
Theoretical Computer Science 407 (2008) 458–473

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Main-memory triangle computations for very large
(sparse (power-law)) graphs
Matthieu Latapy
LIP6, CNRS and Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France

a r t i c l e i n f o

Article history:
Received 7 December 2006
Received in revised form 1 February 2008
Accepted 23 July 2008
Communicated by G. Italiano

Keywords:
Graphs
Algorithms
Triangles
Complex networks

a b s t r a c t

Finding, counting and/or listing triangles (three vertices with three edges) in massive
graphs are natural fundamental problems, which have recently received much attention
because of their importance in complex network analysis. Here we provide a detailed
survey of proposed main-memory solutions to these problems, in a unified way.
We note that previous authors have paid surprisingly little attention to space

complexity of main-memory solutions, despite its both fundamental and practical interest.
We therefore detail space complexities of known algorithms and discuss their implications.
We also present new algorithms which are time optimal for triangle listing and beats
previous algorithms concerning space needs. They have the additional advantage of
performing better on power-law graphs, which we also detail. We finally show with an
experimental study that these two algorithms perform very well in practice, allowing us to
handle cases which were previously out of reach.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A triangle in an undirected graph is a set of three vertices such that each possible edge between them is present in
the graph. Following classical conventions, we call finding, counting and listing the problems of deciding if a given graph
contains any triangle, counting the number of triangles in the graph, and listing all of them, respectively. We moreover call
node-counting the problem of counting for each vertex the number of triangles to which it belongs. We refer to all these
problems as a whole by triangle problems.
Triangle problemsmay be considered as classical, natural and fundamental algorithmic questions, and have been studied

as such [24,14,2,3,33,34].
Moreover, they have recently gained much practical importance since they are central in the so-called complex network

analysis, see for instance [36,13,1,19]. First, they are involved in the computation of one of the main statistical property
used to describe large graphs met in practice, namely the clustering coefficient [36]. The clustering coefficient of a vertex
v (of degree at least 2) is the probability that any two randomly chosen neighbors of v are linked together. It is computed
by dividing the number of triangles containing v by the number of possible edges between its neighbors, i.e.

(d(v)
2

)
if d(v)

denotes the number of neighbors of v. One may then define the clustering coefficient of the whole graph as the average of
this value for all the vertices (of degree at least 2). Likewise, the transitivity ratio 1 [22,21] is defined as 3N∆N∨ whereN∆ denotes
the number of triangles in the graph and N∨ denotes the number of connected triples, i.e. pairs of edges with one common
extremity, in the graph.

E-mail address:Matthieu.Latapy@lip6.fr.
1 Even though some authors make no distinction between the two notions, they are different, see for instance [12,32]. Both have their own advantages

and drawbacks, but discussing this is out of the scope of this contribution.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.07.017

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Matthieu.Latapy@lip6.fr
http://dx.doi.org/10.1016/j.tcs.2008.07.017


M. Latapy / Theoretical Computer Science 407 (2008) 458–473 459

In the context of complex network analysis, triangles also play a key role in the study of motif occurrences, i.e. the
presence of special (small) subgraphs in given (large) graphs. This has been studied in particular in protein interaction
networks, where some motifs may correspond to biological functions, see for instance [29,37]. Triangles often are key parts
of such motifs.
In summary, triangle finding, counting, node-counting and/or listing appear as key issues both from a fundamental point

of view and for practical purpose. The aim of this contribution is to review the algorithms proposed until now for solving
these problems with both a fundamental perspective (we discuss asymptotic complexities and give detailed proofs) and a
practical one (we discuss space requirements and graph encoding, and we evaluate algorithms with some experiments).
Wenote that, until now, authors havepaid surprisingly little attention to space requirements ofmain-memory algorithms

for triangle problems; this however is an important limitation in practice, and this also induces interesting theoretical
questions. We therefore discuss this (all space complexity results stated in this paper are new, though very simple in most
cases), and we present space-efficient algorithms.
Approaches relying on streaming algorithms [23,4,25], approximate results [32,25,35], or compressed graphs [8,9] also

exist. They are of high interest in cases where the graphs do not fit in main-memory. Otherwise, they are much slower
and more intricate than main-memory algorithms, on which we focus here. We will see that, as long as the graph fits in
main-memory, such approaches are sufficient.
The paper is organised as follows. After a few preliminaries (Section 2), we begin with results on finding, counting and

node-counting problems, among which basically no difference in complexity is known (Section 3). Then we turn to the
harder problemof triangle listing, in Section 4. In these parts of the paper, we dealwith both the general case (no assumption
is made on the graph) and on the important case where the graph is sparse. Many very large graphs met in practice also
have heterogeneous degrees; we focus on this case in Section 5. Finally, we present experimental evaluations in Section 6.
We summarise the current state-of-the-art and we point out the main perspectives in Section 7.

2. Preliminaries

Throughout the paper, we consider an undirected 2 graph G = (V , E) with n = |V | vertices and m = |E| edges. We
suppose that G is simple ((v, v) 6∈ E for all v, and there is no multiple edge). We also assume that m ∈ Ω(n); this
is a classical convention which plays no role in our algorithms but makes complexity formulae simpler. We denote by
N(v) = {u ∈ V , (v, u) ∈ E} the neighborhood of v ∈ V and by d(v) = |N(v)| its degree. We also denote by dmax
the maximal degree in G: dmax = maxv{d(v)}.
Before entering in the core of this paper, we need to discuss a few issues that play an important role in the following.

They are necessary to make the discussion all along the paper precise and rigorous.

Notation for precise space complexity
In the context of complex network studies, the difference between an algorithm with a given time complexity and an

algorithm twice as fast generally is not crucial. Space limitations are much stronger and dividing space complexity by a
constant is a significant improvement: it often makes the difference between tractable and untractable computations in
practice. We will give an illustration of this in Section 6.
In order to capture this situation, we will use a notation in addition to the usual O() and Θ() ones. We will say that a

space complexity is inΘ ′(f (n,m)) if the space cost of the algorithm is exactly σ f (n,m)+ c where c is any constant and σ
is the space needed to encode a vertex, an integer between 0 and n, or a pointer. Though it actually is inΘ(log(n)), we will
follow the classical convention assuming that σ is a constant; taking this into account would make the text unclear, and
would bring little information, if any.
With this notation, the adjacency matrix of G needs Θ ′( n

2

σ
) ⊆ Θ(n2) space, because the matrix needs n2 bits (and an

integer and a pointer). An adjacency list representation of G (array of n linked lists) needs Θ ′(4m + n) ⊆ Θ(m) space (a
vertex and a pointer for each edge in both directions plus n pointers), and an adjacency array representation (array of n
arrays) needs onlyΘ ′(2m+ n) ⊆ Θ(m) space. This is why this last representation generally is preferred when dealing with
huge graphs.
Throughout this paper, we will assume that graphs are given by their adjacency matrix and/or adjacency array

representation. Results on such representations may easily be converted into results on adjacency list representations (only
the space complexity in terms ofΘ ′() is affected), as well as more subtle adjacency representations (hashtables or balanced
trees for instance).
Each adjacency array in an adjacency array representation of G may moreover be sorted. This can be done in place in

Θ(m log(n)) time andΘ ′(2m+ n) ⊆ Θ(m) space (only a constant space is needed in addition to the representation of G). 3
Finally, notice that, in several cases, we will not give the space needs in terms ofΘ ′() because the algorithm complexity

is prohibitive; the precise space requirements then are of little interest, and they would make the text intricate. We will

2 i.e. we make no distinction between (u, v) and (v, u) in V × V .
3 Even better performance may be obtained using (compact) radix sorting, see for instance [20]. The improvement however plays no significant role in

our context, therefore we do not discuss this further.



460 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

enter in these details only in cases where the time and space complexities are small enough to make the precise space cost
interesting.

Worst case complexity, and graph families
All the complexities we discuss in this paper are worst case complexities, in the sense that they are bounds for the time

and space needs of the algorithms, on any input. Inmost cases, these bounds are tight (leading to the use of theΘ() notation,
see for instance [17] for definitions). In other words, we say that an algorithm is inΘ(f (n)) if for all possible instances of the
input the algorithm runs within this complexity, and there is at lease one instance for which it is reached. In several cases,
however, the worst case complexity is actually the complexity for any input (in the case of Theorem 4, for instance, and for
most space complexities).
It would also be of high interest to study the expected behavior of triangle algorithms, in addition to the worst case one.

This has been done in some cases; for instance, it is proved in [24] that vertex-iterator (see Section 4.1) has expected time
complexity in O(n

5
3 ). Obtaining such results however is often very difficult, and their relevance for practical purposes is

not always clear: the choice of a model for the average input is a difficult task (in our context, random graphs would be an
unsatisfactory choice [13,1,36]). We therefore focus on worst case analysis, which has the advantage of giving guarantees
on the behaviors of algorithms, on any input.
Another interesting approach is to study (worst case) complexities on given graph families. This has already been done on

various cases, themost important ones probably being the sparse graphs, i.e. graphs in whichm is in o(n2). This is motivated
by the fact that most real-world complex networks lead to such graphs, see for instance [13,1,36]. Often, it is even assumed
thatm is in O(n). Recent studies however show that, despite the fact thatm is small compared to n2, it may be in ω(n) [28,
31,27]. Other classes of graphs have been considered, like for instance planar graphs: it is shown in [24] that onemay decide
if any planar graph contains a triangle in O(n) time.
We do not detail all these results here. Since we are particularly interested in real-world complex networks, we present

in detail the results concerning sparse graphs all along the paper. We also introduce new results on power-law graphs
(Section 5), which capture an important property met in practice. A survey on available results on specific classes of graphs
remains to be done, and is out of the scope of this paper.

