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1. Introduction

All graphs considered in this paper are finite, undirected and simple. A plane graph is a particular drawing of a planar
graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, order, maximum degree and
minimum degree by V(G), E(G), F(G), |[V(G)|, A(G) and §(G) respectively (V, E, F, |V|, A and § for short). For v € V(G), let
dg(v) (d(v) for short) denote the degree of v in G. For f € F(G), let ds(f) (d(f) for short) denote the number of edges on the
boundary of f, where each cut edge is counted twice. A vertex v (face f) is called a k-vertex (k-face) if d(v) = k (d(f) = k).
A vertex v (face f) is called a k*-vertex (k™-face) if d(v) > k (d(f) > k). For f € F(G), we use b(f) and V(f) to denote the
boundary walk of f and the vertices on the boundary walk respectively. A face f of G is called a simple face if b(f) forms a
cycle. Obviously, each k-face (k < 5) is a simple face when § > 2. A simple k-face f of G is called a (dy, da, . . ., dy)-face if the
vertices of f are, respectively, of degree d, do, . . ., di. Let P(v) and Q(v) denote the set of 4-faces and 5-faces incident to the
vertex v, respectively. Let n,(f) denote the number of k-vertices incident to the face f. Let m3(v) denote the number of 3-faces
incident to the vertex v. Let n,(v) denote the number of 2-vertices adjacent to the vertex v. A graph G is called d-degenerate
if every induced subgraph H of G has a vertex of degree at most d. A graph G is equitably k-choosable if, for any k-uniform list
assignment L, G is L-colorable and each color appears on at most (@1 vertices. A graph G is equitably k-colorable if G has
a proper k-vertex coloring such that the sizes of any two color classes differ by at most 1. The smallest integer k for which G
is equitably k-colorable is called the equitable chromatic number of G, denoted by x.(G).

Equitable colorings naturally arise in some scheduling, partitioning and load balancing problems. In contrast with
ordinary coloring, a graph may have an equitable k-coloring but have no equitable (k+1)-coloring. For example, the complete
bipartite graph Ka;11,2041 for n > 1 has an equitable 2-coloring but has no equitable (2n 4 1)-coloring.

In 1970, Hajnal and Szemerédi [ 1] proved that every graph has an equitable k-coloring whenever k > A+ 1. This bound is
sharp for some special graph classes. In 1973, Meyer [2] introduced the notion of equitable coloring and made the following
conjecture:
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Conjecture 1. The equitable chromatic number of a connected graph, which is neither a complete graph nor odd cycle, is at most
A.

In 1994, Chen, Lih and Wu [3] put forth the following conjecture:
Conjecture 2. A connected graph is equitably A-colorable if it is different from K, Comy1 and Kopy1,2ms1 form > 1.

This conjecture has been confirmed for graphs with A < 3 or A > ‘21' [3], trees [4], bipartite graphs [5], outerplanar
graphs [6], planar graphs with A > 13 [7], line graphs [8] and d-degenerate graphs with A > 14d + 1 [9].

In 2003, Kostochka, Pelsmajer and West [10] introduced the list analogue of equitable coloring. A list assignment L for a
graph G assigns to each vertex v € V(G) a set L(v) of acceptable colors. An L-coloring of G is a proper vertex coloring such
that for every v € V(G) the color on v belongs to L(v). A list assignment L for G is k-uniform if |[L(v)| = k for all v € V(G).

