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a b s t r a c t

A complexity measure for threshold circuits, called the energy complexity, has been
proposed to measure an amount of energy consumed during computation in the brain.
Biological neurons need more energy to transmit a ‘‘spike’’ than not to transmit one, and
hence the energy complexity of a threshold circuit is defined as the number of gates in
the circuit that output ‘‘1’’ during computation. Since the firing activity of neurons in
the brain is quite sparse, the following question arises: what Boolean functions can or
cannot be computed by threshold circuits with small energy complexity. In the paper,
we partially answer the question, that is, we show that there exists a trade-off among
three complexity measures of threshold circuits: the energy complexity, size, and depth.
The trade-off implies an exponential lower bound on the size of constant-depth threshold
circuits with small energy complexity for a large class of Boolean functions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A biological neuron in the brain can be modeled by a threshold gate, and a neural network by a circuit composed of
threshold gates, which has been extensively studied so far [10,13,16]. A neural network in the brain has an interesting
feature of energy consumption: a biological neuron needs more energy to transmit a ‘‘spike’’ than not to transmit one [8].
The feature contrasts with electrical circuits, in which a gate outputting a signal ‘‘1’’ consumes almost the same amount of
power as a gate outputting ‘‘0’’ (see [6,15] for example). Therefore, many neuroscientists consider that computations in the
brain usually result from sparse firing activity of neurons [2,8,9,12]. We thus confront the following natural question from
the point of view of computational complexity: what Boolean functions can or cannot be computed by reasonably small
threshold circuits with few firing gates? A firing gate means a gate outputting ‘‘1’’.
Uchizawa, Douglas and Maass formalize the question posed above by introducing a new complexity measure called the

energy complexity of threshold circuits, and obtain sufficient conditions on functions that can be computed by threshold
circuits with small energy complexity [17]. More precisely, they define the energy complexity of a circuit of n input variables
as the maximum or expected number, taken over all input assignments of n variables, of firing gates in the circuit during
computation, and they show that every threshold decision tree of polynomial size can be converted to a threshold circuit
of polynomial size with energy complexity O(log n), where a threshold decision tree is a binary decision tree such that
the classification rule at each internal node is defined by a threshold function. Thus, a threshold circuit of polynomial
size with sparse activity has fairly large computational power. However, the threshold circuit converted from a decision
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tree has a large depth. Hence, a question arises: does a threshold circuit of polynomial size with sparse activity have large
computational power even if the depth of circuits is restricted to, say, a constant?
The paper answers the question above. We show that a threshold circuit of polynomial size with sparse firing activity

does not have large computational power if the depth of circuit is restricted to a constant. More precisely, we investigate
the relationship among three complexity measures of circuits: the maximum energy complexity, the size, and the depth.
In particular, as a main theorem, we obtain an upper bound on the ‘‘communication complexity’’ of a Boolean function
computed by a threshold circuit. Our bound is expressed in terms of the three complexity measures of a circuit and
is monotonically increasing with respect to each of them. Since many Boolean functions have large communication
complexity, our upper bound implies that there is a trade-off among the three complexity measures. The trade-off implies
an exponential lower bound on the size of a constant-depth threshold circuit with small energy complexity for a large
class of Boolean functions, including the Inner-Product. The bound is exponential in the number n of input variables. To the
best of our knowledge, this is the first exponential lower bound for threshold circuits of arbitrary constant depth, although
superpolynomial lower bounds have been obtained for threshold circuits of depth two or three under some restriction other
than the small energy complexity [1,3–5,14]. An early version of the paper was presented in [18].
In Section 2,wedefine some terms andpresent someknown results on threshold circuits and communication complexity,

including Nisan’s upper bound on the communication complexity of a Boolean function. In Section 3, we first present our
main theorem, that is, an upper bound on the communication complexity of a Boolean function, and then present three
corollaries of the theorem. In Section 4, we first present a lemma, which is one of our main results and implies that every
Boolean function can be approximately computed by a ‘‘small’’ threshold circuit. Using the lemma together with Nisan’s
bound, we then prove the main theorem. In Section 5, we prove the lemma. Finally in Section 6 we conclude with some
remarks.

2. Preliminaries

In Section 2.1 we define some terms on threshold circuits. In Section 2.2 we define some terms on communication
complexity and present some known results.