3. The fastest algorithms for finding, counting, and node-counting

The fastest algorithm known for node-counting relies on fast matrix product [24,2,3,16]. Indeed, if one considers the
adjacency matrix A of G then the value A3vv on the diagonal of A

3 is nothing but twice the number of triangles to which v
belongs, for any v. Finding, counting and node-counting triangle problems can therefore be solved in O(nω) time, where
ω < 2.376 is the fast matrix product exponent [16]. This was first noticed in 1978 [24], and currently no faster algorithm is
known for any of these problems in the general case, even for triangle finding (but this is no longer true when the graph is
sparse, see Theorem 2).
This approach naturally needs the graph to be given by its adjacency matrix representation. Moreover, it makes it

necessary to compute and store the matrix A2, leading to a Θ(n2) space complexity in addition to the adjacency matrix
storage.

Theorem 1 ([24,16]). Given the adjacency matrix representation of G, it is possible to solve triangle finding, counting and node-
counting in O(nω) ⊂ O(n2.376) time andΘ(n2) space on G using fast matrix product.

This time complexity is the current state of our knowledge, as long as one makes no assumption on G. Note that no
non-trivial lower bound is known for this complexity; therefore faster algorithms may be designed.
Aswewill see, there exist (slower) algorithmswith lower space complexity for these problems. Some of these algorithms

only need an adjacency array representation of G. They are derived from listing algorithms, which we present in Section 4.
One can design faster algorithms if G is sparse. In [24], it was first proved that triangle finding, counting, node-counting

and listing 4 can be solved in Θ(m
3
2 ) time and Θ(m) space. This result has been improved in [14] using a property of the

graph (namely arboricity) but the worst case complexities were unchanged. No better result was known until 1995 [3,2],
where the authors prove Theorem 2, 5 which constitutes a significant improvement although it relies on very simple ideas.
We detail the proof and give a slightly different version, which will be useful in the following (similar ideas are used in
Section 4.3, and this proof permits a straightforward extension of this theorem in Section 5).

4 The original results actually concern triangle finding but they can easily be extended to counting, node-counting and listing at no cost; we present
such an extension in Section 4, Algorithm 4 (tree-listing).
5 Again, the original results concerned triangle finding, but may easily be extended to node-counting, see Algorithm 1 (ayz-node-counting), and listing,

see Algorithm 5 (ayz-listing). This was first proposed in [33,34]. These algorithms have also been generalized to longer cycles in [38] but this is out of the
scope of this paper.



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 461

Algorithm 1 – ayz-node-counting. Counts for all v the triangles in G containing v [3,2].
Input: the adjacency array representation of G, its adjacency matrix A, and an integer K
Output: T such that T [v] is the number of triangles in G containing v
1. initialise T [v] to 0 for all v
2. for each vertex v with d(v) ≤ K :
2a. for each pair {u, w} of neighbors of v:
2aa. if A[u, w] then:
2aaa. increment T [v]
2aab. if d(u) > K and d(w) > K then increment T [u] and T [w]
2aac. else if d(u) > K andw > v then increment T [u]
2aad. else if d(w) > K and u > v then increment T [w]

3. let G′ be the subgraph of G induced by {v, d(v) > K}
4. construct the adjacency matrix A′ of G′
5. compute A′3 using fast matrix product
6. for each vertex v with d(v) > K :
6a. add to T [v] half the value in A′3vv

Theorem 2 ([3,2]). Given the adjacency array representation of G and its adjacency matrix, it is possible to solve triangle finding,
counting and node-counting on G in O(m

2ω
ω+1 ) ⊂ O(m1.41) time and Θ

(
n2
)
space; Algorithm 1 (ayz-node-counting) achieves

this if one takes K ∈ Θ(m
ω−1
ω+1 ).

Proof. Let us first show that Algorithm 1 (ayz-node-counting) solves node-counting (and thus counting and finding).
Consider a triangle in G that contains a vertex with degree at most K ; then it is discovered in lines 2a and 2aa. Lines 2aaa
to 2aad ensure that it is counted exactly once for each vertex it contains. Consider now the triangles in which all the vertices
have degree larger thanK . Each of them induces a triangle inG′, andG′ contains no other triangle. These triangles are counted
using the matrix product approach (lines 5, 6 and 6a), and finally all the triangles in G are counted for each vertex.
Let us now study the time complexity of Algorithm 1 (ayz-node-counting) in function of K . For each vertex v with

d(v) ≤ K , one counts the number of triangles containing v in Θ(d(v)2) ⊆ O(d(v)K) thanks to the adjacency array
representation of G. If we sum over all the vertices in the graph this leads to a time complexity in O(mK) for lines 2 to 2aad.
Now notice that there cannot be more than 2mK vertices v with d(v) > K . Line 4 constructs (in O

(
m+ (mK )

2
)
time, which

plays no role in the global complexity) the adjacency matrix of the subgraph G′ of G induced by these vertices. Using fast
matrix product, line 5 computes the number of triangles for each vertex in G′ in time O

((m
K

)ω). Finally, we obtain the overall
time complexity of the algorithm: O

(
mK +

(m
K

)ω).
In order to minimize this, one has to search for a value of K such thatmK ∈ Θ((mK )

ω). This leads to K ∈ Θ(m
ω−1
ω+1 ), which

gives the announced time complexity.
The space complexity comes directly from the need of the adjacencymatrix. All other space costs are lower; in particular,

the graph G′ may contain 2mK vertices, which leads to aΘ
((m
K

)2)
= Θ

(
m2

(
1− ω−1

ω+1

))
= Θ

(
m

4
ω+1

)
⊂ O(m1.185) space cost

for A′, A′2 and A′3. �

Note that one may also use sparsematrix product algorithms, see for instance [39]. However, the matrix A2 may not be
sparse (in particular if there are vertices with large degrees, which is often the case in practice as discussed in Section 5).
But algorithms may take benefit from the fact that one of the two matrices involved in a product is sparse, and there also
exists algorithms for products of more than two sparse matrices. These approaches lead to situations where it depends on
the precise relation between n andmwhich algorithm is the fastest. Discussing this further therefore is quite complex, and
it is out of the scope of this paper.
In conclusion, despite the fact that the algorithms presented in this section are asymptotically very fast, they have two

important limitations. First, they have a prohibitive space cost, since the matrices involved in the computation (in addition
to the adjacency matrix, but it is considered as the encoding of G itself) may need Θ(n2) space. Moreover, the fast matrix
product algorithms are quite intricate, which leads to difficult implementations with high risks of errors. This also leads to
large constant factors in the complexities, which have no importance at the asymptotic limit but may play a significant role
in practice.
For these reasons, and despite the fact that they clearly are of prime theoretical importance, these algorithms have limited

practical impact. Instead, one generally uses one of the listing algorithms (adapted accordingly) which we detail now.



462 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

4. Time-optimal listing algorithms

First notice that theremay be
(n
3

)
∈ Θ(n3) triangles in G. Likewise, theremay beΘ(m

3
2 ) triangles, since Gmay be a clique

of
√
m vertices (thus containing

(√m
3

)
∈ Θ(m

3
2 ) triangles). This gives the following lower bounds for the time complexity

of any triangle listing algorithm.

Lemma 3 ([24,33,34]). Listing all triangles in G is inΩ(n3) andΩ(m
3
2 ) time.

In this section, we first observe that the time complexity Θ(n3) can easily be reached (Section 4.1). However, Θ(m
3
2 )

is much better in the case of sparse graphs. We present more subtle algorithms that reach this bound (Section 4.2). Again,
space complexity is a key issue, and we discuss this for each algorithm.Wewill see that algorithms proposed until now rely
on the use of adjacency matrices and/or needΩ(m) space in addition to the graph encoding. We improve this by proposing
algorithmswith lower space needs, using only the adjacency array representation of G, and still inΘ(m

3
2 ) time (Section 4.3).

4.1. Basic algorithms

One may trivially obtain a listing algorithm in Θ(n3) (optimal) time with the matrix representation of G by testing in
Θ(1) time any possible triple of vertices. Moreover, this algorithm needs only a constant (and very small) amount of space
in addition to the graph representation.

Theorem 4 ([33,34] and Folklore). Given the adjacency matrix representation of G, it is possible to solve triangle listing inΘ(n3)
time andΘ(n2) space using the direct testing of every triple of vertices.

This approach however has severe drawbacks. First, it needs the adjacency matrix of G. More importantly, its complexity
does not depend on the actual properties of G; it always needs Θ(n3) computation steps even if the graph contains very
few edges. It must however be clear that, if almost all triples of vertices form a triangle, no better asymptotic bound can be
attained, and the simplicity of this algorithm makes it very efficient in these cases.
In order to obtain faster algorithms on sparse graphs, while keeping the implementation very simple, one often uses the

following algorithms. The first one, introduced in [24] and called vertex-iterator in [33,34], consists in iterating Algorithm 2
(vertex-listing) on each vertex of G. The second one, which seems to be themost widely used algorithm 6, consists in iterating
Algorithm 3 (edge-listing) over each edge in G. It was first introduced in [24], and discussed in [33,34] where the authors call
it edge-iterator.

