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a b s t r a c t

A graph G is equitably k-choosable if, for any k-uniform list assignment L, G is L-colorable
and each color appears on at most d |V(G)|

k e vertices. A graph G is equitably k-colorable if
G has a proper k-vertex coloring such that the sizes of any two color classes differ by at
most 1. In this paper, we prove that every planar graph G is equitably k-choosable and
equitably k-colorable if one of the following conditions holds: (1) G is triangle-free and
k ≥ max{∆(G), 8}; (2) G has no 4- and 5-cycles and k ≥ max{∆(G), 7}.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. A plane graph is a particular drawing of a planar
graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, order, maximum degree and
minimum degree by V(G), E(G), F(G), |V(G)|, ∆(G) and δ(G) respectively (V, E, F, |V|,∆ and δ for short). For v ∈ V(G), let
dG(v) (d(v) for short) denote the degree of v in G. For f ∈ F(G), let dG(f ) (d(f ) for short) denote the number of edges on the
boundary of f , where each cut edge is counted twice. A vertex v (face f ) is called a k-vertex (k-face) if d(v) = k (d(f ) = k).
A vertex v (face f ) is called a k+-vertex (k+-face) if d(v) ≥ k (d(f ) ≥ k). For f ∈ F(G), we use b(f ) and V(f ) to denote the
boundary walk of f and the vertices on the boundary walk respectively. A face f of G is called a simple face if b(f ) forms a
cycle. Obviously, each k-face (k ≤ 5) is a simple face when δ ≥ 2. A simple k-face f of G is called a (d1, d2, . . . , dk)-face if the
vertices of f are, respectively, of degree d1, d2, . . . , dk. Let P(v) and Q(v) denote the set of 4-faces and 5-faces incident to the
vertex v, respectively. Let nk(f ) denote the number of k-vertices incident to the face f . Let m3(v) denote the number of 3-faces
incident to the vertex v. Let n2(v) denote the number of 2-vertices adjacent to the vertex v. A graph G is called d-degenerate
if every induced subgraph H of G has a vertex of degree at most d. A graph G is equitably k-choosable if, for any k-uniform list
assignment L, G is L-colorable and each color appears on at most d |V(G)|

k
e vertices. A graph G is equitably k-colorable if G has

a proper k-vertex coloring such that the sizes of any two color classes differ by at most 1. The smallest integer k for which G
is equitably k-colorable is called the equitable chromatic number of G, denoted by χe(G).

Equitable colorings naturally arise in some scheduling, partitioning and load balancing problems. In contrast with
ordinary coloring, a graph may have an equitable k-coloring but have no equitable (k+1)-coloring. For example, the complete
bipartite graph K2n+1,2n+1 for n ≥ 1 has an equitable 2-coloring but has no equitable (2n+ 1)-coloring.

In 1970, Hajnál and Szemerédi [1] proved that every graph has an equitable k-coloring whenever k ≥ ∆+1. This bound is
sharp for some special graph classes. In 1973, Meyer [2] introduced the notion of equitable coloring and made the following
conjecture:
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Conjecture 1. The equitable chromatic number of a connected graph, which is neither a complete graph nor odd cycle, is at most
∆.

In 1994, Chen, Lih and Wu [3] put forth the following conjecture:

Conjecture 2. A connected graph is equitably ∆-colorable if it is different from Km, C2m+1 and K2m+1,2m+1 for m ≥ 1.

This conjecture has been confirmed for graphs with ∆ ≤ 3 or ∆ ≥ |V|
2 [3], trees [4], bipartite graphs [5], outerplanar

graphs [6], planar graphs with ∆ ≥ 13 [7], line graphs [8] and d-degenerate graphs with ∆ ≥ 14d+ 1 [9].
In 2003, Kostochka, Pelsmajer and West [10] introduced the list analogue of equitable coloring. A list assignment L for a

graph G assigns to each vertex v ∈ V(G) a set L(v) of acceptable colors. An L-coloring of G is a proper vertex coloring such
that for every v ∈ V(G) the color on v belongs to L(v). A list assignment L for G is k-uniform if |L(v)| = k for all v ∈ V(G).