Given a k-uniform list assignment L for a graph G, we say that G is equitably L-colorable if G has an L-coloring such that
each color appears on at most [@1 vertices. A graph G is equitably list k-colorable or equitably k-choosable if G is equitably
L-colorable whenever L is a k-uniform list assignment for G. In [10], Kostochka, Pelsmajer and West also conjectured the
analogue of the Hajnal and Szemerédi Theorem [1]:

Conjecture 3. Every graph is equitably k-choosable whenever k > A + 1.
It has been proved that Conjecture 3 holds for graphs with A < 3 independently in [11,12].
Conjecture 4. IfGis a connected graph with A > 3, then G is equitably A-choosable unless G is a complete graph or is Kom1.2m-+1-

Kostochka, Pelsmajer and West [10] proved that a graph G is equitably k-choosable if either G # K1, Kk, (with k odd

in the later case) and k > max{A, M}, or Gis aforestand k > 1+ § or G is a connected interval graph and k > A,

orGisa 2)-degenerate graph and k > max{A4, 5}. Pelsmajer [11] proved that every graph is equitably k-chooable for any
k > A(a-1) + 2
> =5 .

In this paper we prove that every triangle-free plane graph is equitably k-choosable and equitably k-colorable whenever

k > max{A, 8}, and every plane graph without 4- and 5-cycles is equitably k-choosable and equitably k-colorable whenever
k > max{A, 7}.

2. Triangle-free planar graphs

Lemma 1 ([10]). Let G be a graph with a k-uniform list assignment L. Let S = {vq, va, ..., v}, where {vq, vo, ..., v} are distinct
vertices in G. If G — S has an equitable L-coloring and |N¢(v;) — S| < k —ifor 1 <i < k, then G has an equitable L-coloring.
Lemma 2. LetS = {vq, v, ..., v}, where {vy, v2, . . ., v} are distinct vertices in graph G. If G — S has an equitable k-coloring and
INg(v;) — S| <k —ifor1<i <k, then G has an equitable k-coloring.

Proof. Let G; = G — {viy1; Viz2, ..., W}, SO that G — S = Gp and G = G;. Let fy be an equitable k-coloring of Gg. For 1 < i <k,
extend f;_1 to a k-coloring f; of G; by giving v; a color different from the colors that f; has used on neighbors of v; and on the
vertices vy, vo, ..., v;. Condition |N¢(v;) — S| < k—ifor 1 < i < k guarantees that this is possible. By construction, the colors

used on S are distinct, and hence f; is an equitable k-coloring of G. O

Lemma 3. Every triangle-free plane graph is 3-degenerate.

Lemma 4 ([12]). Every graph with A < 3 is equitably k-choosable whenever k > A + 1.
Lemma 5 ([1]). Every graph has an equitable k-coloring whenever k > A + 1.

Lemma 6. Every connected triangle-free plane graph G with order at least 5 has one of the following configurations

I

I

Hi12 < d(xk), d(zk-1), Ho3 <d(xp-2) <4 H33 < d(xp_2) <4
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Hp: 4 <d(xp—q),d(zr—s5) <5 Hgl <d(zp_1),d(zr_2) <2 Hy3 < d(xk—3)
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Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown,
(2) except for special pointed, the degree of a hollow vertex may be any integer from [d, A], where d is the number of edges
incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose G is a counterexample, then G is a connected triangle-free plane graph with order at least 5 and without
configurations H; ~ H,1. We rewrite the Euler’s formula |V(G)| — |E(G)| + |F(G)| = 2 into the following equivalent form:

Y 2dv) —6) + Y (d(f) —6) = —12.
veV(G) feF(G)

We define a weight function w by w(v) = 2d(v) —6 forv € V(G) and w(f) = d(f) —6 for f € F(G). Thus }_,cyp w(x) = —12.
We will design appropriate discharging rules and redistribute weights accordingly. Once discharging is finished, a new
weight function w' is produced while the total sum of weights is kept fixed. For x, y € V(G) UF(G), we use T(x — y) to denote
the sum of weights discharged from x to y according to our rules.

By Lemma 3, we have §(G) < 3. We consider the following three cases:

Case 1: 6(G) = 3

Our discharging rule is defined as follows:

(R)Ifd(v) > 4, then t(v — f) = % for each f € Q(v) UP(v).

