Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Equitable list colorings of planar graphs without short cycles*

Junlei Zhu^a, Yuehua Bu^{b,*}

^a Department of Mathematics, Jiaxing University, Jiaxing, 314001, PR China
 ^b Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, PR China

ARTICLE INFO

Article history: Received 29 January 2008 Received in revised form 2 April 2008 Accepted 12 April 2008 Communicated by D.-Z. Du

Keywords: Equitable coloring Equitable list coloring Plane graph Degenerate

1. Introduction

ABSTRACT

A graph *G* is equitably *k*-choosable if, for any *k*-uniform list assignment *L*, *G* is *L*-colorable and each color appears on at most $\lceil \frac{|V(G)|}{k} \rceil$ vertices. A graph *G* is equitably *k*-colorable if *G* has a proper *k*-vertex coloring such that the sizes of any two color classes differ by at most 1. In this paper, we prove that every planar graph *G* is equitably *k*-choosable and equitably *k*-colorable if one of the following conditions holds: (1) *G* is triangle-free and $k \ge \max{\Delta(G), 8}$; (2) *G* has no 4- and 5-cycles and $k \ge \max{\Delta(G), 7}$.

© 2008 Elsevier B.V. All rights reserved.

All graphs considered in this paper are finite, undirected and simple. A plane graph is a particular drawing of a planar graph in the Euclidean plane. For a plane graph *G*, we denote its vertex set, edge set, face set, order, maximum degree and minimum degree by V(G), E(G), F(G), |V(G)|, $\Delta(G)$ and $\delta(G)$ respectively $(V, E, F, |V|, \Delta \text{ and } \delta$ for short). For $v \in V(G)$, let $d_G(v)$ (d(v) for short) denote the degree of v in *G*. For $f \in F(G)$, let $d_G(f)$ (d(f) for short) denote the number of edges on the boundary of *f*, where each cut edge is counted twice. A vertex v (face *f*) is called a *k*-vertex (*k*-face) if d(v) = k (d(f) = k). A vertex v (face *f*) is called a k^+ -vertex (k^+ -face) if $d(v) \ge k$ ($d(f) \ge k$). For $f \in F(G)$, we use b(f) and V(f) to denote the boundary walk of *f* and the vertices on the boundary walk respectively. A face *f* of *G* is called a simple face if b(f) forms a cycle. Obviously, each *k*-face ($k \le 5$) is a simple face when $\delta \ge 2$. A simple *k*-face *f* of *G* is called a (d_1, d_2, \ldots, d_k)-face if the vertices of *f* are, respectively, of degree d_1, d_2, \ldots, d_k . Let P(v) and Q(v) denote the set of 4-faces and 5-faces incident to the vertex v, respectively. Let $n_k(f)$ denote the number of 2-vertices adjacent to the vertex v. A graph *G* is called *d*-degenerate if every induced subgraph *H* of *G* has a vertex of degree at most *d*. A graph *G* is equitably *k*-colorable if, for any *k*-uniform list assignment L, *G* is *L*-colorable and each color appears on at most $\lceil \frac{|V(G)|}{k} \rceil$ vertices. A graph *G* is equitably *k*-colorable if *G* has a proper *k*-vertex coloring such that the sizes of any two color classes differ by at most 1. The smallest integer *k* for which *G* is equitably *k*-colorable is called the equitable chromatic number of *G*, denoted by $\chi_e(G)$.

Equitable colorings naturally arise in some scheduling, partitioning and load balancing problems. In contrast with ordinary coloring, a graph may have an equitable *k*-coloring but have no equitable (k+1)-coloring. For example, the complete bipartite graph $K_{2n+1,2n+1}$ for $n \ge 1$ has an equitable 2-coloring but has no equitable (2n + 1)-coloring.

In 1970, Hajnál and Szemerédi [1] proved that every graph has an equitable *k*-coloring whenever $k \ge \Delta + 1$. This bound is sharp for some special graph classes. In 1973, Meyer [2] introduced the notion of equitable coloring and made the following conjecture:

* Corresponding author.

^{*} Research supported by NSFC (No. 10771197) and ZJNSF (No. Y607467).

E-mail address: yhbu@zjnu.cn (Y. Bu).

^{0304-3975/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2008.04.018

Conjecture 1. The equitable chromatic number of a connected graph, which is neither a complete graph nor odd cycle, is at most Δ .

In 1994, Chen, Lih and Wu [3] put forth the following conjecture:

Conjecture 2. A connected graph is equitably Δ -colorable if it is different from K_m , C_{2m+1} and $K_{2m+1,2m+1}$ for $m \geq 1$.

This conjecture has been confirmed for graphs with $\Delta \leq 3$ or $\Delta \geq \frac{|V|}{2}$ [3], trees [4], bipartite graphs [5], outerplanar graphs [6], planar graphs with $\Delta \geq 13$ [7], line graphs [8] and *d*-degenerate graphs with $\Delta \geq 14d + 1$ [9].

