Equitable list colorings of planar graphs without short cycles*

Junlei Zhu ${ }^{\text {a }}$, Yuehua Bu ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, Jiaxing University, Jiaxing, 314001, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, PR China

A R TICLE INFO

Article history:

Received 29 January 2008
Received in revised form 2 April 2008
Accepted 12 April 2008
Communicated by D.-Z. Du

Keywords:

Equitable coloring
Equitable list coloring
Plane graph
Degenerate

Abstract

A graph G is equitably k-choosable if, for any k-uniform list assignment L, G is L-colorable and each color appears on at most $\left\lceil\frac{|V(G)|}{k}\right\rceil$ vertices. A graph G is equitably k-colorable if G has a proper k-vertex coloring such that the sizes of any two color classes differ by at most 1 . In this paper, we prove that every planar graph G is equitably k-choosable and equitably k-colorable if one of the following conditions holds: (1) G is triangle-free and $k \geq \max \{\Delta(G), 8\}$; (2) G has no 4 - and 5 -cycles and $k \geq \max \{\Delta(G), 7\}$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set, order, maximum degree and minimum degree by $V(G), E(G), F(G),|V(G)|, \Delta(G)$ and $\delta(G)$ respectively $(V, E, F,|V|, \Delta$ and δ for short). For $v \in V(G)$, let $d_{G}(v)\left(d(v)\right.$ for short) denote the degree of v in G. For $f \in F(G)$, let $d_{G}(f)(d(f)$ for short) denote the number of edges on the boundary of f, where each cut edge is counted twice. A vertex v (face f) is called a k-vertex (k-face) if $d(v)=k(d(f)=k)$. A vertex v (face f) is called a k^{+}-vertex (k^{+}-face) if $d(v) \geq k(d(f) \geq k)$. For $f \in F(G)$, we use $b(f)$ and $V(f)$ to denote the boundary walk of f and the vertices on the boundary walk respectively. A face f of G is called a simple face if $b(f)$ forms a cycle. Obviously, each k-face $(k \leq 5)$ is a simple face when $\delta \geq 2$. A simple k-face f of G is called a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-face if the vertices of f are, respectively, of degree $d_{1}, d_{2}, \ldots, d_{k}$. Let $P(v)$ and $Q(v)$ denote the set of 4 -faces and 5 -faces incident to the vertex v, respectively. Let $n_{k}(f)$ denote the number of k-vertices incident to the face f. Let $m_{3}(v)$ denote the number of 3-faces incident to the vertex v. Let $n_{2}(v)$ denote the number of 2 -vertices adjacent to the vertex v. A graph G is called d-degenerate if every induced subgraph H of G has a vertex of degree at most d. A graph G is equitably k-choosable if, for any k-uniform list assignment L, G is L-colorable and each color appears on at most $\left\lceil\frac{|V(G)|}{k}\right\rceil$ vertices. A graph G is equitably k-colorable if G has a proper k-vertex coloring such that the sizes of any two color classes differ by at most 1 . The smallest integer k for which G is equitably k-colorable is called the equitable chromatic number of G, denoted by $\chi_{e}(G)$.

Equitable colorings naturally arise in some scheduling, partitioning and load balancing problems. In contrast with ordinary coloring, a graph may have an equitable k-coloring but have no equitable $(k+1)$-coloring. For example, the complete bipartite graph $K_{2 n+1,2 n+1}$ for $n \geq 1$ has an equitable 2 -coloring but has no equitable ($2 n+1$)-coloring.

In 1970, Hajnál and Szemerédi [1] proved that every graph has an equitable k-coloring whenever $k \geq \Delta+1$. This bound is sharp for some special graph classes. In 1973, Meyer [2] introduced the notion of equitable coloring and made the following conjecture:

[^0]Conjecture 1. The equitable chromatic number of a connected graph, which is neither a complete graph nor odd cycle, is at most Δ.

In 1994, Chen, Lih and Wu [3] put forth the following conjecture:
Conjecture 2. A connected graph is equitably Δ-colorable if it is different from $K_{m}, C_{2 m+1}$ and $K_{2 m+1,2 m+1}$ for $m \geq 1$.
This conjecture has been confirmed for graphs with $\Delta \leq 3$ or $\Delta \geq \frac{|V|}{2}$ [3], trees [4], bipartite graphs [5], outerplanar graphs [6], planar graphs with $\Delta \geq 13$ [7], line graphs [8] and d-degenerate graphs with $\Delta \geq 14 d+1$ [9].

In 2003, Kostochka, Pelsmajer and West [10] introduced the list analogue of equitable coloring. A list assignment L for a graph G assigns to each vertex $v \in V(G)$ a set $L(v)$ of acceptable colors. An L-coloring of G is a proper vertex coloring such that for every $v \in V(G)$ the color on v belongs to $L(v)$. A list assignment L for G is k-uniform if $|L(v)|=k$ for all $v \in V(G)$.