2.1. Threshold circuits

In the paper, we consider a threshold gate having an arbitrary number p of inputs. For every input z = (z1, z2, . . . , zp) ∈
{0, 1}p, a threshold gate g (with weightsw1, w2, . . . , wp and a threshold t) computes

g(z) = sign

(
p∑
i=1

wizi − t

)
=

1 if
p∑
i=1
wizi ≥ t;

0 otherwise,

where sign(z) = 1 if z ≥ 0 and sign(z) = 0 if z < 0. We assume throughout the paper that the weights and threshold of
every threshold gate are integers. A threshold function is similarly defined.
A threshold circuit C with n input variables is represented by a directed acyclic graph; the graph has exactly n nodes of in-

degree 0, each associatedwith an input variable and called an input node; each of the other nodes represents a threshold gate.
(See Fig. 1.) For an assignment x ∈ {0, 1}n to the n input variables, the output of all gates in C are computed in topological
order of the nodes in the directed acyclic graph. For a gate g in C , we denote by g[x] the output of g for an input x to circuit C
(although the actual input to gate g will in general consist of just some variables from x, and in addition, or even exclusively,
of outputs of other gates in C). We say that a gate g is fired by x if g[x] = 1. Since we consider only a threshold circuit that
computes a Boolean function, one may assume without loss of generality that the circuit has exactly one gate of out-degree
0, called the top gate. We denote by C(x) the output of the top gate of C for x. We say that a threshold circuit C computes a
Boolean function f : {0, 1}n → {0, 1} if C(x) = f (x) for every input x ∈ {0, 1}n. Hereafter, we often use the term ‘‘function’’
to refer to a Boolean function.
The size of a threshold circuit C is the number of gates in C , and is denoted by size(C). One may assume without loss

of generality that the in-degree of every gate is one or more in the directed acyclic graph. Therefore, for every gate g in C ,
there is a directed path to g from some input node. The level of a gate g in C is the length of the longest directed path to g
from an input node. The depth of C is the level of the top gate of C . The energy complexity, or more precisely the maximum
energy complexity, of C is the maximum number of gates fired by inputs x in C , where the maximum is taken over all the
2n inputs x ∈ {0, 1}n [17]. We say that a threshold circuit C has small energy complexity if the energy complexity e satisfies
e = no(1), that is, e = nh(n) for some function h(n) = o(1). Thus (log n)log log n = no(1), and (log n)c = no(1) for any large
number c(6= ∞), while nc 6= no(1) for any small number c > 0. In the paper, every ‘‘log’’ is to base 2.
Every Boolean function f can be computed by a threshold circuit C such that both the depth and the energy complexity

of C are two but the size may be exponential in n. One can construct such a circuit C from the truth table of f . Each gate on
level 1 corresponds to an input x such that f (x) = 1, and the threshold of the gate is equal to the number of 1’s in x. For every
input x ∈ {0, 1}n, at most one of the gates of level 1 in C is fired by x and the top gate is fired only when one of the gates of
level 1 is fired. Thus, the energy complexity e of C is 2. Fig. 1 illustrates such a circuit for a function f of three variables x1, x2
and x3.
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Fig. 1. Truth table of a Boolean function f , and a threshold circuit of size 4, depth 2, and energy complexity 2 for the function f .

2.2. Communication complexity

Consider a game of two players, say Alice and Bob. Assume that f : {0, 1}n × {0, 1}n → {0, 1} is a Boolean function, and
that Alice and Bob have unlimited computational power. Alice receives an input x ∈ {0, 1}n and Bob receives an input
y ∈ {0, 1}n. Alice and Bob try to compute the value f (x, y); they wish to exchange the least possible number of bits.
The two players communicate with each other according to a randomized protocol. We assume that both Alice and Bob
can use the same random bit string without communication. For each real number ε, 0 ≤ ε < 1/2, the communication
complexity of f (x, y), denoted by Rε(f ), is defined to be the maximum number of bits needed to be exchanged for the best
randomized protocol to make the two players compute a value of f (x, y) correctly with probability 1 − ε for every input
x × y ∈ {0, 1}n × {0, 1}n; thus ε is the error probability. The maximum is taken over all input assignments and over all
random bit strings, while the probability is taken over all random strings. Clearly, Rε(f ) ≤ n + 1. (For each real number δ,
0 < δ ≤ 1/2, R1/2−δ(f ) is the maximum number of bits needed to be exchanged so that the two players compute a value of
f correctly with probability 1/2+ δ.)
Nisan obtains the following upper bound on the communication complexity Rε(f ) of a function f computed by a threshold

circuit [11], which we will use to prove our main theorem.
Lemma 1 ([11]). If a Boolean function f of 2n variables can be computed by a threshold circuit of size s, then

Rε(f ) = O
(
s
(
log n+ log

s
ε

))
for every number ε, 0 ≤ ε < 1/2, that is, there is a randomized protocol tomake two players compute a value of f with probability
1− ε by exchanging

O
(
s
(
log n+ log

s
ε

))
bits.
Almost all functions f of 2n variables have large communication complexity:

R 1
2−δ
(f ) = Ω(n+ log δ)

for every number δ, 0 < δ ≤ 1/2 [7]. One of these functions is the Inner-Product of 2n variables [7], denoted by IPn, which
is defined as

IPn(x1, x2, . . . , xn, y1, y2, . . . , yn) = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn

where⊕ denotes the XOR function.