In 2003, Kostochka, Pelsmajer and West [10] introduced the list analogue of equitable coloring. A list assignment *L* for a graph *G* assigns to each vertex $v \in V(G)$ a set L(v) of acceptable colors. An *L*-coloring of *G* is a proper vertex coloring such that for every $v \in V(G)$ the color on *v* belongs to L(v). A list assignment *L* for *G* is *k*-uniform if |L(v)| = k for all $v \in V(G)$.

Given a *k*-uniform list assignment *L* for a graph *G*, we say that *G* is equitably *L*-colorable if *G* has an *L*-coloring such that each color appears on at most $\lceil \frac{|V(G)|}{k} \rceil$ vertices. A graph *G* is equitably list *k*-colorable or equitably *k*-choosable if *G* is equitably *L*-colorable whenever *L* is a *k*-uniform list assignment for *G*. In [10], Kostochka, Pelsmajer and West also conjectured the analogue of the Hajnál and Szemerédi Theorem [1]:

Conjecture 3. Every graph is equitably k-choosable whenever $k \ge \Delta + 1$.

It has been proved that Conjecture 3 holds for graphs with $\Delta \leq 3$ independently in [11,12].

Conjecture 4. If *G* is a connected graph with $\Delta \geq 3$, then *G* is equitably Δ -choosable unless *G* is a complete graph or is $K_{2m+1,2m+1}$.

Kostochka, Pelsmajer and West [10] proved that a graph *G* is equitably *k*-choosable if either $G \neq K_{k+1}$, $K_{k,k}$ (with *k* odd in the later case) and $k \geq \max\{\Delta, \frac{|V|}{2}\}$, or *G* is a forest and $k \geq 1 + \frac{\Delta}{2}$, or *G* is a connected interval graph and $k \geq \Delta$, or *G* is a 2-degenerate graph and $k \geq \max\{\Delta, 5\}$. Pelsmajer [11] proved that every graph is equitably *k*-chooable for any $k \geq \frac{\Delta(\Delta-1)}{2} + 2$.

In this paper we prove that every triangle-free plane graph is equitably *k*-choosable and equitably *k*-colorable whenever $k \ge \max\{\Delta, 8\}$, and every plane graph without 4- and 5-cycles is equitably *k*-choosable and equitably *k*-colorable whenever $k \ge \max\{\Delta, 7\}$.

2. Triangle-free planar graphs

Lemma 1 ([10]). Let *G* be a graph with a *k*-uniform list assignment *L*. Let $S = \{v_1, v_2, ..., v_k\}$, where $\{v_1, v_2, ..., v_k\}$ are distinct vertices in *G*. If *G* – *S* has an equitable *L*-coloring and $|N_G(v_i) - S| \le k - i$ for $1 \le i \le k$, then *G* has an equitable *L*-coloring.

Lemma 2. Let $S = \{v_1, v_2, \dots, v_k\}$, where $\{v_1, v_2, \dots, v_k\}$ are distinct vertices in graph *G*. If *G* – *S* has an equitable *k*-coloring and $|N_G(v_i) - S| \le k - i$ for $1 \le i \le k$, then *G* has an equitable *k*-coloring.

Proof. Let $G_i = G - \{v_{i+1}; v_{i+2}, \dots, v_k\}$, so that $G - S = G_0$ and $G = G_k$. Let f_0 be an equitable *k*-coloring of G_0 . For $1 \le i \le k$, extend f_{i-1} to a *k*-coloring f_i of G_i by giving v_i a color different from the colors that f_i has used on neighbors of v_i and on the vertices v_1, v_2, \dots, v_i . Condition $|N_G(v_i) - S| \le k - i$ for $1 \le i \le k$ guarantees that this is possible. By construction, the colors used on *S* are distinct, and hence f_k is an equitable *k*-coloring of *G*. \Box

Lemma 3. Every triangle-free plane graph is 3-degenerate.

Lemma 4 ([12]). Every graph with $\Delta \leq 3$ is equitably *k*-choosable whenever $k \geq \Delta + 1$.

Lemma 5 ([1]). Every graph has an equitable *k*-coloring whenever $k \ge \Delta + 1$.

Lemma 6. Every connected triangle-free plane graph G with order at least 5 has one of the following configurations

 $4 \le d(x_{k-4}), d(x_{k-5}), d(x_{k-6}) \le 6$

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown, (2) except for special pointed, the degree of a hollow vertex may be any integer from $[d, \Delta]$, where *d* is the number of edges incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose *G* is a counterexample, then *G* is a connected triangle-free plane graph with order at least 5 and without configurations $H_1 \sim H_{21}$. We rewrite the Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 into the following equivalent form:

$$\sum_{e \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (d(f) - 6) = -12.$$

We define a weight function w by w(v) = 2d(v) - 6 for $v \in V(G)$ and w(f) = d(f) - 6 for $f \in F(G)$. Thus $\sum_{x \in V \cup F} w(x) = -12$. We will design appropriate discharging rules and redistribute weights accordingly. Once discharging is finished, a new weight function w' is produced while the total sum of weights is kept fixed. For $x, y \in V(G) \cup F(G)$, we use $\tau(x \to y)$ to denote the sum of weights discharged from x to y according to our rules.