Given a k-uniform list assignment L for a graph G, we say that G is equitably L-colorable if G has an L-coloring such that
each color appears on at most d |V(G)|

k
e vertices. A graph G is equitably list k-colorable or equitably k-choosable if G is equitably

L-colorable whenever L is a k-uniform list assignment for G. In [10], Kostochka, Pelsmajer and West also conjectured the
analogue of the Hajnál and Szemerédi Theorem [1]:

Conjecture 3. Every graph is equitably k-choosable whenever k ≥ ∆+ 1.

It has been proved that Conjecture 3 holds for graphs with ∆ ≤ 3 independently in [11,12].

Conjecture 4. If G is a connected graph with ∆ ≥ 3, then G is equitably ∆-choosable unless G is a complete graph or is K2m+1,2m+1.

Kostochka, Pelsmajer and West [10] proved that a graph G is equitably k-choosable if either G 6= Kk+1, Kk,k (with k odd
in the later case) and k ≥ max{∆, |V|2 }, or G is a forest and k ≥ 1 + ∆

2 , or G is a connected interval graph and k ≥ ∆ ,
or G is a 2-degenerate graph and k ≥ max{∆, 5}. Pelsmajer [11] proved that every graph is equitably k-chooable for any
k ≥ ∆(∆−1)

2 + 2.
In this paper we prove that every triangle-free plane graph is equitably k-choosable and equitably k-colorable whenever

k ≥ max{∆, 8}, and every plane graph without 4- and 5-cycles is equitably k-choosable and equitably k-colorable whenever
k ≥ max{∆, 7}.

2. Triangle-free planar graphs

Lemma 1 ([10]). Let G be a graph with a k-uniform list assignment L. Let S = {v1, v2, . . . , vk}, where {v1, v2, . . . , vk} are distinct
vertices in G. If G− S has an equitable L-coloring and |NG(vi)− S| ≤ k− i for 1 ≤ i ≤ k, then G has an equitable L-coloring.

Lemma 2. Let S = {v1, v2, . . . , vk}, where {v1, v2, . . . , vk} are distinct vertices in graph G. If G− S has an equitable k-coloring and
|NG(vi)− S| ≤ k− i for 1 ≤ i ≤ k, then G has an equitable k-coloring.

Proof. Let Gi = G − {vi+1; vi+2, . . . , vk}, so that G − S = G0 and G = Gk. Let f0 be an equitable k-coloring of G0. For 1 ≤ i ≤ k,
extend fi−1 to a k-coloring fi of Gi by giving vi a color different from the colors that fi has used on neighbors of vi and on the
vertices v1, v2, . . . , vi. Condition |NG(vi)− S| ≤ k− i for 1 ≤ i ≤ k guarantees that this is possible. By construction, the colors
used on S are distinct, and hence fk is an equitable k-coloring of G. �

Lemma 3. Every triangle-free plane graph is 3-degenerate.

Lemma 4 ([12]). Every graph with ∆ ≤ 3 is equitably k-choosable whenever k ≥ ∆+ 1.

Lemma 5 ([1]). Every graph has an equitable k-coloring whenever k ≥ ∆+ 1.

Lemma 6. Every connected triangle-free plane graph G with order at least 5 has one of the following configurations



J. Zhu, Y. Bu / Theoretical Computer Science 407 (2008) 21–28 23

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown,
(2) except for special pointed, the degree of a hollow vertex may be any integer from [d,∆], where d is the number of edges
incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose G is a counterexample, then G is a connected triangle-free plane graph with order at least 5 and without
configurations H1 ∼ H21. We rewrite the Euler’s formula |V(G)| − |E(G)| + |F(G)| = 2 into the following equivalent form:∑

v∈V(G)

(2d(v)− 6)+
∑

f∈F(G)

(d(f )− 6) = −12.

We define a weight function w by w(v) = 2d(v)−6 for v ∈ V(G) and w(f ) = d(f )−6 for f ∈ F(G). Thus
∑

x∈V∪F w(x) = −12.
We will design appropriate discharging rules and redistribute weights accordingly. Once discharging is finished, a new
weight function w

′ is produced while the total sum of weights is kept fixed. For x, y ∈ V(G)∪F(G), we use τ(x→ y) to denote
the sum of weights discharged from x to y according to our rules.