Algorithm 2 – vertex-listing. Lists all the triangles containing a given vertex [24].
Input: the adjacency array representation of G, its adjacency matrix A, and a vertex v
Output: all the triangles to which v belongs
1. for each pair {u, w} of neighbors of v:
1a. if Auw = 1 then output triangle {u, v, w}

Algorithm 3 – edge-listing. Lists all the triangles containing a given edge [24].
Input: the sorted adjacency array representation of G, and an edge (u, v) of G
Output: all the triangles in G containing (u, v)
1. for eachw in N(u) ∩ N(v):
1a. output triangle {u, v, w}

Theorem 5 ([24,33,34]). Given the adjacency array representation of G and its adjacency matrix, it is possible to list all its
triangles inΘ

(∑
v d(v)

2
)
,Θ(mdmax),Θ(mn), andΘ(n3) time andΘ(n2) space; vertex-iterator achieves this.

Proof. The fact that Algorithm 2 (vertex-listing) lists all the triangles to which a vertex v belongs is straightforward. Then,
iterating over all vertices gives three times each triangle; if one wants each triangle only once it is sufficient to restrict the
output of triangles to the ones for which η(w) > η(v) > η(u), for any injective numbering η() of the vertices.
Thanks to the adjacency array representation of G, the pairs of neighbors of v may be computed in Θ(d(v)2) time and

Θ(1) space (this would be impossible with the adjacency matrix only). Thanks to the adjacency matrix, the test in line 1a
may be processed inΘ(1) time and space (this would be impossible with the adjacency array representation only). The time
complexity of Algorithm 2 (vertex-listing) therefore is inΘ(d(v)2) time andΘ(1) space. TheΘ(

∑
v d(v)

2) time andΘ(n2)
space complexity of the overall algorithm follows. Moreover, we have Θ(

∑
v d(v)

2) ⊆ O(
∑

v d(v)dmax) = O(mdmax) ⊆
O(mn) ⊆ O(n3), and all these complexity may be attained in the worst case (clique of n vertices), hence the results. �

6 It is for instance implemented in the widely used complex network analysis software Pajek [7,6,5].



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 463

Theorem 6 ([24,33,34] and Folklore). Given the sorted adjacency array representation of G, it is possible to list all its triangles in
Θ(mdmax),Θ(mn) andΘ(n3) time andΘ ′(2m+ n) ⊆ Θ(m) space; The edge-iterator algorithm achieves this.

Proof. The correctness of the algorithm is immediate. Onemay proceed like in the proof of Theorem5 to obtain each triangle
only once.
Each edge (u, v) is treated in time Θ(d(u) + d(v)) (because N(u) and N(v) are sorted) and Θ(1) space. We have

d(u) + d(v) ∈ Θ(dmax), therefore the overall time complexity is in O(mdmax) ⊆ O(mn) ⊆ O(n3). In the worst case (clique
of n vertices) all these complexity are tight.
The space complexity is nothing but the one of the graph representation, as the algorithms needs only a constant

additional space. �

First note 7 that these algorithms are optimal in the worst case, just like the direct method (Lemma 3 and Theorem 4).
However, they aremuchmore efficient on sparse graphs, in particular if themaximal degree is low [7], since they both are in
Θ(mdmax) time. If the maximal degree is a constant, vertex-iterator even is inΘ(n) time (like edge-iterator). Moreover, both
algorithms only need a constant amount of space in addition to the graph encoding, which makes them very interesting
from this perspective.
However, vertex-iterator has a severe drawback: it needs the adjacency matrix of G and the adjacency array

representation. Instead, edge-iterator only needs the sorted adjacency array representation, which is often available in
practice.8 Moreover, edge-iterator runs in Θ ′(2m + n) ⊆ Θ(m) space, which makes it very compact. Because of these
two reasons, and because of its simplicity, it is widely used in practice.
The performance of these algorithms however are quite poor when the maximal degree is unbounded, and in particular

if it grows like a power of n. They may even be asymptotically sub-optimal on sparse graphs and/or on graphs with some
vertices of high degree, which often appear in practice (we discuss this further in Section 5). It is however possible to design
time-optimal listing algorithms for sparse graphs, which we detail now.

4.2. Time-optimal listing algorithms for sparse graphs

Several algorithms have been proposed that reach the Θ(m
3
2 ) bound of Lemma 3, and thus are time optimal on sparse

graphs (note that this is also optimal for dense graphs, but we have seen in Section 4.1 much simpler algorithms for these
cases). In 1978, an algorithmwas proposed to find a triangle inΘ(m

3
2 ) time andΘ(n2) space [24]. Therefore, it is slower than

the ones discussed in Section 3 for finding, but itmay be extended to obtain a listing algorithmwith the same complexity.We
first present this below. Then, we detail two simpler solutions with this complexity, proposed recently in [33,34]. The first
one consists in a simple extension of Algorithm 1 (ayz-node-counting); the other one, named forward, has the advantage of
being very efficient in practice [33,34]. Moreoever, it has amuch lower space complexity. In addition, wewill slightlymodify
it in Section 4.3 to reach aΘ ′(2m+ 2n) ⊆ Θ(m) space cost, which makes it very compact.

An approach based on covering trees [24]
We use here the classical notions of covering trees and connected components, as defined for instance in [17]. Since they

are very classical, we do not recall them. We just note that a covering tree of each connected component of any graph may
be computed in time linear in the number of edges of this graph, and space linear in its number of vertices (typically using
a breadth-first search). One then has access to the father of any vertex inΘ(1) time and space.
In [24], the authors propose a triangle finding algorithm in Θ(m

3
2 ) time and Θ(n2) space. We present here a simple

extension of this algorithm to solve triangle listingwith the same complexity. To achieve this, we need the following lemma,
which is a simple extension of Lemma 4 in [24].

Lemma 7 ([24]). Let us consider a covering tree for each connected component of G, and a triangle t in G having an edge in one
of these trees. Then there exists an edge (u, v) in E but in none of these trees, such that t = {u, v, father(v)}.

Proof. Let t = {x, y, z} be a triangle in G, and let T be the tree that contains an edge of t . We can suppose without loss
of generality that this edge is (x, y = father(x)). Two cases have to be considered. First, if (x, z) 6∈ T then it is in none
of the trees, and taking v = x and u = z satisfies the claim. Second, if (x, z) ∈ T then we have father(z) = x (because
father(x) = y 6= z). Moreover, (y, z) 6∈ T (else T would contain a cycle, namely t). Therefore taking v = z and u = y satisfies
the claim. �

This lemma shows that, given a covering tree of each connected component of G, one may find triangles by checking
for each edge (u, v) that belongs to none of these trees if {u, v, father(v)} is a triangle. Then, all the triangles containing
(v, father(v)) are discovered. This leads to Algorithm 4 (tree-listing), and to the following result (which is a direct extension
of the one concerning triangle finding described in [24]).

7We also note that another O(mn) time algorithmwas proposed in [30] for a more general problem. In the case of triangles, it does not improve vertex-
iterator and edge-iterator, which are much simpler, therefore we do not detail it here.
8 Recall that, if needed, one may sort the adjacency array representation of G inΘ(m log(n)) time and using only a constant amount of space in addition

to the one needed for the graph representation.



464 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

Algorithm 4 – tree-listing. Lists all the triangles in a graph [24].
Input: the adjacency array representation of G, and its adjacency matrix A
Output: all the triangles in G
1. while there remains an edge in E:
1a. compute a covering tree for each connected component of G
1b. for each edge (u, v) in none of these trees:
1ba. if (father(u), v) ∈ E then output triangle {u, v, father(u)}
1bb. else if (father(v), u) ∈ E then output triangle {u, v, father(v)}
1c. remove from E all the edges in these trees

Theorem 8 ([24]). Given the adjacency array representation of G and its adjacency matrix, it is possible to list all its triangles in
Θ(m

3
2 ) time andΘ(n2) space; Algorithm 4 (tree-listing) achieves this.

Proof. Let us first prove that the algorithm is correct. It is clear that the algorithm may only output triangles. Suppose that
one is missing. But all its edges have been removed when the computation stops, and so (at least) one of its edges was in a
tree at some step. Let us consider the first such step (therefore the three edges of the triangle are present). Lemma 7 says
that there exists an edge satisfying the condition tested in lines 1b and 1ba, and thus the triangle was discovered at this step.
Finally, we reach a contradiction, and thus all triangles have been discovered.
Now let us focus on the time complexity. Following [24], let c denote the number of connected components at the

current step of the algorithm. The value of c increases during the computation, until it reaches c = n. Two cases have
to be considered. First suppose that c ≤ n −

√
m. During this step of the algorithm, n − c ≥ n − (n −

√
m) =

√
m edges

are removed. And thus there can be no more than m
√
m =
√
m such steps. Consider now the other case, c > n −

√
m. The

maximal degree then is at most n − c < n − (n −
√
m) =

√
m, and, since the degree of each vertex (of non-null degree)

decreases at each step, there can be no more than
√
m such steps. Finally, the total number of steps is bounded by 2

√
m.