Given a k-uniform list assignment L for a graph G, we say that G is equitably L-colorable if G has an L-coloring such that each color appears on at most $\left\lceil\frac{|V(G)|}{k}\right\rceil$ vertices. A graph G is equitably list k-colorable or equitably k-choosable if G is equitably L-colorable whenever L is a k-uniform list assignment for G. In [10], Kostochka, Pelsmajer and West also conjectured the analogue of the Hajnál and Szemerédi Theorem [1]:

Conjecture 3. Every graph is equitably k-choosable whenever $k \geq \Delta+1$.
It has been proved that Conjecture 3 holds for graphs with $\Delta \leq 3$ independently in [11,12].
Conjecture 4. If G is a connected graph with $\Delta \geq 3$, then G is equitably Δ-choosable unless G is a complete graph or is $K_{2 m+1,2 m+1}$.
Kostochka, Pelsmajer and West [10] proved that a graph G is equitably k-choosable if either $G \neq K_{k+1}, K_{k, k}$ (with k odd in the later case) and $k \geq \max \left\{\Delta, \frac{|V|}{2}\right\}$, or G is a forest and $k \geq 1+\frac{\Delta}{2}$, or G is a connected interval graph and $k \geq \Delta$, or G is a 2-degenerate graph and $k \geq \max \{\Delta, 5\}$. Pelsmajer [11] proved that every graph is equitably k-chooable for any $k \geq \frac{\Delta(\Delta-1)}{2}+2$.

In this paper we prove that every triangle-free plane graph is equitably k-choosable and equitably k-colorable whenever $k \geq \max \{\Delta, 8\}$, and every plane graph without 4-and 5-cycles is equitably k-choosable and equitably k-colorable whenever $k \geq \max \{\Delta, 7\}$.

2. Triangle-free planar graphs

Lemma 1 ([10]). Let G be a graph with a k-uniform list assignment L. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are distinct vertices in G. If $G-S$ has an equitable L-coloring and $\left|N_{G}\left(v_{i}\right)-S\right| \leq k-i$ for $1 \leq i \leq k$, then G has an equitable L-coloring.
Lemma 2. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, where $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ are distinct vertices in graph G. If $G-S$ has an equitable k-coloring and $\left|N_{G}\left(v_{i}\right)-S\right| \leq k-i$ for $1 \leq i \leq k$, then G has an equitable k-coloring.

Proof. Let $G_{i}=G-\left\{v_{i+1} ; v_{i+2}, \ldots, v_{k}\right\}$, so that $G-S=G_{0}$ and $G=G_{k}$. Let f_{0} be an equitable k-coloring of G_{0}. For $1 \leq i \leq k$, extend f_{i-1} to a k-coloring f_{i} of G_{i} by giving v_{i} a color different from the colors that f_{i} has used on neighbors of v_{i} and on the vertices $v_{1}, v_{2}, \ldots, v_{i}$. Condition $\left|N_{G}\left(v_{i}\right)-S\right| \leq k-i$ for $1 \leq i \leq k$ guarantees that this is possible. By construction, the colors used on S are distinct, and hence f_{k} is an equitable k-coloring of G.
Lemma 3. Every triangle-free plane graph is 3-degenerate.
Lemma 4 ([12]). Every graph with $\Delta \leq 3$ is equitably k-choosable whenever $k \geq \Delta+1$.
Lemma 5 ([1]). Every graph has an equitable k-coloring whenever $k \geq \Delta+1$.
Lemma 6. Every connected triangle-free plane graph G with order at least 5 has one of the following configurations

$$
\begin{aligned}
& H_{1} 2 \leq d\left(x_{k}\right), d\left(x_{k-1}\right) \\
& d\left(x_{k-2}\right), d\left(x_{k-3}\right) \leq 3
\end{aligned}
$$

$H_{4}: 3 \leq d\left(x_{k-4}\right) \leq 5$

$H_{2} 3 \leq d\left(x_{k-2}\right) \leq 4$

$H_{3} 3 \leq d\left(x_{k-2}\right) \leq 4$

$H_{6}: 4 \leq d\left(x_{k-4}\right), d\left(x_{k-5}\right) \leq 5$

$H_{7}: 4 \leq d\left(x_{k-4}\right), d\left(x_{k-5}\right) \leq 5 \quad H_{8} 1 \leq d\left(x_{k-1}\right), d\left(x_{k-2}\right) \leq 2$
$H_{9} 3 \leq d\left(x_{k-3}\right) \leq 4$

$H_{10} 1 \leq d\left(x_{k-1}\right) \leq 2$

$$
H_{13} 1 \leq d\left(x_{k-2}\right) \leq 2
$$

$H_{14} 4 \leq d\left(x_{k-3}\right) \leq 5$
$4 \leq d\left(x_{k-4}\right) \leq 6$
$1 \leq d\left(x_{k-2}\right) \leq 2$

$H_{12} 2 \leq d\left(x_{k-1}\right) \leq 3$

$$
1 \leq d\left(x_{k-2}\right) \leq 2
$$

$H_{15} 4 \leq d\left(x_{k-4}\right) \leq 6$
$1 \leq d\left(x_{k-2}\right) \leq 2$

$H_{18} 4 \leq d\left(x_{k-3}\right) \leq 5$
$4 \leq d\left(x_{k-4}\right), d\left(x_{k-5}\right), d\left(x_{k-6}\right) \leq 6$

$H_{19} 4 \leq d\left(x_{k-3}\right) \leq 5$
$4 \leq d\left(x_{k-4}\right), d\left(x_{k-5}\right), d\left(x_{k-6}\right) \leq 6$

H_{20}

$H_{21} 1 \leq d\left(x_{k-2}\right) \leq 2$

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown, (2) except for special pointed, the degree of a hollow vertex may be any integer from [$d, \Delta]$, where d is the number of edges incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose G is a counterexample, then G is a connected triangle-free plane graph with order at least 5 and without configurations $H_{1} \sim H_{21}$. We rewrite the Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ into the following equivalent form:

$$
\sum_{v \in V(G)}(2 d(v)-6)+\sum_{f \in F(G)}(d(f)-6)=-12 .
$$

We define a weight function w by $w(v)=2 d(v)-6$ for $v \in V(G)$ and $w(f)=d(f)-6$ for $f \in F(G)$. Thus $\sum_{x \in V \cup F} w(x)=-12$. We will design appropriate discharging rules and redistribute weights accordingly. Once discharging is finished, a new weight function w^{\prime} is produced while the total sum of weights is kept fixed. For $x, y \in V(G) \cup F(G)$, we use $\tau(x \rightarrow y)$ to denote the sum of weights discharged from x to y according to our rules.