By Lemma 3, we have δ(G) ≤ 3. We consider the following three cases:
Case 1: δ(G) = 3
Our discharging rule is defined as follows:
(R) If d(v) ≥ 4, then τ(v→ f ) = w(v)

d(v)
for each f ∈ Q(v) ∪ P(v).

We give the following obvious properties:
(P1) If d(v) = 4, then τ(v→ f ) = w(v)

d(v)
=

2
4 =

1
2 for each f ∈ Q(v) ∪ P(v).
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(P2) If d(v) = 5, then τ(v→ f ) = w(v)
d(v)
=

4
5 for each f ∈ Q(v) ∪ P(v).

(P3) If d(v) ≥ 6, then τ(v→ f ) = w(v)
d(v)
=

2d(v)−6
d(v)

≥ 1 for each f ∈ Q(v) ∪ P(v).
Let v ∈ V . If d(v) = 3, then w

′

(v) = w(v) = 0. If d(v) ≥ 4, then w′(v) ≥ 0 by (R).
Let f ∈ F. If d(f ) ≥ 6, then w′(f ) = w(f ) = d(f )− 6 ≥ 0.
If d(f ) = 5, then n3(f ) ≤ 3 since G has no H1. Hence, f is a (3+, 3+, 3+, 4+, 4+)-face. Thus, w′(f ) ≥ 5 − 6 + 1

2 × 2 = 0 by
(P1) ∼ (P3).

If d(f ) = 4, then n3(f ) ≤ 2 since G has no H2 and H3. If, furthermore, n3(f ) = 2, then n4(f ) = 0. Therefore, f is a
(3, 3, 5+, 5+)-face if n3(f ) = 2.

Let n3(f ) = 2, then f is a (3, 3, 5+, 5+)-face. Since G has no H4 and H5, there is at most one (3, 3, 5, 5+)-face f1. By (P2)
and (P3), w′(f1) ≥ 4− 6+ 4

5 × 2 = − 2
5 . If f is a (3, 3, 6+, 6+)-face, then w′(f ) ≥ 4− 6+ 1× 2 = 0 by (P3).

Let n3(f ) = 1 and n4(f ) ≥ 2, then f is a (3, 4, 4, 4+)-face. Since G has no H6 and H7, there is at most one (3, 4, 4, 4)-face f2
or at most one (3, 4, 4, 5)-face f3 (f2, f3 do not exist at the same time). By (P1) and (P2), w′(f2) ≥ 4 − 6 + 1

2 × 3 = − 1
2 and

w′(f3) ≥ 4−6+ 1
2 ×2+ 4

5 = −
1
5 . If f is a (3, 4, 4, 6+)-face, then w′(f ) ≥ 4−6+ 1

2 ×2+1 = 0 by (P1) and (P3). Let n3(f ) = 1
and n4(f ) ≤ 1, then f is a (3, 4+, 5+, 5+)-face. Thus, w′(f ) ≥ 4− 6+ 1

2 +
4
5 × 2 > 0 by (P1) ∼ (P3).

Let n3(f ) = 0, then f is a (4+, 4+, 4+, 4+)-face. Thus, w′(f ) ≥ 4− 6+ 1
2 × 4 = 0 by (P1) ∼ (P3).

Thus, it follows from the above argument that −12 =
∑

x∈V∪F w(x) =
∑

x∈V∪F w
′(x) ≥ − 2

5 −
1
2 = −

9
10 , which is a

contradiction.
Case 2: δ(G) = 2
Subcase 2.1: There is one 2-vertex in G
The total weights of 2-vertex, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not less than

(−2) + (−2) × 2 = −6. The discharging rule is the same as in Case 1 (2-vertex, 4-faces incident to a 2-vertex and 5-faces
incident to a 2-vertex are not considered), then−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ − 69
10 , which is a contradiction.

Subcase 2.2: There are two 2-vertices in G
If the two 2-vertices are incident to one common face, then the total weights of 2-vertices, 4-faces incident to a 2-

vertex and 5-faces incident to a 2-vertex are not less than (−2) × 2 + (−2) × 3 = −10. The discharging rule is the
same as in Case 1 (2-vertices, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not considered), then
−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ − 109
10 , which is a contradiction.