Moreover, each step costs O(m) time: the test in line 1ba is in Θ(1) time thanks to the adjacency matrix, and line 1b finds
the O(m) edges on which it is ran in O(m) time thanks to the father() relation which is inΘ(1) time. This leads to the O(m

3
2 )

time complexity, and, from Lemma 3, this bound is tight.
Finally, the space complexity comes from the need of the adjacency matrix in input. �

The performances of this algorithm rely on the fact that the graph is given both in its adjacency matrix representation
and its adjacency array one. This reduces significantly the practical relevance of this approach concerning reduced space
complexity. We will see in the next section algorithms that have the same time complexity but need much less space.

An extension of Algorithm 1 (ayz-node-counting) [3,2,33,34]
The fastest known algorithm for finding, counting, and node-counting triangles, namely Algorithm1 (ayz-node-counting),

was proposed in [3,2] and we detailed it in Section 3. As proposed first in [33,34], it is easy to modify it to obtain a listing
algorithm, namely Algorithm 5 (ayz-listing).

Algorithm 5 – ayz-listing. Lists all the triangles in a graph [3,2,33,34].
Input: the adjacency array representation of G, its adjacency matrix A, and an integer K
Output: all the triangles in G
1. for each vertex v with d(v) ≤ K :
1a. output all triangles containing v with Algorithm 2 (vertex-listing), without duplicates
2. let G′ be the subgraph of G induced by {v, d(v) > K}
3. compute the sorted adjacency array representation of G′
4. list all triangles in G′ using Algorithm 3 (edge-listing)

Theorem 9 ([33,34,3,2]). Given the adjacency array representation of G and its adjacency matrix, it is possible to list all its
triangles inΘ(m

3
2 ) time andΘ(n2) space; Algorithm 5 (ayz-listing) achieves this if one takes K ∈ Θ(

√
m).

Proof. First recall that one may sort the adjacency array representation of G in O(m log(n)) time and Θ(1) space. This has
no impact on the overall complexity of Algorithm 5 (ayz-listing), thus we suppose in this proof that the representation is
sorted.
In a way similar to the proof of Theorem 2, let us first express the complexity of Algorithm 5 (ayz-listing) in terms

of K . Using the Θ(d(v)2) complexity of Algorithm 2 (vertex-listing) we obtain that lines 1 and 1a have a cost in
O(
∑

v,d(v)≤K d(v)
2) ⊆ O(

∑
v,d(v)≤K d(v)K ⊆ O(mK) time and inΘ(1) space.

Since we may suppose that the adjacency array representation of G is sorted, line 3 can be achieved in O(m) time. The
number of vertices in G′ is inΘ(mK ) and it may be a clique, thus the space needed for G

′ is inΘ((mK )
2).



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 465

Finally, the overall time complexity is in O
(
mK +mmK

)
. The optimum is attained with K in Θ(

√
m), leading to the

announced time complexity (which is tight from Lemma 3). The space needed for G′ then isΘ((mK )
2) = Θ(m), and thus the

algorithm hasΘ(n2) space complexity due to the adjacency array needed in input. �

Again, this result has a significant space cost: it needs the adjacencymatrix of G, and, even then, it needsΘ(m) additional
space. Moreover, it relies on the use of a parameter, K , which may be difficult to choose in practice: though Theorem 9 says
that itmust be inΘ(

√
m), thismakes little sensewhen one considers a given graph.Wediscuss further this issue in Section 6.

The forward fast algorithm [33,34]
In [33,34], the authors propose another algorithm with optimal time complexity and a Θ(m) space cost (it needs the

adjacency array representation ofG only).Wenowpresent it in detail.We give a newproof of the correctness and complexity
of this algorithm, in order to be able to extend it in the next sections (in particular in Section 5).

Algorithm 6 – forward. Lists all the triangles in a graph [33,34].
Input: the the adjacency array representation of G
Output: all the triangles in G
1. number the vertices with an injective function η()
such that d(u) > d(v) implies η(u) < η(v) for all u and v

2. let A be an array of n arrays initially empty
3. for each vertex v taken in increasing order of η():
3a. for each u ∈ N(v)with η(u) > η(v):
3aa. for eachw in A[u] ∩ A[v]: output triangle {u, v, w}
3ab. add v to A[u]

Theorem 10 ([33,34]). Given the adjacency array representation of G, it is possible to list all its triangles in Θ(m
3
2 ) time and

Θ ′(3m+ 3n) ⊆ Θ(m) space; Algorithm 6 (forward) achieves this.
Proof. For each vertex x, let us denote by A(x) the set {y ∈ N(x), η(y) < η(x)}; this set contains only neighbors of x with
degree larger than or equal to the one of x itself. For any triangle t = {a, b, c} one can suppose without loss of generality
that η(c) < η(b) < η(a). One may then discover t by discovering that c is in A(a) ∩ A(b).
This is what the algorithm does. To show this, it suffices to show that A[u] ∩ A[v] = A(u) ∩ A(v) when computed in

line 3aa.
First notice that when one enters in the main loop (line 3), the set A[v] contains all the vertices in A(v). Indeed, u was

previously treated by the main loop since η(u) < η(v), and, during this, lines 3 and 3ab ensure that it has been added to
A[v] (just replace u by v and v by u in the pseudocode). Moreover, A[v] contains no other element, and thus it is exactly A(v)
when one enters the main loop.
When entering the main loop for v, A[u] is not equal to A(u) but it contains all the vertices w in A(u) such that

η(w) < η(v). Therefore, the intersections are equal: A[u] ∩ A[v] = A(u) ∩ A(v), and thus the algorithm is correct.
Let us turn to complexity analysis. First notice that line 1 can be achieved inΘ(n log(n)) time andΘ ′(n) space.
Now, note that lines 3 and 3a are nothing but a loop over all edges, thus inΘ(m). Inside the loop, the expensive operation

is the intersection computation. To obtain the claimed complexity, it suffices to show that both A[u] and A[v] contain
O(
√
m) vertices: since each structure A[x] is trivially sorted by construction, this is sufficient to ensure that the intersection

computation is in O(
√
m).

For any vertex x, by definition of A(x) and η(), A(x) is included in the set of neighbors of x with degree at least d(x).
Suppose x hasω(

√
m) such neighbors: |A(x)| ∈ ω(

√
m). But all these vertices have degree at least equal to the one of x, with

d(x) ≥ |A(x)|, and thus they have all together ω(m) edges, which is impossible. Therefore one must have |A(x)| ∈ O(
√
m),

and since A[x] ⊆ A(x) this proves the O(m
3
2 ) time complexity. This bound is tight since the graph may contain Θ(m

3
2 )

triangles.
The space complexity is obtained when one notices that each edge induces the storage of exactly one vertex (line 3ab),

leading to a space requirement in Θ ′(3m + 3n): Θ ′(2m + n) for the graph representation plus Θ ′(m + n) for A and Θ ′(n)
for η. �

Compared to the two other time optimal algorithms we have presented, this algorithm is significantly more compact.
Moreover, it is very simple and easy to implement, which also implies, as shown in [33,34], that it is very efficient in practice.
In addition, it does not have the drawback of depending on a parameter K , central in Algorithm 5 (ayz-listing). Finally, we
show in the next sections that it may be slightly modified to reduce further its space complexity (Section 4.3), and that even
better performances can be proved if one considers power-law graphs (Section 6).

4.3. Time-optimal compact algorithms for sparse graphs

This section is devoted to time-optimal listing algorithms that have very low space requirements, both regarding the
representation of G and the additional space needed.



466 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

A compact version of Algorithm 6 (forward)
Thanks to the proof we gave of Theorem 10, it is now easy to modify Algorithm 6 (forward) in order to improve

significantly its space complexity. This leads to the following result.

Algorithm 7 – compact-forward. Lists all the triangles in a graph.
Input: the adjacency array representation of G
Output: all the triangles in G
1. number the vertices with an injective function η()
such that d(u) > d(v) implies η(u) < η(v) for all u and v
2. sort the adjacency array representation according to η()
3. for each vertex v taken in increasing order of η():
3a. for each u ∈ N(v)with η(u) > η(v):
3aa. let u′ be the first neighbor of u, and v′ the one of v
3ab. while there remain untreated neighbors of u and v and η(u′) < η(v) and η(v′) < η(v):
3aba. if η(u′) < η(v′) then set u′ to the next neighbor of u
3abb. else if η(u′) > η(v′) then set v′ to the next neighbor of v
3abc. else:
3abca. output triangle {u, v, u′}
3abcb. set u′ to the next neighbor of u
3abcc. set v′ to the next neighbor of v

Theorem 11. Given the adjacency array representation of G, it is possible to list all its triangles inΘ(m
3
2 ) time andΘ ′(2m+2n) ⊆

Θ(m) space; Algorithm 7 (compact-forward) achieves this.

