(D) = xds(D∗). Then we can use this relation to prove the monotonicity of the directed search model.
Theorem 4.2. For a digraph D, let D∗ be a digraph obtained from D by replacing each edge (u, v) ∈ E(D) by two directed paths
(u, v′, v) and (u, v′′, v). For (u, v) ∈ E(D), let f 1(u,v) = (u, v

′), f 2(u,v) = (v
′, v), f 3(u,v) = (u, v

′′) and f 4(u,v) = (v
′′, v) (see Fig. 2).

The following are equivalent:

(i) ds(D) ≤ k;
(ii) xds(D∗) ≤ k;

538 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

(iii) there is a progressive campaign (X0, X1, . . . , X`) in D∗ of width at most k − 1 such that for each (u, v) ∈ E(D), m1 < m2
and m3 < m4, where mi, 1 ≤ i ≤ 4, is the subscript of Xmi that is the first set containing f

i
(u,v);

(iv) there is a monotonic mixed directed search strategy that clears D∗ using at most k searchers such that for each (u, v) ∈ E(D),
f 1(u,v) is cleared before f

2
(u,v) and f

3
(u,v) is cleared before f

4
(u,v); and

(v) mds(D) ≤ k.

Proof. (i)⇒(ii). Let (s1, s2, . . . , s`) be a directed search strategy ofD using atmost k searchers.Wewill inductively construct
a mixed directed search strategy (S ′1, S

′

2, . . . , S
′

`) of D
∗ using at most k searchers, where S ′i is a subsequence of actions

corresponding to si. Since s1 is a placing action, let S ′1 be the same placing action. Suppose that we have constructed
S ′1, S

′

2, . . . , S
′

j−1 such that the following two conditions are satisfied: (1) the set of occupied vertices immediately after sh,
1 ≤ h ≤ j − 1, is the same as the set of occupied vertices immediately after the last action in S ′h, and (2) if (u, v) ∈ E(D) is
cleared immediately after sh, 1 ≤ h ≤ j − 1, then the corresponding four edges f i(u,v) ∈ E(D

∗), 1 ≤ i ≤ 4, are also cleared
immediately after the last action in S ′h.
We now construct S ′j . If sj is a placing action that places a searcher on an unoccupied vertex, S

′

j will take the same action.
If sj is a placing action that places a searcher on an occupied vertex, S ′j will be empty. If sj is a removing action that removes
the only searcher from a vertex, S ′j will take the same action. If sj is a removing action that removes a searcher from a vertex
occupied by at least two searchers, S ′j will be empty. If sj is a sliding action that slides a searcher from vertex u to vertex v
along edge (u, v) to clear the contaminated edge (u, v), we have two cases.
Case 1. All edges with head u are cleared in D immediately before sj. By the hypothesis, the vertex u ∈ V (D∗) is also

occupied and all edges with head u in D∗ are also cleared immediately after the last action in S ′j−1. If v is not occupied,
then we can construct S ′j as follows: edge-search-clearing (u, v

′), edge-search-clearing (v′, v), removing the searcher from
v, placing the searcher on u, edge-search-clearing (u, v′′) and edge-search-clearing (v′′, v). If v is occupied, then we can
construct S ′j as follows: edge-search-clearing (u, v

′), node-search-clearing (v′, v), removing the searcher from v′, placing
the searcher on u, edge-search-clearing (u, v′′), node-search-clearing (v′′, v), and removing the searcher from v′′.
Case 2. At least one edge with head u is contaminated in D immediately before sj. We know that there is at least one

searcher on u while performing sj, which implies that u is occupied by at least two searchers immediately before sj. By the
hypothesis, the vertex u ∈ V (D∗) is also occupied and we have at least one free searcher immediately after the last action
in S ′j−1. If v is not occupied, then we can construct S

′

j as follows: placing a searcher on v
′, node-search-clearing (u, v′), edge-

search-clearing (v′, v), removing the searcher from v, placing the searcher on v′′, node-search-clearing (u, v′′) and edge-
search-clearing (v′′, v). If v is occupied, then we can construct S ′j as follows: placing a searcher on v

′, node-search-clearing
(u, v′), node-search-clearing (v′, v), removing the searcher from v′, placing the searcher on v′′, node-search-clearing (u, v′′),
node-search-clearing (v′′, v), and removing the searcher from v′′.
If sj is a sliding action that slides a searcher fromvertex u to vertex v along edge (u, v) but does not clear the contaminated

edge (u, v), we know that immediately before sj, u is occupied by only one searcher and at least one edge with head u is
contaminated. By the hypothesis, the vertex u ∈ V (D∗) is also occupied immediately after the last action in S ′j−1. If v is
occupied, then S ′j consists of only one action: removing the searcher from u. If v is not occupied, then S

′

j consists of two
actions: removing the searcher from u and placing it on v.
It is easy to see that (S ′1, S

′

2, . . . , S
′

`) can clear D
∗ using at most k searchers.