If two 2-vertices are not incident to one common face, then the discharging rule is the same as in Case 1 (2-vertices and 5-
faces incident to a 2-vertex are not considered). If d(f ) = 4 and n2(f ) = 1, then f is a (2, 4+, 4+, 3+)-faces since G has no H13.
Thus,w′(f ) ≥ −2+ 1

2×2 = −1 by (P1)∼ (P3). Therefore, the new total weights of 2-vertices, 4-faces incident to a 2-vertex and
5-faces incident to a 2-vertex are not less than (−2)×2+(−1)×4 = −8. Hence,−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ − 89
10 ,

which is a contradiction.
Subcase 2.3: There are at least three 2-vertices in G
Since G has no H8, there are no two adjacent 2-vertices. Since G has no H9, there is at most one 2-vertex which is adjacent

to a 3-vertex.
If there is one 2-vertex v1 which is adjacent to a 3-vertex, since G has no H9, there is no 2-vertex which is adjacent to a

4-vertex other than v1. Thus, w(v1) = −2.
If there is one 2-vertex which is adjacent to a 4-vertex, since G has no H10, there is at most one 2-vertex v2 which is

adjacent to 4-vertices. Thus, w(v2) = −2.
We will consider 2-vertices which are adjacent to two 5+-vertices only while the weight of 2-vertex which is adjacent

to a 3-vertex or 4-vertex kept fixed in the following.
Our discharging rules are as follows:
(R′1) Every 5+-vertex sends 1 to each adjacent 2-vertex.
(R′2) If d(v) = 4, then τ(v→ f ) = 1

2 for each f ∈ Q(v) ∪ P(v).
(R′3) If d(v) ≥ 5, then τ(v→ f ) = w(v)−n2(v)

d(v)
for each f ∈ Q(v) ∪ P(v).

Let v be a 5+-vertex, since G has no H11, we have n2(v) ≤ 1. We give the following obvious properties:
(P′1) If d(v) = 5, then τ(v→ f ) ≥ 4−1

5 =
3
5 for each f ∈ Q(v) ∪ P(v) by (R′3) when n2(v) = 1, otherwise, τ(v→ f ) ≥ 4

5 by
(R′3).

(P′2) If d(v) = 6, then τ(v→ f ) ≥ 6−1
6 =

5
6 for each f ∈ Q(v) ∪ P(v) by (R′3).

(P′3) If d(v) ≥ 7, then τ(v→ f ) ≥ 2d(v)−6−1
d(v)

≥ 1 for each f ∈ Q(v) ∪ P(v) by (R′3).
Let v ∈ V . If d(v) = 2, then w′(v) = −2+ 1× 2 = 0 for each 2-vertex which is adjacent to two 5+-vertices by (R′1).
If d(v) = 3, then w

′

(v) = w(v) = 0.
If d(v) = 4, then w′(v) ≥ 2− 1

2 × 4 = 0 by (R′2).
If d(v) ≥ 5, then w′(v) ≥ 0 by (P′1)∼ (P′3) and (R′3).
Let f ∈ F. If d(f ) ≥ 6, then w′(f ) = w(f ) = d(f )− 6 ≥ 0.
If d(f ) = 5, then n2(f )+n3(f ) ≤ 3 since G has no H1. Hence, f is a (2+, 2+, 2+, 4+, 4+)-face. Thus, w′(f ) ≥ 5−6+ 1

2 ×2 = 0
by (R′2) and (P′1) ∼ (P′3).

If d(f ) = 4, then f is a (2+, 3+, 2+, 3+)-face since there are no two adjacent 2-vertices.
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Let n2(f ) ≥ 1, then f is a (2, 3+, 2+, 3+)-face. Since G has no H12, f is (2, 3+, 4+, 3+)-face. Furthermore, since G has no H13,
f is a (2, 4+, 4+, 4+)-face. Since G has no H14, (2, 4+, 4+, 4+)-faces are none but (2, 4, 4+, 7+)-faces f4, (2, 5, 4+, 7+)-faces f5
and (2, 6+, 4+, 6+)-faces f6. By (R′2) and (P′1) ∼ (P′3), w′(f4) ≥ 4− 6+ 1

2 × 2+ 1 = 0, w′(f5) ≥ 4− 6+ 1
2 +

3
5 + 1 > 0 and

w′(f6) ≥ 4− 6+ 1
2 +

5
6 × 2 > 0.