We give the following obvious properties

(P1)Ifd(v) = 4, then (v — f) = ggvv)) 2 — foreachf € Q(v) UP(v).
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(P2)Ifd(v) = 5, then 7(v — f) = “% = 2 for each f € Q(v) U P(v).

dlv) — 5
(P3)Ifd(v) > 6, then 7(v — f) = 4 = % > 1foreachf € Q(v) UP(v).

Letv e V.Ifd(v) = 3, then w (v) = w(v) = 0.If d(v) > 4, then w'(v) > 0 by (R).

Let f € F.1f d(f) > 6, then W (f) = w(f) = d(f) — 6 > 0.

If d(f) = 5, then n3(f) < 3 since G has no H;. Hence, f is a (3%, 3%, 3+, 4+, 4*)-face. Thus, w'(f) > 5— 6+ 3 x 2 =0by
(P1) ~ (P3).

If d(f) = 4, then n3(f) < 2 since G has no H, and Hs. If, furthermore, n3(f) = 2, then n4(f) = 0. Therefore, f is a
(3, 3,5",5%)-face if n3(f) = 2.

Let n3(f) = 2,thenfisa (3, 3,5", 5%)-face. Since G has no H; and Hs, there is at most one (3, 3, 5, 5%)-face f1. By (P2)
and (P3),w'(fi)) >4—6+ % x2=—2.Iffisa(3,3,6%,6")-face, thenw'(f) > 4 — 6 + 1 x 2 = 0 by (P3).

Let n3(f) = 1and na(f) > 2, thenfisa (3, 4, 4, 47)-face. Since G has no Hg and Hy, there is at most one (3, 4, 4, 4)-face f>
or at most one (3, 4, 4, 5)-face f; (f,, f; do not exist at the same time). By (P1) and (P2), w'(f,) > 4 —6 + % X3 = —% and
W(f3) >4-6+13x2+2=—11ffisa(3,4,4,6%)-face, thenw (f) > 4—6+ 1 x2+1=0by(P1)and (P3). Let n3(f) = 1
and n4(f) < 1,thenfisa (3,4", 5%, 5%)-face. Thus, w'(f) > 4 — 6 + % + g x 2 > 0by (P1) ~ (P3).

Let n3(f) = 0, thenfisa (4", 4", 4", 47)-face. Thus, w'(f) > 4 — 6 + % x 4 =0by (P1) ~ (P3).

Thus, it follows from the above argument that —12 = Y, ;w(x) = YW > —2 — 1 = —% whichisa
contradiction.

Case 2: §(G) =2

Subcase 2.1: There is one 2-vertex in G

The total weights of 2-vertex, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not less than
(=2) 4+ (=2) x 2 = —6. The discharging rule is the same as in Case 1 (2-vertex, 4-faces incident to a 2-vertex and 5-faces
incident to a 2-vertex are not considered), then —12 = ", ., s W(X) = > ey W (%) > —%, which is a contradiction.

Subcase 2.2: There are two 2-vertices in G

If the two 2-vertices are incident to one common face, then the total weights of 2-vertices, 4-faces incident to a 2-
vertex and 5-faces incident to a 2-vertex are not less than (—2) x 2 + (—2) x 3 = —10. The discharging rule is the
same as in Case 1 (2-vertices, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not considered), then
=12 =Y,y WX) = Yevur W () > — 1% which is a contradiction.

If two 2-vertices are not incident to one common face, then the discharging rule is the same as in Case 1 (2-vertices and 5-
faces incident to a 2-vertex are not considered). If d(f) = 4 and n,(f) = 1,thenfisa (2, 4", 4%, 3™)-faces since G has no Hys.
Thus,w (f) > —2+% x2 = —1by(P1) ~ (P3). Therefore, the new total weights of 2-vertices, 4-faces incident to a 2-vertex and
5-faces incident to a 2-vertex are not less than (—2) x 2+ (—1) x4 = —8.Hence, —12 = ",y W(X) = >, cyur W (X) = — %,
which is a contradiction.