(ii)⇒(iii). Since D∗ has no multiple edges, by Lemma 3.8, there is a progressive campaign (X0, X1, . . . , X`) in D∗ of width
at most k − 1. We can modify this campaign to satisfy the requirement of (iii). By Definition 3.3, we know that m1, m2, m3
andm4 have different values. We have four cases regarding the smallest value.

Case 1. m1 = min{m1,m2,m3,m4}. We already have m1 < m2. If m3 > m4, then, for each m1 + 1 ≤ i ≤ m3, replace Xi
by X ′i = Xi−1 ∪ {f

3
(u,v)}. Since X

′
m3 = Xm3−1 ∪ {f

3
(u,v)} = Xm3 and v

′′ /∈ ∂(X ′i), m1 + 1 ≤ i ≤ m3, it is easy to see that
the updated campaign is still a progressive campaign in D∗ of width at most k − 1. Let the updated campaign still
be denoted by (X0, X1, . . . , X`) and mi (1 ≤ i ≤ 4) is the subscript of Xmi that is the first set containing f

i
(u,v) in the

updated campaign. Thus, we havem1 < m2 andm3 = m1 + 1 < m4 in the updated campaign.
Case 2. m2 = min{m1,m2,m3,m4}. For eachm2 ≤ j ≤ m1, replace Xj by X ′j = Xj−1∪{f

1
(u,v)}. After this modification, the first

set containing f 1(u,v) isX
′
m2 and the first set containing f

2
(u,v) isX

′

m2+1
. Since f 2(u,v) ∈ Xi and f

1
(u,v) /∈ Xi form2 ≤ i ≤ m1−1,

we know that v′ ∈ ∂(Xi), m2 ≤ i ≤ m1 − 1. Thus, for m2 ≤ i ≤ m1 − 1, we have ∂(X ′i) ⊆ (∂(Xi)− {v
′
}) ∪ {u} and

|∂(X ′i)| ≤ |∂(Xi)|. We also know that X
′
m1 = Xm1−1 ∪ {f

1
(u,v)} = Xm1 . It follows that the updated campaign is still a

progressive campaign in D∗ of width at most k − 1. Let the updated campaign still be denoted by (X0, X1, . . . , X`)
and mi (1 ≤ i ≤ 4) is the subscript of Xmi that is the first set containing f

i
(u,v) in the updated campaign. Thus, we

havem1 < m2. Then we can use the method described in Case 1 to achievem3 < m4 by modifying the campaign if
necessary.

Case 3. m3 = min{m1,m2,m3,m4}. We already have m3 < m4 and we can use the method described in Case 1 to modify
the campaign such thatm1 < m2 in the updated campaign.

Case 4. m4 = min{m1,m2,m3,m4}. We can use themethod described in Case 2 tomodify the campaign such thatm3 < m4
andm1 < m2 in the updated campaign.

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 539

For each (u, v) ∈ E(D), we can repeat the above procedure for the corresponding four edges f i(u,v) ∈ E(D
∗), 1 ≤ i ≤ 4.

Finally, we can obtain a campaign as required.
(iii)⇒(iv). Let (X0, X1, . . . , X`) be the progressive campaign described in (iii). The monotonic mixed directed search

strategy constructed in Lemma 3.7 can use at most k searchers to clear f 1(u,v) before f
2
(u,v) and to clear f

3
(u,v) before f

4
(u,v) for

each (u, v) ∈ E(D).
(iv)⇒(v). Let S = (s1, s2, . . . , s`) be amonotonic mixed directed search strategy of D∗ satisfying the condition of (iv). We

will construct a monotonic directed search strategy S ′ of D using at most k searchers. For each edge (u, v) ∈ E(D), without
loss of generality, suppose that S clears f 1(u,v) before f

3
(u,v). For each i from 1 to `, consider si. If si is a placing or removing action

on a vertex that is also in V (D), S ′ will take the same action. If si is a placing or removing action on a vertex in V (D∗)− V (D),
S ′ will do nothing. If si is an edge-search-clearing action that clears edge f 1(u,v), then in S

′, we can clear (u, v) ∈ E(D) in the
same way as si does. If si is a node-search-clearing action that clears edge f 1(u,v) by the searcher α on u and the searcher β on
v′, then in S ′, we know that α is also on u and β is free. Thus, we can place β on u and then clear (u, v) ∈ E(D) by sliding
β from u to v along (u, v). If si clears edge f 2(u,v), f

3
(u,v) or f

4
(u,v), S

′ will do nothing. It is easy to see that S ′ can clear D using at
most k searchers.
(v)⇒(i). It is trivial. �

5. Monotonicity of internal search models

In this section, we show the monotonicity of the internal directed searching and the non-monotonicity of the internal
strong searching and internal weak searching.