By Lemma 3, we have $\delta(G) \leq 3$. We consider the following three cases:

Case 1: $\delta(G) = 3$

ν

Our discharging rule is defined as follows:

(R) If $d(v) \ge 4$, then $\tau(v \to f) = \frac{w(v)}{d(v)}$ for each $f \in Q(v) \cup P(v)$.

We give the following obvious properties:

(P1) If d(v) = 4, then $\tau(v \to f) = \frac{w(v)}{d(v)} = \frac{2}{4} = \frac{1}{2}$ for each $f \in Q(v) \cup P(v)$.

(P2) If d(v) = 5, then $\tau(v \to f) = \frac{w(v)}{d(v)} = \frac{4}{5}$ for each $f \in Q(v) \cup P(v)$. (P3) If $d(v) \ge 6$, then $\tau(v \to f) = \frac{w(v)}{d(v)} = \frac{2d(v)-6}{d(v)} \ge 1$ for each $f \in Q(v) \cup P(v)$.

Let $v \in V$. If d(v) = 3, then w'(v) = w(v) = 0. If $d(v) \ge 4$, then $w'(v) \ge 0$ by (R).

Let $f \in F$. If $d(f) \ge 6$, then $w'(f) = w(f) = d(f) - 6 \ge 0$.

If d(f) = 5, then $n_3(f) \le 3$ since G has no H_1 . Hence, f is a $(3^+, 3^+, 3^+, 4^+, 4^+)$ -face. Thus, $w'(f) \ge 5 - 6 + \frac{1}{2} \times 2 = 0$ by $(P1) \sim (P3).$

If d(f) = 4, then $n_3(f) \leq 2$ since G has no H_2 and H_3 . If, furthermore, $n_3(f) = 2$, then $n_4(f) = 0$. Therefore, f is a $(3, 3, 5^+, 5^+)$ -face if $n_3(f) = 2$.

Let $n_3(f) = 2$, then f is a $(3, 3, 5^+, 5^+)$ -face. Since G has no H_4 and H_5 , there is at most one $(3, 3, 5, 5^+)$ -face f_1 . By (P2) and (P3), $w'(f_1) \ge 4 - 6 + \frac{4}{5} \times 2 = -\frac{2}{5}$. If *f* is a (3, 3, 6⁺, 6⁺)-face, then $w'(f) \ge 4 - 6 + 1 \times 2 = 0$ by (P3).

Let $n_3(f) = 1$ and $n_4(f) \ge 2$, then f is a $(3, 4, 4, 4^+)$ -face. Since G has no H_6 and H_7 , there is at most one (3, 4, 4, 4)-face f_2 or at most one (3, 4, 4, 5)-face f_3 (f_2 , f_3 do not exist at the same time). By (P1) and (P2), $w'(f_2) \ge 4 - 6 + \frac{1}{2} \times 3 = -\frac{1}{2}$ and $w'(f_3) \ge 4 - 6 + \frac{1}{2} \times 2 + \frac{4}{5} = -\frac{1}{5}$. If *f* is a (3, 4, 4, 6⁺)-face, then $w'(f) \ge 4 - 6 + \frac{1}{2} \times 2 + 1 = 0$ by (P1) and (P3). Let $n_3(f) = 1$ and $n_4(f) \le 1$, then f is a $(3, 4^+, 5^+, 5^+)$ -face. Thus, $w'(f) \ge 4 - 6 + \frac{1}{2} + \frac{4}{5} \times 2 > 0$ by (P1) ~ (P3).

Let $n_3(f) = 0$, then f is a $(4^+, 4^+, 4^+, 4^+)$ -face. Thus, $w'(f) \ge 4 - 6 + \frac{1}{2} \times 4 = 0$ by (P1) ~ (P3).

Thus, it follows from the above argument that $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{2}{5} - \frac{1}{2} = -\frac{9}{10}$, which is a contradiction.

Case 2: $\delta(G) = 2$

Subcase 2.1: There is one 2-vertex in G

The total weights of 2-vertex, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not less than $(-2) + (-2) \times 2 = -6$. The discharging rule is the same as in Case 1 (2-vertex, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{69}{10}$, which is a contradiction.

Subcase 2.2: There are two 2-vertices in G

If the two 2-vertices are incident to one common face, then the total weights of 2-vertices, 4-faces incident to a 2vertex and 5-faces incident to a 2-vertex are not less than $(-2) \times 2 + (-2) \times 3 = -10$. The discharging rule is the same as in Case 1 (2-vertices, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{109}{10}$, which is a contradiction.

If two 2-vertices are not incident to one common face, then the discharging rule is the same as in Case 1 (2-vertices and 5faces incident to a 2-vertex are not considered). If d(f) = 4 and $n_2(f) = 1$, then f is a $(2, 4^+, 4^+, 3^+)$ -faces since G has no H_{13} . Thus, $w'(f) \ge -2 + \frac{1}{2} \times 2 = -1$ by (P1) ~ (P3). Therefore, the new total weights of 2-vertices, 4-faces incident to a 2-vertex and 5-faces incident to a 2-vertex are not less than $(-2) \times 2 + (-1) \times 4 = -8$. Hence, $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{89}{10}$. which is a contradiction.