Subcase 2.3: There are at least three 2-vertices in G

Since G has no Hg, there are no two adjacent 2-vertices. Since G has no Hy, there is at most one 2-vertex which is adjacent
to a 3-vertex.

If there is one 2-vertex v; which is adjacent to a 3-vertex, since G has no Hy, there is no 2-vertex which is adjacent to a
4-vertex other than vq. Thus, w(v;) = —2.

If there is one 2-vertex which is adjacent to a 4-vertex, since G has no Hyo, there is at most one 2-vertex v, which is
adjacent to 4-vertices. Thus, w(v,) = —2.

We will consider 2-vertices which are adjacent to two 5*-vertices only while the weight of 2-vertex which is adjacent
to a 3-vertex or 4-vertex kept fixed in the following.

Our discharging rules are as follows:

(R'1) Every 5T -vertex sends 1 to each adjacent 2-vertex.

(R'2)If d(v) = 4, then (v — f) = } for each f € Q(v) U P(v).

(R'3)Ifd(v) > 5, then t(v — f) = *2=220) for each f € Q(v) U P(v).

Let v be a 5F-vertex, since G has no Hq;, we have n,(v) < 1. We give the following obvious properties:

(P'1)Ifd(v) =5, then (v — f) > £ = 2 for each f € Q(v) U P(v) by (R'3) when ny(v) = 1, otherwise, 7(v — f) > 2 by
(R'3).

(P2)Ifd(v) =6, then (v — f) > >z = % for each f € Q(v) UP(v) by (R'3).

(P'3)Ifd(v) > 7, then (v — f) > 2‘“”;(% > 1for each f € Q(v) UP(v) by (R'3).

Letv € V.Ifd(v) = 2, then w'(v) = —2 + 1 x 2 = 0 for each 2-vertex which is adjacent to two 5*-vertices by (R'1).

Ifd(v) = 3, thenw (v) = w(v) = 0.

Ifd(v) = 4, thenw/(v) > 2 — 1 x 4= 0Dby (R2).

Ifd(v) > 5, then w'(v) > 0 by (P"1)~ (P'3) and (R’'3).

Let f € F.If d(f) > 6, then W' (f) = w(f) = d(f) — 6 > 0.

Ifd(f) = 5, then ny(f) +n3(f) < 3 since G has no Hy. Hence, fisa (2%, 2%, 2T, 4%, 4*)-face. Thus, w'(f) > 5—6+ % x2=0
by (R'2) and (P'1) ~ (P’'3).

Ifd(f) = 4,thenfisa (2%, 3%, 2%, 3*)-face since there are no two adjacent 2-vertices.

6-1
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Let ny(f) > 1,thenfisa (2, 3%, 2%, 37)-face. Since G has no Hy,, f is (2, 3T, 4™, 3*)-face. Furthermore, since G has no His,
fisa (2,47, 4%, 47)-face. Since Ghasno Hy4, (2, 4%, 47, 47)-faces are none but (2, 4, 47, 7")-faces f, (2, 5, 4™, 77)-faces f5
and (2,67, 4, 6*)-faces f. By (R2) and (P'1) ~ (P3), W (fs) 24— 6+ 1 x2+1=0,w(s)>4—6+1+32+1>0and
W/(fg)24—6+%+%><2>0.

Let ny(f) = 0. Since G has no H, and Hs, n3(f) < 2.

Let ny(f) = 0 and n3(f) = 2, then fis a (3, 3, 4", 4™)-face. Since G has no Hys and Hqg, f is a (3, 3, 7", 7+)-face. Thus,
w({)>4—-6+1x2=0Dby(P3).

Let ny(f) = 0and n3(f) = 1, thenfisa (3, 4+, 4%, 47)-face. Since G has no Hy; ~ Hjg, there is at most one 4-face, denoted
by f7, which is incident to one 3-vertex, one 4-vertex, one vertex of degree at most 5 and one vertex of degree at most 6. By
(R2)and (P'1) ~ (P2),w'(f}) >4 -6+ % x 3= —%.