Definition 5.1. In the process of clearing a digraph D under the directed or internal directed search model, a vertex in D is
cleared if all its in-edges and out-edges are cleared, partially cleared if all its in-edges (possibly it has no in-edge) are cleared
and at least one of its out-edges is contaminated, critical if at least one of its in-edges is contaminated and at least one of its
out-edges is cleared, and contaminated if at least one of its in-edges and all of its out-edges are contaminated. A directed or
internal directed search strategy is called optimal if it clears D using ds(D) or ids(D) searchers, respectively.

From Theorem 4.2, we have the following result.

Lemma 5.2. For any digraph, there always exists an optimal directed search strategy satisfying the following four conditions: (1)
every edge is cleared exactly once; (2) after each action of placing a searcher on a vertex, the next steps must clear all out-edges of
this vertex; (3) after each action of sliding a searcher along edge (u, v) from u to v, the next action must be removing this searcher
from v; and (4) searchers are removed from a vertex immediately after all in-edges incident on this vertex have been cleared.

Proof. For a digraphD, it follows from Theorem4.2 that there exists amonotonic directed search strategy that clearsD using
ds(D) searchers. Among all such search strategies of D, there exists a monotonic optimal search strategy S = (s1, s2, . . . , s`)
such that the number of actions in S is minimum. Thus, S does not contain any redundant actions, such as the action of
placing a searcher on vertex v is followed immediately by an action of removing a searcher from v. We now modify S to
obtain a new monotonic optimal search strategy S ′ of D. For each i from 1 to `, we modify si in the following ways.
Case 1. si is a placing action, say, placing a searcher on vertex u. If all out-edges of u are cleared, then we delete si in

the modified strategy. Otherwise, we have three subcases regarding si+1. (1) If si+1 is removing a searcher from a vertex or
sliding a searcher along an edge from a vertex that is not u, thenwe can swap the action si with the action si+1 and relabeling
their subscripts in the increasing order. (2) If si+1 is placing a searcher λ on a vertex, then for each out-edge (u, v) of u, we
insert the following three actions between si and si+1: ‘‘place λ on u’’, ‘‘slide λ from u to v’’ and ‘‘remove λ from v’’. (3) If
si+1 is sliding a searcher λ from vertex u to another vertex, then for each out-edge (u, v) of u, we insert the following three
actions between si and si+1: ‘‘slide λ from u to v’’, ‘‘remove λ from v’’ and ‘‘place λ on u’’. After each inserted sliding action,
if a vertex becomes cleared or partially cleared, then remove searchers from this vertex immediately.
Case 2. si is a sliding action, say, sliding a searcher from u to v along (u, v). If (u, v) has been cleared by the inserted

actions, then delete si. Otherwise, we have not placed any searcher on u before the action si. Thus, all in-edges of u are
cleared and we have a free searcher, say λ, in S ′. We replace si by the following actions: for each out-edge (u, w) of u, we
insert the three actions: ‘‘place λ on u’’, ‘‘slide λ from u tow’’ and ‘‘remove λ fromw’’. After each inserted sliding action, if a
vertex becomes cleared or partially cleared, then remove searchers from this vertex immediately.
Case 3. si is a removing action, say, removing a searcher from u. Because S has minimum number of actions, from the

previous modification, we know that u contains at most one searcher in S ′, and we also know that if u contains one searcher
in S ′, then umust be critical. Thus, we need to delete si in the modified strategy.
It is easy to see that S ′ satisfies the four conditions in the lemma. �

A digraph is strong (or strong connected) if there is a directed path between any two vertices on the digraph. We first
prove the monotonicity of the internal directed searching on strong digraphs.

Lemma 5.3. For any strong digraph D, ds(D) = ids(D) = mids(D).

Proof. We first prove mids(D) ≤ ds(D). Let ds(D) = k and S be an optimal directed search strategy that satisfies the four
conditions in Lemma 5.2. It follows from condition (1) in Lemma 5.2 that S is monotonic. We will construct a monotonic