By Lemma 3, we have $\delta(G) \leq 3$. We consider the following three cases:
Case 1: $\delta(G)=3$
Our discharging rule is defined as follows:
(R) If $d(v) \geq 4$, then $\tau(v \rightarrow f)=\frac{w(v)}{d(v)}$ for each $f \in Q(v) \cup P(v)$.

We give the following obvious properties:
(P1) If $d(v)=4$, then $\tau(v \rightarrow f)=\frac{w(v)}{d(v)}=\frac{2}{4}=\frac{1}{2}$ for each $f \in Q(v) \cup P(v)$.
(P2) If $d(v)=5$, then $\tau(v \rightarrow f)=\frac{w(v)}{d(v)}=\frac{4}{5}$ for each $f \in Q(v) \cup P(v)$.
(P3) If $d(v) \geq 6$, then $\tau(v \rightarrow f)=\frac{w(v)}{d(v)}=\frac{2 d(v)-6}{d(v)} \geq 1$ for each $f \in Q(v) \cup P(v)$.
Let $v \in V$. If $d(v)=3$, then $w^{\prime}(v)=w(v)=0$. If $d(v) \geq 4$, then $w^{\prime}(v) \geq 0$ by (R).
Let $f \in F$. If $d(f) \geq 6$, then $w^{\prime}(f)=w(f)=d(f)-6 \geq 0$.
If $d(f)=5$, then $n_{3}(f) \leq 3$ since G has no H_{1}. Hence, f is a $\left(3^{+}, 3^{+}, 3^{+}, 4^{+}, 4^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 5-6+\frac{1}{2} \times 2=0$ by (P1) ~ (P3).

If $d(f)=4$, then $n_{3}(f) \leq 2$ since G has no H_{2} and H_{3}. If, furthermore, $n_{3}(f)=2$, then $n_{4}(f)=0$. Therefore, f is a $\left(3,3,5^{+}, 5^{+}\right)$-face if $n_{3}(f)=2$.

Let $n_{3}(f)=2$, then f is a $\left(3,3,5^{+}, 5^{+}\right)$-face. Since G has no H_{4} and H_{5}, there is at most one $\left(3,3,5,5^{+}\right)$-face f_{1}. By (P2) and (P3), $w^{\prime}\left(f_{1}\right) \geq 4-6+\frac{4}{5} \times 2=-\frac{2}{5}$. If f is a ($3,3,6^{+}, 6^{+}$)-face, then $w^{\prime}(f) \geq 4-6+1 \times 2=0$ by (P3).

Let $n_{3}(f)=1$ and $n_{4}(f) \geq 2$, then f is a $\left(3,4,4,4^{+}\right)$-face. Since G has no H_{6} and H_{7}, there is at most one ($3,4,4,4$)-face f_{2} or at most one ($3,4,4,5$)-face $f_{3}\left(f_{2}, f_{3}\right.$ do not exist at the same time). By (P1) and (P2), $w^{\prime}\left(f_{2}\right) \geq 4-6+\frac{1}{2} \times 3=-\frac{1}{2}$ and $w^{\prime}\left(f_{3}\right) \geq 4-6+\frac{1}{2} \times 2+\frac{4}{5}=-\frac{1}{5}$. If f is a $\left(3,4,4,6^{+}\right)$-face, then $w^{\prime}(f) \geq 4-6+\frac{1}{2} \times 2+1=0$ by (P1) and (P3). Let $n_{3}(f)=1$ and $n_{4}(f) \leq 1$, then f is a $\left(3,4^{+}, 5^{+}, 5^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 4-6+\frac{1}{2}+\frac{4}{5} \times 2>0$ by (P1) $\sim(\mathrm{P} 3)$.

Let $n_{3}(f)=0$, then f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 4-6+\frac{1}{2} \times 4=0$ by (P1) $\sim(\mathrm{P} 3)$.
Thus, it follows from the above argument that $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{2}{5}-\frac{1}{2}=-\frac{9}{10}$, which is a contradiction.

Case 2: $\delta(G)=2$
Subcase 2.1: There is one 2-vertex in G
The total weights of 2 -vertex, 4 -faces incident to a 2 -vertex and 5 -faces incident to a 2 -vertex are not less than $(-2)+(-2) \times 2=-6$. The discharging rule is the same as in Case 1 (2-vertex, 4 -faces incident to a 2 -vertex and 5 -faces incident to a 2-vertex are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{69}{10}$, which is a contradiction.

Subcase 2.2: There are two 2-vertices in G
If the two 2 -vertices are incident to one common face, then the total weights of 2 -vertices, 4 -faces incident to a 2 vertex and 5 -faces incident to a 2 -vertex are not less than $(-2) \times 2+(-2) \times 3=-10$. The discharging rule is the same as in Case 1 (2 -vertices, 4 -faces incident to a 2 -vertex and 5 -faces incident to a 2 -vertex are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{109}{10}$, which is a contradiction.