Let n2(f ) = 0. Since G has no H2 and H3, n3(f ) ≤ 2.
Let n2(f ) = 0 and n3(f ) = 2, then f is a (3, 3, 4+, 4+)-face. Since G has no H15 and H16, f is a (3, 3, 7+, 7+)-face. Thus,

w′(f ) ≥ 4− 6+ 1× 2 = 0 by (P′3).
Let n2(f ) = 0 and n3(f ) = 1, then f is a (3, 4+, 4+, 4+)-face. Since G has no H17 ∼ H19, there is at most one 4-face, denoted

by f7, which is incident to one 3-vertex, one 4-vertex, one vertex of degree at most 5 and one vertex of degree at most 6. By
(R′2) and (P′1) ∼ (P′2), w′(f7) ≥ 4− 6+ 1

2 × 3 = − 1
2 .

If G has f7, then the other (3, 4+, 4+, 4+)-faces are (3, 4+, 4+, 7+)-faces f8. By (R′2) and (P′1)∼ (P′3), w′(f8) ≥ 4− 6+ 1
2 ×

2+ 1 = 0.
If G has no f7, then (3, 4+, 4+, 4+)-faces are none but (3, 4, 6+, 6+)-faces, (3, 4, 4+, 7+)-faces and (3, 5+, 5+, 5+)-faces.
If f is a (3, 4, 6+, 6+)-face, then w′(f ) ≥ 4− 6+ 1

2 +
5
6 × 2 > 0 by (R′2) and (P′2) ∼ (P′3).

If f is a (3, 4, 4+, 7+)-face, then w′(f ) ≥ 4− 6+ 1
2 × 2+ 1 = 0 by (R′2) and (P′1) ∼ (P′3).

Let f be a (3, 5, 5, 5)-face, since G has no H20, there is at least one 5-vertex v on V(f ) such that n2(v) = 0. Hence,
w′(f ) ≥ 4− 6+ 4

5 +
3
5 × 2 = 0 by (P′1).

Let f be a (3, 5+, 5+, 6+)-face, then w′(f ) ≥ 4− 6+ 3
5 × 2+ 5

6 > 0 by (P′1) ∼ (P′3).
Let n2(f ) = 0 and n3(f ) = 0, then f is a (4+, 4+, 4+, 4+)-face. Thus, w′(f ) ≥ 4− 6+ 1

2 × 4 = 0 by (R′2) and (P′1) ∼ (P′3).
Thus, it follows from the above argument that −12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −2 − 1
2 = −

5
2 , which is a

contradiction.
Case 3: δ(G) = 1
Since G has no H21, there are at most two 1-vertices. Furthermore, there is no 2-vertex while there are two 1-vertices.

Since G has no C3, every k-face (k ≤ 5) is a simple face.
Subcase 3.1: There are two 1-vertices in G
The total weights of 1-vertices is (−4) × 2 = −8. The discharging rule is the same as in Case 1 (1-vertices are not

considered), then−12 =
∑

x∈V∪F w(x) =
∑

x∈V∪F w
′(x) ≥ − 89

10 , which is a contradiction.
Subcase 3.2: There is one 1-vertex and at most one 2-vertex in G
The total weights of 1-vertex, 2-vertex and 4-face incident to a 2-vertex or 5-face incident to a 2-vertex is not less than

−4 + (−2) + (−2) × 2 = −10. The discharging rule is the same as in Case 1 (1-vertex , 2-vertex and 4-face incident to a
2-vertex or 5-face incident to a 2-vertex are not considered), then −12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ − 109
10 , which is a

contradiction.
Subcase 3.3: There is one 1-vertex and at least two 2-vertices in G
Since G has no H8, there is no 2-vertex which is adjacent a 1-vertex. The total weight of 1-vertex is −4. The discharging

rules are the same as in Subcase 2.3 (1-vertex is not considered). If there are exactly two 2-vertices, then the 1-vertex v0 can
be considered as a 2-vertex while the weight of v0 will kept fixed. Therefore, this case can be also considered as Subcase 2.3.
Hence, we have−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −4− 5
2 = −

13
2 , which is a contradiction. �

Theorem 7. If G is a triangle-free plane graph and k ≥ max{∆(G), 8}, then G is equitably k-choosable.