540 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

internal directed search strategy T that uses k searchers to clear D. For convenience, let DT = D, and for any vertex v in D,
let vT = v such that DT and vT associate with T while D and v associate with S. S has three different actions, that is, placing,
removing and sliding. Let S = {s1, s2, . . . , s`} and Xi, 1 ≤ i ≤ `, be the set of cleared edges just after the action si. Let
Ti, 1 ≤ i ≤ ` be a subsequence of actions in T that corresponds to the action si, and Yi, 1 ≤ i ≤ `, be the set of cleared edges
just after the last action of Ti. Note that D (DT) contains no searchers initially. For the internal directed searching, when a
searcher is placed on a vertex, it cannot be removed from the digraph. So, the only action for a searcher located on DT is
sliding. If s1 is placing a searcher on vertex v, then let T1 contain only one action, that is, placing a searcher on vertex vT . It
is easy to see that X1 = Y1 = ∅. Assume that Xi−1 ⊆ Yi−12 for 2 ≤ i ≤ `. We now show that Xi ⊆ Yi. We have three cases
for si, 2 ≤ i ≤ `.
Case 1. The action si is a removing action that removes a searcher from a vertex u. Then we have two subcases regarding

the state of u.

1.1 If u is cleared, partially cleared, or critical just before the removing action si, let Ti = ∅, that is, Ti does nothing.
Notice that if u is critical just before si, then u is occupied by at least two searchers because S is monotonic. Thus,
Xi = Xi−1 ⊆ Yi−1 = Yi.

1.2 If u is contaminated just before the removing action si, then it follows from Lemma 5.2 that u contains only one searcher,
say λ, just before the removing action. Let λT be the only searcher on uT just after the last action in Ti−1. Let P(uT , vT) be a
directed path such that vT is a critical vertex and every internal vertex on P(uT , vT) is contaminated. Let Ti be a sequence
of sliding actions that move the searcher λT on uT along the edges of P(uT , vT) from uT to vT . When λT slides along
P(uT , vT), since each internal vertex on P(uT , vT) is contaminated and there is no searchers occupying these vertices, no
edge is cleared or recontaminated. Since S is monotonic, we know that Xi = Xi−1 ⊆ Yi−1 = Yi.

Case 2. The action si is a placing action that places a searcher on vertex v. If vT is cleared or the number of searchers on
vT just after the last action of Ti−1 is greater than or equal to the number of searchers on v just before the placing action si,
then we set Ti = ∅. It is easy to see that Xi = Xi−1 ⊆ Yi−1 = Yi. Otherwise, we have two subcases regarding the number of
searchers on DT .

2.1. DT contains less than k searchers just after the last action of Ti−1. Then place a new searcher on vT . So Ti contains only
this placing action. In this case, we have Xi = Xi−1 ⊆ Yi−1 = Yi.

2.2. DT contains k searchers just after the last action of Ti−1. Let U = {xT ∈ V (DT): just after the last action of Ti−1, xT is a
cleared or partially cleared vertex containing at least one searcher, or a critical vertex containing at least two searchers}.
If U = ∅, then DT has k critical vertices, and so does D. This is a contradiction. Thus, u 6= ∅. Since D is strong, for every
vertex xT ∈ U , there is a shortest directed path from xT to vT , denoted P(xT , vT). Let uT be a vertex in U such that every
internal vertex of P(uT , vT) does not belong to U . Let λT be a searcher on uT . So Ti contains a sequence of sliding actions
that move λT along the edges on P(uT , vT) from uT to vT . For any edge (aT , bT) on P(uT , vT), there are three subcases
when λT slides from aT to bT .
2.2.1. aT = uT . Then (aT , bT) is cleared and will not be recontaminated.
2.2.2. aT is an internal vertex on P(uT , vT) and there is a searcher on aT when λT sliding along (aT , bT). In this case, aT

must be a critical vertex just before λT sliding along (aT , bT). Since a is also a critical vertex in D just before si, it
follows from Lemma 5.2 that all out-edges of a are cleared. Thus, both (a, b) and (aT , bT) are cleared just before
λT sliding along (aT , bT).

2.2.3. aT is an internal vertex on P(uT , vT) and there is no searcher on aT when λT sliding along (aT , bT). In this case, if
(a, b) is cleared just before si, so is (aT , bT). If (a, b) is contaminated just before si and (aT , bT) is also contaminated
just after λT sliding along (aT , bT), then there is no recontamination. If (a, b) is contaminated just before si and
(aT , bT) is cleared just after λT sliding along (aT , bT), by the definition of clearing an edge in the internal directed
search, all in-edges of aT are cleared just beforeλT sliding along (aT , bT). Thus, (aT , bT)will not be recontaminated.

From cases 2.2.1, 2.2.2 and 2.2.3, we know that when λT slides along the edges on P(uT , vT) from uT to vT , some edges
may be cleared and no edges are recontaminated. Hence, Xi = Xi−1 ⊆ Yi.