Subcase 2.3: There are at least three 2-vertices in G

Since G has no H_8 , there are no two adjacent 2-vertices. Since G has no H_9 , there is at most one 2-vertex which is adjacent to a 3-vertex.

If there is one 2-vertex v_1 which is adjacent to a 3-vertex, since G has no H_9 , there is no 2-vertex which is adjacent to a 4-vertex other than v_1 . Thus, $w(v_1) = -2$.

If there is one 2-vertex which is adjacent to a 4-vertex, since G has no H_{10} , there is at most one 2-vertex v_2 which is adjacent to 4-vertices. Thus, $w(v_2) = -2$.

We will consider 2-vertices which are adjacent to two 5⁺-vertices only while the weight of 2-vertex which is adjacent to a 3-vertex or 4-vertex kept fixed in the following.

Our discharging rules are as follows:

(R'1) Every 5⁺-vertex sends 1 to each adjacent 2-vertex.

(R'2) If
$$d(v) = 4$$
, then $\tau(v \to f) = \frac{1}{2}$ for each $f \in Q(v) \cup P(v)$.

(R'3) If $d(v) \ge 5$, then $\tau(v \to f) = \frac{w(v) - n_2(v)}{d(v)}$ for each $f \in Q(v) \cup P(v)$. Let v be a 5⁺-vertex, since G has no H_{11} , we have $n_2(v) \le 1$. We give the following obvious properties:

(P'1) If d(v) = 5, then $\tau(v \to f) \ge \frac{4-1}{5} = \frac{3}{5}$ for each $f \in Q(v) \cup P(v)$ by (R'3) when $n_2(v) = 1$, otherwise, $\tau(v \to f) \ge \frac{4}{5}$ by (R'3).

 $\begin{array}{l} (P'2) \text{ If } d(v) = 6, \text{ then } \tau(v \to f) \geq \frac{6-1}{6} = \frac{5}{6} \text{ for each } f \in Q(v) \cup P(v) \text{ by } (R'3). \\ (P'3) \text{ If } d(v) \geq 7, \text{ then } \tau(v \to f) \geq \frac{2d(v)-6-1}{d(v)} \geq 1 \text{ for each } f \in Q(v) \cup P(v) \text{ by } (R'3). \\ \text{Let } v \in V. \text{ If } d(v) = 2, \text{ then } w'(v) = -2 + 1 \times 2 = 0 \text{ for each } 2\text{-vertex which is adjacent to two } 5^+\text{-vertices by } (R'1). \end{array}$

If d(v) = 3, then w'(v) = w(v) = 0.

If d(v) = 4, then $w'(v) \ge 2 - \frac{1}{2} \times 4 = 0$ by (R'2).

If $d(v) \ge 5$, then $w'(v) \ge 0$ by $(P'1) \sim (P'3)$ and (R'3).

Let $f \in F$. If $d(f) \ge 6$, then $w'(f) = w(f) = d(f) - 6 \ge 0$.

If d(f) = 5, then $n_2(f) + n_3(f) \le 3$ since G has no H_1 . Hence, f is a $(2^+, 2^+, 4^+, 4^+)$ -face. Thus, $w'(f) \ge 5 - 6 + \frac{1}{2} \times 2 = 0$ by (R'2) and $(P'1) \sim (P'3)$.

If d(f) = 4, then f is a $(2^+, 3^+, 2^+, 3^+)$ -face since there are no two adjacent 2-vertices.

Let $n_2(f) \ge 1$, then f is a $(2, 3^+, 2^+, 3^+)$ -face. Since G has no H_{12} , f is $(2, 3^+, 4^+, 3^+)$ -face. Furthermore, since G has no H_{13} , f is a $(2, 4^+, 4^+, 4^+)$ -face. Since G has no H_{14} , $(2, 4^+, 4^+, 4^+)$ -faces are none but $(2, 4, 4^+, 7^+)$ -faces f_4 , $(2, 5, 4^+, 7^+)$ -faces f_5 and $(2, 6^+, 4^+, 6^+)$ -faces f_6 . By (R'2) and (P'1) ~ (P'3), $w'(f_4) \ge 4 - 6 + \frac{1}{2} \times 2 + 1 = 0$, $w'(f_5) \ge 4 - 6 + \frac{1}{2} + \frac{3}{5} + 1 > 0$ and $w'(f_6) \ge 4 - 6 + \frac{1}{2} + \frac{5}{5} \times 2 > 0$.

Let $n_2(f) = 0$. Since *G* has no H_2 and H_3 , $n_3(f) \le 2$.

Let $n_2(f) = 0$ and $n_3(f) = 2$, then f is a $(3, 3, 4^+, 4^+)$ -face. Since G has no H_{15} and H_{16} , f is a $(3, 3, 7^+, 7^+)$ -face. Thus, $w'(f) \ge 4 - 6 + 1 \times 2 = 0$ by (P'3).

