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a b s t r a c t

A repetition is a nonempty string of the form Xq, where q ≥ 2. Given a string S character by
character and the value of q, the on-line repetition detection problem is to detect and report
the first repetition in S, if it exists, in an on-line manner. Leung, Peng and Ting first studied
the problem for q = 2 and gave an O(m log2m) time algorithm (refer to [H.-F. Leung,
Z. Peng, H.-F. Ting, An efficient algorithm for online square detection, Theoretical Computer
Science 363 (1) (2006) 69–75]), wherem is the ending position of the first repetition in S. In
this paper,we improve the above citedwork by reducing the time complexity toO(m logβ),
where β is the number of distinct characters in the first m characters of S. Moreover, we
also solve the problem for q ≥ 3 with the same time complexity.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A repetition is the concatenation of q copies of a nonempty string X , denoted by Xq, where q ≥ 2. A repetition of the form
X2 is called a square. Detecting repetitions in a string is a fundamental problem inmany areas such as combinatorics [20,22],
automata and formal language theory [13,24], data compression [9], bioinformatics [11,16,23], etc. Several algorithms [1–5,
12,17,18,21,25] were proposed to detect repetitions in a string with O(n log n) time over a general alphabet or with O(n)
time over an integer alphabet (e.g., [4,5,12,17,25]), where n is the length of the string. These algorithms are all executed in
an off-line manner.
Given a string S character by character and an integer q ≥ 2, the on-line repetition detection problem is to detect the first

repetition of the form Xq in S, and report it, if it exists, as soon as the repetition is completely read. The execution halts either
when the repetition is reported or when the entire S is read. Leung, Peng and Ting [19] first presented an O(m log2m) time
algorithm to solve the problem for q = 2, where m is the number of characters of S read (m is the length of S if no square
exists in S). Throughout this paper, we use |S| to denote the length of S, S[i] to denote the ith character of S read, S[i..j] (i ≤ j)
to denote the substring of S from S[i] to S[j], and XY to denote the concatenation of strings X and Y . A string is square-free if
it does not contain any square.
In [5], Crochemore gave an algorithm that could solve the off-line square detection problem in O(n logα) time, where n

is the length of the string S and α is the number of distinct characters in S. In this paper, we adapt Crochemore’s algorithm
to an on-line manner. The resulting algorithm runs in O(m logβ) time, wherem is the number of characters of S read and β
is the number of distinct characters in S[1..m]. Besides, we also solve the on-line repetition detection problem for q ≥ 3 in
O(m logβ) time.
In the next section, we first review Crochemore’s algorithm. The on-line repetition detection problems for q = 2 and

q ≥ 3 are solved in Sections 3 and 4, respectively.
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Fig. 1. Computation of left(U, V ).

2. Preliminaries

Crochemore’s algorithm [5] for the off-line square detection problem first partitions the input string S into nonempty
substrings F1, F2, . . . , Ft (i.e., S = F1F2 · · · Ft ), and then sequentially determines whether or not a square ends in Fk for
k = 1, 2, . . . , t . The partition, which is referred to as the f -factorization (or s-factorization in [4]) of S, is performed as
follows. Each Fk is defined as either a single character not in F1F2 · · · Fk−1 or the longest prefix of S[bk..|S|] that is also a
prefix of S[j..|S|] for some 1 ≤ j < bk, where bk is the starting position of Fk (i.e., bk = |F1F2 · · · Fk−1| + 1). For example, if
S = abaabbba, then (F1, F2, F3, F4, F5, F6) = (a, b, a, ab, bb, a). By the aid of Ukkonen’s on-line suffix tree construction
algorithm [26], the f -factorization of S can be obtained on-line in O(|S| logα) time, where α is the number of distinct
characters in S.
Two functions, named left and right, are used in Crochemore’s algorithm to search for a square. Given two square-free

strings U and V , left(U, V ) (right(U, V )) searches for a square, named an L-square (an R-square), which can be written as the
concatenation of two nonempty strings X and Y such that X is a suffix of U , Y is a prefix of V , and |X | ≥ |Y | (|X | < |Y |).
The process for determining whether or not a square ends in Fk is performed only when F1F2 · · · Fk−1 is square-free. It is
not difficult to see that there is a square ending in Fk if and only if a square can be found by left(Fk−1, Fk) or right(Fk−1, Fk)
or right(F1F2 · · · Fk−2, Fk−1Fk). Notice that no square can be found by left(F1F2 · · · Fk−2, Fk−1Fk), because S[bk−1..bk] is not
contained in F1F2 · · · Fk−1. Also, if there is a square completely contained in Fk, then there is an occurrence of it starting
before bk.
Given two strings X and Y , let `p(X, Y ) and `s(X, Y ) be the lengths of their longest common prefix and longest common

suffix, respectively. It was shown in [21] that left(U, V ) and right(U, V ) can be obtained bymeans of computing `p(X, Y ) and
`s(X, Y ). More concretely, computing left(U, V ) is equivalent to searching for a position j in U such that `p(U[j..|U|], V ) ≥ 1
and `s(U[1..j− 1],U)+ `p(U[j..|U|], V ) ≥ |U| − j+ 1, and computing right(U, V ) is equivalent to searching for a position
j in V such that `s(U, V [1..j]) ≥ 1, `p(V [j+ 1..|V |], V ) ≥ 1, and `s(U, V [1..j])+ `p(V [j+ 1..|V |], V ) ≥ j. The computation
of left(U, V ) is further illustrated with Fig. 1. There is an L-square of length 2× (|U| − j+ 1) if and only if a position j in U ,
as described above, can be found.
It should be noted that given a stringW and 1 ≤ i1 ≤ i2 ≤ |W |, `p(W [i1..i2],W ) can be computed in constant time, if an