Case 3. The action si is a sliding action that slides a searcher along an edge (u, v) from u to v. If (uT , vT) is cleared just after
the last action of Ti−1, then Ti = ∅; otherwise, Ti contains only one sliding action that clears (uT , vT) by moving a searcher
along (uT , vT) from uT to vT . Since S is monotonic and Xi−1 ⊆ Yi−1, there is no recontamination when the searcher slides
along (uT , vT) from uT to vT . Thus, Xi ⊆ Yi.
From the above three cases, we know that T is a monotonic internal directed search strategy that uses k searchers to

clear DT . Hence, we have mids(D) ≤ ds(D). It is easy to see that ds(D) ≤ ids(D) ≤ mids(D). Therefore, ds(D) = ids(D) =
mids(D). �

Similar to Lemma5.3,we can prove themonotonicity of the internal strong searching on strong digraphs. Let ss(D)denote
the strong search number of digraph D [18].

2When we compare edge set Xj with Yj , 1 ≤ j ≤ `, we consider Yj as a subset of E(D) because DT = D.

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 541

Fig. 3. iss(D1) = 1 and miss(D1) = 2.

Lemma 5.4. For any strong digraph D, ss(D) = iss(D) = miss(D).

Proof. Since the strong search problem is monotonic [18], there always exists an optimal strong search strategy satisfying
the four conditions in Lemma 5.2. Since the intruder in the internal strong search problem behaves in the same way as the
intruder in the internal directed search problem, the proof of this lemma is the same as that of Lemma 5.3 if we replace all
terms related to the internal directed search by the corresponding terms in the internal strong search and add one more
case as follows.
Case 4. If the action si is a sliding action that slides a searcher along an edge (u, v) from v to u, then Ti contains only

one sliding action that slides a searcher along (uT , vT) from vT to uT . Since S is monotonic and Xi−1 ⊆ Yi−1, there is no
recontamination when the searcher slides along (uT , vT) from vT to uT . Thus, Xi ⊆ Yi. �

We now prove the monotonicity of the internal directed searching on general digraphs.

Theorem 5.5. For any digraph D, ids(D) = mids(D).

Proof. Let D1, . . . ,DN be all strong components of D in an acyclic ordering, which is a linear ordering of all strong
components such that if (u, v) ∈ E(D), u ∈ V (Di) and v ∈ V (Dj), then i ≤ j. Let ids(D) = k and S be an internal directed
search strategy that uses k searchers to clear D. Let AS = (e1, e2, . . . , em) be the edge sequence of D such that S clears all
edges of D in this order. Note that some edges may appear more than one time in AS because S may be non-monotonic.
From AS , we select all edges of D1 and let them form a subsequence, denoted by AS(D1), which keep the original ordering
in AS . If the subsequence AS(D1) is not the prefix of AS , there must be two adjacent elements ei and ei+1 in AS such that
ei 6∈ AS(D1) and ei+1 ∈ AS(D1). Since each searcher cannot be removed from D and it can only move along the direction of
an edge, the searcher who clears ei cannot move to any vertex of D1 after ei is cleared. So, this searcher cannot be used to
clear any edge of D1 after ei is cleared and it cannot be used to block the intruder because the intruder cannot move from
any Dj, j > 1, to D1. If we swap the two actions in S that clear ei and ei+1, the number of searchers required by the new
strategy is still k. We can keep doing such swap operations until the prefix of the cleared edge sequence is AS(D1). After
all edges of D1 are cleared, they cannot become recontaminated because the intruder must follow edge directions. Since
D1 is strong, from Lemma 5.3, we can use a monotonic internal directed search strategy to clear D1 and replace AS(D1) by
the corresponding cleared edge sequence. Let S1 be the modified directed search strategy that uses k searchers to clear D
by monotonically clearing D1 first and then clearing the remaining edges of D. Similarly, we can rearrange the actions of S1
such that, after D1 is cleared, we clear all out-going edges of D1 and then clear D2 monotonically. This rearrangement does
not increase the number of searchers. We can repeat this rearrangement process until DN is cleared monotonically. Hence,
we obtain a monotonic internal directed search strategy that uses k searchers to clear D. Therefore, mids(D) ≤ ids(D). Since
ids(D) ≤ mids(D), we have ids(D) = mids(D). �

We now show the non-monotonicity of the internal strong searching. From Lemma 5.4, we need to consider digraphs
that are not strong, such as acyclic digraphs. Let D1 be the digraph illustrated in Fig. 3. The following internal search strategy
can clear D1 using one searcher: A searcher is first placed on a, then it slides from a to b, b to c , c to b, b to d, d to e, e to f , f to
e, e to g , g to e, and e to d. Thus, iss(D1) = 1. Note that in this strategy, when the searcher slides from e to f , the edge (e, d)
is recontaminated. It is easy to see that miss(D1) = 2. Hence, we have the following result.

Theorem 5.6. For the digraph D1 depicted in Fig. 3, iss(D1) < miss(D1).