Let $n_2(f) = 0$ and $n_3(f) = 1$, then f is a $(3, 4^+, 4^+, 4^+)$ -face. Since G has no $H_{17} \sim H_{19}$, there is at most one 4-face, denoted by f_7 , which is incident to one 3-vertex, one 4-vertex, one vertex of degree at most 5 and one vertex of degree at most 6. By (R'2) and $(P'1) \sim (P'2)$, $w'(f_7) \ge 4 - 6 + \frac{1}{2} \times 3 = -\frac{1}{2}$.

If *G* has f_7 , then the other $(3, 4^+, 4^+, 4^+)$ -faces are $(3, 4^+, 4^+, 7^+)$ -faces f_8 . By (R'2) and $(P'1) \sim (P'3)$, $w'(f_8) \ge 4 - 6 + \frac{1}{2} \times 2 + 1 = 0$.

If *G* has no f_7 , then $(3, 4^+, 4^+, 4^+)$ -faces are none but $(3, 4, 6^+, 6^+)$ -faces, $(3, 4, 4^+, 7^+)$ -faces and $(3, 5^+, 5^+, 5^+)$ -faces. If *f* is a $(3, 4, 6^+, 6^+)$ -face, then $w'(f) \ge 4 - 6 + \frac{1}{2} + \frac{5}{6} \times 2 > 0$ by (R'2) and (P'2) ~ (P'3).

If *f* is a $(3, 4, 4^+, 7^+)$ -face, then $w'(f) \ge 4 - 6 + \frac{1}{2} \times 2 + 1 = 0$ by (R'2) and $(P'1) \sim (P'3)$.

Let *f* be a (3, 5, 5, 5)-face, since *G* has no H_{20} , there is at least one 5-vertex *v* on *V*(*f*) such that $n_2(v) = 0$. Hence, $w'(f) \ge 4 - 6 + \frac{4}{5} + \frac{3}{5} \times 2 = 0$ by (P'1).

Let *f* be a $(3, 5^+, 5^+, 6^+)$ -face, then $w'(f) \ge 4 - 6 + \frac{3}{5} \times 2 + \frac{5}{6} > 0$ by $(P'1) \sim (P'3)$.

Let $n_2(f) = 0$ and $n_3(f) = 0$, then f is a $(4^+, 4^+, 4^+)$ -face. Thus, $w'(f) \ge 4 - 6 + \frac{1}{2} \times 4 = 0$ by (R'2) and $(P'1) \sim (P'3)$. Thus, it follows from the above argument that $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -2 - \frac{1}{2} = -\frac{5}{2}$, which is a contradiction.

Case 3: $\delta(G) = 1$

Since *G* has no H_{21} , there are at most two 1-vertices. Furthermore, there is no 2-vertex while there are two 1-vertices. Since *G* has no C_3 , every *k*-face ($k \le 5$) is a simple face.

Subcase 3.1: There are two 1-vertices in *G*

The total weights of 1-vertices is $(-4) \times 2 = -8$. The discharging rule is the same as in Case 1 (1-vertices are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{89}{10}$, which is a contradiction.

Subcase 3.2: There is one 1-vertex and at most one 2-vertex in *G*

The total weights of 1-vertex, 2-vertex and 4-face incident to a 2-vertex or 5-face incident to a 2-vertex is not less than $-4 + (-2) + (-2) \times 2 = -10$. The discharging rule is the same as in Case 1 (1-vertex, 2-vertex and 4-face incident to a 2-vertex or 5-face incident to a 2-vertex are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -\frac{109}{10}$, which is a contradiction.

Subcase 3.3: There is one 1-vertex and at least two 2-vertices in G

Since *G* has no H_8 , there is no 2-vertex which is adjacent a 1-vertex. The total weight of 1-vertex is -4. The discharging rules are the same as in Subcase 2.3 (1-vertex is not considered). If there are exactly two 2-vertices, then the 1-vertex v_0 can be considered as a 2-vertex while the weight of v_0 will kept fixed. Therefore, this case can be also considered as Subcase 2.3. Hence, we have $-12 = \sum_{x \in V \cup F} w'(x) = \sum_{x \in V \cup F} w'(x) \ge -4 - \frac{5}{2} = -\frac{13}{2}$, which is a contradiction. \Box

Theorem 7. If *G* is a triangle-free plane graph and $k \ge \max\{\Delta(G), 8\}$, then *G* is equitably *k*-choosable.

Proof. We use induction on |V(G)|. If $|V(G)| \le k$, then we color all vertices using different colors from their lists. Suppose now that $|V(G)| > k \ge 8$. If every component of *G* has at most 4 vertices, then $\Delta(G) \le 3$. By Lemma 4, *G* is equitably *k*-choosable. Otherwise, by Lemma 6, *G* has one of the structures $H_1 \sim H_{21}$. The vertices are labeled as they are in Lemma 6. If there are vertices labeled repeatedly, then we take the larger. (x_i is larger than x_{i-1}). We will find *S* in Lemma 1.