3. Main result

Our main result is the following theorem, which expresses an upper bound on the communication complexity of a
function f in terms of the size s, depth d and energy complexity e of a threshold circuit computing f . In what follows, we
may assume without loss of generality that s, d, e ≥ 1.
Theorem 1. If a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} can be computed by a threshold circuit of size s, depth d and
energy complexity e, then

R 1
2−δ
(f ) = O((e+ d)(log n+ (e+ 1)d log s)) (1)

for a number

δ =
1

4s3(e+1)d
. (2)
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Fig. 2. Threshold circuit computing IPn .

Many functions f have large communication complexity, that is, R1/2−δ(f ) = Ω(n + log δ) for every number δ,
0 < δ ≤ 1/2 [7]. Therefore, Theorem 1 implies that there is a trade-off among the size s, depth d, and energy complexity e
of a threshold circuit computing f . In particular, we can derive from Theorem 1 an exponential lower bound on the size of
threshold circuits for many functions, as in the following Corollaries 1–3.

Corollary 1. Assume that f is a Boolean function of 2n variables and there is a number γ > 0 such that

R 1
2−δ
(f ) = Ω(nγ + log δ) (3)

for every number δ, 0 < δ ≤ 1/2. If f can be computed by a threshold circuit C of constant depth d with small energy complexity
e = no(1), that is, e = nh(n) for some function h(n) = o(1), then

size(C) = exp(Ω(nγ−(d+1)h(n))) = exp(Ω(nγ−o(1))).

Proof. Let s = size(C). Let δ be the number satisfying Eq. (2), then 0 < δ < 1/2. Eq. (3) for the number δ implies that

c(nγ + log δ) ≤ R 1
2−δ
(f ) (4)

for some constant c . On the other hand, Theorem 1 implies that

R 1
2−δ
(f ) ≤ c ′(e+ d)(log n+ (e+ 1)d log s) (5)

for some constant c ′. Substituting Eq. (2) into Eq. (4) and combining the resulting equation with Eq. (5), we have

c(nγ − 2)− c ′(e+ d) log n
c ′(e+ d)(e+ 1)d + 3c(e+ 1)d

≤ log s. (6)

Clearly, the numerator of the left side of Eq. (6) isΩ(nγ ). Since d is a constant and e = nh(n), the denominator of the left side
of Eq. (6) is bounded above by c ′′n(d+1)h(n)(= no(1)) for some constant c ′′. We thus have

s = exp(Ω(nγ−(d+1)h(n)) = exp(Ω(nγ−o(1))). �

Corollary 1 implies an exponential lower bound on size(C).
Since R1/2−δ(IPn) = Ω(n + log δ) for every number δ, 0 < δ ≤ 1/2 [7], we immediately have the following Corollary 2

from Corollary 1.

Corollary 2. If a constant-depth threshold circuit C with small energy complexity e = no(1) computes the Inner-Product of 2n
variables, then

size(C) = exp(Ω(n1−o(1))).

One can easily observe that IPn can be computed by a threshold circuit of 2n + 1 gates, depth 3 and energy complexity
2n + 1(= O(n)), as illustrated in Fig. 2. Therefore, the restriction e = no(1) on the energy complexity in Corollary 1 cannot
be relaxed to e = O(n).
The size s of a threshold circuit is often greater than the number n of input variables. An exponential bound holds even if

the energy e is bounded above in terms of s instead of n, say e = (log s)c for a constant c , as follows.
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Corollary 3. Assume that f is a Boolean function of 2n variables and there is a number γ > 0 such that

R 1
2−δ
(f ) = Ω(nγ + log δ)

for every number δ, 0 < δ ≤ 1/2. If f can be computed by a threshold circuit C of constant depth d with energy complexity
e = (log s)c for a constant c, then

size(C) ≥ exp(Ω(nγ
′

))

for some constant γ ′, 0 < γ ′ < γ .

Proof. Similar to the proof of Corollary 1. �

4. Proof of Theorem 1

In this section, we prove Theorem 1. We use Lemma 1 together with the following Lemma 2, which is one of our main
results and will be proved in Section 5.

Lemma 2. If a Boolean function f : {0, 1}n → {0, 1} can be computed by a threshold circuit C of size s, depth d and energy
complexity e, then f can be represented by a threshold function and a number k of threshold circuits C1, C2, . . . , Ck, that is,

f (x) = sign

(
k∑
i=1

wiCi(x)

)
(7)

for every input x ∈ {0, 1}n (see Fig. 3), where

(a)

k = 2(e+ 1)d−1
(
s− 1
e

)
; (8)

(b) the weightsw1, w2, . . . , wk are not zero, and satisfy

k∑
i=1

wi = 0 (9)

and
k∑
i=1

|wi| ≤ 2s3(e+1)
d
; (10)

(c) for every index i, 1 ≤ i ≤ k,

size(Ci) ≤ e+ 3d− 2; (11)

and
(d) for every input x,

k∑
i=1

wiCi(x) 6= 0. (12)

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let f : {0, 1}n×{0, 1}n → {0, 1}. We denote by f (x, y) the value of f for x ∈ {0, 1}n and y ∈ {0, 1}n.
Assume that f can be computed by a threshold circuit C of size s, depth d and energy complexity e. Then Lemma2 implies that
f can be represented by a threshold function (with weightsw1,w2, . . . , wk) and threshold circuits C1, C2, . . . , Ck satisfying
Eqs. (7)–(12). Let

W =
k∑
i=1

|wi| (13)

and

smax = max
1≤i≤k

size(Ci). (14)



K. Uchizawa, E. Takimoto / Theoretical Computer Science 407 (2008) 474–487 479

Fig. 3. A new circuit computing f .