If G has f7, then the other (3, 47, 4™, 47)-faces are (3, 4", 4%, 7")-faces fg. By (R'2) and (P'1) ~ (P'3), w'(fs) > 4 — 6+ % x
2+1=0.

If G has no f7, then (3, 4™, 4%, 4*)-faces are none but (3, 4, 6+, 67)-faces, (3, 4, 4+, 77)-faces and (3, 5", 5+, 5*)-faces.

Iffisa(3,4,6%,6%)-face, thenw'(f) >4 —6+ 5 + 2 x 2> 0by (R'2) and (P'2) ~ (P'3).

Iffisa (3, 4,4%,7%)-face, thenw'(f) >4 — 6 + % x 2+ 1=0by (R'2)and (P'1) ~ (P'3).

Let f be a (3,5, 5, 5)-face, since G has no Hjg, there is at least one 5-vertex v on V(f) such that n,(v) = 0. Hence,
wW()>4-6+3+2x2=0by(P1).

Letfbea (3,5%,5%, 6")-face, thenw'(f) >4 -6+ 2 x 2+ 2 > 0by (P'1) ~ (P'3).

Let ny(f) = 0 and n3(f) = 0, then fis a (4™, 4T, 4+, 4%)-face. Thus, w'(f) > 4 — 6 + % x4 =0by(R2)and (P'1) ~ (P'3).

Thus, it follows from the above argument that —12 = Y., ;w(x) = Y, W(x) > -2 — 3 = —3, whichis a
contradiction.

Case 3:6(G) =1

Since G has no Hai, there are at most two 1-vertices. Furthermore, there is no 2-vertex while there are two 1-vertices.
Since G has no C3, every k-face (k < 5) is a simple face.

Subcase 3.1: There are two 1-vertices in G

The total weights of 1-vertices is (—4) x 2 = —8. The discharging rule is the same as in Case 1 (1-vertices are not
considered), then —12 = Y, .y W(x) = X yeyup W () > —%, which is a contradiction.

Subcase 3.2: There is one 1-vertex and at most one 2-vertex in G

The total weights of 1-vertex, 2-vertex and 4-face incident to a 2-vertex or 5-face incident to a 2-vertex is not less than
—4 4 (—2) + (—2) x 2 = —10. The discharging rule is the same as in Case 1 (1-vertex , 2-vertex and 4-face incident to a
2-vertex or 5-face incident to a 2-vertex are not considered), then —12 = >, ., w(x) = > cyur W (x) > —%, which is a
contradiction.

Subcase 3.3: There is one 1-vertex and at least two 2-vertices in G

Since G has no Hg, there is no 2-vertex which is adjacent a 1-vertex. The total weight of 1-vertex is —4. The discharging
rules are the same as in Subcase 2.3 (1-vertex is not considered). If there are exactly two 2-vertices, then the 1-vertex vo can
be considered as a 2-vertex while the weight of vy will kept fixed. Therefore, this case can be also considered as Subcase 2.3.
Hence, we have —12 = ¥, .y s w(x) = Y ,cyr W (%) = —4 — 3 = — 1 which is a contradiction. O

Theorem 7. If G is a triangle-free plane graph and k > max{A(G), 8}, then G is equitably k-choosable.

Proof. We use induction on |V(G)|. If |V(G)| < k, then we color all vertices using different colors from their lists. Suppose
now that |V(G)| > k > 8. If every component of G has at most 4 vertices, then A(G) < 3. By Lemma 4, G is equitably k-
choosable. Otherwise, by Lemma 6, G has one of the structures H; ~ Hy;. The vertices are labeled as they are in Lemma 6. If
there are vertices labeled repeatedly, then we take the larger. (x; is larger than x;_;). We will find S in Lemma 1.