O(|W |) time preprocessing using the Knuth–Morris–Pratt algorithm [15] or the Z-algorithm [11] is made. The preprocessing
can be achieved on-line in linear time (see [14]), as explained below.
A stringW has a period p ifW [i1] = W [i2] for every pair of i1 and i2 satisfying i1 ≡ i2 (mod p), where 1 ≤ p ≤ |W |. Let

π(W ) denote the smallest period ofW . Characters ofW are read in the sequence ofW [1],W [2], . . . ,W [|W |]. WhenW [i] is
read, it takes O

(
π(W [1..i])−π(W [1..i− 1])

)
time to compute π(W [1..i]) and `p(W [j..i],W [1..i]) for all π(W [1..i− 1]) <

j ≤ π(W [1..i]) and store the computed values inMπ [i] andM`[j], where 1 ≤ i ≤ |W | andMπ ,M` are two arrays. Therefore,
the on-line processing forW [1],W [2], . . . ,W [i] can be completed in O(i) time.
After W [i] is processed, each π(W [1..r]) can be found in Mπ [r], where 1 ≤ r ≤ i ≤ |W |. Moreover, each

`p(W [r..i],W [1..i]) can be determined in constant time as follows:

`p(W [r..i],W [1..i]) =
{
|W [r..i]|, ifM`[r ′] ≥ |W [r..i]|;
M`[r ′], else,

where r ′ ≡ r (modMπ [i]) and 1 ≤ r ′ ≤ Mπ [i].
The on-line processing above forW is referred to as an on-line LCP (longest common prefix) preprocessing forW . Similarly,

there is a linear-time on-line LCS (longest common suffix) preprocessing for W in which characters of W are read in the
sequence ofW [|W |],W [|W | − 1], . . . ,W [1]. With this preprocessing, each π(W [r..|W |]) and each `s(W [i..r],W [i..|W |])
can be determined in constant time afterW [i] is processed, where 1 ≤ i ≤ r ≤ |W |.

3. On-line square detection

In this section,we solve the on-line square detection problem inO(m logβ) time,wherem is the number of characters of S
read and β is the number of distinct characters in S[1..m]. Characters of S are read in the sequence of S[1], S[2], . . . , S[|S|].
When S[i] is read, we first compute the f -factorization of S[1..i] on-line, where 2 ≤ i ≤ |S|. In the following, assuming
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Fig. 2. Computation of φ(j).

Fig. 3. Computation of ψ(j).

that S[1..i − 1] is square-free and S[i] belongs to Fk, we show the on-line processing of left(Fk−1, Fk), right(Fk−1, Fk) and
right(F1F2 · · · Fk−2, Fk−1Fk), in order to determine whether a square ends at i in S or not, where k ≥ 2.

3.1. On-line processing of left(Fk−1, Fk)

Define φ(j) = bk − j − `s(S[bk−1..j − 1], Fk−1), where bk−1 < j < bk (refer to Fig. 2). Also, set φ(bk−1) = |Fk−1|. It is
not difficult to see that there is an L-square ending at i if and only if there exists bk−1 ≤ j < bk such that Fk (= S[bk..i]) is a
prefix of S[j..bk − 1] and |Fk| ≥ φ(j).
To facilitate the computation of left(Fk−1, Fk), the following preprocessing is performed when i = bk. First, φ(j)’s (and

`s(S[bk−1..j− 1], Fk−1)’s) for all bk−1 < j < bk are computed, which takes total O(|Fk−1|) time. Second, a suffix tree, denoted
by T1, of Fk−1$ is built with O(|Fk−1| logα) time, where $ is a character not in S and α is the number of distinct characters
in Fk−1. Each leaf of T1 corresponds to a suffix of Fk−1$. For each internal node w of T1, let φ̃w = min{φ(j) : bk−1 ≤ j < bk
and S[j..bk − 1]$ corresponds to a leaf in the subtree rooted atw}, and let jw be one of those j’s satisfying φ(j) = φ̃w . In this
paper, unless mentioned particularly, whenever a node of a suffix tree is referred to, it means an explicit node. Third, φ̃w
and jw for all internal nodes w of T1 are computed (and stored at w) with O(|Fk−1|) time in a bottom-up traversal of T1. We
have the following lemma.
Lemma 3.1. The preprocessing for computing left(Fk−1, Fk) takes O(|Fk−1| logα) time, where α is the number of distinct
characters in Fk−1.