Proof. We use induction on |V(G)|. If |V(G)| ≤ k, then we color all vertices using different colors from their lists. Suppose
now that |V(G)| > k ≥ 8. If every component of G has at most 4 vertices, then ∆(G) ≤ 3. By Lemma 4, G is equitably k-
choosable. Otherwise, by Lemma 6, G has one of the structures H1 ∼ H21. The vertices are labeled as they are in Lemma 6. If
there are vertices labeled repeatedly, then we take the larger. (xi is larger than xi−1). We will find S in Lemma 1.

If G has H8 or H21, then let S′ = {xk, xk−1, xk−2, x1}. If G has H1 or H9, then let S′ = {xk, xk−1, xk−2, xk−3, x1}. If G has H10 or H20,
then let S′ = {xk, xk−1, , . . . , xk−4, x1}. If G has one of H17 ∼ H19, then let S′ = {xk, xk−1, , . . . , xk−6, x1}. If G has one of H2, H3 and
H11 ∼ H13, then let S′ = {xk, xk−1, xk−2, x2, x1}. If G has one of H4, H5 and H14 ∼ H16, then let S′ = {xk, xk−1, , . . . , xk−4, x2, x1}.
If G has H6 or H7, then let S′ = {xk, xk−1, . . . , xk−5, x2, x1} and i = 5. We fill the remaining unspecified positions in S from
highest to lowest indices by choosing at each step a vertex with minimum degree in the graph obtained from G by delating
the vertices thus far chosen for S. Such a vertex always exists because G is 3-degenerate by Lemma 3. Since G − S is also a
triangle-free plane graph and k ≥ ∆(G) ≥ ∆(G− S), by the induction hypothesis, G− S is equitably k-choosable. Hence, by
Lemma 1, G is equitably k-choosable. The proof is complete. �

Theorem 8. If G is a triangle-free plane graph and k ≥ max{∆(G), 8}, then G is equitably k-colorable.

Proof. If every component of G has at most 4 vertices, then ∆(G) ≤ 3. By Lemma 5, G is equitably k-colorable. In other cases,
we can obtain the desired results applying Lemma 2.
Conjectures 1–4 hold for every triangle-free planar graph G with ∆(G) ≥ 8. �
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3. Planar graphs without 4-cycles and 5-cycles

Lemma 9 ([13]). Every plane graph without 5-cycles is 3-degenerate.

Lemma 10. Let G be a connected plane graph with order at least 5. If G has neither 4-cycles nor 5-cycles, then G has one of the
following configurations

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown,
(2) except for special pointed, the degree of a hollow vertex may be any integer from [d,∆], where d is the number of edges
incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose G is a counterexample, then G is a connected plane graph with order at least 5 and without configurations
H8 ∼ H11, H21 ∼ H27, 4-cycles and 5-cycles. We use the same Euler’s formula and define the same weight function as in the
proof of Lemma 6. Similarly, we shall derive a contradiction. Since G has no C4, we have m3(v) ≤ [

d(v)
2 ]. By Lemma 10, we

have δ(G) ≤ 3. We consider the following three cases:
Case 1: δ(G) = 3 Our discharging rules are as follows:
(R1) Every 4-vertex sends 1 to each of its incident 3-faces.
(R2) Every 5+-vertex sends 2 to each of its incident 3-faces.
Let v ∈ V . If d(v) = 3, then w

′

(v) = w(v) = 0.
If d(v) = 4, then m3(v) ≤ 2. Thus, w′(v) ≥ 2× 4− 6− 1× 2 = 0 by (R1).
If d(v) ≥ 5, then m3(v) ≤ [

d(v)
2 ]. Thus, w′(v) ≥ 2d(v)− 6− 2× [ d(v)2 ] ≥ 0 by (R2).