Then, by Eqs. (10), (11) and (13), we have

W ≤ 2s3(e+1)
d

(15)

and

smax ≤ e+ 3d− 2. (16)

We first show that it suffices to prove the following claim:
There is a randomized protocol to make Alice and Bob
compute f (x, y) by exchanging

O(smax(log n+ log(2Wsmax))) (17)

bits with error probability

ε ≤
1
2
−
1
2W

. (18)

Suppose that the claim above holds true. Then Eqs. (15)–(17) imply that the number of bits exchanged by the protocol is

O (smax(log n+ log(2Wsmax))) = O
(
(e+ 3d− 2)(log n+ 2+ 3(e+ 1)d log s+ log(e+ 3d− 2))

)
= O

(
(e+ d)(log n+ (e+ 1)d log s)

)
.

Eqs. (15) and (18) imply that the error probability is

ε ≤
1
2
−
1
2W
≤
1
2
−

1

4s3(e+1)d
.

Thus Theorem 1 holds if the claim above holds.
In what follows, we prove the claim above. Our protocol consists of the following three steps, and makes Alice and Bob

compute a Boolean value b ∈ {0, 1} as f (x, y) for every x× y ∈ {0, 1}n × {0, 1}n.
[Step 1]
Using a random bit string, Alice and Bob choose one of the k indices, 1 ≤ i ≤ k, so that

Pr[Alice and Bob choose i] =
|wi|

W
(19)

where the probability is taken over all random strings. Suppose that they choose an index j, 1 ≤ j ≤ k, and let fj be the
function such that fj(x, y) = Cj(x, y) for every x× y ∈ {0, 1}n × {0, 1}n.
[Step 2]
They apply Nisan’s protocol in Lemma 1 for the function fj with setting the error probability ε′ as

ε′ =
1
2W

.
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We denote by N(x, y) the Boolean value which Nisan’s protocol makes Alice and Bob compute as fj(x, y). Then

Pr[N(x, y) 6= fj(x, y)] ≤ ε′ =
1
2W

. (20)

[Step 3]
Our protocol makes Alice and Bob compute, as f (x, y), a Boolean value b ∈ {0, 1} such that

b =

{
N(x, y) ifwj > 0;

N(x, y) ifwj < 0,
(21)

where N(x, y) is the negation of the Boolean value N(x, y).
Lemma 1, Eqs. (14) and (20) imply that the number of bits exchanged between Alice and Bob by our protocol above is

O (smax(log n+ log(2Wsmax))) .

We have thus verified Eq. (17).
We then prove Eq. (18), that is,

ε = Pr[b 6= f (x, y)] ≤
1
2
−
1
2W

.

For an input x× y, we partition the set {1, 2, . . . , k} of indices into four subsets I+0 , I
+

1 , I
−

0 and I
−

1 , as follows:

I+0 = {i ∈ {1, 2, . . . , k} | Ci(x, y) = 0 andwi > 0};
I+1 = {i ∈ {1, 2, . . . , k} | Ci(x, y) = 1 andwi > 0};
I−0 = {i ∈ {1, 2, . . . , k} | Ci(x, y) = 0 andwi < 0};

and

I−1 = {i ∈ {1, 2, . . . , k} | Ci(x, y) = 1 andwi < 0}.

Clearly

W =
∑
i∈I+0

wi +
∑
i∈I+1

wi +
∑
i∈I−0

|wi| +
∑
i∈I−1

|wi|. (22)

We define a Boolean value b′ ∈ {0, 1} as

b′ =

{
fj(x, y) ifwj > 0;

fj(x, y) ifwj < 0.
(23)

Eqs. (21) and (23) imply that if b 6= f (x, y) then either b′ 6= f (x, y) or N(x, y) 6= fj(x, y). Therefore, by Eq. (20) we have
ε = Pr[b 6= f (x, y)] ≤ Pr[b′ 6= f (x, y)] + ε′. (24)

If

Pr[b′ 6= f (x, y)] ≤
1
2
−
1
W
, (25)

then by Eqs. (20) and (24) we have

ε ≤

(
1
2
−
1
W

)
+
1
2W

=
1
2
−
1
2W

,

and hence Eq. (18) holds. Thus we shall prove Eq. (25).
There are two cases to consider.