The path label of a (explicit or implicit) node v in T1 is the concatenation of the edge labels of the path from the root to v.
For a substring X of Fk−1$, let v(X) denote the node of T1 whose path label has a prefix X and is shortest. The processing of
left(Fk−1, Fk) first determines whether or not Fk is a substring of Fk−1 by traversing T1 to find the (explicit or implicit) node
whose path label is Fk. If the traversal fails, then Fk is not a substring of Fk−1 and the processing stops. Otherwise, there is a
square of length 2× (|Fk−1| − ju + 1) ending at i provided |Fk| ≥ φ̃u, where u = v(Fk). The correctness is explained below.
Clearly, when the traversal succeeds, Fk is a substring of Fk−1. Moreover, Fk is a prefix of S[j..bk − 1] if and only if a leaf

of Tu corresponds to S[j..bk − 1]$, where bk−1 ≤ j < bk and Tu is the subtree of T1 rooted at u. Hence, there is an L-square
ending at i if and only if there exists bk−1 ≤ j < bk such that a leaf of Tu corresponds to S[j..bk−1]$ and |Fk| ≥ φ(j). Further,
according to the definition of φ̃u, there is an L-square ending at i if and only if |Fk| ≥ φ̃u.
The time complexity is analyzed as follows. The traversal for processing S[bk], S[bk+1], . . . , S[i] takes total O(|Fk| logα)

time, where α is the number of distinct characters in Fk−1. Both determining v(Fk) and determining whether |Fk| ≥ φ̃u or
not take constant time. Therefore, we have the following lemma.
Lemma 3.2. With the preprocessing, computing left(Fk−1, Fk), which involves processing S[bk], S[bk + 1], . . . , S[i], takes total
O(|Fk| logα) time, where α is the number of distinct characters in Fk−1.

3.2. On-line processing of right(Fk−1, Fk)

Define ψ(j) = j − bk + 1 − `s(Fk−1, S[bk..j]), where bk < j < i (refer to Fig. 3). Since S[1..i − 1] is square-free, it is not
difficult to see that there is an R-square ending at i if and only if there exists bk < j < i such that S[j + 1..i] is a prefix of
S[bk..j− 1] and i− j = ψ(j).
Define Kr = {j : bk < j < r and r − j = ψ(j)}, where bk < r < i+ |Fk|. Initially, each Kr is set to empty. Then, when S[j]

is read, Kj+ψ(j) is updated with Kj+ψ(j) ∪ {j}, where bk < j ≤ i. Since Ki is available as S[i] is read, there is an R-square ending
at i if and only if there exists j ∈ Ki such that S[j+ 1..i] is a prefix of S[bk..j− 1] (i.e., `p(S[j+ 1..i], S[bk..j− 1]) = i− j).
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Fig. 4. Computation of `s(Fk−1, S[bk..i]).

In addition, `s(Fk−1, S[bk..i]) (and ψ(i)) can be computed as follows. Let Hi be the suffix of Fk−1 whose length is
min{|Fk−1|, |Fk|}, i.e., Hi = S[hi..bk − 1], where hi (= bk − min{|Fk−1|, |Fk|}) is the starting position of Hi in S. Also,
let T2 be the suffix tree of Hi$, which is built when S[bk] is read and updated when S[bk + 1], S[bk + 2], . . . , S[i] are
read. We use Yi to denote the longest suffix of S[bk..i] that is also a substring of Hi. The string Yi can be determined by
traversing T2 to find the (explicit or implicit) node, denoted by ci, whose path label is Yi. The traversing starts from the
root when i = bk, and starts from ci−1 when i > bk. If Yi is empty, then `s(Fk−1, S[bk..i]) = 0. Otherwise, by the aid
of ci, we can find a position yi in Fk−1 such that Yi is a suffix of S[hi..yi]. Observe Fig. 4, and it is not difficult to see that
`s(Fk−1, S[bk..i]) = min{|Yi|, `s(S[hi..yi], S[hi..bk − 1])}.
The time complexity is analyzed as follows. Building T2 requires O(|Fk| logα) time [27], where α is the number of distinct

characters in Fk−1. It takes totalO(|Fk| logα) time to find nodes cbk , cbk+1, . . . , ciwhen reading characters of Fk. By the aid of the
linear-time on-line LCS preprocessing for S[hi..bk− 1], `s(S[hi..yi], S[hi..bk− 1]) can be computed in constant time. The set
Ki is implementedwith a linked list, and so updating Ki+ψ(i) takes constant time and reporting all elements of Ki takesO(|Ki|)
time. By the aid of the linear-time on-line LCP preprocessing for S[bk..i], determining whether `p(S[j+1..i], S[bk..j]) = i− j
or not for each j ∈ Ki can be achieved in constant time. Notice that |Kbk | + |Kbk+1| + · · · + |Ki| < |Fk|. We have the following
lemma.

Lemma 3.3. Computing right(Fk−1, Fk) takes total O(|Fk| logα) time, where α is the number of distinct characters in Fk−1.

3.3. On-line processing of right(F1F2 · · · Fk−2, Fk−1Fk)

Computing right(F1F2 · · · Fk−2, Fk−1Fk) is similar to computing right(Fk−1, Fk). We need to additionally process characters
in Fk−1 when S[bk] is read. Hence, we have the following lemma.