If *G* has H_8 or H_{21} , then let $S' = \{x_k, x_{k-1}, x_{k-2}, x_1\}$. If *G* has H_1 or H_9 , then let $S' = \{x_k, x_{k-1}, x_{k-2}, x_{k-3}, x_1\}$. If *G* has H_{10} or H_{20} , then let $S' = \{x_k, x_{k-1}, \dots, x_{k-4}, x_1\}$. If *G* has one of $H_{17} \sim H_{19}$, then let $S' = \{x_k, x_{k-1}, \dots, x_{k-6}, x_1\}$. If *G* has one of H_2 , H_3 and $H_{11} \sim H_{13}$, then let $S' = \{x_k, x_{k-1}, x_{k-2}, x_2, x_1\}$. If *G* has one of H_4 , H_5 and $H_{14} \sim H_{16}$, then let $S' = \{x_k, x_{k-1}, \dots, x_{k-4}, x_2, x_1\}$. If *G* has one of H_4 , H_5 and $H_{14} \sim H_{16}$, then let $S' = \{x_k, x_{k-1}, \dots, x_{k-4}, x_2, x_1\}$. If *G* has H_6 or H_7 , then let $S' = \{x_k, x_{k-1}, \dots, x_{k-5}, x_2, x_1\}$ and i = 5. We fill the remaining unspecified positions in *S* from highest to lowest indices by choosing at each step a vertex with minimum degree in the graph obtained from *G* by delating the vertices thus far chosen for *S*. Such a vertex always exists because *G* is 3-degenerate by Lemma 3. Since G - S is also a triangle-free plane graph and $k \ge \Delta(G) \ge \Delta(G - S)$, by the induction hypothesis, G - S is equitably *k*-choosable. Hence, by Lemma 1, *G* is equitably *k*-choosable. The proof is complete. \Box

Theorem 8. If *G* is a triangle-free plane graph and $k \ge \max\{\Delta(G), 8\}$, then *G* is equitably *k*-colorable.

Proof. If every component of *G* has at most 4 vertices, then $\Delta(G) \leq 3$. By Lemma 5, *G* is equitably *k*-colorable. In other cases, we can obtain the desired results applying Lemma 2.

Conjectures 1–4 hold for every triangle-free planar graph *G* with $\Delta(G) \ge 8$. \Box

3. Planar graphs without 4-cycles and 5-cycles

Lemma 9 ([13]). Every plane graph without 5-cycles is 3-degenerate.

Lemma 10. Let G be a connected plane graph with order at least 5. If G has neither 4-cycles nor 5-cycles, then G has one of the following configurations

Remark. In the above, each configuration represents subgraphs for which: (1) the degree of a solid vertex is exactly shown, (2) except for special pointed, the degree of a hollow vertex may be any integer from $[d, \Delta]$, where d is the number of edges incident to the hollow vertex, (3) hollow vertices may be not distinct while solid vertices are distinct.

Proof. Suppose *G* is a counterexample, then *G* is a connected plane graph with order at least 5 and without configurations $H_8 \sim H_{11}, H_{21} \sim H_{27}$, 4-cycles and 5-cycles. We use the same Euler's formula and define the same weight function as in the proof of Lemma 6. Similarly, we shall derive a contradiction. Since G has no C_4 , we have $m_3(v) \leq \lfloor \frac{d(v)}{2} \rfloor$. By Lemma 10, we have $\delta(G) \leq 3$. We consider the following three cases:

Case 1: $\delta(G) = 3$ Our discharging rules are as follows: (R1) Every 4-vertex sends 1 to each of its incident 3-faces. (R2) Every 5⁺-vertex sends 2 to each of its incident 3-faces. Let $v \in V$. If d(v) = 3, then w'(v) = w(v) = 0. If d(v) = 4, then $m_3(v) < 2$. Thus, $w'(v) > 2 \times 4 - 6 - 1 \times 2 = 0$ by (R1). If $d(v) \ge 5$, then $m_3(v) \le \lfloor \frac{d(v)}{2} \rfloor$. Thus, $w'(v) \ge 2d(v) - 6 - 2 \times \lfloor \frac{d(v)}{2} \rfloor \ge 0$ by (R2). Let $f \in F$. If $d(f) \ge 6$, then $w^{\tilde{f}}(f) = w(f) = d(f) - 6 \ge 0$. If d(f) = 3, then $n_3(f) \le 2$ since *G* has no H_{22} . If, furthermore, $n_3(f) = 2$, then $n_4(f) = 0$. Let $n_3(f) = 2$, then f is a $(3, 3, 5^+)$ - face. Since G contain no H_{23} , there is at most one $(3, 3, 5^+)$ - face f_1 . By (R2), $w'(f_1) = 3 - 6 + 2 = -1.$ Let $n_3(f) = 1$ and $n_4(f) = 2$, then f is a (3, 4, 4)-face. Since G has no H_{24} , there is at most one (3, 4, 4)-face f_2 . By (R1), $w'(f_2) = 3 - 6 + 1 \times 2 = -1.$ Since *G* has no H_{25} , f_1 , f_2 do not exist at the same time. Let $n_3(f) = 1$ and $n_4(f) \le 1$, then f is a $(3, 4^+, 5^+)$ -face. By (R1) and (R2), $w'(f) \ge 3 - 6 + 1 + 2 = 0$. Let $n_3(f) = 0$, then f is a $(4^+, 4^+, 4^+)$ -face. By (R1) and (R2), $w'(f) \ge 3 - 6 + 1 \times 3 = 0$. Thus, it follows from the above argument that $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -1$, which is a contradiction. **Case 2:** $\delta(G) = 2$ Subcase 2.1: There are at most two 2-vertices in G The total weights of 2-vertices and 3-faces incident to 2-vertices is not less than $(-2) \times 2 + (-3) \times 2 = -10$. The discharging rules are the same as in Case 1 (2-vertices and 3-faces incident to 2-vertices are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -11$, which is a contradiction. **Subcase 2.2:** There are at least three 2-vertices in G Since G has no H_{26} , there is no $(3, 3, 2^+)$ -face. Since G has no H_8 , there are no two adjacent 2-vertices. Since G has no H_9 , there is at most one 2-vertex which is adjacent to a 3-vertex. If there is one 2-vertex v_1 which is adjacent to a 3-vertex, since G has no H_9 , there is no 2-vertex which is adjacent to a 4-vertex other than v_1 . Thus, $w(v_1) = -2$. If there is one 2-vertex v_2 which is adjacent to 4-vertices, since G has no H_{10} , there is at most one 2-vertex adjacent to 4-vertices. Thus, $w(v_2) = -2$. We will consider 2- vertices which are adjacent to two 5⁺-vertices while the weight of 2-vertex which is adjacent to a 3-vertex or 4-vertex kept fixed in the following.