Proof. Recall that, as explained in the proof of Theorem 10, when one computes the intersection of A[v] and A[u] (line 3aa
of Algorithm 6 (forward)), A[v] is the set of neighbors of v with number lower than η(v), and A[u] is the set of neighbors of u
with number lower than η(v). If the adjacency structures encoding the neighborhoods are sorted according to η(), we then
have that A[v] is nothing but the beginning of N(v), truncated when we reach a vertex v′ with η(v′) > η(v). Likewise, A[u]
is N(u) truncated at u′ such that η(u′) > η(v).
Algorithm 7 (compact-forward) uses this: lines 3ab to 3abcc are nothing but the computation of the intersection of A[v]

and A[u], which are supposed to be stored at the beginning of the adjacency structures, which is done in line 2. All this has
no impact on the asymptotic time cost, and the A structure does not have to be explicitly stored.
Notice now that line 1 has a O(n log(n)) time andΘ ′(n) space cost. Moreover, sorting the simple compact representation

of G (line 2) is in O(m log(n)) time and Θ(1) space. These time complexities play no role in the overall complexity, but the
space complexities induce aΘ ′(n) additional space cost for the overall algorithm. �

Also note that we do not need to store the whole adjacency arrays representing G in order to list the triangles using
Algorithm 7 (compact-forward): if the adjacency array of each vertex v contains only its neighbors u such that η(u) > η(v)
then the algorithm still works. We obtain the following result.

Corollary 12. If the input adjacency arrays representing G are already sorted according to η(), then it is possible to list all the
triangles in G in timeΘ(m

3
2 ) and spaceΘ ′(m+ n) ⊆ Θ(m).

This last method is very compact (it does not even need to store the whole graph), and moreover all the preprocessing
needed to reach these performances (computing the degree of each vertex, sorting them according to their degree,
translating the adjacency arrays, and sorting them) can be done in Θ(m log(n)) time and Θ ′(2n) ⊆ Θ(n) space only. In
cases where the available memory is too limited to store the whole graph, this makes this method very appealing.
In practice, these results mean that one could encode vertices by integers, with the property that this numbering goes

from highest degree vertices to lowest ones, then store the graph in the adjacency array representation, sort it, and compute
the triangles using Algorithm 7 (compact-forward). In such a framework, and using the trick pointed out in the corollary
above, the algorithm runs inΘ ′(m) space, since line 1, responsible for theΘ ′(n) cost, is unnecessary. On the other hand, if
one wants to keep the original numbering of vertices, then one has to store the function η() and renumber the vertices back
after the triangle computation. This has an additionalΘ ′(n) space cost (and no significant time cost).

A new algorithm
The algorithms discussed above basically rely on the fact that they avoid considering each pair of neighbors of high degree

vertices, which would have a prohibitive cost. They do so by managing low degree vertices first, which has the consequence
thatmost edges involved in the highest degrees have already been treatedwhen the algorithm comes to these vertices. Here
we take a quite different approach. First we design an algorithm able to efficiently list the triangles of high degree vertices.
Then, we use it in an algorithm similar to Algorithm 5 (ayz-listing), but that both avoids adjacency matrix representation,
and reaches aΘ(m) space cost.



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 467

First note that we already have an algorithm listing all the triangles containing a given vertex v, namely Algorithm 2
(vertex-listing) [24]. This algorithm is inΘ(1) space (when the adjacency matrix is given), but it is inefficient on high degree
vertices, since it needsΘ(d(v)2) time. Our improved listing algorithm relies on an equivalent to Algorithm 2 (vertex-listing)
that avoids this.

Algorithm 8 – new-vertex-listing. Lists all the triangles containing a given vertex.
Input: the adjacency array representation of G, and a vertex v
Output: all the triangles to which v belongs
1. create an array A of n booleans and set them to false
2. for each vertex u in N(v), set A[u] to true
3. for each vertex u in N(v):
3a. for each vertexw in N(u):
3aa. if A[w] then output {v, u, w}

Lemma 13. Given the adjacency array representation of G, it is possible to list all its triangles containing a given vertex v inΘ(m)
(optimal) time andΘ ′( n

σ
) ⊆ Θ(n) space; Algorithm 8 (new-vertex-listing) achieves this.

Proof. One may see Algorithm 8 (new-vertex-listing) as a way to use the adjacency matrix of Gwithout explicitly storing it:
the array A is nothing but the v-th line of the adjacency-matrix. It is constructed in Θ ′( n

σ
) time and space (lines 1 and 2).

9 Then one can test for any edge (v, u) in Θ(1) time and space. The loop starting at line 3 takes any edge containing one
neighbor u of v and tests if its other end (w in the algorithm) is linked to v using A, inΘ(1) time and space. This is sufficient
to find all the triangles containing v. Since this number of edges is bounded by 2m (one may actually obtain an equivalent
algorithm by replacing lines 3a and 3aa by a loop over all the edges), we obtain that the algorithm is in O(m) time andΘ ′( n

σ
)

space.
The obtained time complexity is optimal since v may belong toΘ(m) triangles. �

Algorithm 9 – new-listing. Lists all the triangles in a graph.
Input: the sorted adjacency array representation of G, and an integer K
Output: all the triangles in G
1. for each vertex v in V :
1a. if d(v) > K then, using Algorithm 8 (new-vertex-listing):
1aa. output all triangles {v, u, w} such that d(u) > K , d(w) > K and v > u > w
1ab. output all triangles {v, u, w} such that d(u) > K , d(w) ≤ K and v > u
1ac. output all triangles {v, u, w} such that d(u) ≤ K , d(w) > K and v > w

2. for each edge (v, u) in E:
2a. if d(v) ≤ K and d(u) ≤ K then:
2aa. if u < v then output all triangles containing (u, v) using Algorithm 3 (edge-listing)

Theorem 14. Given the sorted adjacency array representation of G, it is possible to list all its triangles in Θ(m
3
2 ) time and

Θ ′(2m+ n+ n
σ
) ⊆ Θ(m) space; Algorithm 9 (new-listing) achieves this if one takes K ∈ Θ(

√
m).

Proof. Let us first study the complexity of the algorithm as a function of K . For each vertex v with d(v) > K , one lists the
number of triangles containing v in Θ(m) time and Θ ′( n

σ
) ⊆ Θ(n) space (Lemma 13) (the conditions in lines 1aa to 1ac,

as well as the one in line 2aa, only serve to ensure that each triangle is listed exactly once). Then, one lists the triangles
containing edges whose extremities are of degree at most K ; this is done by line 2aa inΘ(K) time andΘ(1) space for each
edge, thus a total in O(mK) time andΘ(1) space.
Finally, the space needs of the whole algorithm are independent of K and it is only in Θ ′( n

σ
) ⊆ Θ(n) in addition to the

Θ ′(2m+n) ⊆ Θ(m) space representation ofG. Its time complexity is inO(mK m+mK) time, since there areO(
m
K ) verticeswith

degree larger than K . In order to minimize this, we take K inΘ(
√
m), which leads to the announced time complexity. �

Theorems 11 and 14 improve Theorems 9 and 10 since they show that the same (optimal) time-complexity may be
achieved in significantly less space.
Note however that it is still unknown whether there exist algorithms with time complexity in Θ(m

3
2 ) but with lower

space requirements. We saw that edge-iterator achieves Θ(mdmax) ⊆ O(mn) time with only a constant space requirement
in addition to the adjacency array, and thus in Θ ′(2m + n) ⊆ Θ(m) space. In this direction, one may use the adjacency
arrays to obtain the following stronger (if dmax ∈ Ω(

√
m log(n))) result.

9 Recall that σ is the space needed to store an integer between 0 and n; here only one bit is necessary.



468 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

Corollary 15. Given the adjacency array representation of G, it is possible to list all its triangles in O(m
3
2
√
log(n)) time and

Θ ′(2m+ n) ⊆ Θ(m) space; Algorithm 9 (new-listing) achieves this if one takes K ∈ Θ(
√
m log(n)).

Proof. Let us first sort the arrays in O(m log(n)) time and Θ ′(1) space. Then, we change Algorithm 8 (new-vertex-listing)
by removing the use of A and replace line 3aa by a dichotomic search for w in N(u), which has a cost in O(log(n)) time
and Θ ′(1) space. Now if Algorithm 9 (new-listing) uses this modified version of Algorithm 8 (new-vertex-listing), then it is
in Θ ′(1) space and O(mK m log(n) + mK) time. The optimal value for K is then in Θ(

√
m log(n)), leading to the announced

complexity. �

5. The case of power-law graphs

Until now,wepresented several resultswhich take advantage of the fact thatmost large graphsmet in practice are sparse;
designing algorithms with complexities expressed in term ofm rather than n then leads to significant improvements.
Going further, it has been observed since several years thatmost large graphsmet in practice also have another important

characteristic in common: their degrees are very heterogeneous. More precisely, in most cases, the vast majority of vertices
have a very low degree while some have a huge degree. This is often captured by the fact that the degree distribution, i.e.
the proportion pk for each k of vertices of degree k, is well fitted by a power-law: pk ∼ k−α for an exponent α generally
between 2 and 3. See [36,13,1,29,37,19] for extensive lists of cases in which this property was observed. 10
Wewill see that several algorithms proposed in previous section have provable better performances on such graphs than

on general (sparse) graphs.
Let us first note that there are several ways to model real-world power-law distributions; see for instance [18,15]. We

use here one of the most simple and classical ones, namely continuous power-laws; choosing one of the others would lead to
similar results. In such a distribution, pk is taken to be equal to

∫ k+1
k Cx−αdx, where C is the normalization constant. 11 This

ensures that pk is proportional to k−α in the limit where k is large. We must moreover ensure that the sum of the pk is equal
to 1:

∑
∞

k=1 pk =
∫
∞

1 C x
−αdx = C 1

α−1 = 1. We obtain C = α− 1, and finally pk =
1
α−1

∫ k+1
k x−αdx = k−α+1− (k+ 1)−α+1.