Lemma 3.4. Computing right(F1F2 · · · Fk−2, Fk−1Fk) takes total O(|Fk−1Fk| logα) time, where α is the number of distinct
characters in F1F2 · · · Fk−2.

3.4. Time complexity

Suppose that the execution halts after reading S[m], i.e., there is a square ending at m or m = |S|, and S[m]
belongs to Fs, where s ≥ 2. As a consequence of Lemmas 3.1–3.4, the total execution time is bounded above by∑
2≤k≤s O(|Fk−1Fk| logβ) = O(m logβ), where β is the number of distinct characters in S[1..m]. The following theorem

summarizes the result of this section.

Theorem 3.5. The on-line square detection problem can be solved in O(m logβ) time, where m is the number of characters read
and β is the number of distinct characters among them.

4. On-line repetition detection

In this section, we further solve the on-line repetition detection problem for q ≥ 3. Characters of S are read in the
sequence of S[1], S[2], . . . , S[|S|]. When S[i] is read, we first compute the f -factorization of S[1..i], which is all the same as
the situation of q = 2, and then determine whether or not a repetition Xq ends at i in S. A string is primitive if it is not a
repetition. A repetition Xq is called a q-repetition if X is primitive. For our purpose, we only need to determine whether or
not a q-repetition ends at i in S.
Throughout this section, we assume that S[1..i − 1] contains no q-repetition and S[i] belongs to Fk, where i ≥ bk ≥ 2.

According to the definition of the f -factorization, if a q-repetition is completely contained in Fk, then there is an occurrence
of it ending before i in S. Consequently, we only need to determine whether or not there is a q-repetition that starts before
bk and ends at i in S.
Suppose that S[r..i] is a q-repetition, where 1 ≤ r < bk. It falls into one of the following four types:

• Type-A, if bk−1 ≤ r < bk and |Fk| ≤ π(S[r..i]);
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Fig. 5. A type-A 4-repetition.

• Type-B, if bk−1 ≤ r < bk and π(S[r..i]) < |Fk| < 2× π(S[r..i]);
• Type-C, if bk−1 ≤ r < bk and |Fk| ≥ 2× π(S[r..i]);
• Type-D, if r < bk−1.

Detecting a q-repetition can be performed according to the four types. Moreover, when S[bk] is read, the following
preprocessing is performed, in order to facilitate the detection of a type-A or type-B q-repetition.

4.1. Preprocessing

Define δ(x) = `s(S[bk−1..x− 1], Fk−1), where x > bk−1. If there is a type-A q-repetition of length p× q ending at j, then
the following two conditions hold:
(C1) j− bk + 1+ δ(bk − p)+ p = p× q;
(C2) j− bk + 1 ≤ p.

Refer to Fig. 5, where a type-A 4-repetition ending at j in S is illustrated. For bk ≤ j < bk + |Fk−1|, define
PAj = {p : p satisfies (C1) and (C2)}.

Similarly, if there is a type-B q-repetition of length p× q ending at j, then (C1) and the following condition hold:
(C2′) p < j− bk + 1 < 2p.

For bk ≤ j < bk + 2× |Fk−1|, define
PBj = {p : p satisfies (C1) and (C2

′)}.

Clearly, we have p < |Fk−1| for each p ∈ PAj or p ∈ P
B
j . The objective of the preprocessing is to compute P

A
j and P

B
j as follows.

Step P1: Compute δ(x) for all bk−1 < x ≤ bk.
Step P2: Set PAj empty for all bk ≤ j < bk + |Fk−1|, and set P

B
j empty for all bk ≤ j < bk + 2× |Fk−1|.

Step P3: For each integer 1 ≤ p < |Fk−1|, let j = bk− 1− δ(bk− p)+ p× (q− 1) and insert p into PAj
(
PBj
)
if j− bk+ 1 ≤ p(

p < j− bk + 1 < 2p
)
.

Therefore, we have the following lemma.
Lemma 4.1. The preprocessing, which constructs PAj for all bk ≤ j < bk + |Fk−1| and P

B
j for all bk ≤ j < bk + 2× |Fk−1|, takes

O(|Fk−1|) time.

4.2. Detection of a type-A q-repetition

We first show the following lemma.
Lemma 4.2. S[i− p× q+ 1..i] is a type-A q-repetition if and only if p ∈ PAi and Fk = S[bk − p..i− p].
Proof. (⇒) It holds as an immediate consequence of Section 4.1.
(⇐) As a consequence of p ∈ PAi , we have

i− bk + 1 ≤ p;
i = bk − 1− δ(bk − p)+ p× (q− 1),

fromwhich δ(bk−p) ≥ p×(q−2) > 0 is derived. It follows that S[r..bk−p−1] = S[r+p..bk−1], where r = bk−p−δ(bk−p)
(also refer to Fig. 5). Since Fk = S[bk − p..i− p], we have S[r..i− p] = S[r + p..i], which means that p is a period of S[r..i].
Further, since i = r − 1+ p× q (i.e., |S[r..i]| = p× q), S[1..i− 1] contains no q-repetition, and |Fk| ≤ p, S[r..i] is a type-A
q-repetition. �

According to Lemma 4.2, detecting whether or not there is a type-A q-repetition ending at i in S can be accomplished as
follows.
Step A1: Decide whether or not Fk = S[bk − p..i− p] for some p ∈ PAi .
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If Fk = S[bk − p..i − p] for some p ∈ PAi , then S[i − p × q + 1..i] is a type-A q-repetition. The following six lemmas are
crucial to the analysis of the time requirement.
Lemma 4.3 ([10]). Suppose that p1 and p2 are two periods of a string W. If |W | ≥ p1 + p2 − gcd(p1, p2), then gcd(p1, p2) is
also a period of W.
Lemma 4.4. Suppose that W ′ is a substring of W. If |W ′| ≥ 2× π(W ), then π(W ′) = π(W ).
Proof. Let p = π(W ) and p′ = π(W ′). Suppose that |W ′| ≥ 2p. Then, p is also a period ofW ′. So, p′ ≤ p. If p′ < p, then
|W ′| ≥ 2p > p + p′ − gcd(p, p′). By Lemma 4.3, gcd(p, p′) is also a period ofW ′, which implies that p′ = gcd(p, p′) and
p′ divides p. Without loss of generality, assumeW ′ = W [x..y]. For any 1 ≤ i1 ≤ i2 ≤ |W | with i1 ≡ i2 (mod p), there are
x ≤ i′1 ≤ i

′

2 ≤ y such that i
′

1 ≡ i1 (mod p) and i
′

2 ≡ i2 (mod p). Now that p
′ divides p, we have i′1 ≡ i

′

2 (mod p
′), which

impliesW [i1] = W [i′1] = W [i
′

2] = W [i2]. Hence, p
′ is also a period ofW , a contradiction. Therefore, p′ = p. �

Lemma 4.5 ([7]). Suppose that W is a string and 1 ≤ p1 < p2 < p3 ≤ 1
2 × |W |. If π(W [1..2p1]) = p1, π(W [1..2p2]) = p2

and π(W [1..2p3]) = p3, then p1 + p2 ≤ p3.
Lemma 4.6. Suppose that π(W [1..2pj]) = pj for all 1 ≤ j ≤ t, where 1 ≤ p1 < p2 < · · · < pt ≤ 1

2 × |W |. Then,
p1 + p2 + · · · + pt < 3

2 × |W |.
Proof. Clearly, this lemma holds for t ≤ 3. When t ≥ 4,

2×
∑
1≤j≤t

pj = p1 +

( ∑
1≤j≤t−2

(
pj + pj+1

))
+ pt−1 + 2pt

≤ p1 +

( ∑
1≤j≤t−2

pj+2

)
+ pt−1 + 2pt (by Lemma 4.5)

=

(∑
1≤j≤t

pj

)
− p2 + pt−1 + 2pt .

Therefore,
∑
1≤j≤t pj ≤ 2pt + pt−1 − p2 < 3pt ≤

3
2 × |W |. �

The following lemma can be proved similarly.
Lemma 4.7. Suppose that π(W [|W | − 2pj + 1..|W |]) = pj for all 1 ≤ j ≤ t, where 1 ≤ p1 < p2 < · · · < pt ≤ 1

2 × |W |.
Then, p1 + p2 + · · · + pt < 3

2 × |W |.

Lemma 4.8.
∑
bk≤j≤i

∑
p∈PAj

p < 3
2 × |Fk−1|.

Proof. For each p ∈ PAj , we have δ(bk − p) ≥ p × (q − 2) (refer to the proof of Lemma 4.2). Besides, p is a period
of S[r..bk − 1], where r = bk − p − δ(bk − p). Now that S[bk − 2p..bk − 1] is a substring of S[r..bk − 1] and
|S[bk − 2p..bk − 1]| = 2p ≥ 2 × π(S[r..bk − 1]), we have π(S[bk − 2p..bk − 1]) = π(S[r..bk − 1]) by Lemma 4.4.
Moreover, we have |S[r..bk− 1]| = δ(bk− p)+ p ≥ p× (q− 1). If π(S[r..bk− 1]) < p, then by Lemma 4.3, π(S[r..bk− 1])
can divide p, which means that there is a q-repetition of length π(S[r..bk − 1]) × q in S[r..bk − 1]. This contradicts the
assumption that S[1..i − 1] contains no q-repetition. Consequently, π(S[bk − 2p..bk − 1]) = π(S[r..bk − 1]) = p. Then,
according to Lemma 4.7, we have

∑
bk≤j≤i

∑
p∈PAj

p < 3
2 × |Fk−1|. �

Next, the time complexity is analyzed as follows. Since StepA1performs atmost |Fk| (≤ p) character comparisons for each
p ∈ PAi , detecting a type-A q-repetition whose ending character belongs to Fk requires at most

∑
bk≤j≤i

∑
p∈PAj
|S[bk..j]| ≤∑

bk≤j≤i
∑
p∈PAj

p character comparisons, which is bounded above by 32 ×|Fk−1| according to Lemma 4.8. Therefore, we have
the following lemma.
Lemma 4.9. Detecting a type-A q-repetition whose ending character belongs to Fk takes total O(|Fk−1|) time.