Case 1: f (x, y) = 1.
In this case we have

Pr[b′ 6= f (x, y)] = Pr[b′ = 0].

Eq. (23) implies that b′ = 0 if and only if either fj(x, y) = 0 and wj > 0 or fj(x, y) = 1 and wj < 0, and hence b′ = 0 if and
only if j ∈ I+0 ∪ I

−

1 . Therefore by Eq. (19) we have

Pr[b′ 6= f (x, y)] =

∑
i∈I+0

wi +
∑
i∈I−1

|wi|

W
. (26)
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Using Eq. (22), we have

∑
i∈I+0

wi +
∑
i∈I−1

|wi| =
W
2
−

∑
i∈I+1

wi

2
−

∑
i∈I−0

|wi|

2
+

∑
i∈I+0

wi

2
+

∑
i∈I−1

|wi|

2
. (27)

Using Eqs. (9) and (27) we have∑
i∈I+0

wi +
∑
i∈I−1

|wi| =
W
2
−

∑
i∈I+1

wi

2
−

∑
i∈I−0

|wi|

2
+

∑
i∈I+0

wi

2
+

∑
i∈I−1

|wi|

2
−

k∑
i=1

wi

2

=
W
2
−

∑
i∈I+1

wi −
∑
i∈I−1

|wi|

 . (28)

Since f (x, y) = 1, by Eqs. (7) and (12) we have

1 ≤
k∑
i=1

wiCi(x, y) =
∑
i∈I+1

wi −
∑
i∈I−1

|wi|. (29)

By Eqs. (26), (28) and (29) we have

Pr[b′ 6= f (x, y)] =
1
W

W
2
−

∑
i∈I+1

wi −
∑
i∈I−1

|wi|


≤
1
2
−
1
W
.

We have thus verified Eq. (25) for Case 1.

Case 2: f (x, y) = 0.
Similarly as in Eq. (26), we have

Pr[b′ 6= f (x, y)] =

∑
i∈I+1

wi +
∑
i∈I−0

|wi|

W
. (30)

Similarly as in Eq. (28), we have

∑
i∈I+1

wi +
∑
i∈I−0

|wi| =
W
2
+

∑
i∈I+1

wi −
∑
i∈I−1

|wi|

 . (31)

Since f (x, y) = 0, by Eqs. (7) and (12) we have

k∑
i=1

wiCi(x, y) =
∑
i∈I+1

wi −
∑
i∈I−1

|wi| ≤ −1. (32)

Therefore by Eqs. (30)–(32) we have

Pr[b′ 6= f (x, y)] =
1
W

W
2
+

∑
i∈I+1

wi −
∑
i∈I−1

|wi|


≤
1
2
−
1
W
.

We have thus verified Eq. (25) for Case 2. �
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5. Proof of Lemma 2

In this section we prove Lemma 2. Assume that a function f : {0, 1}n → {0, 1} can be computed by a threshold circuit C
of size s, depth d, and energy complexity e. Let G be the set of all gates in C , and let g ∈ G be the top gate of C .
We first prove Lemma 2 for the case where d = 1. In this case, e ≤ s = 1, k = 2 and G = {g}. We construct two

circuits C1 and C2. The circuit C1 is the same as C . The circuit C2 is a circuit which outputs the negation C(x) of the Boolean
value C(x) for every input x ∈ {0, 1}n. We can construct the circuit C2 from C by replacing g by a new gate; if g has weights
wg,i, 1 ≤ i ≤ n, and a threshold tg , then the new gate has weights −2wg,i, 1 ≤ i ≤ n, and a threshold −2tg + 1. Clearly
C2(x) = C(x) for every input x. Letw1 = 1 andw2 = −1. Then clearly Eqs. (7)–(12) hold.
In what follows, we prove Lemma 2 for the case where d ≥ 2. In this case, s ≥ d ≥ 2. In Section 5.1, we construct the k

circuits C1, C2, . . . , Ck from C , and prove Eq. (11). In Section 5.2, we decide the kweightsw1, w2, . . . , wk, and prove Eqs. (9)
and (10). In Section 5.3, we prove Eqs. (7) and (12).

5.1. Circuits C1, C2, . . . , Ck

In this section, we show how to construct circuits C1, C2, . . . , Ck, and prove Eq. (11). The construction consists of the
following Step 1 and Step 2.
[Step 1]
Let g be the top gate of C . Define a family S of subsets of G as follows:

S = {S ⊆ G | g ∈ S, |S| = e+ 1}.

Let

m = |S|,

then

m =
(
s− 1
e

)
.