If two 2 -vertices are not incident to one common face, then the discharging rule is the same as in Case 1 (2-vertices and 5faces incident to a 2 -vertex are not considered). If $d(f)=4$ and $n_{2}(f)=1$, then f is a $\left(2,4^{+}, 4^{+}, 3^{+}\right)$-faces since G has no H_{13}. Thus, $w^{\prime}(f) \geq-2+\frac{1}{2} \times 2=-1$ by (P1) $\sim(\mathrm{P} 3)$. Therefore, the new total weights of 2 -vertices, 4 -faces incident to a 2 -verte x and 5 -faces incident to a 2-vertex are not less than $(-2) \times 2+(-1) \times 4=-8$. Hence, $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{89}{10}$, which is a contradiction.

Subcase 2.3: There are at least three 2-vertices in G
Since G has no H_{8}, there are no two adjacent 2-vertices. Since G has no H_{9}, there is at most one 2-vertex which is adjacent to a 3-vertex.

If there is one 2 -vertex v_{1} which is adjacent to a 3-vertex, since G has no H_{9}, there is no 2-vertex which is adjacent to a 4 -vertex other than v_{1}. Thus, $w\left(v_{1}\right)=-2$.

If there is one 2 -vertex which is adjacent to a 4 -vertex, since G has no H_{10}, there is at most one 2-vertex v_{2} which is adjacent to 4 -vertices. Thus, $w\left(v_{2}\right)=-2$.

We will consider 2-vertices which are adjacent to two 5^{+}-vertices only while the weight of 2-vertex which is adjacent to a 3 -vertex or 4 -vertex kept fixed in the following.

Our discharging rules are as follows:
$\left(\mathrm{R}^{\prime} 1\right)$ Every 5^{+}-vertex sends 1 to each adjacent 2-vertex.
$\left(\mathrm{R}^{\prime} 2\right)$ If $d(v)=4$, then $\tau(v \rightarrow f)=\frac{1}{2}$ for each $f \in Q(v) \cup P(v)$.
$\left(\mathrm{R}^{\prime} 3\right)$ If $d(v) \geq 5$, then $\tau(v \rightarrow f)=\frac{w(v)-n_{2}(v)}{d(v)}$ for each $f \in Q(v) \cup P(v)$.
Let v be a 5^{+}-vertex, since G has no H_{11}, we have $n_{2}(v) \leq 1$. We give the following obvious properties:
$\left(\mathrm{P}^{\prime} 1\right)$ If $d(v)=5$, then $\tau(v \rightarrow f) \geq \frac{4-1}{5}=\frac{3}{5}$ for each $f \in \bar{Q}(v) \cup P(v)$ by $\left(\mathrm{R}^{\prime} 3\right)$ when $n_{2}(v)=1$, otherwise, $\tau(v \rightarrow f) \geq \frac{4}{5}$ by ($\mathrm{R}^{\prime} 3$).
$\left(\mathrm{P}^{\prime} 2\right)$ If $d(v)=6$, then $\tau(v \rightarrow f) \geq \frac{6-1}{6}=\frac{5}{6}$ for each $f \in Q(v) \cup P(v)$ by $\left(\mathrm{R}^{\prime} 3\right)$.
($\mathrm{P}^{\prime} 3$) If $d(v) \geq 7$, then $\tau(v \rightarrow f) \geq \frac{2 d(v)-6-1}{d(v)} \geq 1$ for each $f \in Q(v) \cup P(v)$ by ($\left.\mathrm{R}^{\prime} 3\right)$.
Let $v \in V$. If $d(v)=2$, then $w^{\prime}(v)=-2+1 \times 2=0$ for each 2 -vertex which is adjacent to two 5^{+}-vertices by ($\mathrm{R}^{\prime} 1$).
If $d(v)=3$, then $w^{\prime}(v)=w(v)=0$.
If $d(v)=4$, then $w^{\prime}(v) \geq 2-\frac{1}{2} \times 4=0$ by ($\mathrm{R}^{\prime} 2$).
If $d(v) \geq 5$, then $w^{\prime}(v) \geq 0$ by $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right)$ and $\left(\mathrm{R}^{\prime} 3\right)$.
Let $f \in F$. If $d(f) \geq 6$, then $w^{\prime}(f)=w(f)=d(f)-6 \geq 0$.
If $d(f)=5$, then $n_{2}(f)+n_{3}(f) \leq 3$ since G has no H_{1}. Hence, f is a $\left(2^{+}, 2^{+}, 2^{+}, 4^{+}, 4^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 5-6+\frac{1}{2} \times 2=0$ by ($\mathrm{R}^{\prime} 2$) and $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right)$.

If $d(f)=4$, then f is a $\left(2^{+}, 3^{+}, 2^{+}, 3^{+}\right)$-face since there are no two adjacent 2 -vertices.

Let $n_{2}(f) \geq 1$, then f is a $\left(2,3^{+}, 2^{+}, 3^{+}\right)$-face. Since G has no H_{12}, f is $\left(2,3^{+}, 4^{+}, 3^{+}\right)$-face. Furthermore, since G has no H_{13}, f is a $\left(2,4^{+}, 4^{+}, 4^{+}\right)$-face. Since G has no $H_{14},\left(2,4^{+}, 4^{+}, 4^{+}\right)$-faces are none but ($2,4,4^{+}, 7^{+}$)-faces $f_{4},\left(2,5,4^{+}, 7^{+}\right)$-faces f_{5} and $\left(2,6^{+}, 4^{+}, 6^{+}\right)$-faces f_{6}. By $\left(\mathrm{R}^{\prime} 2\right)$ and $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right), w^{\prime}\left(f_{4}\right) \geq 4-6+\frac{1}{2} \times 2+1=0, w^{\prime}\left(f_{5}\right) \geq 4-6+\frac{1}{2}+\frac{3}{5}+1>0$ and $w^{\prime}\left(f_{6}\right) \geq 4-6+\frac{1}{2}+\frac{5}{6} \times 2>0$.