4.3. Detection of a type-B q-repetition

The following lemma can be proved similar to Lemma 4.2.
Lemma 4.10. S[i− p× q+ 1..i] is a type-B q-repetition if and only if p ∈ PBi and Fk = S[bk − p..i− p].

For each p ∈ PBi , we have p < |Fk| < 2p. Refer to Fig. 6, where a type-B 4-repetition ending at i in S is illustrated. It is not
difficult to see that Fk = S[bk − p..i− p] holds if and only if the following two conditions hold:
(C1) `p(S[bk + p..i], Fk) = |Fk| − p;
(C2) S[bk − p..bk − 1] = S[bk..bk + p− 1].

By the aid of the linear-time on-line LCP preprocessing for S[bk..i], it takes constant time to compute `p(S[bk + p..i], Fk).
Hence, whether (C1) holds or not can be decided in constant time. On the other hand, (C2) requires that S[bk..bk + p − 1],
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Fig. 6. A type-B 4-repetition.

which is a prefix of Fk, is a suffix of Fk−1. Let fj be the ending position of the leftmost occurrence of S[bk..j] in Fk−1, i.e.,
fj = min{x : S[x+ bk − j..x] = S[bk..j] and bk−1 + j− bk ≤ x < bk}, where bk ≤ j ≤ i. If S[bk..j] does not occur in Fk−1, then
set fj = bk. It is not difficult to see that S[bk..j] is a suffix of Fk−1 if and only if fj < bk and `s(S[bk−1..fj], Fk−1) ≥ |S[bk..j]|.
Hence, (C2) holds if and only if the following condition holds:
(C2′) fbk+p−1 < bk and `s(S[bk−1..fbk+p−1], Fk−1) ≥ p.

According to Lemma 4.10 and the discussion above, detecting whether or not there is a type-B q-repetition ending at i in
S can be accomplished as follows.
Step B1: Compute fi.
Step B2: Decide whether or not (C1) and (C2′) hold for some p ∈ PBi .

If (C1) and (C2′) hold for some p ∈ PBi , then S[i− p× q+ 1..i] is a type-B q-repetition. The time complexity of detecting
a type-B q-repetition is analyzed below.
When i = bk, computing fi requires atmost fi−bk−1+1 character comparisons.When i > bk and fi−1 = bk, we set fi = bk.

When i > bk and fi−1 < bk, we have fi equal to the ending position of the leftmost occurrence of S[bk..i] in S[ei−1..bk − 1]
(fi = bk if S[bk..i] does not occur in S[ei−1..bk − 1]). The latter can be determined with at most 2fi − 2fi−1 − 1 character
comparisons, if the Knuth–Morris–Pratt algorithm [15] is applied, as detailed below.
For simplicity, let X = S[bk..i] and Y = S[ei−1..bk − 1]. The Knuth–Morris–Pratt algorithm consists of two phases:

a preprocessing phase and a searching phase. The preprocessing phase constructs a table M of |X | entries, where M[`]
(2 ≤ ` ≤ |X |) indicates the length of the longest proper suffix of X[1..` − 1] that is also a prefix of X[1..` − 1]. Then,
the searching phase determines the leftmost occurrence of X in Y with at most 2d − |X | character comparisons, where
d = fi − ei−1 + 1 if X occurs in Y , and d = fi − ei−1 if X does not occur in Y .
In fact, it is not necessary for us to perform the preprocessing phase. Notice that each of π(S[bk..bk]), π(S[bk..bk +

1]), . . . , π(S[bk..i]) can be determined in constant time, by the aid of the linear-time on-line LCP preprocessing for S[bk..i].
Consequently, each entry ofM can be determined in constant time. Besides, |X | − 1 character comparisons can be saved in
the searching phase, as a consequence of X[1..|X | − 1] = S[bk..i − 1] = S[ei−1..fi−1]. Therefore, the number of character
comparisons needed for computing fi is at most 2d−2×|X |+1 ≤ 2× (fi−ei−1+1)−2× (i−bk+1)+1 = 2fi−2fi−1−1,
where ei−1 = bk + fi−1 − i+ 1.
On the other hand, since fbk+p−1 and `s(S[bk−1..fbk+p−1], Fk−1) (computed by Step P1) are available when S[i] is read,

whether (C2′) holds or not can be decided in constant time. Whether (C1) holds or not can be decided in constant time as
well. Consequently, Step B2 takes constant time for each p ∈ PBi .
The overall time complexity to compute fbk , fbk+1, . . . , fi is bounded by

O(i− bk + 1)+ O(fbk − bk−1 + 1)+ O

( ∑
bk<j≤i

(2fj − 2fj−1 − 1)

)
≤ O(|Fk|)+ O(fi − bk−1)

≤ O(|Fk|)+ O(|Fk−1|),

where O(i− bk+ 1) time is required by the on-line LCP preprocessing for Fk (= S[bk..i]). On the other hand, since there are
at most |Fk−1| − 1 integers contained in PBbk , P

B
bk+1

, . . . , PBi (refer to Step P3), deciding whether or not (C1) and (C2
′) hold for

all integers in PBbk , P
B
bk+1

, . . . , PBi requires O(|Fk−1|) time. Therefore, we have the following lemma.