If G has Hg or Haq, thenletS = {Xk, Xk—1, Xk=2, X]}. If G has H; or Hy, thenletS = {Xk, Xi—1, Xk—2, Xk—3, Xl}. If G has Hyp or Hyg,

thenletS = {x, Xx_1,, ..., Xx—4, X1}. If Ghas one of Hy7 ~ Hyg, thenletS = {x, x,_1, , ..., Xx_s, X1}. If G has one of H,, H3 and
Hi1 ~ His, thenletS = {Xk, Xk—1, Xk—2, X2, Xl}. If G has one OfH4, Hs and Hi4 ~ Hys, then let S’ = {Xk, Xik—15 5 -« - s Xk—4, X2, X]}.
If G has Hg or H7, then let S = {x, x¢k_1, ..., X5, X2, X1} and i = 5. We fill the remaining unspecified positions in S from

highest to lowest indices by choosing at each step a vertex with minimum degree in the graph obtained from G by delating
the vertices thus far chosen for S. Such a vertex always exists because G is 3-degenerate by Lemma 3. Since G — S is also a
triangle-free plane graph and k > A(G) > A(G — S), by the induction hypothesis, G — S is equitably k-choosable. Hence, by
Lemma 1, G is equitably k-choosable. The proof is complete. O

Theorem 8. If G is a triangle-free plane graph and k > max{A(G), 8}, then G is equitably k-colorable.
Proof. If every component of G has at most 4 vertices, then A(G) < 3. By Lemma 5, G is equitably k-colorable. In other cases,

we can obtain the desired results applying Lemma 2.
Conjectures 1-4 hold for every triangle-free planar graph G with A(G) > 8. O
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3. Planar graphs without 4-cycles and 5-cycles

Lemma9 ([13]). Every plane graph without 5-cycles is 3-degenerate.

Lemma 10. Let G be a connected plane graph with order at least 5. If G has neither 4-cycles nor 5-cycles, then G has one of the

following configurations
Ty
X L K
Th1 Tk 2 Th—aq
T3

/ %k 3 O/.Lk 3
H H214 < d(.[,k_.j) <6

23

zk

Ia i i
5] o

Tp—
s Th—1e—o0
Th—1 L
1 T2
Hagl < d(xp—2) <2 Hay

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown,
(2) except for special pointed, the degree of a hollow vertex may be any integer from [d, A], where d is the number of edges
incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose G is a counterexample, then G is a connected plane graph with order at least 5 and without configurations
Hg ~ Hi1, Hy1 ~ Ha7, 4-cycles and 5-cycles. We use the same Euler’s formula and define the same weight function as in the
proof of Lemma 6. Similarly, we shall derive a contradiction. Since G has no C4, we have m3(v) < [@]. By Lemma 10, we
have §(G) < 3. We consider the following three cases:

Case 1: 5(G) = 3 Our discharging rules are as follows:

(R1) Every 4-vertex sends 1 to each of its incident 3-faces.

(R2) Every 5" -vertex sends 2 to each of its incident 3-faces.

Letv e V.Ifd(v) = 3, then w (v) = w(v) = 0.

Ifd(v) = 4, then m3(v) < 2.Thus,w'(v) >2x4—-6 —1x 2 =0Dby(R1).

Ifd(v) > 5, then ms(v) < [%2]. Thus, w'(v) > 2d(v) — 6 — 2 x [%] > 0 by (R2).

Letf € F.If d(f) > 6, then w'(f) = w(f) = d(f) —6 > 0.

If d(f) = 3, then n3(f) < 2 since G has no Ha,. If, furthermore, n3(f) = 2, then ny(f) = 0.

Let n3(f) = 2, then f is a (3, 3, 5%)- face. Since G contain no H,s, there is at most one (3, 3, 5%)- face f;. By (R2),
w())=3-6+2=-1.