Note that for any connected acyclic digraph, the internal strong search number is always 1. But there are some acyclic
digraphs, the monotonic internal strong search number is Ω(log n), where n is the number of vertices in the digraph. For
example, let T be the orientation of a complete rooted binary tree with n vertices such that for each edge connecting
a child with its parent, the child is the tail and the parent is the head of this edge. We can show that iss(T) = 1 and
miss(T) = log2(n + 1) − 1. Thus, the ratio of the monotonic internal strong search number to the internal strong search
number may be arbitrarily large.
Contrary to the internal strong searching, we can show that the internal weak search problem is monotonic on acyclic

graphs.

Lemma 5.7. For any acyclic digraph D, ids(D) = iws(D) = miws(D).

542 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

Fig. 4. iws(D2) = 4 and miws(D2) = 5.

Fig. 5. Replacing edge uv in Gwith six directed paths.

Proof. Let ids(D) = k. In the proof of Theorem 5.5, if each strong component is a vertex, say vi, 1 ≤ i ≤ N , then the
monotonic internal directed search strategy obtained in the end of the proof is a strategy that uses k searchers to clear all
vertices of D in the acyclic ordering v1, . . . , vN . Note that for each vertex vi, 1 ≤ i ≤ N , with out-degree δ+(vi), we need to
slide δ+(vi) searchers along each out-edge to clear vertex vi. If we need to place searchers on vi, we can arrange all placing
actions before all sliding actions. Thus, such amonotonic internal directed search strategy is also amonotonic internal weak
search strategy, which uses k searchers to clear D. Thus, miws(D) ≤ ids(D). Since ids(D) ≤ iws(D) ≤ miws(D), we have
ids(D) = iws(D) = miws(D). �

From Lemma 5.7, we need to consider digraphs that are not acyclic to prove the non-monotonicity of the internal weak
search problem. Let D2 be the digraph illustrated in Fig. 4. We can show that iws(D2) = 4 andmiws(D2) = 5. Thus, we have
the following result.

Theorem 5.8. For the digraph D2 depicted in Fig. 4, iws(D2) < miws(D2).

Unlike the ratio of the monotonic internal strong search number to the internal strong search number which may be
arbitrarily large, we conjecture that the ratio of the monotonic internal weak search number to the internal weak search
number is less than 2.

6. NP-completeness results

Kirousis and Papadimitriou [11] proved that the node search problem is NP-complete. In this section, we will establish
relations between the node search number and the directed/mixed directed/internal directed/internal strong/internal weak
search numbers. Using these relations, we prove that all five digraph search problems are NP-hard. From Theorems 3.9,
4.2 and 5.5, we then prove the directed/mixed directed/internal directed search problems belong to the NP class. We also
prove that the internal strong search problem belongs to the NP class, although it is not monotonic.
For a connected graph G, theminimumnumber of searchers needed to clear G in the node searchmodel is the node search

number of G, denoted by ns(G).
For any connected graph G, let DG be a digraph obtained from G by adding three length two directed cycles on each

vertex of G, and replacing each edge uv ∈ E(G) with six directed paths (u, v1, v), (u, v2, v) (u, v3, v), (v, v4, u), (v, v5, u)
and (v, v6, u) (see Fig. 5). We have the following relations between search numbers on G and DG.

Theorem 6.1. For any connected graph G and its corresponding digraph DG described above, ds(DG) = xds(DG) = iss(DG) =
ids(DG) = iws(DG) = ns(G)+ 1.

Proof. Since iss(DG) ≤ ids(DG) ≤ iws(DG) and xds(DG) ≤ ds(DG), we only need to show that iws(DG) ≤ ns(G) + 1,
ns(G) ≤ iss(DG)− 1, ds(DG) ≤ ns(G)+ 1, and ns(G) ≤ xds(DG)− 1.

B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544 543

We first show iws(DG) ≤ ns(G)+1. Let S be amonotonic node search strategy that clears G using k searchers. Notice that
S is a sequence of placing and removing actions. We can construct an internal weak search strategy S ′ by inserting actions
into S as follows. Initially, let S ′ be obtained from S by deleting all removing actions from S. For each placing action s in S
that places a searcher on vertex u, if the number of searchers on DG is less than k, then we keep the same placing action in S ′;
otherwise, there is a vertex in DG that contains onemore searcher than the corresponding vertex in G, we then insert actions
into the current S ′ just after s by sliding this searcher along a directed path to the vertex u on DG. After u is occupied by the
searcher in S ′, we insert actions into S ′ to clear the three length two directed cycles incident on u by using an additional
searcher. Let Es be the set of new cleared edges in G caused by action s. If Es 6= ∅, then for each edge uv ∈ Es, we insert
actions into the current S ′ such that we can use an additional searcher to clear the six directed paths corresponding to uv.
Thus, S ′ can clear DG using k+ 1 searchers. Therefore, iws(DG) ≤ ns(G)+ 1. Similarly, we can prove ds(DG) ≤ ns(G)+ 1.
We now show that ns(G) ≤ iss(DG) − 1. Since DG is strong, it follows from Lemma 5.4 that there exists a monotonic