Lemma 4.11. Detecting a type-B q-repetition whose ending character belongs to Fk takes total O(|Fk−1Fk|) time.

4.4. Detection of a type-C q-repetition

If S[r..i] is a type-C q-repetition, then |Fk| ≥ 2 × π(S[r..i]). By Lemma 4.4, we have π(S[r..i]) = π(Fk). Let p = π(Fk).
We first prove the following lemma.

Lemma 4.12. S[i− p× q+ 1..i] is a type-C q-repetition if and only if |Fk| ≥ 2p and δ(bk + p) = p× q− |Fk|.
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Fig. 7. A type-C 5-repetition, where µ = p.

Proof. (⇒) |Fk| ≥ 2p and δ(bk + p) ≥ p × q − |Fk| hold as an immediate consequence of a type-C q-repetition (refer to
Fig. 7). If δ(bk + p) > p× q− |Fk|, then S[i− p× q..i− 1] is a q-repetition, a contradiction.
(⇐) Clearly, p is a period of S[bk − δ(bk + p)..i], a string of length p× q. It is implied that S[i− p× q+ 1..i] is a type-C

q-repetition, because |Fk| ≥ 2p. �

According to Lemma 4.12, detecting a type-C q-repetition can be accomplished as follows.

Step C1: If |Fk| = 2p, then compute δ(bk + p).
Step C2: Decide whether or not |Fk| ≥ 2p and δ(bk + p) = p× q− |Fk| hold.

If |Fk| ≥ 2p and δ(bk + p) = p× q − |Fk| hold, then S[i − p× q + 1..i] is a type-C q-repetition. The time complexity of
detecting a type-C q-repetition is analyzed below.
Step C1 is executed whenever |Fk| = 2p holds, and its computed value (i.e., δ(bk + p)) is to be used in Step C2. By

the aid of the linear-time on-line LCP preprocessing for S[bk..i], the value of p can be determined in constant time. Let
µ = `s(S[bk − p..bk − 1], S[bk..bk + p − 1]), which can be determined with at most p character comparisons. It takes
constant time to calculate δ(bk + p) as follows:

when µ ≥ |Fk−1|, δ(bk + p) = |Fk−1|;
when µ < |Fk−1| and µ < p, δ(bk + p) = µ;
when µ < |Fk−1| and µ = p, δ(bk + p) = δ(bk − p)+ µ.

If µ ≥ |Fk−1|, then bk − p ≤ bk−1 and hence δ(bk + p) = |Fk−1|. If µ < |Fk−1| and µ < p, then S[(bk − 1) − µ] 6=
S[(bk + p− 1)− µ], which implies δ(bk + p) = µ. If µ < |Fk−1| and µ = p, then δ(bk + p) = δ(bk − p)+ µ (refer to Fig. 7
again), where δ(bk − p)was calculated by Step P1.
According to Lemma 4.6, the total number of character comparisons needed for Step C1 to calculate δ

(
bk+π(S[bk..j])

)
’s

for all bk ≤ j ≤ iwith |S[bk..j]| = 2× π(S[bk..j]) is bounded above by 32 × |S[bk..i]|. On the other hand, let i
′
= bk + 2p− 1

and p′ = π(S[bk..i′]). By Lemma 4.4, we have p′ = p, and hence δ(bk+p) = δ(bk+p′). Since δ(bk+p′)was computed by Step
C1 when S[i′] was read, Step C2 can be completed in constant time. The execution of Step C2 for S[bk], S[bk + 1], . . . , S[i]
takes total O(|S[bk..i]|) time. Therefore, we have the following lemma.

Lemma 4.13. Detecting a type-C q-repetition whose ending character belongs to Fk takes total O(|Fk|) time.

4.5. Detection of a type-D q-repetition

Since no type-D q-repetition ends in F1 and F2, we assume k ≥ 3. If S[r..i] is a type-D q-repetition, then bk−1 − r <
π(S[r..i]) (i.e., |Fk−1Fk| > π(S[r..i])× (q−1)), for otherwise (bk−1− r ≥ π(S[r..i])), S[bk−1..bk] = S[bk−1−π(S[r..i])..bk−
π(S[r..i])], which contradicts the definition of Fk−1. By Lemma 4.4, we have π(S[r..i]) = π(Fk−1Fk).
Detecting a type-D q-repetition is similar to detecting a type-C q-repetition. Define δ̃(x) = `s(S[1..x− 1], F1F2 · · · Fk−2)

and σ(x) = min{̃δ(x), |S[bk−1..x−1]|}, where x > bk−1. Also let p = π(Fk−1Fk). The following lemma can be proved similar
to Lemma 4.12.

Lemma 4.14. S[i−p×q+1..i] is a type-D q-repetition if and only if |Fk−1Fk| > p×(q−1) and σ(bk−1+p) = p×q−|Fk−1Fk|.