Our discharging rules are as follows:

(R'1) Every 5⁺-vertex sends 1 to each of its adjacent 2-vertices.

(R'2) Every 4-vertex transfers 1 to each of its incident 3-faces.

(R'3) Every 5⁺-vertex transfers $\frac{w(v)-n_2(v)}{m_3(v)}$ to each of its incident 3-faces $(m_3(v) \neq 0)$. Let v be a 5⁺-vertex, since G has no H_{11} , we have $n_2(v) \leq 1$. We give the following obvious properties:

(P1) Let *v* be a 5-vertex and *f* be a 3-face incident to *v*, then $\tau(v \to f) \ge \frac{4-1}{2} = \frac{3}{2}$ by (R'3).

(P2) Let *v* be a 6-vertex and *f* be a 3-face incident to *v*, then $\tau(v \to f) \ge \frac{6-1}{3} = \frac{5}{3}$ by (R'3).

(P3) Let v be a 7⁺-vertex and f be a 3-face incident to v, then $\tau(v \to f) \ge \frac{2d(v)-6-1}{\lfloor \frac{d(v)}{2} \rfloor} \ge \frac{9}{4}$ by (R'3).

Let $v \in V$. If d(v) = 2, then $w'(v) = -2 + 1 \times 2 = 0$ for each 2-vertex which is adjacent to two 5⁺-vertices by (R'1).

If d(v) = 3, then w'(v) = w(v) = 0.

If d(v) = 4, then $w'(v) \ge 2 \times 4 - 6 - 1 \times 2 = 0$ by (R'2).

If d(v) > 5. If v is not incident to 3-faces, then w'(v) > 2d(v) - 6 - 1 > 0 by (R'1). Otherwise, w'(v) = 0 by (P1) ~ (P3) and (R'3).

Let $f \in F$. If d(f) > 6, then w'(f) = w(f) = d(f) - 6 > 0.

If d(f) = 3, then f is a $(2^+, 3^+, 3^+)$ -face since there are no two adjacent 2-vertices.

Let $n_2(f) \ge 1$. Since there is at most one 2-vertex which is adjacent to a 3-vertex or 4-vertex, there is at most one $(2, 3, 3^+)$ -face f_3 or $(2, 4, 4^+)$ -face $f_4(f_3, f_4$ do not exist at the same time). By (R'2) and $(P1) \sim (P3)$, $w'(f_3) \geq 3 - 6 = -3$, $w'(f_4) \ge 3 - 6 + 1 \times 2 = -1$. If *f* is a $(2, 5^+, 5^+)$ -face, then $w'(f) \ge 3 - 6 + \frac{3}{2} \times 2 = 0$ by (P1) ~ (P3). Let $n_2(f) = 0$ and $n_3(f) \ge 1$. Since *G* has no $(3, 3, 2^+)$ -face, *f* is a $(3, 4^+, 4^+)$ -face.

Since G has no H_{24} , there is at most one (3, 4, 4)-face f_2 or (3, 4, 5)-face f_5 or (3, 4, 6)-face f_6 (at most one of f_2 , f_5 and f_6 exists). By (R'2) and (P1) and (P3), $w'(f_2) = 3 - 6 + 1 \times 2 = -1$, $w'(f_5) \ge 3 - 6 + 1 + \frac{3}{2} = -\frac{1}{2}$, $w'(f_6) \ge 3 - 6 + 1 + \frac{5}{3} = -\frac{1}{3}$. Let *f* be a $(3, 4, 7^+)$ -face, then $w'(f) \ge 3 - 6 + 1 + \frac{9}{4} > 0$ by (R'2) and $(P1) \sim (P3)$.

Let *f* be a $(3, 5^+, 5^+)$ -face, then $w'(f) \ge 3 - 6 + \frac{3}{2} \times 2 = 0$ by (P1) ~ (P3).