Let $n_{2}(f)=0$. Since G has no H_{2} and $H_{3}, n_{3}(f) \leq 2$.
Let $n_{2}(f)=0$ and $n_{3}(f)=2$, then f is a $\left(3,3,4^{+}, 4^{+}\right)$-face. Since G has no H_{15} and H_{16}, f is a $\left(3,3,7^{+}, 7^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 4-6+1 \times 2=0$ by ($\mathrm{P}^{\prime} 3$).

Let $n_{2}(f)=0$ and $n_{3}(f)=1$, then f is a $\left(3,4^{+}, 4^{+}, 4^{+}\right)$-face. Since G has no $H_{17} \sim H_{19}$, there is at most one 4-face, denoted by f_{7}, which is incident to one 3-vertex, one 4 -vertex, one vertex of degree at most 5 and one vertex of degree at most 6 . By ($\mathrm{R}^{\prime} 2$) and ($\left.\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 2\right), w^{\prime}\left(f_{7}\right) \geq 4-6+\frac{1}{2} \times 3=-\frac{1}{2}$.

If G has f_{7}, then the other $\left(3,4^{+}, 4^{+}, 4^{+}\right)$-faces are $\left(3,4^{+}, 4^{+}, 7^{+}\right)$-faces f_{8}. By ($\left.\mathrm{R}^{\prime} 2\right)$ and $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right), w^{\prime}\left(f_{8}\right) \geq 4-6+\frac{1}{2} \times$ $2+1=0$.

If G has no f_{7}, then $\left(3,4^{+}, 4^{+}, 4^{+}\right)$-faces are none but $\left(3,4,6^{+}, 6^{+}\right)$-faces, $\left(3,4,4^{+}, 7^{+}\right)$-faces and $\left(3,5^{+}, 5^{+}, 5^{+}\right)$-faces.
If f is a $\left(3,4,6^{+}, 6^{+}\right)$-face, then $w^{\prime}(f) \geq 4-6+\frac{1}{2}+\frac{5}{6} \times 2>0$ by $\left(\mathrm{R}^{\prime} 2\right)$ and $\left(\mathrm{P}^{\prime} 2\right) \sim\left(\mathrm{P}^{\prime} 3\right)$.
If f is a $\left(3,4,4^{+}, 7^{+}\right)$-face, then $w^{\prime}(f) \geq 4-6+\frac{1}{2} \times 2+1=0$ by ($\left.\mathrm{R}^{\prime} 2\right)$ and $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right)$.
Let f be a $(3,5,5,5)$-face, since G has no H_{20}, there is at least one 5 -vertex v on $V(f)$ such that $n_{2}(v)=0$. Hence, $w^{\prime}(f) \geq 4-6+\frac{4}{5}+\frac{3}{5} \times 2=0$ by ($\left.\mathrm{P}^{\prime} 1\right)$.

Let f be a $\left(3,5^{+}, 5^{+}, 6^{+}\right)$-face, then $w^{\prime}(f) \geq 4-6+\frac{3}{5} \times 2+\frac{5}{6}>0$ by $\left(\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right)$.
Let $n_{2}(f)=0$ and $n_{3}(f)=0$, then f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face. Thus, $w^{\prime}(f) \geq 4-6+\frac{1}{2} \times 4=0$ by ($\left.\mathrm{R}^{\prime} 2\right)$ and ($\left.\mathrm{P}^{\prime} 1\right) \sim\left(\mathrm{P}^{\prime} 3\right)$.
Thus, it follows from the above argument that $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-2-\frac{1}{2}=-\frac{5}{2}$, which is a contradiction.

Case 3: $\delta(G)=1$
Since G has no H_{21}, there are at most two 1-vertices. Furthermore, there is no 2-vertex while there are two 1-vertices. Since G has no C_{3}, every k-face ($k \leq 5$) is a simple face.

Subcase 3.1: There are two 1 -vertices in G
The total weights of 1 -vertices is $(-4) \times 2=-8$. The discharging rule is the same as in Case 1 (1-vertices are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{89}{10}$, which is a contradiction.

Subcase 3.2: There is one 1-vertex and at most one 2-vertex in G
The total weights of 1 -vertex, 2 -vertex and 4 -face incident to a 2 -vertex or 5 -face incident to a 2 -vertex is not less than $-4+(-2)+(-2) \times 2=-10$. The discharging rule is the same as in Case 1 (1-vertex, 2 -vertex and 4 -face incident to a 2 -vertex or 5 -face incident to a 2-vertex are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-\frac{109}{10}$, which is a contradiction.

Subcase 3.3: There is one 1-vertex and at least two 2 -vertices in G
Since G has no H_{8}, there is no 2 -vertex which is adjacent a 1 -vertex. The total weight of 1 -vertex is -4 . The discharging rules are the same as in Subcase 2.3 (1-vertex is not considered). If there are exactly two 2 -vertices, then the 1 -vertex v_{0} can be considered as a 2 -vertex while the weight of v_{0} will kept fixed. Therefore, this case can be also considered as Subcase 2.3. Hence, we have $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-4-\frac{5}{2}=-\frac{13}{2}$, which is a contradiction.

Theorem 7. If G is a triangle-free plane graph and $k \geq \max \{\Delta(G), 8\}$, then G is equitably k-choosable.
Proof. We use induction on $|V(G)|$. If $|V(G)| \leq k$, then we color all vertices using different colors from their lists. Suppose now that $|V(G)|>k \geq 8$. If every component of G has at most 4 vertices, then $\Delta(G) \leq 3$. By Lemma 4 , G is equitably k choosable. Otherwise, by Lemma 6, G has one of the structures $H_{1} \sim H_{21}$. The vertices are labeled as they are in Lemma 6 . If there are vertices labeled repeatedly, then we take the larger. (x_{i} is larger than x_{i-1}). We will find S in Lemma 1 .