internal strong search strategy S ′ that clears DG using k searchers. We can construct a node search strategy S that clears G
using k−1 searchers. For any edge uv inG, letDuv be the subdigraph ofDG that consists of the six directed paths of length two
between u and v (see Fig. 5). Because there are three length two directed cycles on u and v, respectively, from the structure
of Duv we know that there exists an action t in S ′ such that Duv contains at least three searchers just after t . We can design
actions in S that clear uv by two searchers located on u and v. For all other actions in S ′ with respect to Duv or the three
length two directed cycles on u and v respectively, S does nothing. Thus, S can clear G using k− 1 searchers, and therefore,
ns(G) ≤ iss(DG)− 1. Similarly, we can prove ns(G) ≤ xds(DG)− 1. �

Because the node search problem is NP-complete [11], from Theorem 6.1, we can prove the following result.

Theorem 6.2. The problem of computing the search number in the directed (resp. mixed directed, internal directed, internal
strong, or internal weak) search model is NP-hard.

From Theorems 3.9, 4.2 and 5.5, we can prove that the directed, mixed directed, and internal directed search problems
belong to the NP class. Hence, we have the following results.

Theorem 6.3. The problem of computing the search number in the directed (resp. mixed directed, or internal directed) search
model is NP-complete.

One of the major application of the monotonicity in a searching problem is to show the searching problem belonging
to the NP class. Although the internal strong search problem is non-monotonic by Theorem 5.6, we can still prove that it
is NP-complete, which answers an open question raised by Dimitrios Thilikos. Therefore, we have the main result of this
section.

Theorem 6.4. The problem of computing the internal strong search number is NP-complete.

Proof. From Theorem 6.2 we only need to show that the internal strong search problem is in NP. Let D be a given connected
digraph and k be a given integer. We can compute all strong components D1,D2, . . . ,Dm of D in linear time [17]. We first
show that iss(D) = max1≤i≤m iss(Di). It follows from Theorem 6 in [2] that iss(D) ≥ maxi iss(Di) because each Di is a
strong subdigraph of D. Thus, we only need to prove that iss(D) ≤ maxi iss(Di). Without loss of generality, suppose that
D1,D2, ...,Dm form an acyclic ordering of the strong components of D, which is a linear ordering of all strong components
such that if (u, v) ∈ E(D), u ∈ V (Di) and v ∈ V (Dj), then i ≤ j. First, we use iss(D1) searchers to clear D1. Notice that every
edge with one endpoint in D1 and the other endpoint in Di (i > 1) has its tail in D1 and head in Di. Thus when we clear D1,
we can leave these edges contaminated, which will not cause any recontamination. After clearing D1, we use one searcher
to clear each edgewith tail inD1 and head inDi (i > 1), and thenwe slide all searchers fromD1 toD2 becauseD is connected.
Repeat the above process with D2, D3, and so on until Dm is cleared. Hence, we can clear D with no more than maxi iss(Di)
searchers. Therefore, iss(D) = maxi iss(Di).
For each strong component Di, 1 ≤ i ≤ m, it follows from Lemma 5.4 that there exists a monotonic optimal internal

strong search strategy such that every edge in Di is cleared exactly once. Thus, a nondeterministic algorithm needs only
guess an ordering of all edges in Di. In polynomial time we can check whether we can use k searchers to clear Di by clearing
each edge of Di in the ordering. Thus, the internal strong search problem belongs to the NP class. �

7. Conclusion

In this paper, we investigated five digraph search problems: directed searching, mixed directed searching, internal
directed searching, internal strong searching, and internal weak searching. We applied the method proposed by Bienstock
and Seymour [5] to prove the monotonicity of the mixed directed searching, and then proved the monotonicity of the
directed searching. For the three internal searchmodels without ‘‘jumping’’, we showed that the internal directed searching
is monotonic, but the internal strong searching and the internal weak searching are non-monotonic. Note that the internal
strong searching is a ‘‘strong’’ version of the internal directed searching, and the internal weak searching is a ‘‘weak’’ version
of the internal directed searching. The internal edge searching is an analogy of the internal directed searching on undirected
graphs, which is also non-monotonic [4]. This is the reason that some researchers conjectured that the internal directed
searching should be non-monotonic as well. To our surprise, we proved that it is monotonic indeed.