Finally, when we talk about power-law graphs in the following, we refer to graphs in which the proportion of vertices of
degree k is pk = k−α+1 − (k+ 1)−α+1.

Theorem 16. Given an adjacency array representation of a power-law graph Gwith exponentα, Algorithm 7 (compact-forward)
and Algorithm 9 (new-listing) with K ∈ Θ(n

1
α ) list all its triangles in O(mn

1
α ) time and the same space complexities as above.

Proof. Let us denote by nK the number of vertices of degree larger than or equal to K . In a power-law graph with exponent
α, this number is given by: nKn =

∑
∞

k=K pk. We have
∑
∞

k=K pk = 1 −
∑K−1
k=1 pk = 1 − (1 − K

−α+1) = K−α+1. Therefore
nK = nK−α+1.
Let us first prove the result concerning Algorithm 9 (new-listing). As already noticed in the proof of Theorem 14, its space

complexity does not depend on K . Moreover, its time complexity is in O(nKm+ mK). The value of K that minimizes this is
inΘ(n

1
α ), and the result for Algorithm 9 (new-listing) follows.

Let us now consider the case of Algorithm7 (compact-forward). The space complexitywas already proved for Theorem11.
The time complexity is the same as the one for Algorithm 6 (forward), and we use here the same notations as in the proof of
Theorem 10. Recall that the vertices are numbered by decreasing order of their degrees.
Let us study the complexity of the intersection computation (line 3aa in Algorithm 6 (forward)). It is inΘ(|A[u]|+|A[v]|).

Recall that, at this point of the algorithm, A[v] is nothing but the set of neighbors of v with number lower than the one of v
(and thus of degree at least equal to d(v)). Therefore, |A[v]| is bounded both by d(v) and the number of vertices of degree
at least d(v), i.e.nd(v). Likewise, |A[u]| is bounded by d(u) and by nd(v), since A[u] is the set of neighbors of u with degree at
least equal to d(v). Moreover, we have η(u) > η(v) (line 3a of Algorithm 6 (forward)), and so |A[u]| ≤ d(u) ≤ d(v). Finally,
both |A[u]| and |A[v]| are bounded by both d(v) and nd(v), and the intersection computation is in O(d(v)+ nd(v)).
Like above, let us compute the value K of d(v) such that these two bounds are equal. We obtain K = n

1
α . Then, the

computation of the intersection is in O(K + nK ) = O(n
1
α ), and since the number of such computations is bounded by the

number of edges (lines 3 and 3a of Algorithm 6 (forward)), we obtain the announced complexity. �

Let us underline the fact that this results is not an average case complexity: it is indeed a worst case complexity
guaranteed as long as one considers power-law graphs.
This result improves significantly the known bounds, as soon as α is large enough, and even if m ∈ Θ(n). This holds in

particular for typical cases met in practice, where α often is between 2 and 3 [13,1]. It may be seen as an explanation of the

10 Note that if α is a constant thenm is inΘ(n). It may however depend on n, and should be denoted by α(n). In order to keep the notations simple, we
do not use this notation, but one must keep this in mind.
11 One may also choose pk proportional to

∫ k+ 12
k− 12

x−αdx. Choosing any of this kind of solutions has little impact on the obtained results, see [15] and the

proofs we present in this section.



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 469

fact that Algorithm 6 (forward) has very good performances on graphs with heterogeneous degree distributions, as shown
experimentally in [33,34].
One may use the same kind of approach to prove better performances for Algorithm 1 (ayz-node-counting) and

Algorithm 5 (ayz-listing) in the case of power-law graphs as follows.

Corollary 17. Given the adjacency array representation of a power-law graph G with exponent α and its adjacency matrix, it is
possible to solve node-counting, counting and finding on G in O(n

ωα+ω
ωα−ω+2 ) time and Θ(n

2α+2
ωα−ω+2 ) space; Algorithm 1 (ayz-node-

counting) achieves this if one takes K inΘ(n
ω−1

ωα−ω+2 ).

Proof. With the same reasoning as the one in the proof of Theorem 2, one obtains that the algorithm runs in O(nK 2+(nK )ω)
where nK denotes the number of vertices of degree larger than K . As explained in the proof of Theorem 16, this is
nK = nK−α+1. Therefore, the best K is such that nK 2 is in Θ(nωKω(1−α)). Finally, K must be in n

1−ω
ω(1−α)−2 . One then obtains

the announced time complexity. The space complexity is bounded by the space needed to construct the adjacency matrix
between the vertices of degree at most K , thus it is (nK )2, and the result follows. �

If the degree distribution of G follows a power law with exponent α = 2.5 (typical for internet graphs [13,1]) then this
result says that Algorithm 1 (ayz-node-counting) reaches a O(n1.5) time and O(n1.26) space complexity. If the exponent is
larger, then the complexity is even better. Note that one may also obtain tighter bounds in terms of m and n, for instance
using the fact that Algorithm 1 (ayz-node-counting) has running time in Θ(mK + (nK )ω) rather than Θ(nK 2 + (nK )ω) (see
the proofs of Theorem 2 and Corollary 17). We do not detail this here because the obtained results are quite technical and
follow immediately from the ones we detailed.

Corollary 18. Given the adjacency array representation of a power-law graph G with exponent α and its adjacency matrix, it is
possible to list all its triangles inΘ(mn

1
α ) time andΘ(n2) space; Algorithm 5 (ayz-listing) achieves this if one takes K inΘ(n

1
α ).

Proof. The time complexity of Algorithm 5 (ayz-listing) is inΘ(mK +mnK ). The K minimizing this is such that K ∈ Θ(nK ),
which is the same condition as the one in the proof of Theorem 16; therefore we reach the same time complexity. The space
complexity is bounded by the size of the adjacency matrix of G′ (with the same notation as in the proof of Theorem 9), i.e.
Θ((nK )2). It is bounded by the size of the adjacency of G itself, which leads to the announced complexity. �

Notice that this result implies that, for some reasonable values of α (namely α > 2) the space needed in addition to the
graph representation is in o(n). This however is of theoretical interest only: it relies on the use of both the adjacency matrix
and the adjacency array representation of G, which is unfeasible in practice for large graphs.
Finally, the results presented in this section show that onemay use properties of most large graphsmet in practice (here,

their heterogeneous degree distribution), to improve results known on the general case (or on the sparse graph case).
We note however that we have no lower bound for the complexity of triangle listing with the assumption that the graph

is a power-law one (which we had for general and sparse graphs); actually, we do not even have a proof of the fact that the
given bound is tight for the presented algorithms. Onemay therefore prove that they have even better performance (or that
the bound is tight), and algorithms faster than the ones presented here may exist (for power-law graphs).

6. Experimental evaluation

In [33,34], the authors present awide set of experiments on both real-world complex networks and some generated using
various models, to evaluate experimentally the known algorithms. They focus on vertex-iterator, edge-iterator, Algorithm 6
(forward), and Algorithm 5 (ayz-listing), together with their counting and node-counting variants (they compute clustering
coefficients). They also study variants of these algorithms using, for instance, hashtables and balanced trees. These variants
have the sameworst case asymptotic complexities but onemay guess that theywould run faster than the original algorithms,
for several reasons we do not detail here. Matrix approaches are considered as too intricate to be used in practice.
The overall conclusion of their extensive experiments is that Algorithm 6 (forward) performs best on real-world (sparse

and power-law) graphs: its asymptotic time is optimal and the constants involved in its implementation are very small.
Variants, which need more subtle data structures, actually fail in performing better in most cases (because of the overhead
induced by the management of these structures).
In order to integrate our contribution in this context and have a precise idea of the behavior of the discussed algorithms

in practice, we also performed awide set of experiments.We first discuss typical instances below, and detail a case forwhich
previously known fast algorithms cannot be used because of space limitations.
We provide implementations at [26] which make it easy for anyone to compare the algorithms on his/her own instances

(and to use them in applications).