If G has H_{8} or H_{21}, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, x_{k-2}, x_{1}\right\}$. If G has H_{1} or H_{9}, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, x_{k-2}, x_{k-3}, x_{1}\right\}$. If G has H_{10} or H_{20}, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, \ldots, x_{k-4}, x_{1}\right\}$. If G has one of $H_{17} \sim H_{19}$, then let $S^{\prime}=\left\{x_{k}, x_{k-1},, \ldots, x_{k-6}, x_{1}\right\}$. If G has one of H_{2}, H_{3} and $H_{11} \sim H_{13}$, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, x_{k-2}, x_{2}, x_{1}\right\}$. If G has one of H_{4}, H_{5} and $H_{14} \sim H_{16}$, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, \ldots, x_{k-4}, x_{2}, x_{1}\right\}$. If G has H_{6} or H_{7}, then let $S^{\prime}=\left\{x_{k}, x_{k-1}, \ldots, x_{k-5}, x_{2}, x_{1}\right\}$ and $i=5$. We fill the remaining unspecified positions in S from highest to lowest indices by choosing at each step a vertex with minimum degree in the graph obtained from G by delating the vertices thus far chosen for S. Such a vertex always exists because G is 3-degenerate by Lemma 3 . Since $G-S$ is also a triangle-free plane graph and $k \geq \Delta(G) \geq \Delta(G-S)$, by the induction hypothesis, $G-S$ is equitably k-choosable. Hence, by Lemma $1, G$ is equitably k-choosable. The proof is complete.

Theorem 8. If G is a triangle-free plane graph and $k \geq \max \{\Delta(G), 8\}$, then G is equitably k-colorable.
Proof. If every component of G has at most 4 vertices, then $\Delta(G) \leq 3$. By Lemma $5, G$ is equitably k-colorable. In other cases, we can obtain the desired results applying Lemma 2.
Conjectures $1-4$ hold for every triangle-free planar graph G with $\Delta(G) \geq 8$.

3. Planar graphs without 4-cycles and 5-cycles

Lemma 9 ([13]). Every plane graph without 5-cycles is 3-degenerate.
Lemma 10. Let G be a connected plane graph with order at least 5. If G has neither 4-cycles nor 5-cycles, then G has one of the following configurations

$H_{26} 1 \leq d\left(x_{k-2}\right) \leq 2$

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown, (2) except for special pointed, the degree of a hollow vertex may be any integer from [$d, \Delta]$, where d is the number of edges incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.
Proof. Suppose G is a counterexample, then G is a connected plane graph with order at least 5 and without configurations $H_{8} \sim H_{11}, H_{21} \sim H_{27}$, 4-cycles and 5-cycles. We use the same Euler's formula and define the same weight function as in the proof of Lemma 6 . Similarly, we shall derive a contradiction. Since G has no C_{4}, we have $m_{3}(v) \leq\left[\frac{d(v)}{2}\right]$. By Lemma 10 , we have $\delta(G) \leq 3$. We consider the following three cases:

Case 1: $\delta(G)=3$ Our discharging rules are as follows:
(R1) Every 4 -vertex sends 1 to each of its incident 3 -faces.
(R2) Every 5^{+}-vertex sends 2 to each of its incident 3-faces.
Let $v \in V$. If $d(v)=3$, then $w^{\prime}(v)=w(v)=0$.
If $d(v)=4$, then $m_{3}(v) \leq 2$. Thus, $w^{\prime}(v) \geq 2 \times 4-6-1 \times 2=0$ by (R1).
If $d(v) \geq 5$, then $m_{3}(v) \leq\left[\frac{d(v)}{2}\right]$. Thus, $w^{\prime}(v) \geq 2 d(v)-6-2 \times\left[\frac{d(v)}{2}\right] \geq 0$ by (R2).
Let $f \in F$. If $d(f) \geq 6$, then $w^{\prime}(f)=w(f)=d(f)-6 \geq 0$.
If $d(f)=3$, then $n_{3}(f) \leq 2$ since G has no H_{22}. If, furthermore, $n_{3}(f)=2$, then $n_{4}(f)=0$.
Let $n_{3}(f)=2$, then f is a $\left(3,3,5^{+}\right)$- face. Since G contain no H_{23}, there is at most one $\left(3,3,5^{+}\right)$- face f_{1}. By (R2), $w^{\prime}\left(f_{1}\right)=3-6+2=-1$.

Let $n_{3}(f)=1$ and $n_{4}(f)=2$, then f is a ($3,4,4$)-face. Since G has no H_{24}, there is at most one ($3,4,4$)-face f_{2}. By (R1), $w^{\prime}\left(f_{2}\right)=3-6+1 \times 2=-1$.

Since G has no H_{25}, f_{1}, f_{2} do not exist at the same time.
Let $n_{3}(f)=1$ and $n_{4}(f) \leq 1$, then f is a $\left(3,4^{+}, 5^{+}\right)$- face. By (R1) and (R2), $w^{\prime}(f) \geq 3-6+1+2=0$.
Let $n_{3}(f)=0$, then f is a ($4^{+}, 4^{+}, 4^{+}$-face. By (R1) and (R2), $w^{\prime}(f) \geq 3-6+1 \times 3=0$.
Thus, it follows from the above argument that $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-1$, which is a contradiction.
Case 2: $\delta(G)=2$
Subcase 2.1: There are at most two 2 -vertices in G The total weights of 2 -vertices and 3-faces incident to 2 -vertices is not less than $(-2) \times 2+(-3) \times 2=-10$. The discharging rules are the same as in Case 1 (2-vertices and 3-faces incident to 2 -vertices are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-11$, which is a contradiction.