Let f ∈ F. If d(f ) ≥ 6, then w′(f ) = w(f ) = d(f )− 6 ≥ 0.
If d(f ) = 3, then n3(f ) ≤ 2 since G has no H22. If, furthermore, n3(f ) = 2, then n4(f ) = 0.
Let n3(f ) = 2, then f is a (3, 3, 5+)- face. Since G contain no H23, there is at most one (3, 3, 5+)- face f1. By (R2),

w′(f1) = 3− 6+ 2 = −1.
Let n3(f ) = 1 and n4(f ) = 2, then f is a (3, 4, 4)-face. Since G has no H24, there is at most one (3, 4, 4)-face f2. By (R1),

w′(f2) = 3− 6+ 1× 2 = −1.
Since G has no H25, f1, f2 do not exist at the same time.
Let n3(f ) = 1 and n4(f ) ≤ 1, then f is a (3, 4+, 5+)- face. By (R1) and (R2), w′(f ) ≥ 3− 6+ 1+ 2 = 0 .
Let n3(f ) = 0, then f is a (4+, 4+, 4+)-face. By (R1) and (R2), w′(f ) ≥ 3− 6+ 1× 3 = 0.
Thus, it follows from the above argument that−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −1, which is a contradiction.
Case 2: δ(G) = 2
Subcase 2.1: There are at most two 2-vertices in G The total weights of 2-vertices and 3-faces incident to 2-vertices is

not less than (−2)× 2+ (−3)× 2 = −10. The discharging rules are the same as in Case 1 (2-vertices and 3-faces incident
to 2-vertices are not considered), then−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −11, which is a contradiction.
Subcase 2.2: There are at least three 2-vertices in G Since G has no H26, there is no (3, 3, 2+)-face. Since G has no H8, there

are no two adjacent 2-vertices. Since G has no H9, there is at most one 2-vertex which is adjacent to a 3-vertex.
If there is one 2-vertex v1 which is adjacent to a 3-vertex, since G has no H9, there is no 2-vertex which is adjacent to a

4-vertex other than v1. Thus, w(v1) = −2.
If there is one 2-vertex v2 which is adjacent to 4-vertices, since G has no H10, there is at most one 2-vertex adjacent to

4-vertices. Thus, w(v2) = −2.
We will consider 2- vertices which are adjacent to two 5+-vertices while the weight of 2-vertex which is adjacent to a

3-vertex or 4-vertex kept fixed in the following.
Our discharging rules are as follows:
(R′1) Every 5+-vertex sends 1 to each of its adjacent 2-vertices.
(R′2) Every 4-vertex transfers 1 to each of its incident 3-faces.
(R′3) Every 5+-vertex transfers w(v)−n2(v)

m3(v)
to each of its incident 3-faces (m3(v) 6= 0).

Let v be a 5+-vertex, since G has no H11, we have n2(v) ≤ 1. We give the following obvious properties:
(P1) Let v be a 5-vertex and f be a 3-face incident to v, then τ(v→ f ) ≥ 4−1

2 =
3
2 by (R′3).
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(P2) Let v be a 6-vertex and f be a 3-face incident to v, then τ(v→ f ) ≥ 6−1
3 =

5
3 by (R′3).

(P3) Let v be a 7+-vertex and f be a 3-face incident to v, then τ(v→ f ) ≥ 2d(v)−6−1
[
d(v)

2 ]
≥

9
4 by (R′3).

Let v ∈ V . If d(v) = 2, then w′(v) = −2+ 1× 2 = 0 for each 2-vertex which is adjacent to two 5+-vertices by (R′1).
If d(v) = 3, then w

′

(v) = w(v) = 0.
If d(v) = 4, then w′(v) ≥ 2× 4− 6− 1× 2 = 0 by (R′2).
If d(v) ≥ 5. If v is not incident to 3-faces, then w′(v) ≥ 2d(v) − 6 − 1 > 0 by (R′1). Otherwise, w′(v) = 0 by (P1) ∼ (P3)

and (R′3).
Let f ∈ F. If d(f ) ≥ 6, then w′(f ) = w(f ) = d(f )− 6 ≥ 0.
If d(f ) = 3, then f is a (2+, 3+, 3+)-face since there are no two adjacent 2-vertices.
Let n2(f ) ≥ 1. Since there is at most one 2-vertex which is adjacent to a 3-vertex or 4-vertex, there is at most one