470 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

Table 1
Performances of the main algorithms on typical real-world examples

Graph n m dmax Time cost Space cost
el f cf nl el f cf nl

Cooccurrences 9 264 392066 7053 2 s 0.25 s 0.25 s 0.25 s 4 mb 6 mb 4 mb 4 mb
Flickr groups 75121 88650430 43720 2 h 26 min 31 min 31 min 31 min 700 mb 1100 mb 700 mb 700 mb
Actor 383640 15038083 3956 1 min 12 s 20 s 20 s 28 s 120 mb 180 mb 120 mb 120 mb
ip exchanges 467273 1744214 81756 6 s 1 s 1 s 1 s 16 mb 26 mb 17 mb 16 mb
Notre-Dame 701654 1935518 5331 1 s 0.5 s 0.5 s 0.5 s 18 mb 31 mb 21 mb 18 mb
Flickr contacts 1 920914 10097185 30167 68 s 14 s 14 s 15 s 85 mb 138 mb 92 mb 85 mb
Phone calls 2 527730 6340925 1230 3 s 2 s 2 s 3 s 59 mb 102 mb 68 mb 61 mb
p2p exchanges 6235399 159870973 15420 29 min 7 min 7 min 10 min 1.3 gb 1.9 gb 1.3 gb 1.3 gb
Webgraph 39459925 783027125 1776858 41 h – 20 min 45 min 6 gb 9.2 gb 6.2 gb 6.1 gb

From top to bottom: a cooccurrence graph (nodes are thewords in a book, and a link indicates that the twowords appear in a same sentence); Flickr group
graph (the nodes are flickr groups and a link indicates that the two groups have at least one member in common); an actor graph (the nodes are movie
actors found in imdb, with a link between two actors if they appear in a same movie); an exchange graph at ip level (nodes are ip addresses with a link
between two addresses if the router on which the measurement is conducted routed a packet from one of them to the other); the Notre-Dame web graph
(a graph in which nodes are the web pages at the university of Notre-Dame, with links between them); Flickr contact graph (nodes are flickr users, and
there is a link between two users if one of them is a contact of the other); a phone call graph (nodes are phone numbers, with a link between two numbers
if a call from one to the other occurred during the observation); a p2p exchange graph (nodes are the users of an eDonkey server, and two nodes are linked
if they exchanged a file during the measurement); a web graph provided by the WebGraph project (pages in the .uk domain, with links between them,
detailed below). For each graph, we give, from left to right: its number of nodes n, its number of links m, its maximal degree dmax , the running times of
Algorithm 3 (edge-listing) (el), Algorithm 6 (forward) (f), Algorithm 7 (compact-forward) (cf), and Algorithm 9 (new-listing) (nl) (with the best value for K ,
see below), and their respective space needs.

Typical real-world cases
Table 1 shows the performances of themain algorithms discussed above in a variety of real-world cases.We do not give a

detailed description of these graphs, whichwould be of little interest here; the key points are that these graphs spanwell the
variety of cases met in practice, and they all have heterogeneous degree distributions well fitted by power-laws. Likewise,
we do not give a detailed description of the machine running the experiments (a typical high performance workstation
with a Dual Core amd Opteron(tm) Processor 275 at 2.2 GHz and 8 gb of main memory), which would provide little useful
information, if any; the running times are provided to help in comparing the different algorithms, not to predict the precise
running time on a given computer.
Experimental results are in full accordance with theoretical predictions. Algorithm 3 (edge-listing) is very compact but

may need much time to terminate, in particular in case of graphs with high-degree nodes. Algorithm 6 (forward) and
Algorithm7 (compact-forward) are very fast, but Algorithm6 (forward) has a prohibitive space cost in some cases. Algorithm7
(compact-forward) and Algorithm9 (new-listing) are very compact (almost asmuch as Algorithm3 (edge-listing), as predicted
by the analysis), while being very fast. This makes them the most appealing solutions in practice.
Onemay notice that the computation times of all algorithms are strongly related to (though not a direct consequence of)

the presence of high-degree nodes; this was a key point in all our formal analysis, which is confirmed by these experiments.
Note that Algorithm 9 (new-listing), just like Algorithm 1 (ayz-node-counting) and Algorithm 5 (ayz-listing), suffers from a

serious drawback: it relies on the choice of a relevant value for K , the maximal degree above which vertices are considered
as having a high degree. Though in theory this is not a problem, in practice it may be quite difficult to determine the best
value for K , i.e. the one that minimizes the execution time. It depends both on the machine running the program and on the
graph under concern.
We took here the best value, i.e. the one leading to the lowest execution time, in each case. We will discuss this in more

details below. With this best value given, the time performances of Algorithm 9 (new-listing) are similar to, but lower than,
the ones of Algorithm6 (forward). Its space requirements aremuch lower, as predicted by Theorem14. Likewise, Algorithm9
(new-listing) speed is close to the one of Algorithm 7 (compact-forward) and it has slightly lower space requirements, in
particular when the number of nodes is very large, as predicted.

A case previously our of reach
It is important to note that the use of compact algorithms, namely Algorithm 7 (compact-forward) and Algorithm 9 (new-

listing), makes it possible to manage graphs that were previously out of reach because of space requirements. To illustrate
this, we detail now the experiment labelled WebGraph in Table 1 (last line), which previous algorithms were unable to
manage in our 8 GigaBytes memory machine. This experiment also has the advantage of being representative of what we
observed on a wide variety of instances.
The graphwe consider here is aweb graph provided by theWebGraph project [10]. It contains all theweb pages in the .uk

domain discovered during a crawl conducted from the 11-th of july, 2005, at 00:51, to the 30-th at 10:56 using UbiCrawler
[11]. It has n = 39 459 925 vertices and m = 783 027 125 (undirected) edges, leading to more than 6 GB of memory usage
if stored in (sorted) (uncompressed) adjacency arrays, each vertex being encoded in 4 bytes as an integer between 0 and
n − 1. Its degree distribution is plotted in Fig. 1, showing that the degrees are very heterogeneous (its maximal degree is
dmax = 1 776 858) and reasonably well fitted by a power-law of exponent α = 2.5. It contains 304 529 576 triangles.



M. Latapy / Theoretical Computer Science 407 (2008) 458–473 471

Fig. 1. Left: the degree distribution of our graph. Right: the execution time (in min) as a function of the number of vertices considered as high degree ones.

Let us emphasise that Algorithm 6 (forward), as well as the ones based on adjacency matrices, are unable to manage this
graph on our 8 GB memory machine. Instead, and despite the fact that it is quite slow, edge-iterator, with itsΘ ′(2m+ n) ⊆
Θ(m) space complexity, can handle this. It took approximately 41 h to solve node-counting on this graphwith this algorithm
on our machine.
Algorithm 7 (compact-forward) achieves much better results: it took approximately 20 min. Likewise, Algorithm 9 (new-

listing) took around 45min (depending on the value ofK ). This is probably close towhat Algorithm6 (forward)would achieve
if more main memory was available.
In order to use Algorithm9 (new-listing) in such cases, onemay evaluate the bestK in a preprocessing step at running time

(by measuring the time needed to perform the key steps of the algorithm for various K ). This can be done without changing
the asymptotic complexity. However, there is a much simpler way to choose K , with negligible loss in performance, which
we discuss now.
We plot in Fig. 1 (right) the running time of Algorithm 9 (new-listing) as a function of the number of vertices with degree

larger than K , for varying values of K . Surprisingly enough, this plot shows clearly that the time performance increases
drastically as soon as a few vertices are considered as high degree ones. This may be seen as a consequence of the fact
that edge-iterator is very efficient when the maximal degree is bounded; managing high degree vertices efficiently with
Algorithm 8 (new-vertex-listing) and then the low degree ones with edge-iterator therefore leads to good performances. In
otherwords, the fewhighdegree vertices (whichmaybeobservedon thedegree distributionplotted in Fig. 1) are responsible
for the low performance of edge-iterator.
When K decreases, the number of vertices with degree larger than K increases, and the performances continue to be

better andbetter for awhile. They reach aminimal running time, and then the running time grows again. The other important
point here is that this growth is very slow, and thus the performance of the algorithm remains close to its best for a wide
range of values of K . This implies that, with any reasonable guess for K , the algorithm performs well.

7. Conclusion

In this contribution, we gave a detailed survey of existing results on triangle problems, and we completed them in two
directions. First, we gave the space complexity of each previously known algorithm. Second, we proposed new algorithms
that achieve both optimal time complexity and low space needs. Taking space requirements into account is a key issue in
this context, since this currently is the bottleneck for triangle problems when the considered graphs are very large. This is
discussed on a practical case in Section 6, where we show that our compact algorithmsmake it possible to handle cases that
were previously out of reach.
Another significant contribution of this paper is the analysis of algorithm performances on power-law graphs (Section 5),

which model a wide variety of very large graphs met in practice. We were able to show that, on such graphs, several
algorithms have better performance than in the general (sparse) case.
Finally, the current state of the art concerning triangle problems, including our new results, may be summarized as follows:

• except the fact that node-counting may have a Θ(n) space overhead (depending on the underlying algorithm), there is
no known difference in time and space complexities between finding, counting, and node-counting;
• the fastest known algorithms for these three problems rely on matrix product and are in O(n2.376) or O(m1.41) time and
Θ(n2) space ( Theorems 1 and 2); however, no lower bound better than the trivial Ω(m) one is known for the time
complexity of these problems;
• the other known algorithms rely on solutions to the listing problem and have the same performances as on this problem;
they are slower than matrix approaches but need less space;
• listing can be solved in Θ(n3) or Θ(nm) (optimal in the general case) time and Θ(n2) or Θ(m) (optimal) space (
Theorems 4–6) ; this can be achieved from the sorted adjacency array representation of the graph;



472 M. Latapy / Theoretical Computer Science 407 (2008) 458–473

• listing may also be solved in Θ(m
3
2 ) (optimal in the general and sparse cases) time and Θ(m) space ( Theorems 11 and

14), still from the adjacency array representation of the graph; this is much better for sparse graphs;
• if main memory is very limited, one may use Corollary 12 to solve triangle listing inΘ ′(m+ n) ⊆ Θ(m), while keeping
the optimalΘ(m

3
2 ) time complexity; using externalmemory, thismay even be reduced toΘ ′(m) ⊆ Θ(m)mainmemory

needs, as discussed at the end of Section 4.3;
• in the case of power-lawgraphs, it is possible to prove better complexities, leading toO(mn

1
α ) time and compact solutions

(where α is the exponent of the power-law) (Theorem 16);
• in practice, it is possible to obtain very good performances (both concerning time and space needs) using Algorithm 7
(compact-forward) and Algorithm 9 (new-listing).