Subcase 2.2: There are at least three 2 -vertices in G Since G has no H_{26}, there is no $\left(3,3,2^{+}\right)$-face. Since G has no H_{8}, there are no two adjacent 2 -vertices. Since G has no H_{9}, there is at most one 2 -vertex which is adjacent to a 3 -vertex.

If there is one 2 -vertex v_{1} which is adjacent to a 3-vertex, since G has no H_{9}, there is no 2 -vertex which is adjacent to a 4 -vertex other than v_{1}. Thus, $w\left(v_{1}\right)=-2$.

If there is one 2 -vertex v_{2} which is adjacent to 4 -vertices, since G has no H_{10}, there is at most one 2-vertex adjacent to 4 -vertices. Thus, $w\left(v_{2}\right)=-2$.

We will consider 2-vertices which are adjacent to two 5^{+}-vertices while the weight of 2 -vertex which is adjacent to a 3 -vertex or 4 -vertex kept fixed in the following.

Our discharging rules are as follows:
($R^{\prime} 1$) Every 5^{+}-vertex sends 1 to each of its adjacent 2 -vertices.
($R^{\prime} 2$) Every 4 -vertex transfers 1 to each of its incident 3-faces.
$\left(R^{\prime} 3\right)$ Every 5^{+}-vertex transfers $\frac{w(v)-n_{2}(v)}{m_{3}(v)}$ to each of its incident 3-faces $\left(m_{3}(v) \neq 0\right)$.
Let v be a 5^{+}-vertex, since G has no H_{11}, we have $n_{2}(v) \leq 1$. We give the following obvious properties:
(P1) Let v be a 5-vertex and f be a 3-face incident to v, then $\tau(v \rightarrow f) \geq \frac{4-1}{2}=\frac{3}{2}$ by ($\mathrm{R}^{\prime} 3$).
(P2) Let v be a 6-vertex and f be a 3-face incident to v, then $\tau(v \rightarrow f) \geq \frac{6-1}{3}=\frac{5}{3}$ by ($\mathrm{R}^{\prime} 3$).
(P3) Let v be a 7^{+}-vertex and f be a 3 -face incident to v, then $\tau(v \rightarrow f) \geq \frac{2 d(v)-6-1}{\left[\frac{d(v)}{2}\right]} \geq \frac{9}{4}$ by ($\mathrm{R}^{\prime} 3$).
Let $v \in V$. If $d(v)=2$, then $w^{\prime}(v)=-2+1 \times 2=0$ for each 2 -vertex which is adjacent to two 5^{+}-vertices by $\left(\mathrm{R}^{\prime} 1\right)$.
If $d(v)=3$, then $w(v)=w(v)=0$.
If $d(v)=4$, then $w^{\prime}(v) \geq 2 \times 4-6-1 \times 2=0$ by ($\mathrm{R}^{\prime} 2$).
If $d(v) \geq 5$. If v is not incident to 3-faces, then $w^{\prime}(v) \geq 2 d(v)-6-1>0$ by ($\mathrm{R}^{\prime} 1$). Otherwise, $w^{\prime}(v)=0$ by (P1) $\sim(\mathrm{P} 3)$ and ($R^{\prime} 3$).

Let $f \in F$. If $d(f) \geq 6$, then $w^{\prime}(f)=w(f)=d(f)-6 \geq 0$.
If $d(f)=3$, then f is a $\left(2^{+}, 3^{+}, 3^{+}\right)$-face since there are no two adjacent 2-vertices.
Let $n_{2}(f) \geq 1$. Since there is at most one 2 -vertex which is adjacent to a 3 -vertex or 4 -vertex, there is at most one $\left(2,3,3^{+}\right)$-face f_{3} or ($2,4,4^{+}$)-face $f_{4}\left(f_{3}, f_{4}\right.$ do not exist at the same time). By ($\mathrm{R}^{\prime} 2$) and (P 1) $\sim(\mathrm{P} 3), w^{\prime}\left(f_{3}\right) \geq 3-6=-3$, $w^{\prime}\left(f_{4}\right) \geq 3-6+1 \times 2=-1$. If f is a $\left(2,5^{+}, 5^{+}\right)$-face, then $w^{\prime}(f) \geq 3-6+\frac{3}{2} \times 2=0$ by (P1) $\sim(\mathrm{P} 3)$.

Let $n_{2}(f)=0$ and $n_{3}(f) \geq 1$. Since G has no $\left(3,3,2^{+}\right)$-face, f is a $\left(3,4^{+}, 4^{+}\right)$-face.
Since G has no H_{24}, there is at most one ($3,4,4$)-face f_{2} or $(3,4,5)$-face f_{5} or $(3,4,6)$-face f_{6} (at most one of f_{2}, f_{5} and f_{6} exists). By ($\mathrm{R}^{\prime} 2$) and (P1) and (P3), $w^{\prime}\left(f_{2}\right)=3-6+1 \times 2=-1, w^{\prime}\left(f_{5}\right) \geq 3-6+1+\frac{3}{2}=-\frac{1}{2}, w^{\prime}\left(f_{6}\right) \geq 3-6+1+\frac{5}{3}=-\frac{1}{3}$.