544 B. Yang, Y. Cao / Theoretical Computer Science 407 (2008) 532–544

We also established relations for the above five digraph search problems. From these relations, we showed that these five
digraph search problems are NP-hard. We showed that the directed, mixed directed and internal directed search problems
are NP-complete from their monotonicity property. In particular, we also showed the internal strong search problem is NP-
complete although it is non-monotonic. This solves the open problem on whether a non-monotonic searching problem can
be NP-complete.
We showed by examples that the ratio of the monotonic internal strong search number to the internal strong search

number may be as large as Ω(log n), where n is the number of vertices in the digraph. We conjecture that O(log n) is an
upper bound. One open problem is to find a constant upper bound for the ratio of the monotonic internal weak search
number to the internal weak search number. We conjecture that this ratio is less than 2.
Another interesting problem left unresolved is whether the internal weak search problem is NP-complete.

Acknowledgments

We wish to thank Danny Dyer and Runtao Zhang for valuable discussions on this paper. The first author’s research was
supported in part by NSERC and MITACS.

References

[1] B. Alspach, Searching and sweeping graphs: A brief survey, Le Matematiche, 34 pp.
[2] B. Alspach, D. Dyer, D. Hanson, B. Yang, Arc searching digraphs without jumping, in: Proceedings of the 1st International Conference on Combinatorial
Optimization and Applications, COCOA’07, in: Lecture Notes in Computer Science, vol. 4616, Springer, 2007, pp. 354–365.

[3] J. Barat, Directed path-width and monotonicity in digraph searching, Graphs and Combinatorics 22 (2006) 161–172.
[4] L. Barrière, P. Fraigniaud, N. Santoro, D. Thilikos, Searching is not jumping, in: Proceedings of the 29th Workshop on Graph Theoretic Concepts in
Computer Science, WG’03, in: Lecture Notes in Computer Science, vol. 2880, Springer, 2003, pp. 34–45.

[5] D. Bienstock, P. Seymour, Monotonicity in graph searching, Journal of Algorithms 12 (1991) 239–245.
[6] W. Evans, M. Safari, Directed one trees, in: EuroComb 2005, DMTCS proceedings. AE, 2005, pp. 67–72.
[7] F. Fomin, D. Thilikos, On the monotonicity of games generated by symmetric submodular functions, Discrete Applied Mathematics 131 (2003)
323–335.

[8] F. Fomin, D. Thilikos, An annotated bibliography on guaranteed graph searching, manuscript.
[9] Y.O. Hamidoune, On a pursuit game on Cayley graphs, European Journal of Combinatorics 8 (1987) 289–295.
[10] T. Johnson, N. Robertson, P. Seymour, R. Thomas, Directed tree-width, Journal of Combinatorial Theory Series B 82 (2001) 138–154.
[11] L. Kirousis, C. Papadimitriou, Searching and pebbling, Theoretical Computer Science 47 (1996) 205–218.
[12] A. LaPaugh, Recontamination does not help to search a graph, Journal of ACM 40 (1993) 224–245.
[13] R.J. Nowakowski, Search and sweep numbers of finite directed acyclic graphs, Discrete Applied Mathematics 41 (1993) 1–11.
[14] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, C. Papadimitriou, The complexity of searching a graph, Journal of ACM 35 (1998) 18–44.
[15] B. Reed, Introducing directed tree width, in: 6th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1999), in: Electron. Notes

Discrete Math., vol. 3, Elsevier, Amsterdam, 1999, 8 pp. (electronic).
[16] M. Safari, D-Width: A more natural measure for directed tree width, in: Proceedings of the 30th International Symposium on Mathematical

Foundations of Computer Science, in: Lecture Notes in Computer Science, vol. 3618, Springer, 2005, pp. 745–756.
[17] R.E. Tarjan, Depth first search and linear graph algorithms, SIAM Journal on Computing 1 (1972) 146–160.
[18] B. Yang, Y. Cao, Monotonicity of strong searching on digraphs, Journal of Combinatorial Optimization 14 (2007) 411–425.
[19] B. Yang, Y. Cao, On the monotonicity of weak searching, in: Proceedings of the 14th International Computing and Combinatorics Conference,

COCOON’08, in: Lecture Notes in Computer Science, vol. 5092, Springer, Berlin, 2008, pp. 52–61.
[20] B. Yang, Y. Cao, Digraph searching, directed vertex separation and directed pathwidth, Discrete Applied Mathematics 156 (2008) 1822–1837.

	Monotonicity in digraph search problems
	Introduction
	Definitions and notation
	Monotonicity of the mixed directed search model
	Monotonicity of the directed search model
	Monotonicity of internal search models
	NP-completeness results
	Conclusion
	Acknowledgments
	References