Let n3(f) = 1 and n4(f) = 2, then fis a (3, 4, 4)-face. Since G has no H,4, there is at most one (3, 4, 4)-face f,. By (R1),
w() =3—-64+1x2=-1.

Since G has no Hss, f1, f, do not exist at the same time.

Let n3(f) = 1and n4(f) < 1, thenfisa (3, 4", 5%)- face. By (R1)and (R2), w'(f) >3 —-64+14+2=0.

Let n3(f) = 0, then fis a (4", 4", 47)-face. By (R1)and (R2),w'(f) >3 —-6+1x 3 =0.

Thus, it follows from the above argument that —12 = Y, ., ; w(x) = >_,cyur W (x) > —1, which is a contradiction.

Case 2: 6(G) =2

Subcase 2.1: There are at most two 2-vertices in G The total weights of 2-vertices and 3-faces incident to 2-vertices is
not less than (—2) x 2 + (—3) x 2 = —10. The discharging rules are the same as in Case 1 (2-vertices and 3-faces incident
to 2-vertices are not considered), then —12 = Y, ., ,; W(x) = >_,cyur W (x) > —11, which is a contradiction.

Subcase 2.2: There are at least three 2-vertices in G Since G has no Hg, there is no (3, 3, 2*)-face. Since G has no Hs, there
are no two adjacent 2-vertices. Since G has no Hy, there is at most one 2-vertex which is adjacent to a 3-vertex.

If there is one 2-vertex v, which is adjacent to a 3-vertex, since G has no Hy, there is no 2-vertex which is adjacent to a
4-vertex other than vy. Thus, w(v;) = —2.

If there is one 2-vertex v, which is adjacent to 4-vertices, since G has no Hyg, there is at most one 2-vertex adjacent to
4-vertices. Thus, w(vy) = —2.

We will consider 2- vertices which are adjacent to two 5" -vertices while the weight of 2-vertex which is adjacent to a
3-vertex or 4-vertex kept fixed in the following.

Our discharging rules are as follows:

(R'1) Every 5*-vertex sends 1 to each of its adjacent 2-vertices.

(R’2) Every 4-vertex transfers 1 to each of its incident 3-faces.

(R'3) Every 5*-vertex transfers W(Vnz —2) to each of its incident 3-faces (ms3(v) # 0).

Let v be a 5F-vertex, since G has no Hq;, we have n, (v) < 1. We give the following obvious properties:

(P1) Let v be a 5-vertex and f be a 3-face incident to v, then 7(v — f) > 45! = 3 by (R'3).
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(P2) Let v be a 6-vertex and f be a 3-face incident to v, then t(v — f) > 81 = % by (R'3).
1

3
(P3) Let v be a 7"-vertex and f be a 3-face incident to v, then t(v — f) > 24W-6=

140
Letv e V.Ifd(v) = 2,thenw/(v) = —2 + 1 x 2 = 0 for each 2-vertex which is2 adjacent to two 5-vertices by (R'1).
Ifd(v) = 3, thenw (v) = w(v) = 0.

Ifd(v) = 4,thenw'(v) >2x4—-6—1x2=0by(R2).

If d(v) > 5.If vis not incident to 3-faces, then w'(v) > 2d(v) — 6 — 1 > 0 by (R'1). Otherwise, w'(v) = 0 by (P1) ~ (P3)
and (R'3).

Let f € F.Ifd(f) > 6, then W' (f) = w(f) = d(f) — 6 > 0.

Ifd(f) = 3, thenfisa (2%, 37, 3%)-face since there are no two adjacent 2-vertices.

Let ny(f) > 1. Since there is at most one 2-vertex which is adjacent to a 3-vertex or 4-vertex, there is at most one
(2, 3, 3%)-face f3 or (2, 4, 47)-face f, (f3, f4 do not exist at the same time). By (R'2) and (P1) ~ (P3), w'(fz3) > 3 — 6 = -3,
wW(fy) >3-6+1x2=-1.1Iffisa (2,5, 5")-face, thenw'(f) > 3 -6 + % x 2 = 0by (P1) ~ (P3).