Let f be a $\left(3,4,7^{+}\right)$-face, then $w^{\prime}(f) \geq 3-6+1+\frac{9}{4}>0$ by ($\left.\mathrm{R}^{\prime} 2\right)$ and (P1) $\sim(\mathrm{P} 3)$.
Let f be a $\left(3,5^{+}, 5^{+}\right)$-face, then $w^{\prime}(f) \geq 3-6+\frac{3}{2} \times 2=0$ by (P1) $\sim(\mathrm{P} 3)$.
Let $n_{2}(f)=n_{3}(f)=0$, then f is a ($4^{+}, 4^{+}, 4^{+}$)-face. Thus $w^{\prime}(f) \geq 3-6+1 \times 3=0$ by ($\mathrm{R}^{\prime} 2$) and (P1) $\sim(\mathrm{P} 3)$.
Then, it follows from the above argument that $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-2-3-1=-6$, which is a contradiction.

Case 3: $\delta(G)=1$
Since G has no H_{26}, there is no $\left(3,3,2^{+}\right)$-face. Since G has no H_{21}, there are at most two 1 -vertices.
Subcase 3.1: There are two 1 -vertices in G
Since G has no H_{21}, there is no 2-vertex.
Since G has neither 4 -cycles nor 5 -cycles, there is no 4 -face and at most two 5 -faces. The total weights of 1 -vertices and 5 -faces are $(-4) \times 2+(-1) \times 2=-10$. The discharging rules are the same as in Case 1 (1-vertices and 5 -faces are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-11$, which is a contradiction.

Subcase 3.2: There is one 1 -vertex and at most one 2-vertex in G
Since G has neither 4-cycles nor 5-cycles, there is no 4 -face and at most one 5-face. The total weights of 1-vertex, 2-vertex, 5 -face and 3-face which is incident to a 2-vertex are not less than $-4+(-2)+(-1)+(-3)=-10$. The discharging rules are the same as in Case 1 (1-vertices, 2-vertices, 5 -face and 3-face which is incident to a 2 -vertex are not considered), then $-12=\sum_{x \in V \cup F} w(x)=\sum_{x \in V \cup F} w^{\prime}(x) \geq-11$, which is a contradiction.

Subcase 3.3: There is one 1 -vertex and two 2 -vertices in G
Since G has neither 4-cycles nor 5-cycles, there is no 4 - face and at most one 5 -face. Since G has no H_{27}, there is no 3-face which is incident to 2 -vertices. The total weights of 1 -vertex, 2 -vertices and 5 -face are $-4+(-2) \times 2+(-1)=-9$. The discharging rules are the same as in Case 1(1-vertex, 2-vertices and 5-face are not considered), then $-12=\sum_{x \in V \cup F} w(x)=$ $\sum_{x \in V \cup F} w^{\prime}(x) \geq-10$, which is a contradiction.

Subcase 3.4: There is one 1-vertex and at least three 2-vertices in G
Since G has neither 4 -cycles nor 5 -cycles, there is no 4 -face and at most one 5 -face. Since G has no H_{8}, then there is no 2 -vertex which is adjacent to a 1 -vertex. The total weights of 1 -vertex and 5 -face are not less than $-4+(-1)=-5$. The discharging rules are the same as in Subcase 2.2 (1-vertex and 5-face are not considered), then $-12=\sum_{x \in V \cup F} w(x)=$ $\sum_{x \in V \cup F} w^{\prime}(x) \geq-11$, which is a contradiction.
Theorem 11. Every plane graph G without 4-cycles and 5-cycles is equitably k-choosable whenever $k \geq \max \{\Delta(G), 7\}$.
Proof. The proof is similar to the proof of Theorem 7.
Theorem 12. Every plane graph G without 4 -cycles and 5 -cycles is equitably k-colorable whenever $k \geq \max \{\Delta(G), 7\}$.
Proof. The proof is similar to the proof of Theorem 8.
Conjectures 1-4 hold for every planar graph G with $\Delta(G) \geq 7$ and without 4-cycles and 5-cycles.

References

[1] A. Hajnal, E. Szemerédi, Proof of a conjecture of Erdös, in: A. Rényi, V.T. Sós (Eds.), in: Combin Theory and Its Applications, vol. II, North-Holland, Amsterdam, 1970, pp. 601-623.
[2] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922.
[3] B.L. Chen, K.W. Lih, P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447.
[4] B.L. Chen, K.W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 61 (1994) 83-87.
[5] K.W. Lih, P.L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155-160.
[6] H.P. Yap, Y. Zhang, The equitable Δ-coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sin. 25 (1997) 143-149.
[7] H.P. Yap, Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998) 97-105.
[8] W.F. Wang, K.M. Zhang, Equitable colorings of line graphs and complete r-partite graphs, System Sci. Math. Sci. 13 (2000) 190-194.
[9] A.V. Kostochka, K. Nakprasit, Equitable colorings of k-degenerate graphs, Combin. Probab. Comput. 12 (2003) 53-60.
[10] A.V. Kostochka, M.J. Pelsmajer, D.B. West, A list analogue of equitable coloring, J. Graph Theory 44 (2003) 166-177.
[11] M.J. Pelsmajer, Equitable list-coloring for graphs of maximum degree 3, J. Graph Theroy 47 (2004) 1-8.
[12] W.F. Wang, K.W. Lih, Equitable list coloring for graphs, Taiwanese J. Math. 8 (2004) 747-759.
[13] W.F. Wang, K.W. Lih, Choosability and edge choosability of planar graphs without 5-cycles, Appl. Math. Lett. 15 (2002) 561-565.

[^0]: Th Research supported by NSFC (No. 10771197) and ZJNSF (No. Y607467).

 * Corresponding author.

 E-mail address: yhbu@zjnu.cn (Y. Bu).