(If e = s, then let S = {G} and we definem =
(s−1
s

)
= 1.) We construct two circuits C+S and C

−

S for each set S ∈ S, and hence
we construct 2m circuits in total in Step 1.
C+S is a sub-circuit of C induced by all the gates in S and the n input nodes. More precisely, C

+

S consists of all the gates in S
and the n input nodes together with the wires connecting them in C , and the weights and threshold of every gate in C+S are
the same as those of the gate in C . Thus size(C+S ) = e+1. (If e = s, then size(C

+

S ) = e.) We denote by gS the gate g contained
in C+S . Clearly gS has out-degree zero in C

+

S . Circuit C
+

S may have two or more gates having out-degree zero. However, we
regard gS as the top gate of circuit C+S , and hence C

+

S (x) = gS[x] for every input x ∈ {0, 1}
n. If S contains all the gates that

are fired by an input x ∈ {0, 1}n in C , then
C+S (x) = C(x). (33)

Note that, for every gate h ∈ S, h is fired by x in C+S if and only if h is fired by x in C . For every input x ∈ {0, 1}
n, at least one

of them sets in S contains all the gates fired by x in C , because at most e gates of C are fired by x.
C−S is a circuit which outputs the negation C

+

S (x) of the Boolean value C
+

S (x) for every input x. The circuit C
−

S is obtained
from C+S by replacing the top gate gS by a new top gate which outputs the negation gS[x] of gS[x] for every x ∈ {0, 1}

n. The
new top gate can be obtained from gS as follows: if gS has weightswS,i, 1 ≤ i ≤ pS , and a threshold tS , then the new top gate
has weights−2wS,i, 1 ≤ i ≤ pS , and a threshold−2tS + 1. Clearly, C−S (x) = C

+

S (x) for every input x. Furthermore

C−S (x) = C(x) (34)

for an input x if S contains all the gates that are fired by x in C .
[Step 2]
In Step 2, we construct k circuits C1, C2, . . . , Ck from the 2m circuits C+S and C

−

S constructed in Step 1.
Let U = {0, 1, . . . , e}d−1, then |U| = (e + 1)d−1. For every pair (S, u) ∈ S × U , we construct a circuit C+S,u from C

+

S , as
follows. Let u = (u1, u2, . . . , ud−1) ∈ U , then 0 ≤ ui ≤ e for every i, 1 ≤ i ≤ d−1. For each index l, 1 ≤ l ≤ d, we denote by
Kl the set of all gates of C having level l in C . Then Kd = {g}. The inputs of a gate in Kl come from gates in K1 ∪ K2 ∪ · · · Kl−1
and/or input nodes. For each l, 1 ≤ l ≤ d− 1, we add three gates g1l , g

2
l and g

3
l to C

+

S , as illustrated in Fig. 4. The gate g
1
l has

exactly |Kl ∩ S| inputs, all the weights are 1, and the threshold of g1l is ul. The output of each gate g
′ in Kl ∩ S is connected to

one of the |Kl ∩ S| inputs of g1l . Thus g
1
l computes

g1l [x] = sign

( ∑
g ′∈Kl∩S

g ′[x] − ul

)
.
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Fig. 4. Three gates g1l , g
2
l , g

3
l added to C

+

S for level l, and the top gate gS of C
+

S .

Hence, the gate g1l outputs 1 if and only if at least ul gates in Kl ∩ S are fired by x in C
+

S . We then add a gate g
2
l to C

+

S which
computes

g2l [x] = sign

(
−

∑
g ′∈Kl∩S

g ′[x] + ul

)
.

The gate g2l outputs 1 if and only if at most ul gates in Kl ∩ S are fired by x in C
+

S . We finally add a gate g
3
l having two inputs

connected to the outputs of g1l and g
2
l , which computes

g3l [x] = sign(g
1
l [x] + g

2
l [x] − 2).

Clearly, g3l computes AND of Boolean values g
1
l [x] and g

2
l [x]. Therefore, g

3
l outputs 1 if and only if exactly ul gates in Kl∩S are

fired by x in C+S . Let the top gate gS(= g) of C
+

S have weights wS,1, wS,2, . . . , wS,pS and a threshold tS . Let w be an arbitrary
integer such that

w >

pS∑
i=1

|wS,i| + |tS |.

We connect the outputs of all the d− 1 gates g3l , 1 ≤ l ≤ d− 1, to gS with weightw, and replace the threshold tS of gS with
a new threshold t ′S

t ′S = tS + (d− 1)w.

The resulting circuit is C+S,u. Clearly, C
+

S,u(x) = 1 if and only if C
+

S (x) = 1 and exactly ul gates in Kl ∩ S are fired by x in C
+

S for
every l, 1 ≤ l ≤ d− 1.
For a set S ∈ S and an input x ∈ {0, 1}n, we say that u = (u1, u2, . . . , ud−1) ∈ U is the signature of x for circuit C+S if, for

each l, 1 ≤ l ≤ d− 1, exactly ul gates in Kl ∩ S are fired by x in C+S . Then one can easily know that the circuit C
+

S,u computes

C+S,u(x) =

{
C+S (x) if u is the signature of x for C+S ;
0 otherwise.

(35)

Similarly as above, for each pair (S, u) ∈ S× U , we construct from C−S a circuit C
−

S,u which computes

C−S,u(x) =

{
C+S (x) if u is the signature of x for C−S ;
0 otherwise.