Let ny(f) = 0 and n3(f) > 1.Since G has no (3, 3, 2*)-face, fis a (3, 47, 47)-face.

Since G has no Hyy, there is at most one (3, 4, 4)-face f> or (3, 4, 5)-face f5 or (3, 4, 6)-face fg (at most one of f>, fs and fs
exists). By (R'2) and (P1)and (P3), W' () =3 -6+ 1x2=-1,w(f5) >3 -6+ 1+3=—1 wW(fs) >3-6+1+3=—1.

Letfbea (3,4, 7")-face,thenw'(f) >3 -6 +1+ % > 0 by (R'2) and (P1) ~ (P3).

Letfbea (3,5",5%)-face, thenw'(f) > 3 -6+ % x 2 =0by (P1) ~ (P3).

Let np(f) = n3(f) = 0, then f is a (4%, 4, 47)-face. Thus w/(f) > 3 — 6+ 1 x 3 = 0by (R'2)and (P1) ~ (P3).

Then, it follows from the above argument that —12 = Y, ., ,; W(x) = Y ,cypW () > =2 =3 — 1 = —6, whichis a
contradiction.

Case 3:5(G) =1

Since G has no Hyg, there is no (3, 3, 2%)-face. Since G has no H,1, there are at most two 1-vertices.

Subcase 3.1: There are two 1-vertices in G

Since G has no H,1, there is no 2-vertex.

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most two 5-faces. The total weights of 1-vertices and
5-faces are (—4) x 2 + (—1) x 2 = —10. The discharging rules are the same as in Case 1 (1-vertices and 5-faces are not
considered), then —12 = Y, w(x) = Y_,cyur W (%) > —11, which is a contradiction.

Subcase 3.2: There is one 1-vertex and at most one 2-vertex in G

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. The total weights of 1-vertex, 2-vertex,
5-face and 3-face which is incident to a 2-vertex are not less than —4 + (—2) + (—1) + (—3) = —10. The discharging rules
are the same as in Case 1 (1-vertices, 2-vertices, 5-face and 3-face which is incident to a 2-vertex are not considered), then
=12 =3, cyur W(x) = Y ievur W(x) = —11, which is a contradiction.

Subcase 3.3: There is one 1-vertex and two 2-vertices in G

Since G has neither 4-cycles nor 5-cycles, there is no 4- face and at most one 5-face. Since G has no H,7, there is no 3-face
which is incident to 2-vertices. The total weights of 1-vertex, 2-vertices and 5-face are —4 + (—2) x 2 + (—1) = —9. The
discharging rules are the same as in Case 1(1-vertex, 2-vertices and 5-face are not considered), then —12 =}, ., s w(x) =
Y vevur W (x) > —10, which is a contradiction.

Subcase 3.4: There is one 1-vertex and at least three 2-vertices in G

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. Since G has no Hg, then there is
no 2-vertex which is adjacent to a 1-vertex. The total weights of 1-vertex and 5-face are not less than —4 + (—1) = —5.
The discharging rules are the same as in Subcase 2.2 (1-vertex and 5-face are not considered), then —12 = Y, ., w(x) =
Y wevur W(x) > —11, which is a contradiction. O

Theorem 11. Every plane graph G without 4-cycles and 5-cycles is equitably k-choosable whenever k > max{A(G), 7}.
Proof. The proof is similar to the proof of Theorem 7. O
Theorem 12. Every plane graph G without 4-cycles and 5-cycles is equitably k-colorable whenever k > max{A(G), 7}.
Proof. The proof is similar to the proof of Theorem 8. O

Conjectures 1-4 hold for every planar graph G with A(G) > 7 and without 4-cycles and 5-cycles.
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