We detailed several other results, but they are weaker (they need the adjacency matrix of the graph in input and/or have
higher complexities) than these ones.
This contribution also opens several questions for further research, most of them related to the tradeoff between space and
time efficiency. Let us cite for instance:

• can matrix approaches be modified in order to induce lower space complexity?
• is listing feasible in less space, while still in optimal timeΘ(m

3
2 )?

• is it possible to design a listing algorithm with complexity o(mn
1
α ) time and o(m) space for power-law graphs with

exponent α? what is the optimal time complexity in this case?

It is also important to notice that other approaches exist, based for instance on streaming algorithmics (avoiding to store
the graph in main memory) [23,4,25] and/or approximate algorithms [32,25,35], and/or various methods to compress the
graph [8,9]. These approaches are very promising for graphs even larger than the ones considered here, in particular the
ones that do not fit in main memory.
Another interesting approach would be to express the complexity of triangle algorithms in terms of the number of

triangles in the graph (and of its size). Indeed, it may be possible to achieve much better performance for listing algorithms
if the graph contains few triangles. Likewise, it is reasonable to expect that triangle listing, but also node-counting and
counting, may perform poorly if there are many triangles in the graph. The finding problem, on the contrary, may be easier
on graphs having many triangles. To our knowledge, this direction has not yet been explored.
Finally, the results we present in Section 5 take advantage of the fact that most very large graphs considered in practice

may be approximed by power-law graphs. It is not the first time that algorithms for triangle problems use underlying
graph properties to get improved performance. For instance, results on planar graphs are provided in [24], and results
using arboricity in [14,3]. It however appeared quite recently that many large graphs met in practice have some nontrivial
(statistical) properties in common, andusing these properties in the design of efficient algorithms still is at its very beginning.
We consider this as a key direction for further research.

Acknowledgments

I warmly thank Frédéric Aidouni, Michel Habib, Vincent Limouzy, ClémenceMagnien, Thomas Schank and Pascal Pons for
helpful comments and references. I also thank Paolo Boldi from the WebGraph project [10], who provided the data used in
Section 6. This work was partly funded by the MetroSec (Metrology of the Internet for Security) [40] and PERSI (Programme
d’Étude des Réseaux Sociaux de l’Internet) [41] projects.

References

[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Modern Phys. 74 (47) (2002).
[2] Noga Alon, Raphael Yuster, Uri Zwick, Finding and counting given length cycles, in: European Symposium Algorithms, ESA, 1994.
[3] Noga Alon, Raphael Yuster, Uri Zwick, Finding and counting given length cycles, Algorithmica 17 (3) (1997) 209–223.
[4] Ziv Bar-Yossef, Ravi Kumar, D. Sivakumar, Reduction in streaming algorithms with an application of counting triangles in graphs, in: ACM/SIAM
Symposium On Discrete Algorithms, SODA, 2002.

[5] Vladimir Batagelj, Personnal communication, 2006.
[6] Vladimir Batagelj, Andrej Mrvar, Pajek: A program for large network analysis, Connections 21 (2) (1998) 47–57.
[7] Vladimir Batagelj, Andrej Mrvar, A subquadratic triad census algorithm for large sparse networks with small maximum degree, Social Networks 23
(2001) 237–243.

[8] P. Boldi, S. Vigna, The webgraph framework i: Compression techniques, in: WWW, 2004.
[9] P. Boldi, S. Vigna, The webgraph framework ii: Codes for the world-wide web, in: DCC, 2004.
[10] Paolo Boldi, WebGraph project, http://webgraph.dsi.unimi.it/.
[11] Paolo Boldi, Bruno Codenotti, Massimo Santini, Sebastiano Vigna, Ubicrawler: A scalable fully distributed web crawler, Softw., Pract. Exper. 34 (8)

(2004) 711–726.
[12] Béla Bollobás, Oliver M. Riordan, Mathematical results on scale-free random graphs, in: Handbook of Graphs and Networks: From the Genome to the

Internet, Wiley-VCH, 2002.
[13] U. Brandes, T. Erlebach (Eds.), Network Analysis: Methodological Foundations, in: LNCS, Springer-Verlag, 2005.
[14] Norishige Chiba, Takao Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1985).
[15] R. Cohen, R. Erez, D. ben Avraham, S. Havlin, Reply to the comment on ‘breakdown of the internet under intentional attack’, Phys. Rev. Lett. 87 (2001).
[16] Don Coppersmith, Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symb. Comput. 9 (3) (1990) 251–280.
[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, second edition, MIT Press, 2001.

http://webgraph.dsi.unimi.it/


M. Latapy / Theoretical Computer Science 407 (2008) 458–473 473

[18] S.N. Dorogovtsev, J.F.F. Mendes, Comment on ‘breakdown of the internet under intentional attack’, Phys. Rev. Lett. 87 (2001).
[19] Stephen Eubank, V.S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan, Nan Wang, Structural and algorithmic aspects of massive social networks,

in: ACM/SIAM Symposium on Discrete Algorithms, SODA, 2004.
[20] Gianni Franceschini, S. Muthukrishnan, Mihai Pătraşcu, Radix sorting with no extra space, in: European Symposium on Algorithms, ESA, 2007,

pp. 194–205.
[21] Frank Harary, Helene J. Kommel, Matrix measures for transitivity and balance, J. Math. Sociology (1979).
[22] Frank Harary, Herbert H. Paper, Toward a general calculus of phonemic distribution, Language: J. Linguistic Soc. America 33 (1957) 143–169.
[23] Monika RauchHenzinger, Prabhakar Raghavan, Sridar Rajagopalan, Computing on data streams, Technical report, DEC Systems Research Center, 1998.
[24] Alon Itai, Michael Rodeh, Finding a minimum circuit in a graph, SIAM J. Comput. 7 (4) (1978) 413–423.
[25] H. Jowhari, M. Ghodsi, New streaming algorithms for counting triangles in graphs, in: COCOON, 2005.
[26] Matthieu Latapy, Triangle computation web page, http://www.liafa.jussieu.fr/~latapy/Triangles/.
[27] Matthieu Latapy, Clémence Magnien, Complex network measurements: Estimating the relevance of observed properties, in: Proceedings of

Infocom’08, Phoenix, USA, 2008.
[28] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: Densification laws, shrinking diameters and possible explanations, in: ACM SIGKDD, 2005.
[29] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, Uri Alon, Network motifs: Simple building blocks of complex networks,

Science 298 (2002) 824–827.
[30] Burkhard Monien, How to find long paths efficiently, Ann. Discrete Math. 25 (1985) 239–254.
[31] C.R. Edling, P. Holme, F. Liljeros, Structure and time-evolution of an internet dating community, Social Networks 26 (2) (2004).
[32] Thomas Schank, Dorothea Wagner, Approximating clustering coefficient and transitivity, J. Graph Algorithms Appl. (JGAA) 9 (2) (2005) 265–275.
[33] Thomas Schank, Dorothea Wagner, Finding, counting and listing all triangles in large graphs, Technical report, Universität Karlsruhe, Fakultät für

Informatik, 2005.
[34] Thomas Schank, Dorothea Wagner, Finding, counting and listing all triangles in large graphs, an experimental study, in: Workshop on Experimental

and Efficient Algorithms, WEA, 2005.
[35] Asaf Shapira, Noga Alon, Homomorphisms in graph property testing — a survey, in: Electronic Colloquium on Computational Complexity, ECCC, 2005.
[36] Duncan J. Watts, Steven H. Strogatz, Collective dynamics of smallworld networks, Nature 393 (1998) 440–442.
[37] Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz, Ron Milo, Ron Y. Pinter, Uri Alon, Hanah Margalit, Network motifs in integrated

cellular networks of transcription-regulation and protein–protein interaction, Proc. Natl. Acad. Sci. USA 101 (2004) 5934–5939.
[38] Raphael Yuster, Uri Zwick, Detecting short directed cycles using rectangular matrix multiplication and dynamic programming, in: ACM/SIAM

Symposium on Discrete Algorithms, SODA, 2004, pp. 254–260.
[39] Raphael Yuster, Uri Zwick, Fast sparse matrix multiplication, in: European Symposium on Algorithms, ESA, 2004, pp. 604–615.
[40] Metrosec project, http://www2.laas.fr/METROSEC/.
[41] Persi project, http://www.liafa.jussieu.fr/~persi/.

http://www.liafa.jussieu.fr/~latapy/Triangles/
http://www2.laas.fr/METROSEC/
http://www.liafa.jussieu.fr/~persi/

	Main-memory triangle computations for very large  (sparse (power-law)) graphs
	Introduction
	Preliminaries
	The fastest algorithms for finding, counting, and node-counting
	Time-optimal listing algorithms
	Basic algorithms
	Time-optimal listing algorithms for sparse graphs
	Time-optimal compact algorithms for sparse graphs

	The case of power-law graphs
	Experimental evaluation
	Conclusion
	Acknowledgments
	References