(36)

It should be noted that exactly ul gates in Kl ∩ S are fired by x in C+S for each l, 1 ≤ l ≤ d− 1, if and only if exactly ul gates
in Kl ∩ S are fired by x in C−S . We can thus denote by uS both the signature of x for C

+

S and that for C
−

S .
In Steps 1 and 2 we have constructed two circuits C+S,u and C

−

S,u for each pair (S, u) ∈ S × U . These are the k circuits
C1, C2, . . . , Ck that we are constructing. Clearly, for every i, 1 ≤ i ≤ k,

size(Ci) ≤ (e+ 1)+ 3(d− 1) = e+ 3d− 2.

(If e = s, then size(Ci) = e+ 3d− 3.) We have thus verified Eq. (11).
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5.2. Weightsw1, w2, . . . , wk

In this section, we decide the weightsw1, w2, . . . , wk and prove Eqs. (9) and (10).
For each u = (u1, u2, . . . , ud−1) ∈ U , we denote by [u] the integer whose (e+ 1)-ary representation is u:

[u] =
d−1∑
i=1

ui(e+ 1)d−1−i.

For each pair (S, u), let

wS,u = m[u] (37)

wherem =
(s−1
e

)
.

For each u = (u1, u2, . . . , ud−1) ∈ U , we decide the weight for the circuit C+S,u as wS,u and for the circuit C
−

S,u as −wS,u.
All these kweightsw1,w2, . . . , wk are not zero, and

k∑
i=1

wi =
∑
S∈S

∑
u∈U

(
wS,u − wS,u

)
= 0,

and hence Eq. (9) holds. Clearly,

m[u] ≤ m(e+1)
d−1

and

m =
(
s− 1
e

)
≤ se.

We thus have
k∑
i=1

|wi| =
∑
S∈S

∑
u∈U
(wS,u + wS,u)

= 2
(
s− 1
e

)∑
u∈U
m[u]

≤ 2sem(e+1)
d−1
|U|

≤ 2sese(e+1)
d−1
(s+ 1)d−1

≤ 2s3(e+1)
d
.

Note that 2 ≤ d ≤ s and 1 ≤ e. We have thus proved Eq. (10).

5.3. Proof of Eqs. (7) and (12)

In this section we prove Eqs. (7) and (12), that is,

f (x) = sign

(∑
S∈S

∑
u∈U

(
wS,uC+S,u(x)− wS,uC

−

S,u(x)
))

and ∑
S∈S

∑
u∈U

(
wS,uC+S,u(x)− wS,uC

−

S,u(x)
)
6= 0

for every x ∈ {0, 1}n.
Consider a fixed input x ∈ {0, 1}n till the end of the proof of Lemma 3.
For each set S ∈ S, Eqs. (35) and (36) imply that

C+S,uS (x) = C
+

S (x) (38)

and

C−S,uS (x) = C
+

S (x) (39)

where uS is the signature of x for C+S . On the other hand

C+S,u(x) = C
−

S,u(x) = 0 (40)
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for every u ∈ U\{uS}. Eqs. (38)–(40) imply that exactly one of the two circuits C+S,uS and C
−

S,uS outputs 1 for x, and hence
exactly one of the 2|U| circuits C+S,u and C

−

S,u, u ∈ U , outputs 1 for x.
Let

Usig = {uS | S ∈ S and uS is the signature of x for C+S },

and let u∗ = (u∗1, u
∗

2, . . . , u
∗

d−1) be the lexicographically largest signature inUsig. Then
∑d−1
l=1 u

∗

l ≤ e, since |∪1≤l≤d−1S∩Kl| ≤
e for every S ∈ S. Let

S∗ = {S ∈ S | uS = u∗}.

We then have the following lemma.

Lemma 3. For every set S ∈ S∗,

C+S,u∗(x) = C(x).

Proof. Let S ∈ S∗. Let F be the set of all the gates of C that are fired by x in C . By Eqs. (33) and (38), it suffices to prove that
F ⊆ S.
Let nl = |F ∩ Kl| for each index l, 1 ≤ l ≤ d− 1. We will prove by induction on l, 1 ≤ l ≤ d− 1, that

nl = u∗l
and

F ∩ (K1 ∪ K2 ∪ · · · ∪ Kl) ⊆ S. (41)

If Eq. (41) holds for l = d− 1, then F ⊆ S, because S contains the top gate g of C on level d.
1◦ For the basis of induction, we prove n1 = u∗1 and F ∩ K1 ⊆ S. Obviously n1 = |F ∩ K1| ≤ e. For every gate h ∈ K1 ∩ S, h
is fired by x in C+S if and only if h is fired by x in C , since the inputs of h come only from the n input nodes. Since u