Let $n_2(f) = n_3(f) = 0$, then f is a $(4^+, 4^+, 4^+)$ -face. Thus $w'(f) \ge 3 - 6 + 1 \times 3 = 0$ by (R'2) and $(P1) \sim (P3)$.

Then, it follows from the above argument that $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -2 - 3 - 1 = -6$, which is a contradiction.

Case 3: $\delta(G) = 1$

Since G has no H_{26} , there is no (3, 3, 2⁺)-face. Since G has no H_{21} , there are at most two 1-vertices.

Subcase 3.1: There are two 1-vertices in G

Since G has no H_{21} , there is no 2-vertex.

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most two 5-faces. The total weights of 1-vertices and 5-faces are $(-4) \times 2 + (-1) \times 2 = -10$. The discharging rules are the same as in Case 1 (1-vertices and 5-faces are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -11$, which is a contradiction. **Subcase 3.2:** There is one 1-vertex and at most one 2-vertex in *G*

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. The total weights of 1-vertex, 2-vertex, 5-face and 3-face which is incident to a 2-vertex are not less than -4 + (-2) + (-1) + (-3) = -10. The discharging rules are the same as in Case 1 (1-vertices, 2-vertices, 5-face and 3-face which is incident to a 2-vertex are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = \sum_{x \in V \cup F} w'(x) \ge -11$, which is a contradiction.

Subcase 3.3: There is one 1-vertex and two 2-vertices in G

Since G has neither 4-cycles nor 5-cycles, there is no 4- face and at most one 5-face. Since G has no H_{27} , there is no 3-face which is incident to 2-vertices. The total weights of 1-vertex, 2-vertices and 5-face are $-4 + (-2) \times 2 + (-1) = -9$. The discharging rules are the same as in Case 1(1-vertex, 2-vertices and 5-face are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = 1$ $\sum_{x \in V \cup F} w'(x) \ge -10$, which is a contradiction.

Subcase 3.4: There is one 1-vertex and at least three 2-vertices in G

Since G has neither 4-cycles nor 5-cycles, there is no 4-face and at most one 5-face. Since G has no H₈, then there is no 2-vertex which is adjacent to a 1-vertex. The total weights of 1-vertex and 5-face are not less than -4 + (-1) = -5. The discharging rules are the same as in Subcase 2.2 (1-vertex and 5-face are not considered), then $-12 = \sum_{x \in V \cup F} w(x) = 1$ $\sum_{x \in V \cup F} w'(x) \ge -11$, which is a contradiction. \Box

Theorem 11. Every plane graph G without 4-cycles and 5-cycles is equitably k-choosable whenever $k > \max{\Delta(G), 7}$.

Proof. The proof is similar to the proof of Theorem 7. \Box

Theorem 12. Every plane graph *G* without 4-cycles and 5-cycles is equitably *k*-colorable whenever $k \ge \max\{\Delta(G), 7\}$.

Proof. The proof is similar to the proof of Theorem 8.

Conjectures 1–4 hold for every planar graph *G* with $\Delta(G) > 7$ and without 4-cycles and 5-cycles.

References

- [1] A. Hajnal, E. Szemerédi, Proof of a conjecture of Erdös, in: A. Rényi, V.T. Sós (Eds.), in: Combin Theory and Its Applications, vol. II, North-Holland, Amsterdam, 1970, pp. 601-623.
- W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922.
- B.L. Chen, K.W. Lih, P.L. Wu, Equitable coloring and the maximum degree, European J. Combin. 15 (1994) 443-447.
- [4] B.L. Chen, K.W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 61 (1994) 83-87.
- [5] K.W. Lih, P.L. Wu, On equitable coloring of bipartite graphs, Discrete Math. 151 (1996) 155-160.
- [6] H.P. Yap, Y. Zhang, The equitable Δ-coloring conjecture holds for outerplanar graphs, Bull. Inst. Math. Acad. Sin. 25 (1997) 143–149.
- [7] H.P. Yap, Y. Zhang, Equitable colorings of planar graphs, J. Combin. Math. Combin. Comput. 27 (1998) 97-105.
- W.F. Wang, K.M. Zhang, Equitable colorings of line graphs and complete r-partite graphs, System Sci. Math. Sci. 13 (2000) 190–194.
 A.V. Kostochka, K. Nakprasit, Equitable colorings of k-degenerate graphs, Combin. Probab. Comput. 12 (2003) 53–60.

- [10] A.V. Kostochka, M.J. Pelsmajer, D.B. West, A list analogue of equitable coloring, J. Graph Theory 44 (2003) 166–177.
 [11] M.J. Pelsmajer, Equitable list-coloring for graphs of maximum degree 3, J. Graph Theroy 47 (2004) 1–8.
 [12] W.F. Wang, K.W. Lih, Equitable list coloring for graphs, Taiwanese J. Math. 8 (2004) 747–759.
 [13] W.F. Wang, K.W. Lih, Choosability and edge choosability of planar graphs without 5-cycles, Appl. Math. Lett. 15 (2002) 561–565.