(2, 3, 3+)-face f3 or (2, 4, 4+)-face f4 (f3, f4 do not exist at the same time). By (R′2) and (P1) ∼ (P3), w′(f3) ≥ 3 − 6 = −3,
w′(f4) ≥ 3− 6+ 1× 2 = −1. If f is a (2, 5+, 5+)-face, then w′(f ) ≥ 3− 6+ 3

2 × 2 = 0 by (P1) ∼ (P3).
Let n2(f ) = 0 and n3(f ) ≥ 1. Since G has no (3, 3, 2+)-face, f is a (3, 4+, 4+)-face.
Since G has no H24, there is at most one (3, 4, 4)-face f2 or (3, 4, 5)-face f5 or (3, 4, 6)-face f6 (at most one of f2, f5 and f6

exists). By (R′2) and (P1) and (P3), w′(f2) = 3− 6+ 1× 2 = −1, w′(f5) ≥ 3− 6+ 1+ 3
2 = −

1
2 , w′(f6) ≥ 3− 6+ 1+ 5

3 = −
1
3 .

Let f be a (3, 4, 7+)-face, then w′(f ) ≥ 3− 6+ 1+ 9
4 > 0 by (R′2) and (P1) ∼ (P3).

Let f be a (3, 5+, 5+)-face, then w′(f ) ≥ 3− 6+ 3
2 × 2 = 0 by (P1) ∼ (P3).

Let n2(f ) = n3(f ) = 0, then f is a (4+, 4+, 4+)-face. Thus w′(f ) ≥ 3− 6+ 1× 3 = 0 by (R′2) and (P1) ∼ (P3).
Then, it follows from the above argument that −12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −2 − 3 − 1 = −6, which is a
contradiction.

Case 3: δ(G) = 1
Since G has no H26, there is no (3, 3, 2+)-face. Since G has no H21, there are at most two 1-vertices.
Subcase 3.1: There are two 1-vertices in G
Since G has no H21, there is no 2-vertex.
Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most two 5-faces. The total weights of 1-vertices and

5-faces are (−4) × 2 + (−1) × 2 = −10. The discharging rules are the same as in Case 1 (1-vertices and 5-faces are not
considered), then−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −11, which is a contradiction.
Subcase 3.2: There is one 1-vertex and at most one 2-vertex in G
Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. The total weights of 1-vertex, 2-vertex,

5-face and 3-face which is incident to a 2-vertex are not less than−4+ (−2)+ (−1)+ (−3) = −10. The discharging rules
are the same as in Case 1 (1-vertices , 2-vertices, 5-face and 3-face which is incident to a 2-vertex are not considered), then
−12 =

∑
x∈V∪F w(x) =

∑
x∈V∪F w

′(x) ≥ −11, which is a contradiction.
Subcase 3.3: There is one 1-vertex and two 2-vertices in G
Since G has neither 4-cycles nor 5-cycles, there is no 4- face and at most one 5-face. Since G has no H27, there is no 3-face

which is incident to 2-vertices. The total weights of 1-vertex, 2-vertices and 5-face are −4 + (−2) × 2 + (−1) = −9. The
discharging rules are the same as in Case 1(1-vertex, 2-vertices and 5-face are not considered), then −12 =

∑
x∈V∪F w(x) =∑

x∈V∪F w
′(x) ≥ −10, which is a contradiction.

Subcase 3.4: There is one 1-vertex and at least three 2-vertices in G
Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. Since G has no H8, then there is

no 2-vertex which is adjacent to a 1-vertex. The total weights of 1-vertex and 5-face are not less than −4 + (−1) = −5.
The discharging rules are the same as in Subcase 2.2 (1-vertex and 5-face are not considered), then −12 =

∑
x∈V∪F w(x) =∑

x∈V∪F w
′(x) ≥ −11, which is a contradiction. �

Theorem 11. Every plane graph G without 4-cycles and 5-cycles is equitably k-choosable whenever k ≥ max{∆(G), 7}.

Proof. The proof is similar to the proof of Theorem 7. �

Theorem 12. Every plane graph G without 4-cycles and 5-cycles is equitably k-colorable whenever k ≥ max{∆(G), 7}.

Proof. The proof is similar to the proof of Theorem 8. �

Conjectures 1–4 hold for every planar graph G with ∆(G) ≥ 7 and without 4-cycles and 5-cycles.
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