∗(= uS) is
the lexicographically largest in Usig, we have n1 = u∗1 and F ∩ K1 ⊆ S.
2◦ For the induction hypothesis, we assume that 2 ≤ l ≤ d− 1, F ∩ (K1 ∪ K2 ∪ · · · ∪ Kl−1) ⊆ S, and ni = u∗i for each index
i, 1 ≤ i ≤ l− 1.
3◦ Since F∩(K1∪K2∪· · ·∪Kl−1) ⊆ S, one can observe that, for every gate h ∈ Kl∩S, h is fired by x in C+S if and only if h is fired
by x in C . It should be noted that, both in C and C+S , the inputs of h come only from some of the gates in K1 ∪ K2 ∪ · · · ∪ Kl−1
and the n input nodes, although the topological order of the gates in the directed acyclic graph corresponding to the circuit
C+S is not necessarily consistent with that of circuit C . Since n1 = u

∗

1 , n2 = u
∗

2, . . . , nl−1 = u
∗

l−1,
∑l
i=1 ni ≤ e and u

∗(= uS)
is the lexicographically largest, we have nl = u∗l and F ∩ Kl ⊆ S. Hence F ∩ (K1 ∪ K2 ∪ · · · ∪ Kl) ⊆ S. �

We are now ready to prove Eqs. (7) and (12). Note that f (x) = C(x) for every input x ∈ {0, 1}n, since C computes f .
There are two cases to consider.
Case 1: f (x) = C(x) = 1.
If

k∑
i=1

wiCi(x) > 0, (42)

then we have

f (x) = 1 = sign

(
k∑
i=1

wiCi(x)

)
and

k∑
i=1

wiCi(x) 6= 0,

and hence Eqs. (7) and (12) hold. Thus it suffices to prove Eq. (42).
By Eq. (40) we have

k∑
i=1

wiCi(x) =
∑
S∈S

∑
u∈U

(
wS,uC+S,u(x)− wS,uSC

−

S,uS (x)
)

=

∑
S∈S

(
wS,uSC

+

S,uS (x)− wS,uSC
−

S,uS (x)
)
. (43)



486 K. Uchizawa, E. Takimoto / Theoretical Computer Science 407 (2008) 474–487

Since C(x) = 1, Lemma 3 implies that C+S,u∗(x) = C(x) = 1 for every S ∈ S∗, and hence by Eqs. (38) and (39) we have

C−S,u∗(x) = C
+

S (x) = C
+

S,u∗(x) = C(x) = 0 for every S ∈ S∗. Therefore, we have from Eq. (43)

k∑
i=1

wiCi(x) =
∑
S∈S∗

wS,u∗ +
∑
S∈S\S∗

(
wS,uSC

+

S,uS (x)− wS,uSC
−

S,uS (x)
)
. (44)

Since−wS,uS < 0 < wS,uS and exactly one of C
+

S,uS (x) and C
−

S,uS (x) is 1, we have from Eq. (44)

k∑
i=1

wiCi(x) ≥
∑
S∈S∗

wS,u∗ −
∑
S∈S\S∗

wS,uS . (45)

Let S∗ be an arbitrary set in S∗, then by Eq. (37) we have∑
S∈S∗

wS,u∗ ≥ wS∗,u∗

= m[u
∗
] (46)

and

−

∑
S∈S\S∗

wS,uS = −
∑
S∈S\S∗

m[uS ]. (47)

By Eqs. (45)–(47) we have

k∑
i=1

wiCi(x) ≥ m[u
∗
]
−

∑
S∈S\S∗

m[uS ]. (48)

Since u∗ is the lexicographically largest in Usig, we have [u∗] − 1 ≥ [uS] for every S ∈ S\S∗. Therefore, by Eq. (48) we have

k∑
i=1

wiCi(x) ≥ m[u
∗
]
− (m− 1)m[u

∗
]−1

= m[u
∗
]−1

> 0,

and hence Eq. (42) holds.

Case 2: f (x) = C(x) = 0.
In this case, similarly as in Case 1, we have

k∑
i=1

wiCi(x) ≤ −
∑
S∈S∗

wS,u∗ +
∑
S∈S\S∗

wS,uS

≤ −m[u
∗
]
+

∑
S∈S\S∗

m[uS ]. (49)

By Eq. (49) we have

k∑
i=1

wiCi(x) ≤ −m[u
∗
]
+ (m− 1)m[u

∗
]−1

= −m[u
∗
]−1

< 0

and hence

f (x) = 0 = sign

(
k∑
i=1

wiCi(x)

)
.

We have thus proved Eqs. (7) and (12) for Case 2.
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6. Conclusions

In the paper, we showed that there exists a trade-off among three complexity measures of threshold circuits: the size,
depth and energy complexity. Our trade-off implies exponential lower bounds on the size of constant-depth threshold
circuits with small energy complexity for a large class of Boolean functions, including the Inner-Product IPn. Since IPn can
be computed by a threshold circuit of 2n + 1 gates, depth 3 and energy complexity 2n + 1, our restriction on the energy
complexity cannot be relaxed to O(n).
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