Refer to Fig. 8, where σ(bk−1 + p) is illustrated. According to Lemma 4.14, detecting a type-D q-repetition can be
accomplished as follows.

Step D1: If i = bk, then compute σ
(
bk−1 + π(S[bk−1..j])

)
for all bk−1 < j ≤ bk with |S[bk−1..j]| = 2× π(S[bk−1..j]).

Step D2: If i > bk and |Fk−1Fk| = 2p, then compute σ(bk−1 + p).
Step D3: Decide whether or not |Fk−1Fk| > p× (q− 1) and σ(bk−1 + p) = p× q− |Fk−1Fk| hold.
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Fig. 8. A type-D 4-repetition.

If |Fk−1Fk| > p× (q− 1) and σ(bk−1 + p) = p× q− |Fk−1Fk| hold, then S[i− p× q+ 1..i] is a type-D q-repetition. The
time complexity of detecting a type-D q-repetition is analyzed below.
In fact, Step D1 and Step D2 perform the same operation

(
Fk−1Fk = S[bk−1..i] and p = π(Fk−1Fk)

)
. Their computed

values are to be used in Step D3. By the aid of the linear-time on-line LCP preprocessing for S[bk−1..i], each π(S[bk−1..j]) for
bk−1 ≤ j ≤ i can be determined in constant time. Step D1 requires at most π(S[bk−1..j]) character comparisons for each
σ
(
bk−1 + π(S[bk−1..j])

)
. Step D2 requires at most π(S[bk−1..i]) character comparisons. According to Lemma 4.6, the total

number of character comparisons needed for Step D1 and Step D2 to calculate σ
(
bk−1 + π(S[bk−1..j])

)
’s for all bk−1 < j ≤ i

with |S[bk−1..j]| = 2× π(S[bk−1..j]) is bounded above by 32 × |S[bk−1..i]|.
StepD3needs to computeσ(bk−1+p) onlywhen |Fk−1Fk| > p×(q−1)holds. Let i′ = bk−1+2p−1 and p′ = π(S[bk−1..i′]).

By Lemma 4.4, we have p′ = p, and hence σ(bk−1 + p) = σ(bk−1 + p′). The latter was computed by Step D1 (when S[bk]
was read) if bk−1 < i′ ≤ bk, and computed by Step D2 (when S[i′]was read) if i′ > bk. Therefore, Step D3 can be completed
in constant time. The execution of Step D3 for S[bk], S[bk+ 1], . . . , S[i] takes total O(|S[bk..i]|) time. We have the following
lemma.

Lemma 4.15. Detecting a type-D q-repetition whose ending character belongs to Fk takes total O(|Fk−1Fk|) time.

4.6. Time complexity

The time complexity of detecting a q-repetition in S is analyzed below. Suppose that the execution halts after reading
S[m], i.e., there is a q-repetition ending atm orm = |S|, and S[m] belongs to Fs, where s ≥ 2. Computing the f -factorization of
S[1..m] on-line takes totalO(m logβ) time, where β is the number of distinct characters in S[1..m]. According to Lemma 4.1,
the preprocessing takes total

∑
2≤k≤s O(|Fk−1|) = O(m) time. According to Lemmas 4.9, 4.11, 4.13 and 4.15, the detection

of four-type q-repetitions takes total
∑
2≤k≤s O(|Fk−1Fk|) = O(m) time, where q ≥ 3. Therefore, we have the following

theorem, which summarizes the main result of this paper.

Theorem 4.16. The on-line repetition detection problem can be solved in O(m logβ) time, where m is the number of characters
read and β is the number of distinct characters among them.

5. Discussion and conclusion

Detecting repetitions in a string S plays an important role in many areas such as combinatorics, automata and
formal language theory, data compression, bioinformatics, etc. Previously, there were off-line algorithms that could detect
repetitions in S in O(|S| logα) time, where α is the number of distinct characters in S. It was shown in [21] that detecting a
square in S off-line over a general alphabet requiresΩ(|S| log |S|) time. Apparently, Theorem 3.5 is time-optimal.
We also presented an O(m logβ) time algorithm that could detect a q-repetition on-line, where q ≥ 3. There was no off-

line algorithm proposed before for the problem. Notice that the O(m logβ) time required for computing the f -factorization
on-line is mainly due to the construction and traversal of the suffix tree. It was suggested in [6] as an open problemwhether
or not the f -factorization can be computed on-line in linear time. A positive answer to this problem would reduce the time
complexity of Theorem 4.16 from O(m logβ) to O(m).
We assumed a general alphabet throughout this paper. For an integer alphabet, both building a suffix tree [8] and

computing the f -factorization [2,6] can be achieved in linear time in an off-line manner. It is an interesting problem to
investigate the time complexity of building a suffix tree and computing the f -factorization on-line over an integer alphabet.
In [12], Gusfield and Stoye proposed an O(|S| logα) time off-line algorithm to report all distinct repetitions in S. Like

Crochemore’s algorithm, the algorithm also computed the f -factorization and the longest common prefix (and suffix). It
seems possible that the algorithm can be adapted to an on-line manner to find all repetitions.
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